progs/token.scala
changeset 352 1e1b0fe66107
parent 165 66b699c80479
child 354 86b2aeae3e98
equal deleted inserted replaced
351:ccfce105e36b 352:1e1b0fe66107
     1 import scala.language.implicitConversions
     1 import scala.language.implicitConversions    
     2 import scala.language.reflectiveCalls
     2 import scala.language.reflectiveCalls
     3 import scala.util._
     3 import scala.annotation.tailrec   
     4 import scala.annotation.tailrec
     4 
     5 
     5 abstract class Rexp 
     6 sealed abstract class Rexp
       
     7 
       
     8 case object NULL extends Rexp
     6 case object NULL extends Rexp
     9 case object EMPTY extends Rexp
     7 case object EMPTY extends Rexp
    10 case class CHAR(c: Char) extends Rexp
     8 case class CHAR(c: Char) extends Rexp
    11 case class ALT(r1: Rexp, r2: Rexp) extends Rexp
     9 case class ALT(r1: Rexp, r2: Rexp) extends Rexp 
    12 case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
    10 case class SEQ(r1: Rexp, r2: Rexp) extends Rexp 
    13 case class STAR(r: Rexp) extends Rexp
    11 case class STAR(r: Rexp) extends Rexp 
    14 
    12 case class RECD(x: String, r: Rexp) extends Rexp
    15 def charlist2rexp(s : List[Char]) : Rexp = s match {
    13 
       
    14 abstract class Val
       
    15 case object Void extends Val
       
    16 case class Chr(c: Char) extends Val
       
    17 case class Sequ(v1: Val, v2: Val) extends Val
       
    18 case class Left(v: Val) extends Val
       
    19 case class Right(v: Val) extends Val
       
    20 case class Stars(vs: List[Val]) extends Val
       
    21 case class Rec(x: String, v: Val) extends Val
       
    22    
       
    23 // some convenience for typing in regular expressions
       
    24 def charlist2rexp(s : List[Char]): Rexp = s match {
    16   case Nil => EMPTY
    25   case Nil => EMPTY
    17   case c::Nil => CHAR(c)
    26   case c::Nil => CHAR(c)
    18   case c::s => SEQ(CHAR(c), charlist2rexp(s))
    27   case c::s => SEQ(CHAR(c), charlist2rexp(s))
    19 }
    28 }
    20 implicit def string2rexp(s : String) : Rexp = charlist2rexp(s.toList)
    29 implicit def string2rexp(s : String) : Rexp = charlist2rexp(s.toList)
    21 
       
    22 
    30 
    23 implicit def RexpOps(r: Rexp) = new {
    31 implicit def RexpOps(r: Rexp) = new {
    24   def | (s: Rexp) = ALT(r, s)
    32   def | (s: Rexp) = ALT(r, s)
    25   def % = STAR(r)
    33   def % = STAR(r)
    26   def ~ (s: Rexp) = SEQ(r, s)
    34   def ~ (s: Rexp) = SEQ(r, s)
    30   def | (r: Rexp) = ALT(s, r)
    38   def | (r: Rexp) = ALT(s, r)
    31   def | (r: String) = ALT(s, r)
    39   def | (r: String) = ALT(s, r)
    32   def % = STAR(s)
    40   def % = STAR(s)
    33   def ~ (r: Rexp) = SEQ(s, r)
    41   def ~ (r: Rexp) = SEQ(s, r)
    34   def ~ (r: String) = SEQ(s, r)
    42   def ~ (r: String) = SEQ(s, r)
    35 }
    43   def $ (r: Rexp) = RECD(s, r)
    36 
    44 }
    37 def Range(s : List[Char]) : Rexp = s match {
    45 
    38   case Nil => NULL
    46 // nullable function: tests whether the regular 
    39   case c::Nil => CHAR(c)
    47 // expression can recognise the empty string
    40   case c::s => ALT(CHAR(c), Range(s))
       
