| author | Christian Urban <christian.urban@kcl.ac.uk> | 
| Sat, 23 Sep 2023 23:53:06 +0100 | |
| changeset 926 | d543eaddc7ba | 
| parent 916 | 2ab96407f350 | 
| child 927 | 6bfda4b90702 | 
| permissions | -rw-r--r-- | 
| 22 | 1 | \documentclass{article}
 | 
| 267 
a1544b804d1e
updated homeworks
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
258diff
changeset | 2 | \usepackage{../style}
 | 
| 889 | 3 | \usepackage{../graphicss}
 | 
| 4 | ||
| 22 | 5 | \begin{document}
 | 
| 6 | ||
| 7 | \section*{Homework 2}
 | |
| 8 | ||
| 916 | 9 | %\HEADER | 
| 347 
22b5294daa2a
updated hws
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
294diff
changeset | 10 | |
| 22 | 11 | \begin{enumerate}
 | 
| 499 | 12 | \item What is the difference between \emph{basic} regular expressions  
 | 
| 885 | 13 |   and \emph{extended} regular expressions?
 | 
| 14 | ||
| 15 |   \solution{Basic regular expressions are $\ZERO$, $\ONE$, $c$, $r_1 + r_2$,
 | |
| 16 | $r_1 \cdot r_2$, $r^*$. The extended ones are the bounded | |
| 17 | repetitions, not, etc.} | |
| 499 | 18 | |
| 401 
5d85dc9779b1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
355diff
changeset | 19 | \item What is the language recognised by the regular | 
| 885 | 20 | expressions $(\ZERO^*)^*$. | 
| 21 | ||
| 22 |   \solution{$L(\ZERO^*{}^*) = \{[]\}$,
 | |
| 23 | remember * always includes the empty string} | |
| 258 
1e4da6d2490c
updated programs
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
132diff
changeset | 24 | |
| 401 
5d85dc9779b1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
355diff
changeset | 25 | \item Review the first handout about sets of strings and read | 
| 
5d85dc9779b1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
355diff
changeset | 26 | the second handout. Assuming the alphabet is the set | 
| 
5d85dc9779b1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
355diff
changeset | 27 |       $\{a, b\}$, decide which of the following equations are
 | 
| 
5d85dc9779b1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
355diff
changeset | 28 | true in general for arbitrary languages $A$, $B$ and | 
| 
5d85dc9779b1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
355diff
changeset | 29 | $C$: | 
| 115 
86c1c049eb3e
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
104diff
changeset | 30 | |
| 401 
5d85dc9779b1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
355diff
changeset | 31 |       \begin{eqnarray}
 | 
| 
5d85dc9779b1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
355diff
changeset | 32 | (A \cup B) @ C & =^? & A @ C \cup B @ C\nonumber\\ | 
| 
5d85dc9779b1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
355diff
changeset | 33 | A^* \cup B^* & =^? & (A \cup B)^*\nonumber\\ | 
| 
5d85dc9779b1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
355diff
changeset | 34 | A^* @ A^* & =^? & A^*\nonumber\\ | 
| 
5d85dc9779b1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
355diff
changeset | 35 | (A \cap B)@ C & =^? & (A@C) \cap (B@C)\nonumber | 
| 
5d85dc9779b1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
355diff
changeset | 36 |       \end{eqnarray}
 | 
| 104 
