diff -r ccfce105e36b -r 1e1b0fe66107 progs/token.scala --- a/progs/token.scala Fri Oct 09 14:48:06 2015 +0100 +++ b/progs/token.scala Fri Oct 16 08:42:21 2015 +0100 @@ -1,25 +1,33 @@ -import scala.language.implicitConversions +import scala.language.implicitConversions import scala.language.reflectiveCalls -import scala.util._ -import scala.annotation.tailrec +import scala.annotation.tailrec -sealed abstract class Rexp - +abstract class Rexp case object NULL extends Rexp case object EMPTY extends Rexp case class CHAR(c: Char) extends Rexp -case class ALT(r1: Rexp, r2: Rexp) extends Rexp -case class SEQ(r1: Rexp, r2: Rexp) extends Rexp -case class STAR(r: Rexp) extends Rexp +case class ALT(r1: Rexp, r2: Rexp) extends Rexp +case class SEQ(r1: Rexp, r2: Rexp) extends Rexp +case class STAR(r: Rexp) extends Rexp +case class RECD(x: String, r: Rexp) extends Rexp -def charlist2rexp(s : List[Char]) : Rexp = s match { +abstract class Val +case object Void extends Val +case class Chr(c: Char) extends Val +case class Sequ(v1: Val, v2: Val) extends Val +case class Left(v: Val) extends Val +case class Right(v: Val) extends Val +case class Stars(vs: List[Val]) extends Val +case class Rec(x: String, v: Val) extends Val + +// some convenience for typing in regular expressions +def charlist2rexp(s : List[Char]): Rexp = s match { case Nil => EMPTY case c::Nil => CHAR(c) case c::s => SEQ(CHAR(c), charlist2rexp(s)) } implicit def string2rexp(s : String) : Rexp = charlist2rexp(s.toList) - implicit def RexpOps(r: Rexp) = new { def | (s: Rexp) = ALT(r, s) def % = STAR(r) @@ -32,34 +40,11 @@ def % = STAR(s) def ~ (r: Rexp) = SEQ(s, r) def ~ (r: String) = SEQ(s, r) + def $ (r: Rexp) = RECD(s, r) } -def Range(s : List[Char]) : Rexp = s match { - case Nil => NULL - case c::Nil => CHAR(c) - case c::s => ALT(CHAR(c), Range(s)) -} -def RANGE(s: String) = Range(s.toList) - -def PLUS(r: Rexp) = SEQ(r, STAR(r)) - -val SYM = RANGE("ABCDEFGHIJKLMNOPQRSTUVXYZabcdefghijklmnopqrstuvwxyz_") -val DIGIT = RANGE("0123456789") -val ID = SYM ~ (SYM | DIGIT).% -val NUM = PLUS(DIGIT) -val KEYWORD : Rexp = "skip" | "while" | "do" | "if" | "then" | "else" | "read" | "write" -val SEMI: Rexp = ";" -val OP: Rexp = ":=" | "=" | "-" | "+" | "*" | "!=" | "<" | ">" -val WHITESPACE = PLUS(RANGE(" \n")) -val RPAREN: Rexp = ")" -val LPAREN: Rexp = "(" -val BEGIN: Rexp = "{" -val END: Rexp = "}" - -//regular expressions ranked by position in the list -val regs: List[Rexp] = - List(KEYWORD, ID, OP, NUM, SEMI, LPAREN, RPAREN, BEGIN, END, WHITESPACE) - +// nullable function: tests whether the regular +// expression can recognise the empty string def nullable (r: Rexp) : Boolean = r match { case NULL => false case EMPTY => true @@ -67,79 +52,224 @@ case ALT(r1, r2) => nullable(r1) || nullable(r2) case SEQ(r1, r2) => nullable(r1) && nullable(r2) case STAR(_) => true + case RECD(_, r1) => nullable(r1) } -def zeroable (r: Rexp) : Boolean = r match { - case NULL => true - case EMPTY => false - case CHAR(_) => false - case ALT(r1, r2) => zeroable(r1) && zeroable(r2) - case SEQ(r1, r2) => zeroable(r1) || zeroable(r2) - case STAR(_) => false -} - +// derivative of a regular expression w.r.t. a character def der (c: Char, r: Rexp) : Rexp = r match { case NULL => NULL - case EMPTY => NULL + case EMPTY => NULL case CHAR(d) => if (c == d) EMPTY else NULL case ALT(r1, r2) => ALT(der(c, r1), der(c, r2)) case SEQ(r1, r2) => if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2)) else