    41 }
       
    42 def RANGE(s: String) = Range(s.toList)
       
    43 
       
    44 def PLUS(r: Rexp) = SEQ(r, STAR(r))
       
    45 
       
    46 val SYM = RANGE("ABCDEFGHIJKLMNOPQRSTUVXYZabcdefghijklmnopqrstuvwxyz_")
       
    47 val DIGIT = RANGE("0123456789")
       
    48 val ID = SYM ~ (SYM | DIGIT).% 
       
    49 val NUM = PLUS(DIGIT)
       
    50 val KEYWORD : Rexp = "skip" | "while" | "do" | "if" | "then" | "else" | "read" | "write" 
       
    51 val SEMI: Rexp = ";"
       
    52 val OP: Rexp = ":=" | "=" | "-" | "+" | "*" | "!=" | "<" | ">"
       
    53 val WHITESPACE = PLUS(RANGE(" \n"))
       
    54 val RPAREN: Rexp = ")"
       
    55 val LPAREN: Rexp = "("
       
    56 val BEGIN: Rexp = "{"
       
    57 val END: Rexp = "}"
       
    58 
       
    59 //regular expressions ranked by position in the list
       
    60 val regs: List[Rexp] = 
       
    61   List(KEYWORD, ID, OP, NUM, SEMI, LPAREN, RPAREN, BEGIN, END, WHITESPACE)
       
    62 
       
    63 def nullable (r: Rexp) : Boolean = r match {
    48 def nullable (r: Rexp) : Boolean = r match {
    64   case NULL => false
    49   case NULL => false
    65   case EMPTY => true
    50   case EMPTY => true
    66   case CHAR(_) => false
    51   case CHAR(_) => false
    67   case ALT(r1, r2) => nullable(r1) || nullable(r2)
    52   case ALT(r1, r2) => nullable(r1) || nullable(r2)
    68   case SEQ(r1, r2) => nullable(r1) && nullable(r2)
    53   case SEQ(r1, r2) => nullable(r1) && nullable(r2)
    69   case STAR(_) => true
    54   case STAR(_) => true
    70 }
    55   case RECD(_, r1) => nullable(r1)
    71 
    56 }
    72 def zeroable (r: Rexp) : Boolean = r match {
    57 
    73   case NULL => true
    58 // derivative of a regular expression w.r.t. a character
    74   case EMPTY => false
       
    75   case CHAR(_) => false
       
    76   case ALT(r1, r2) => zeroable(r1) && zeroable(r2)
       
    77   case SEQ(r1, r2) => zeroable(r1) || zeroable(r2)
       