ffde837b1db1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
102diff
changeset | 37 | |
| 401 
5d85dc9779b1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
355diff
changeset | 38 | \noindent In case an equation is true, give an | 
| 
5d85dc9779b1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
355diff
changeset | 39 | explanation; otherwise give a counter-example. | 
| 104 
ffde837b1db1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
102diff
changeset | 40 | |
| 885 | 41 |       \solution{1 + 3 are equal; 2 + 4 are not. Interesting is 4 where
 | 
| 889 | 42 |         $A = \{[a]\}$, $B = \{[]\}$ and $C = \{[a], []\}$\medskip
 | 
| 43 | ||
| 44 | For equations like 3 it is always a god idea to prove the | |
| 45 | two inclusions | |
| 46 | ||
| 47 | \[ | |
| 48 | A^* \subseteq A^* @ A^* \qquad | |
| 49 | A^* @ A^* \subseteq A^* | |
| 50 | \] | |
| 51 | ||
| 52 | This means for every string $s$ we have to show | |
| 53 | ||
| 54 | \[ | |
| 55 |           s \in A^*    \;\textit{implies}\;  s \in A^* @ A^* \qquad
 | |
| 56 |           s \in A^* @ A^* \;\textit{implies}\;  s \in A^*
 | |
| 57 | \] | |
| 58 | ||
| 59 | The first one is easy because $[] \in A^*$ and therefore | |
| 60 | $s @ [] \in A^* @ A^*$. | |
| 61 | ||
| 62 | The second one says that $s$ must be of the form $s = s_1 @ s_2$ with | |
| 63 | $s_1 \in A^*$ and $s_2 \in A^*$. We have to show that | |
| 64 | $s_1 @ s_2 \in A^*$. | |
| 65 | ||
| 66 | If $s_1 \in A^*$ then there exists an $n$ such that $s_1 \in A^n$, and | |
| 67 | if $s_2 \in A^*$ then there exists an $m$ such that $s_2 \in A^m$.\bigskip | |
| 68 | ||
| 69 | ||
| 70 | Aside: We are going to show that | |
| 71 | ||
| 72 | \[ | |
| 73 |         A^n \,@\, A^m = A^{n+m}  
 | |
| 74 | \] | |
| 75 | ||
| 76 | We prove that by induction on $n$. | |
| 77 | ||
| 78 |         Case $n = 0$: $A^0 \,@\, A^m = A^{0+m}$ holds because $A^0 = \{[]\}$
 | |
| 79 |         and $\{[]\} \,@\, A^m = A ^ m$ and $0 + m = m$.\medskip
 | |
| 80 | ||
| 81 | Case $n + 1$: The induction hypothesis is | |
| 82 | ||
| 83 |         \[ A^n \,@\, A^m = A^{n+m}
 | |
| 84 | \] | |
| 85 | ||
| 86 | We need to prove | |
| 87 | ||
| 88 | \[ | |
| 89 |         A^{n+1} \,@\, A^m = A^{(n+1)+m}  
 | |
| 90 | \] | |
| 91 | ||
| 92 | The left-hand side is $(A \,@\, A^n) \,@\, A^m$ by the definition of | |
| 93 | the power operation. We can rearrange that | |
| 94 |         to $A \,@\, (A^n \,@\, A^m)$.   \footnote{Because for all languages $A$, $B$, $C$ we have $(A @ B) @ C = A @ (B @ C)$.}
 | |
| 95 | ||
| 96 |         By the induction hypothesis we know that $A^n \,@\, A^m = A^{n+m}$.
 | |
| 97 | ||
| 98 |         So we have $A \,@\, (A^{n+m})$. But this is $A^{(n+m)+1}$ again if we
 | |
| 99 | apply the definition of the power operator. If we | |
| 100 |         rearrange that we get $A^{(n+1)+m}$ and are done with
 | |
| 101 | what we need to prove for the power law.\bigskip | |
| 102 | ||
| 103 | Picking up where we left, we know that $s_1 \in A^n$ and $s_2 \in A^m$. This now implies that $s_1 @ s_2\in A^n @ A^m$. By the power law this means | |
| 104 |         $s_1 @ s_2\in A^{n+m}$. But this also means $s_1 @ s_2\in A^*$.
