author | Christian Urban <christian.urban@kcl.ac.uk> |
Fri, 28 Oct 2022 09:08:13 +0100 | |
changeset 893 | 54a483a33763 |
parent 892 | f4df090a84d0 |
child 916 | 10f834eb0a9e |
permissions | -rw-r--r-- |
31 | 1 |
\documentclass{article} |
264
4deef8ac5d72
uodated hws
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
166
diff
changeset
|
2 |
\usepackage{../style} |
292
7ed2a25dd115
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
267
diff
changeset
|
3 |
\usepackage{../graphics} |
146
9da175d5eb63
added new hws
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
102
diff
changeset
|
4 |
|
893 | 5 |
\newcommand{\solution}[1]{% |
6 |
\begin{quote}\sf% |
|
7 |
#1% |
|
8 |
\end{quote}} |
|
9 |
\renewcommand{\solution}[1]{} |
|
10 |
||
11 |
||
12 |
||
13 |
||
14 |
||
31 | 15 |
\begin{document} |
16 |
||
17 |
\section*{Homework 4} |
|
18 |
||
347
22b5294daa2a
updated hws
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
294
diff
changeset
|
19 |
\HEADER |
22b5294daa2a
updated hws
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
294
diff
changeset
|
20 |
|
31 | 21 |
\begin{enumerate} |
34 | 22 |
|
726 | 23 |
\item Given the regular expressions |
24 |
||
25 |
\begin{center} |
|
26 |
\begin{tabular}{ll} |
|
27 |
1) & $(ab + a)\cdot (\ONE + b)$\\ |
|
28 |
2) & $(aa + a)^*$\\ |
|
29 |
\end{tabular} |
|
30 |
\end{center} |
|
31 |
||
32 |
there are several values for how these regular expressions can |
|
33 |
recognise the strings (for 1) $ab$ and (for 2) $aaa$. Give in each case |
|
34 |
\emph{all} the values and indicate which one is the POSIX value. |
|
35 |
||
36 |
||
444
3056a4c071b0
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
401
diff
changeset
|
37 |
\item If a regular expression $r$ does not contain any occurrence of $\ZERO$, |
893 | 38 |
is it possible for $L(r)$ to be empty? Explain why, or give a proof. |
39 |
||
40 |
\solution{ |
|
41 |
The property to prove is |
|
42 |
||
43 |
\begin{center} |
|
44 |
$P(r)$: If $r$ does not contain $\ZERO$, then $L(r) \not= \emptyset$. |
|
45 |
\end{center} |
|
46 |
||
47 |
For this you have to now go through all cases. |
|
48 |
||
49 |
Case $r = 0$: $P(\ZERO)$ says: If $\ZERO$ does not contain $\ZERO$ |
|
50 |
then \ldots. The premise is obviously false, so everything follows, |
|
51 |
in particular $L(r) \not= \emptyset$.\medskip |
|
52 |
||
53 |
Case $r = \ONE$ and $r = c$ are similar, just that the premise is |
|
54 |
true, but also $L(\ONE)$ and $L(c)$ are not empty. So we shown |
|
55 |
$L(r) \not= \emptyset$.\medskip |
|
56 |
||
57 |
Case $r = r_1 + r_2$: We know $P(r_1)$ and $P(r_2)$ as IHs. We need to show |
|
58 |
$P(r_1 + r_2)$: If $r_1 + r_2$ does not contain $\ZERO$, then $L(r_1 + r_2) \not= \emptyset$. |
|
59 |
||
60 |
If $r_1 + r_2$ does not contain $\ZERO$, then also $r_1$ does not contain $\ZERO$ |
|
61 |
and $r_2$ does not contain $\ZERO$. So we can apply the two IHs $P(r_1)$ and $P(r_2)$, |
|
62 |
which allow us to infer that $L(r_1) \not= \emptyset$ and $L(r_2) \not= \emptyset$. |
|
63 |
But if this is the case, then also $L(r_1 + r_2) \not= \emptyset$, which is what we needed |
|
64 |
to show in this case.\medskip |
|
65 |
||
66 |
The other cases are similar.\bigskip |
|
67 |
||
68 |
||
69 |
This lemma essentially says that for basic regular expressions, if |
|
70 |
they do not match anything at all, they must contain $\ZERO$(s) |
|
71 |
somewhere. |
|
72 |
||
73 |
} |
|
32 | 74 |
|
264
4deef8ac5d72
uodated hws
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
166
diff
changeset
|
75 |
\item Define the tokens and regular expressions for a language |
267
a1544b804d1e
updated homeworks
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
264
diff
changeset
|
76 |
consisting of numbers, left-parenthesis $($, right-parenthesis $)$, |
a1544b804d1e
updated homeworks
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
264
diff
changeset
|
77 |
identifiers and the operations $+$, $-$ and $*$. Can the following |
a1544b804d1e
updated homeworks
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
264
diff
changeset
|
78 |
strings in this language be lexed? |