    78   case STAR(_) => false
       
    79 }
       
    80 
       
    81 def der (c: Char, r: Rexp) : Rexp = r match {
    59 def der (c: Char, r: Rexp) : Rexp = r match {
    82   case NULL => NULL
    60   case NULL => NULL
    83   case EMPTY => NULL  
    61   case EMPTY => NULL
    84   case CHAR(d) => if (c == d) EMPTY else NULL
    62   case CHAR(d) => if (c == d) EMPTY else NULL
    85   case ALT(r1, r2) => ALT(der(c, r1), der(c, r2))
    63   case ALT(r1, r2) => ALT(der(c, r1), der(c, r2))
    86   case SEQ(r1, r2) => 
    64   case SEQ(r1, r2) => 
    87     if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2))
    65     if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2))
    88     else SEQ(der(c, r1), r2)
    66     else SEQ(der(c, r1), r2)
    89   case STAR(r) => SEQ(der(c, r), STAR(r))
    67   case STAR(r) => SEQ(der(c, r), STAR(r))
    90 }
    68   case RECD(_, r1) => der(c, r1)
    91 
    69 }
    92 
    70 
    93 // calculates derivatives until all of them are zeroable
    71 // derivative w.r.t. a string (iterates der)
    94 @tailrec
    72 def ders (s: List[Char], r: Rexp) : Rexp = s match {
    95 def munch(s: List[Char], 
    73   case Nil => r
    96           pos: Int, 
    74   case c::s => ders(s, der(c, r))
    97           rs: List[Rexp], 
    75 }
    98           last: Option[Int]): Option[Int] = rs match {
    76 
    99   case Nil => last
    77 // extracts a string from value
   100   case rs if (s.length <= pos) => last
    78 def flatten(v: Val) : String = v match {
   101   case rs => {
    79   case Void => ""
   102     val ders = rs.map(der(s(pos), _))
    80   case Chr(c) => c.toString
   103     val rs_nzero = ders.filterNot(zeroable(_))
    81   case Left(v) => flatten(v)
   104     val rs_nulls = ders.filter(nullable(_))
    82   case Right(v) => flatten(v)
   105     val new_last = if (rs_nulls != Nil) Some(pos) else last
    83   case Sequ(v1, v2) => flatten(v1) + flatten(v2)
   106     munch(s, 1 + pos, rs_nzero, new_last)
    84   case Stars(vs) => vs.map(flatten).mkString
   107   }
    85   case Rec(_, v) => flatten(v)
   108 }
    86 }
   109 
    87 
   110 // iterates the munching function and prints 
    88 // extracts an environment from a value
   111 // out the component strings
    89 def env(v: Val) : List[(String, String)] = v match {
   112 @tailrec
    90   case Void => Nil
   113 def tokenize(s: String, rs: List[Rexp]) : Unit = munch(s.toList, 0, rs, None) match {
    91   case Chr(c) => Nil
   114   case None if (s == "") => println("EOF")
    92   case Left(v) => env(v)
   115   case None => println(s"Lexing error: $s")
    93   case Right(v) => env(v)
   116   case Some(n) => {
    94   case Sequ(v1, v2) => env(v1) ::: env(v2)
   117     val (head, tail) = s.splitAt(n + 1)
    95   case Stars(vs) => vs.flatMap(env)
   118     print(s"|${head.replaceAll("\n","RET")}|")
    96   case Rec(x, v) => (x, flatten(v))::env(v)
   119     tokenize(tail, rs)
    97 }
   120   }
    98 
   121 }
    99 // injection part
   122 
   100 def mkeps(r: Rexp) : Val = r match {
   123 
   101   case EMPTY => Void
   124 val test_prog = """
   102   case ALT(r1, r2) => 
   125 start := XXX;
   103     if (nullable(r1)) Left(mkeps(r1)) else Right(mkeps(r2))
   126 x := start;
   104   case SEQ(r1, r2) => Sequ(mkeps(r1), mkeps(r2))
   127 y := start;
   105   case STAR(r) => Stars(Nil)
   128 z := start;
   106   case RECD(x, r) => Rec(x, mkeps(r))
   129 while 0 < x do {
   107 }
   130  while 0 < y do {
   108 
   131   while 0 < z do {
   109 
   132     z := z - 1
   110 def inj(r: Rexp, c: Char, v: Val) : Val = (r, v) match {
   133   };
   111   case (STAR(r), Sequ(v1, Stars(vs))) => Stars(inj(r, c, v1)::vs)
   134   z := start;
   112   case (SEQ(r1, r2), Sequ(v1, v2)) => Sequ(inj(r1, c, v1), v2)
   135   y := y - 1
   113   case (SEQ(r1, r2), Left(Sequ(v1, v2))) => Sequ(inj(r1, c, v1), v2)
   136  };     
   114   case (SEQ(r1, r2), Right(v2)) => Sequ(mkeps(r1), inj(r2, c, v2))
   137  y := start;
   115   case (ALT(r1, r2), Left(v1)) => Left(inj(r1, c, v1))
   138  x := x - 1
   116   case (ALT(r1, r2), Right(v2)) => Right(inj(r2, c, v2))
       
   117   case (CHAR(d), Void) => Chr(c) 
       