SEQ(der(c, r1), r2) case STAR(r) => SEQ(der(c, r), STAR(r)) + case RECD(_, r1) => der(c, r1) +} + +// derivative w.r.t. a string (iterates der) +def ders (s: List[Char], r: Rexp) : Rexp = s match { + case Nil => r + case c::s => ders(s, der(c, r)) +} + +// extracts a string from value +def flatten(v: Val) : String = v match { + case Void => "" + case Chr(c) => c.toString + case Left(v) => flatten(v) + case Right(v) => flatten(v) + case Sequ(v1, v2) => flatten(v1) + flatten(v2) + case Stars(vs) => vs.map(flatten).mkString + case Rec(_, v) => flatten(v) +} + +// extracts an environment from a value +def env(v: Val) : List[(String, String)] = v match { + case Void => Nil + case Chr(c) => Nil + case Left(v) => env(v) + case Right(v) => env(v) + case Sequ(v1, v2) => env(v1) ::: env(v2) + case Stars(vs) => vs.flatMap(env) + case Rec(x, v) => (x, flatten(v))::env(v) +} + +// injection part +def mkeps(r: Rexp) : Val = r match { + case EMPTY => Void + case ALT(r1, r2) => + if (nullable(r1)) Left(mkeps(r1)) else Right(mkeps(r2)) + case SEQ(r1, r2) => Sequ(mkeps(r1), mkeps(r2)) + case STAR(r) => Stars(Nil) + case RECD(x, r) => Rec(x, mkeps(r)) } -// calculates derivatives until all of them are zeroable -@tailrec -def munch(s: List[Char], - pos: Int, - rs: List[Rexp], - last: Option[Int]): Option[Int] = rs match { - case Nil => last - case rs if (s.length <= pos) => last - case rs => { - val ders = rs.map(der(s(pos), _)) - val rs_nzero = ders.filterNot(zeroable(_)) - val rs_nulls = ders.filter(nullable(_)) - val new_last = if (rs_nulls != Nil) Some(pos) else last - munch(s, 1 + pos, rs_nzero, new_last) +def inj(r: Rexp, c: Char, v: Val) : Val = (r, v) match { + case (STAR(r), Sequ(v1, Stars(vs))) => Stars(inj(r, c, v1)::vs) + case (SEQ(r1, r2), Sequ(v1, v2)) => Sequ(inj(r1, c, v1), v2) + case (SEQ(r1, r2), Left(Sequ(v1, v2))) => Sequ(inj(r1, c, v1), v2) + case (SEQ(r1, r2), Right(v2)) => Sequ(mkeps(r1), inj(r2, c, v2)) + case (ALT(r1, r2), Left(v1)) => Left(inj(r1, c, v1)) + case (ALT(r1, r2), Right(v2)) => Right(inj(r2, c, v2)) + case (CHAR(d), Void) => Chr(c) + case (RECD(x, r1), _) => Rec(x, inj(r1, c, v)) +} + +// main lexing function (produces a value) +def lex(r: Rexp, s: List[Char]) : Val = s match { + case Nil => if (nullable(r)) mkeps(r) else throw new Exception("Not matched") + case c::cs => inj(r, c, lex(der(c, r), cs)) +} + +def lexing(r: Rexp, s: String) : Val = lex(r, s.toList) + +// some "rectification" functions for simplification +def F_ID(v: Val): Val = v +def F_RIGHT(f: Val => Val) = (v:Val) => Right(f(v)) +def F_LEFT(f: Val => Val) = (v:Val) => Left(f(v)) +def F_ALT(f1: Val => Val, f2: Val => Val) = (v:Val) => v match { + case Right(v) => Right(f2(v)) + case Left(v) => Left(f1(v)) +} +def F_SEQ(f1: Val => Val, f2: Val => Val) = (v:Val) => v match { + case Sequ(v1, v2) => Sequ(f1(v1), f2(v2)) +} +def F_SEQ_Void1(f1: Val => Val, f2: Val => Val) = (v:Val) => Sequ(f1(Void), f2(v)) +def F_SEQ_Void2(f1: Val => Val, f2: Val => Val) = (v:Val) => Sequ(f1(v), f2(Void)) +def F_RECD(f: Val => Val) = (v:Val) => v match { + case Rec(x, v) => Rec(x, f(v)) +} +def F_ERROR(v: Val): Val = throw new Exception("error") + +// simplification of regular expressions returning also an +// rectification function; no simplification under STAR +def simp(r: Rexp): (Rexp, Val => Val) = r match { + case ALT(r1, r2) => { + val (r1s, f1s) = simp(r1) + val (r2s, f2s) = simp(r2) + (r1s, r2s) match { + case (NULL, _) => (r2s, F_RIGHT(f2s)) + case (_, NULL) => (r1s, F_LEFT(f1s)) + case _ => if (r1s == r2s) (r1s, F_LEFT(f1s)) + else (ALT (r1s, r2s), F_ALT(f1s, f2s)) + } + } + case SEQ(r1, r2) => { + val (r1s, f1s) = simp(r1) + val (r2s, f2s) = simp(r2) + (r1s, r2s) match { + case (NULL, _) => (NULL, F_ERROR) + case (_, NULL) => (NULL, F_ERROR) + case (EMPTY, _) => (r2s, F_SEQ_Void1(f1s, f2s)) + case (_, EMPTY) => (r1s, F_SEQ_Void2(f1s, f2s)) + case _ => (SEQ(r1s,r2s), F_SEQ(f1s, f2s)) + } + } + case RECD(x, r1) => { + val (r1s, f1s) = simp(r1) + (RECD(x, r1s), F_RECD(f1s)) + } + case r => (r, F_ID) +} + +def lex_simp(r: Rexp, s: List[Char]) : Val = s match { + case Nil => if (nullable(r)) mkeps(r) else throw new Exception("Not matched") + case c::cs => { + val (r_simp, f_simp) = simp(der(c, r)) + inj(r, c, f_simp(lex_simp(r_simp, cs))) } } -// iterates the munching function and prints -// out the component strings -@tailrec -def tokenize(s: String, rs: List[Rexp]) : Unit = munch(s.toList, 0, rs, None) match { - case None if (s == "") => println("EOF") - case None => println(s"Lexing error: $s") - case Some(n) => { - val (head, tail) = s.splitAt(n + 1) - print(s"|${head.replaceAll("\n","RET")}|") - tokenize(tail, rs) - } +def lexing_simp(r: Rexp, s: String) : Val = lex_simp(r, s.toList) + +lexing_simp(("a" + "ab") | ("b" + ""), "ab") + +// Lexing Rules for a Small While Language + +def PLUS(r: Rexp) = r ~ r.% +val SYM = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z" +val DIGIT = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" +val ID = SYM ~ (SYM | DIGIT).% +val NUM = PLUS(DIGIT) +val KEYWORD : Rexp = "skip" | "while" | "do" | "if" | "then" | "else" | "read" | "write" | "true" | "false" +val SEMI: Rexp = ";" +val OP: Rexp = ":=" | "==" | "-" | "+" | "*" | "!=" | "<" | ">" | "<=" | ">=" | "%" | "/" +val WHITESPACE = PLUS(" " | "\n" | "\t") +val RPAREN: Rexp = ")" +val LPAREN: Rexp = "(" +val BEGIN: Rexp = "{" +val END: Rexp = "}" +val STRING: Rexp = "\"" ~ SYM.% ~ "\"" + + +val WHILE_REGS = (("k" $ KEYWORD) | + ("i" $ ID) | + ("o" $ OP) | + ("n" $ NUM) | + ("s" $ SEMI) | + ("str" $ STRING) | + ("p" $ (LPAREN | RPAREN)) | + ("b" $ (BEGIN | END)) | + ("w" $ WHITESPACE)).% + +// Testing +//============ + +def time[T](code: => T) = { + val start = System.nanoTime() + val result = code + val end = System.nanoTime() + println((end - start)/1.0e9) + result +} + +val r1 = ("a" | "ab") ~ ("bcd" | "c") +println(lexing(r1, "abcd")) + +val r2 = ("" | "a") ~ ("ab" | "b") +println(lexing(r2, "ab")) + + +// Two Simple While Tests +//======================== +println("prog0 test") + +val prog0 = """read n""" +println(env(lexing_simp(WHILE_REGS, prog0))) + +println("prog1 test") + +val prog1 = """read n; write (n)""" +println(env(lexing_simp(WHILE_REGS, prog1))) + + +// Big Test +//========== + +val prog2 = """ +write "fib"; +read n; +minus1 := 0; +minus2 := 1; +while n > 0 do { + temp := minus2; + minus2 := minus1 + minus2; + minus1 := temp; + n := n - 1 +}; +write "result"; +write minus2 +""" + +println("Tokens") +println(env(lexing_simp(WHILE_REGS, prog2))) + +for (i <- 1 to 80) { + print(i.toString + ": ") + time(lexing_simp(WHILE_REGS, prog2 * i)) } -val test_prog = """ -start := XXX; -x := start; -y := start; -z := start; -while 0 < x do { - while 0 < y do { - while 0 < z do { - z := z - 1 - }; - z := start; - y := y - 1 - }; - y := start; - x := x - 1 -}; -write x; -write y; -write z -""" - -tokenize(test_prog, regs)