264
4deef8ac5d72
uodated hws
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
166
diff
changeset
|
79 |
|
267
a1544b804d1e
updated homeworks
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
264
diff
changeset
|
80 |
\begin{itemize} |
264
4deef8ac5d72
uodated hws
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
166
diff
changeset
|
81 |
\item $(a + 3) * b$ |
4deef8ac5d72
uodated hws
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
166
diff
changeset
|
82 |
\item $)()++ -33$ |
4deef8ac5d72
uodated hws
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
166
diff
changeset
|
83 |
\item $(a / 3) * 3$ |
267
a1544b804d1e
updated homeworks
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
264
diff
changeset
|
84 |
\end{itemize} |
264
4deef8ac5d72
uodated hws
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
166
diff
changeset
|
85 |
|
267
a1544b804d1e
updated homeworks
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
264
diff
changeset
|
86 |
In case they can, can you give the corresponding token |
a1544b804d1e
updated homeworks
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
264
diff
changeset
|
87 |
sequences. |
264
4deef8ac5d72
uodated hws
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
166
diff
changeset
|
88 |
|
768 | 89 |
\item Assume $r$ is nullable. Show that |
90 |
\[ 1 + r + r\cdot r \;\equiv\; r\cdot r |
|
91 |
\] |
|
92 |
||
93 |
holds. |
|
94 |
||
893 | 95 |
\solution{ |
96 |
If $r$ is nullable, then $1 + r \equiv r$. With this you can replace |
|
97 |
||
98 |
\begin{align} |
|
99 |
(1 + r) + r\cdot r & \equiv r + r\cdot r\\ |
|
100 |
& \equiv r \cdot (1 + r)\\ |
|
101 |
& \equiv r \cdot r |
|
102 |
\end{align} |
|
103 |
||
104 |
where in (2) you pull out the ``factor'' $r$ (because $r_1 \cdot (r_2 + r_3) \equiv r_1 \cdot r_2 + r_1 \cdot r_3$). |
|
105 |
} |
|
106 |
||
107 |
||
768 | 108 |
\item \textbf{(Deleted)} Assume that $s^{-1}$ stands for the operation of reversing a |
267
a1544b804d1e
updated homeworks
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
264
diff
changeset
|
109 |
string $s$. Given the following \emph{reversing} function on regular |
a1544b804d1e
updated homeworks
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
264
diff
changeset
|
110 |
expressions |
32 | 111 |
|
267
a1544b804d1e
updated homeworks
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
264
diff
changeset
|
112 |
\begin{center} |
a1544b804d1e
updated homeworks
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
264
diff
changeset
|
113 |
\begin{tabular}{r@{\hspace{1mm}}c@{\hspace{1mm}}l} |
401
5d85dc9779b1
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
359
diff
changeset
|
114 |
$rev(\ZERO)$ & $\dn$ & $\ZERO$\\ |
5d85dc9779b1
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
359
diff
changeset
|
115 |
$rev(\ONE)$ & $\dn$ & $\ONE$\\ |
267
a1544b804d1e
updated homeworks
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
264
diff
changeset
|
116 |
$rev(c)$ & $\dn$ & $c$\\ |
a1544b804d1e
updated homeworks
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
264
diff
changeset
|
117 |
$rev(r_1 + r_2)$ & $\dn$ & $rev(r_1) + rev(r_2)$\\ |
a1544b804d1e
updated homeworks
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
264
diff
changeset
|
118 |
$rev(r_1 \cdot r_2)$ & $\dn$ & $rev(r_2) \cdot rev(r_1)$\\ |
a1544b804d1e
updated homeworks
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
264
diff
changeset
|
119 |
$rev(r^*)$ & $\dn$ & $rev(r)^*$\\ |
a1544b804d1e
updated homeworks
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
264
diff
changeset
|
120 |
\end{tabular} |
a1544b804d1e
updated homeworks
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
264
diff
changeset
|
121 |
\end{center} |
34 | 122 |
|
267
a1544b804d1e
updated homeworks
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
264
diff
changeset
|
123 |
and the set |
32 | 124 |
|
267
a1544b804d1e
updated homeworks
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
264
diff
changeset
|
125 |
\begin{center} |
a1544b804d1e
updated homeworks
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