 | |
| 105 | } | |
| 885 | 106 | |
| 401 
5d85dc9779b1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
355diff
changeset | 107 | \item Given the regular expressions $r_1 = \ONE$ and $r_2 = | 
| 
5d85dc9779b1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
355diff
changeset | 108 | \ZERO$ and $r_3 = a$. How many strings can the regular | 
| 
5d85dc9779b1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
355diff
changeset | 109 | expressions $r_1^*$, $r_2^*$ and $r_3^*$ each match? | 
| 104 
ffde837b1db1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
102diff
changeset | 110 | |
| 885 | 111 |       \solution{$r_1$ and $r_2$ can match the empty string only, $r_3$ can
 | 
| 112 | match $[]$, $a$, $aa$, ....} | |
| 113 | ||
| 401 
5d85dc9779b1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
355diff
changeset | 114 | \item Give regular expressions for (a) decimal numbers and for | 
| 617 | 115 | (b) binary numbers. Hint: Observe that the empty string | 
| 401 
5d85dc9779b1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
355diff
changeset | 116 | is not a number. Also observe that leading 0s are | 
| 617 | 117 | normally not written---for example the JSON format for numbers | 
| 891 | 118 | explicitly forbids this. So 007 is not a number according to JSON. | 
| 22 | 119 | |
| 885 | 120 |       \solution{Just numbers without leading 0s: $0 + (1..9)\cdot(0..1)^*$;
 | 
| 121 | can be extended to decimal; similar for binary numbers | |
| 122 | } | |
| 123 | ||
| 258 
1e4da6d2490c
updated programs
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
132diff
changeset | 124 | \item Decide whether the following two regular expressions are | 
| 401 
5d85dc9779b1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
355diff
changeset | 125 | equivalent $(\ONE + a)^* \equiv^? a^*$ and $(a \cdot | 
| 
5d85dc9779b1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
355diff
changeset | 126 | b)^* \cdot a \equiv^? a \cdot (b \cdot a)^*$. | 
| 22 | 127 | |
| 885 | 128 |       \solution{Both are equivalent, but why the second? Essentially you have to show that each string in one set is in the other. For 2 this means you can do an induction proof that $(ab)^na$ is the same string as $a(ba)^n$, where the former is in the first set and the latter in the second.}
 | 
| 129 | ||
| 401 
5d85dc9779b1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
355diff
changeset | 130 | \item Given the regular expression $r = (a \cdot b + b)^*$. | 
| 
5d85dc9779b1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
355diff
changeset | 131 | Compute what the derivative of $r$ is with respect to | 
| 
5d85dc9779b1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
355diff
changeset | 132 | $a$, $b$ and $c$. Is $r$ nullable? | 
| 22 | 133 | |
| 881 | 134 | \item Give an argument for why the following holds: | 
| 885 | 135 |   if $r$ is nullable then $r^{\{n\}} \equiv r^{\{..n\}}$.
 | 
| 136 | ||
| 137 |   \solution{This was from last week; I just explicitly added it here.}
 | |
| 258 
1e4da6d2490c
updated programs
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
132diff
changeset | 138 | |
| 355 
a259eec25156
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
347diff
changeset | 139 | \item Define what is meant by the derivative of a regular | 
| 
a259eec25156
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
347diff
changeset | 140 | expressions with respect to a character. (Hint: The | 
| 
a259eec25156
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
347diff
changeset | 141 | derivative is defined recursively.) | 
| 267 
a1544b804d1e
updated homeworks
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
258diff
changeset | 142 | |
| 885 | 143 |       \solution{the recursive function for $der$}
 | 
| 144 | ||
| 768 | 145 | \item Assume the set $Der$ is defined as | 
| 267 
a1544b804d1e
updated homeworks
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
258diff
changeset | 146 | |
| 
a1544b804d1e
updated homeworks
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
258diff
changeset | 147 |   \begin{center}
 | 
| 
a1544b804d1e
updated homeworks
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
258diff
changeset | 148 |     $Der\,c\,A \dn \{ s \;|\;  c\!::\!s \in A\}$
 | 
| 
a1544b804d1e
updated homeworks