   118   case (RECD(x, r1), _) => Rec(x, inj(r1, c, v))
       
   119 }
       
   120 
       
   121 // main lexing function (produces a value)
       
   122 def lex(r: Rexp, s: List[Char]) : Val = s match {
       
   123   case Nil => if (nullable(r)) mkeps(r) else throw new Exception("Not matched")
       
   124   case c::cs => inj(r, c, lex(der(c, r), cs))
       
   125 }
       
   126 
       
   127 def lexing(r: Rexp, s: String) : Val = lex(r, s.toList)
       
   128 
       
   129 // some "rectification" functions for simplification
       
   130 def F_ID(v: Val): Val = v
       
   131 def F_RIGHT(f: Val => Val) = (v:Val) => Right(f(v))
       
   132 def F_LEFT(f: Val => Val) = (v:Val) => Left(f(v))
       
   133 def F_ALT(f1: Val => Val, f2: Val => Val) = (v:Val) => v match {
       
   134   case Right(v) => Right(f2(v))
       
   135   case Left(v) => Left(f1(v))
       
   136 }
       
   137 def F_SEQ(f1: Val => Val, f2: Val => Val) = (v:Val) => v match {
       
   138   case Sequ(v1, v2) => Sequ(f1(v1), f2(v2))
       
   139 }
       
   140 def F_SEQ_Void1(f1: Val => Val, f2: Val => Val) = (v:Val) => Sequ(f1(Void), f2(v))
       
   141 def F_SEQ_Void2(f1: Val => Val, f2: Val => Val) = (v:Val) => Sequ(f1(v), f2(Void))
       
   142 def F_RECD(f: Val => Val) = (v:Val) => v match {
       
   143   case Rec(x, v) => Rec(x, f(v))
       
   144 }
       
   145 def F_ERROR(v: Val): Val = throw new Exception("error")
       
   146 
       
   147 // simplification of regular expressions returning also an
       
   148 // rectification function; no simplification under STAR 
       
   149 def simp(r: Rexp): (Rexp, Val => Val) = r match {
       
   150   case ALT(r1, r2) => {
       
   151     val (r1s, f1s) = simp(r1)
       
   152     val (r2s, f2s) = simp(r2)
       
   153     (r1s, r2s) match {
       
   154       case (NULL, _) => (r2s, F_RIGHT(f2s))
       
   155       case (_, NULL) => (r1s, F_LEFT(f1s))
       
   156       case _ => if (r1s == r2s) (r1s, F_LEFT(f1s))
       
   157                 else (ALT (r1s, r2s), F_ALT(f1s, f2s)) 
       
   158     }
       
   159   }
       
   160   case SEQ(r1, r2) => {
       
   161     val (r1s, f1s) = simp(r1)
       
   162     val (r2s, f2s) = simp(r2)
       
   163     (r1s, r2s) match {
       
   164       case (NULL, _) => (NULL, F_ERROR)
       
   165       case (_, NULL) => (NULL, F_ERROR)
       
   166       case (EMPTY, _) => (r2s, F_SEQ_Void1(f1s, f2s))
       
   167       case (_, EMPTY) => (r1s, F_SEQ_Void2(f1s, f2s))
       
   168       case _ => (SEQ(r1s,r2s), F_SEQ(f1s, f2s))
       
   169     }
       
   170   }
       
   171   case RECD(x, r1) => {
       
   172     val (r1s, f1s) = simp(r1)
       
   173     (RECD(x, r1s), F_RECD(f1s))
       
   174   }
       
   175   case r => (r, F_ID)
       
   176 }
       
   177 
       
   178 def lex_simp(r: Rexp, s: List[Char]) : Val = s match {
       
   179   case Nil => if (nullable(r)) mkeps(r) else throw new Exception("Not matched")
       
   180   case c::cs => {
       
   181     val (r_simp, f_simp) = simp(der(c, r))
       
   182     inj(r, c, f_simp(lex_simp(r_simp, cs)))
       