264
diff
changeset
|
126 |
$Rev\,A \dn \{s^{-1} \;|\; s \in A\}$ |
a1544b804d1e
updated homeworks
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
264
diff
changeset
|
127 |
\end{center} |
31 | 128 |
|
267
a1544b804d1e
updated homeworks
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
264
diff
changeset
|
129 |
prove whether |
32 | 130 |
|
267
a1544b804d1e
updated homeworks
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
264
diff
changeset
|
131 |
\begin{center} |
a1544b804d1e
updated homeworks
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
264
diff
changeset
|
132 |
$L(rev(r)) = Rev (L(r))$ |
a1544b804d1e
updated homeworks
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
264
diff
changeset
|
133 |
\end{center} |
31 | 134 |
|
267
a1544b804d1e
updated homeworks
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
264
diff
changeset
|
135 |
holds. |
42 | 136 |
|
401
5d85dc9779b1
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
359
diff
changeset
|
137 |
\item Assume the delimiters for comments are |
5d85dc9779b1
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
359
diff
changeset
|
138 |
\texttt{$\slash$*} and \texttt{*$\slash$}. Give a |
5d85dc9779b1
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
359
diff
changeset
|
139 |
regular expression that can recognise comments of the |
5d85dc9779b1
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
359
diff
changeset
|
140 |
form |
42 | 141 |
|
267
a1544b804d1e
updated homeworks
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
264
diff
changeset
|
142 |
\begin{center} |
a1544b804d1e
updated homeworks
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
264
diff
changeset
|
143 |
\texttt{$\slash$*~\ldots{}~*$\slash$} |
a1544b804d1e
updated homeworks
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
264
diff
changeset
|
144 |
\end{center} |
42 | 145 |
|
401
5d85dc9779b1
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
359
diff
changeset
|
146 |
where the three dots stand for arbitrary characters, but |
5d85dc9779b1
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
359
diff
changeset
|
147 |
not comment delimiters. (Hint: You can assume you are |
5d85dc9779b1
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
359
diff
changeset
|
148 |
already given a regular expression written \texttt{ALL}, |
5d85dc9779b1
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
359
diff
changeset
|
149 |
that can recognise any character, and a regular |
5d85dc9779b1
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
359
diff
changeset
|
150 |
expression \texttt{NOT} that recognises the complement |
5d85dc9779b1
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
359
diff
changeset
|
151 |
of a regular expression.) |
355
a259eec25156
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
347
diff
changeset
|
152 |
|
a259eec25156
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
347
diff
changeset
|
153 |
\item Simplify the regular expression |
42 | 154 |
|
355
a259eec25156
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
347
diff
changeset
|
155 |
\[ |
401
5d85dc9779b1
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
359
diff
changeset
|
156 |
(\ZERO \cdot (b \cdot c)) + |
5d85dc9779b1
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
359
diff
changeset
|
157 |
((\ZERO \cdot c) + \ONE) |
355
a259eec25156
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
347
diff
changeset
|
158 |
\] |
a259eec25156
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
347
diff
changeset
|
159 |
|
401
5d85dc9779b1
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
359
diff
changeset
|
160 |
Does simplification always preserve the meaning of a |
5d85dc9779b1
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
359
diff
changeset
|
161 |
regular expression? |
355
a259eec25156
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
347
diff
changeset
|
162 |
|
401
5d85dc9779b1
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
359
diff
changeset
|
163 |
\item The Sulzmann \& Lu algorithm contains the function |
5d85dc9779b1