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
258diff
changeset | 149 |   \end{center}
 | 
| 
a1544b804d1e
updated homeworks
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
258diff
changeset | 150 | |
| 401 
5d85dc9779b1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
355diff
changeset | 151 | What is the relation between $Der$ and the notion of | 
| 
5d85dc9779b1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
355diff
changeset | 152 | derivative of regular expressions? | 
| 267 
a1544b804d1e
updated homeworks
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
258diff
changeset | 153 | |
| 885 | 154 |       \solution{Main property is $L(der\,c\,r) = Der\,c\,(L(r))$.}
 | 
| 155 | ||
| 267 
a1544b804d1e
updated homeworks
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
258diff
changeset | 156 | \item Give a regular expression over the alphabet $\{a,b\}$
 | 
| 401 
5d85dc9779b1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
355diff
changeset | 157 | recognising all strings that do not contain any | 
| 
5d85dc9779b1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
355diff
changeset | 158 | substring $bb$ and end in $a$. | 
| 267 
a1544b804d1e
updated homeworks
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
258diff
changeset | 159 | |
| 889 | 160 |       \solution{$((ba)^* \cdot (a)^*)^*\,\cdot\,a$}
 | 
| 885 | 161 | |
| 401 
5d85dc9779b1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
355diff
changeset | 162 | \item Do $(a + b)^* \cdot b^+$ and $(a^* \cdot b^+) + | 
| 885 | 163 | (b^*\cdot b^+)$ define the same language? | 
| 164 | ||
| 889 | 165 |   \solution{No, the first one can match for example abababababbbbb
 | 
| 166 | while the second can only match for example aaaaaabbbbb or bbbbbbb} | |
| 294 
c29853b672fb
updated hws
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
292diff
changeset | 167 | |
| 
c29853b672fb
updated hws
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
292diff
changeset | 168 | \item Define the function $zeroable$ by recursion over regular | 
| 401 
5d85dc9779b1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
355diff
changeset | 169 | expressions. This function should satisfy the property | 
| 294 
c29853b672fb
updated hws
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
292diff
changeset | 170 | |
| 
c29853b672fb
updated hws
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
292diff
changeset | 171 | \[ | 
| 401 
5d85dc9779b1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
355diff
changeset | 172 |   zeroable(r) \;\;\text{if and only if}\;\;L(r) = \{\}\qquad(*)
 | 
| 294 
c29853b672fb
updated hws
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
292diff
changeset | 173 | \] | 
| 
c29853b672fb
updated hws
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
292diff
changeset | 174 | |
| 401 
5d85dc9779b1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
355diff
changeset | 175 | The function $nullable$ for the not-regular expressions | 
| 
5d85dc9779b1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
355diff
changeset | 176 | can be defined by | 
| 294 
c29853b672fb
updated hws
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
292diff
changeset | 177 | |
| 
c29853b672fb
updated hws
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
292diff
changeset | 178 | \[ | 
| 
c29853b672fb
updated hws
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
292diff
changeset | 179 | nullable(\sim r) \dn \neg(nullable(r)) | 
| 
c29853b672fb
updated hws
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
292diff
changeset | 180 | \] | 
| 
c29853b672fb
updated hws
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
292diff
changeset | 181 | |
| 401 
5d85dc9779b1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
355diff
changeset | 182 | Unfortunately, a similar definition for $zeroable$ does | 
| 
5d85dc9779b1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
355diff
changeset | 183 | not satisfy the property in $(*)$: | 
| 294 
c29853b672fb
updated hws
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
292diff
changeset | 184 | |
| 
c29853b672fb
updated hws
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
292diff
changeset | 185 | \[ | 
| 
c29853b672fb
updated hws
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
292diff
