--- a/hws/hw02.tex Sat Nov 01 15:06:41 2014 +0000
+++ b/hws/hw02.tex Sat Nov 01 16:19:05 2014 +0000
@@ -69,6 +69,32 @@
\item Do $(a + b)^* \cdot b^+$ and $(a^* \cdot b^+) + (b^*\cdot b^+)$ define
the same language?
+
+\item Define the function $zeroable$ by recursion over regular
+ expressions. This function should satisfy the property
+
+ \[
+ zeroable(r) \;\;\text{if and only if}\;\;L(r) = \varnothing\qquad(*)
+ \]
+
+ The function $nullable$ for the not-regular expressions can be defined
+ by
+
+ \[
+ nullable(\sim r) \dn \neg(nullable(r))
+ \]
+
+ Unfortunately, a similar definition for $zeroable$ does not satisfy
+ the property in $(*)$:
+
+ \[
+ zeroable(\sim r) \dn \neg(zeroable(r))
+ \]
+
+ Find out why?
+
+\item Give a regular expressions that can recognise all strings from the
+ language $\{a^n\;|\;\exists k. n = 3 k + 1 \}$.
\end{enumerate}
\end{document}