   183   }
       
   184 }
       
   185 
       
   186 def lexing_simp(r: Rexp, s: String) : Val = lex_simp(r, s.toList)
       
   187 
       
   188 lexing_simp(("a" + "ab") | ("b" + ""), "ab")
       
   189 
       
   190 // Lexing Rules for a Small While Language
       
   191 
       
   192 def PLUS(r: Rexp) = r ~ r.%
       
   193 val SYM = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z"
       
   194 val DIGIT = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
       
   195 val ID = SYM ~ (SYM | DIGIT).% 
       
   196 val NUM = PLUS(DIGIT)
       
   197 val KEYWORD : Rexp = "skip" | "while" | "do" | "if" | "then" | "else" | "read" | "write" | "true" | "false"
       
   198 val SEMI: Rexp = ";"
       
   199 val OP: Rexp = ":=" | "==" | "-" | "+" | "*" | "!=" | "<" | ">" | "<=" | ">=" | "%" | "/"
       
   200 val WHITESPACE = PLUS(" " | "\n" | "\t")
       
   201 val RPAREN: Rexp = ")"
       
   202 val LPAREN: Rexp = "("
       
   203 val BEGIN: Rexp = "{"
       
   204 val END: Rexp = "}"
       
   205 val STRING: Rexp = "\"" ~ SYM.% ~ "\""
       
   206 
       
   207 
       
   208 val WHILE_REGS = (("k" $ KEYWORD) | 
       
   209                   ("i" $ ID) | 
       
   210                   ("o" $ OP) | 
       
   211                   ("n" $ NUM) | 
       
   212                   ("s" $ SEMI) | 
       
   213                   ("str" $ STRING) |
       
   214                   ("p" $ (LPAREN | RPAREN)) | 
       
   215                   ("b" $ (BEGIN | END)) | 
       
   216                   ("w" $ WHITESPACE)).%
       
   217 
       
   218 //   Testing
       
   219 //============
       
   220 
       
   221 def time[T](code: => T) = {
       
   222   val start = System.nanoTime()
       
   223   val result = code
       
   224   val end = System.nanoTime()
       
   225   println((end - start)/1.0e9)
       
   226   result
       
   227 }
       
   228 
       
   229 val r1 = ("a" | "ab") ~ ("bcd" | "c")
       
   230 println(lexing(r1, "abcd"))
       
   231 
       
   232 val r2 = ("" | "a") ~ ("ab" | "b")
       
   233 println(lexing(r2, "ab"))
       
   234 
       
   235 
       
   236 // Two Simple While Tests
       
   237 //========================
       
   238 println("prog0 test")
       
   239 
       
   240 val prog0 = """read n"""
       
   241 println(env(lexing_simp(WHILE_REGS, prog0)))
       
   242 
       
   243 println("prog1 test")
       
   244 
       
   245 val prog1 = """read  n; write (n)"""
       
   246 println(env(lexing_simp(WHILE_REGS, prog1)))
       
   247 
       
   248 
       
   249 // Big Test
       
   250 //==========
       
   251 
       
   252 val prog2 = """
       
   253 write "fib";
       
   254 read n;
       
   255 minus1 := 0;
       
   256 minus2 := 1;
       
   257 while n > 0 do {
       
   258   temp := minus2;
       
   259   minus2 := minus1 + minus2;
       
   260   minus1 := temp;
       
   261   n := n - 1
   139 };
   262 };
   140 write x;
   263 write "result";
   141 write y;
   264 write minus2
   142 write z
       
   143 """
   265 """
   144 
   266 
   145 tokenize(test_prog, regs)
   267 println("Tokens")
       
   268 println(env(lexing_simp(WHILE_REGS, prog2)))
       
   269 
       
   270 for (i <- 1 to 80) {
       
   271   print(i.toString + ":  ")
       
   272   time(lexing_simp(WHILE_REGS, prog2 * i))
       
   273 }
       
   274 
       
   275