changeset | 186 | zeroable(\sim r) \dn \neg(zeroable(r)) | 
| 
c29853b672fb
updated hws
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
292diff
changeset | 187 | \] | 
| 
c29853b672fb
updated hws
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
292diff
changeset | 188 | |
| 889 | 189 | Find a counter example? | 
| 190 | ||
| 191 | ||
| 192 |   \solution{
 | |
| 193 | Here the idea is that nullable for NOT can be defined as | |
| 194 | ||
| 195 | \[nullable(\sim r) \dn \neg(nullable(r))\] | |
| 196 | ||
| 197 | This will satisfy the property | |
| 198 |     $nullable(r) \;\;\text{if and only if}\;\;[] \in L(r)$. (Remember how
 | |
| 199 | $L(\sim r)$ is defined).\bigskip | |
| 200 | ||
| 201 | But you cannot define | |
| 202 | ||
| 203 | \[zeroable(\sim r) \dn \neg(zeroable(r))\] | |
| 204 | ||
| 205 | because if $r$ for example is $\ONE$ then $\sim \ONE$ can match | |
| 206 | some strings (all non-empty strings). So $zeroable$ should be false. But if we follow | |
| 207 | the above definition we would obtain $\neg(zeroable(\ONE))$. According | |
| 208 | to the definition of $zeroable$ for $\ONE$ this would be false, | |
| 209 | but if we now negate false, we get actually true. So the above | |
| 210 | definition would not satisfy the property | |
| 211 | ||
| 212 | \[ | |
| 213 |       zeroable(r) \;\;\text{if and only if}\;\;L(r) = \{\}
 | |
| 214 | \] | |
| 215 | } | |
| 294 
c29853b672fb
updated hws
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
292diff
changeset | 216 | |
| 401 
5d85dc9779b1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
355diff
changeset | 217 | \item Give a regular expressions that can recognise all | 
| 
5d85dc9779b1
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
355diff
changeset | 218 |       strings from the language $\{a^n\;|\;\exists k.\; n = 3 k
 | 
| 885 | 219 | + 1 \}$. | 
| 220 | ||
| 221 |       \solution{$a(aaa)^*$}
 | |
| 404 
245d302791c7
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
401diff
changeset | 222 | |
| 
245d302791c7
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
401diff
changeset | 223 | \item Give a regular expression that can recognise an odd | 
| 889 | 224 | number of $a$s or an even number of $b$s. | 
| 225 | ||
| 226 |   \solution{
 | |
| 227 | If the a's and b's are meant to be separate, then this is easy | |
| 228 | ||
| 229 | \[a(aa)^* + (bb)^*\] | |
| 230 | ||
| 231 | If the letters are mixed, then this is difficult | |
| 232 | ||
| 233 | \[(aa|bb|(ab|ba)\cdot (aa|bb)^* \cdot (ba|ab))^* \cdot (b|(ab|ba)(bb|aa)^* \cdot a) | |
| 234 | \] | |
| 235 | ||
| 236 | (copied from somewhere ;o) | |
| 237 | ||
| 238 | The idea behind it is essentially the DFA | |
| 239 | ||
| 240 | \begin{center}    
 | |
| 241 | \begin{tikzpicture}[scale=1,>=stealth',very thick,
 | |
| 242 |                     every state/.style={minimum size=0pt,
 | |
| 243 | draw=blue!50,very thick,fill=blue!20}] | |
| 244 |   \node[state,initial]   (q0) at (0,2) {$q_0$};
 | |
| 245 |   \node[state,accepting] (q1) at (2,2) {$q_1$};
 | |
| 246 |   \node[state]           (q2) at (0,0) {$q_2$};
 | |
| 247 |   \node[state]           (q3) at (2,0) {$q_3$};
 | |
| 248 | ||
| 249 |  \path[->]  (q0) edge[bend left] node[above] {$a$} (q1)
 | |
| 250 |             (q1) edge[bend left] node[above] {$a$} (q0)
 | |
| 251 |             (q2) edge[bend left] node[above] {$a$} (q3)
 | |
| 252 |             (q3) edge[bend left] node[above] {$a$} (q2)
 | |
| 253 |             (q0) edge[bend left] node[right] {$b$} (q2)
 | |
| 254 |             (q2) edge[bend left] node[left]  {$b$} (q0)
 | |
| 255 |             (q1) edge[bend left] node[right] {$b$} (q3)
 | |
| 256 |             (q3) edge[bend left] node[left]  {$b$} (q1);
 | |
| 257 | \end{tikzpicture}
 | |
| 258 | \end{center}
 | |
| 259 | } | |
| 444 
3056a4c071b0
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
404diff
changeset | 260 | |
| 
3056a4c071b0
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
404diff
changeset | 261 | \item \POSTSCRIPT | 
| 404 
245d302791c7
updated
 Christian Urban <christian dot urban at kcl dot ac dot uk> parents: 
401diff
changeset | 262 | \end{enumerate}
 | 
| 22 | 263 | |
| 264 | \end{document}
 | |
| 265 | ||
| 266 | %%% Local Variables: | |
| 267 | %%% mode: latex | |
| 268 | %%% TeX-master: t | |
| 269 | %%% End: |