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
359
diff
changeset
|
164 |
$mkeps$ which answers how a regular expression can match |
5d85dc9779b1
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
359
diff
changeset
|
165 |
the empty string. What is the answer of $mkeps$ for the |
355
a259eec25156
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
347
diff
changeset
|
166 |
regular expressions: |
146
9da175d5eb63
added new hws
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
102
diff
changeset
|
167 |
|
355
a259eec25156
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
347
diff
changeset
|
168 |
\[ |
a259eec25156
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
347
diff
changeset
|
169 |
\begin{array}{l} |
401
5d85dc9779b1
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
359
diff
changeset
|
170 |
(\ZERO \cdot (b \cdot c)) + |
5d85dc9779b1
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
359
diff
changeset
|
171 |
((\ZERO \cdot c) + \ONE)\\ |
577 | 172 |
(a + \ONE) \cdot (\ONE + \ONE)\\ |
173 |
a^* |
|
355
a259eec25156
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
347
diff
changeset
|
174 |
\end{array} |
a259eec25156
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
347
diff
changeset
|
175 |
\] |
a259eec25156
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
347
diff
changeset
|
176 |
|
401
5d85dc9779b1
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
359
diff
changeset
|
177 |
\item What is the purpose of the record regular expression in |
5d85dc9779b1
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
359
diff
changeset
|
178 |
the Sulzmann \& Lu algorithm? |
498 | 179 |
|
843 | 180 |
\item Recall the functions \textit{nullable} and |
181 |
\textit{zeroable}. Define recursive functions |
|
182 |
\textit{atmostempty} (for regular expressions that match no |
|
183 |
string or only the empty string), \textit{somechars} (for |
|
184 |
regular expressions that match some non-empty string), |
|
185 |
\textit{infinitestrings} (for regular expressions that can match |
|
186 |
infinitely many strings). |
|
893 | 187 |
|
188 |
\solution{ |
|
189 |
\textbf{zeroable}: The property is $z(r) \;\text{iff}\; L(r) = \emptyset$: |
|
190 |
||
191 |
\begin{align} |
|
192 |
z(\ZERO) &\dn true\\ |
|
193 |
z(\ONE) &\dn false\\ |
|
194 |
z(c) &\dn false\\ |
|
195 |
z(r_1 + r_2) &\dn z(r_1) \wedge z(r_2)\\ |
|
196 |
z(r_1 \cdot r_2) &\dn z(r_1) \vee z(r_2)\\ |
|
197 |
z(r^*) &\dn false |
|
198 |
\end{align}\bigskip |
|
199 |
||
200 |
\textbf{atmostempty}: The property is ``either $L(r) = \emptyset$ or $L(r) = \{[]\}$'', which |
|
201 |
is more formally $a(r) \;\text{iff}\; L(r) \subseteq \{[]\}$: |
|
202 |
||
203 |
\begin{align} |
|
204 |
a(\ZERO) &\dn true\\ |
|
205 |
a(\ONE) &\dn true\\ |
|
206 |
a(c) &\dn false\\ |
|
207 |
a(r_1 + r_2) &\dn a(r_1) \wedge a(r_2)\\ |
|
208 |
a(r_1 \cdot r_2) &\dn z(r_1) \vee z(r_2) \vee (a(r_1) \wedge a(r_2))\\ |
|
209 |
a(r^*) &\dn a(r) |
|
210 |
\end{align} |
|
211 |
||
212 |
For this it is good to remember the regex should either not |
|
213 |
match anything at all, or just the empty string.\bigskip |
|
214 |
||
215 |
\textbf{somechars}: The property is ``$L(r)$ must contain a string which is not the empty string'', which |
|
216 |
is more formally $s(r) \;\text{iff}\; \exists\,s. s \not= [] \wedge s \in L(r)$: |
|
217 |
||
218 |
\begin{align} |
|
219 |
s(\ZERO) &\dn false\\ |
|
220 |
s(\ONE) &\dn false\\ |
|
221 |
s(c) &\dn true\\ |
|
222 |
s(r_1 + r_2) &\dn s(r_1) \vee s(r_2)\\ |
|
223 |
s(r_1 \cdot r_2) &\dn (\neg z(r_1) \wedge s(r_2)) \;\vee\; (\neg z(r_2) \wedge s(r_1))\\ |
|
224 |
s(r^*) &\dn s(r) |
|
225 |
\end{align} |
|
226 |
||
227 |
Here the interesting case is $r_1 \cdot r_2$ where one essentially has to make sure |
|
228 |
that one of the regexes is not zeroable, because then the resulting regex cannot match any |
|
229 |
string.\bigskip |
|
230 |
||
231 |
\textbf{infinitestrings}: The property is |
|
232 |
$i(r) \;\text{iff}\; L(r)\;\text{is infinite}$: |
|
233 |
||
234 |
\begin{align} |
|
235 |
i(\ZERO) &\dn false\\ |
|
236 |
i(\ONE) &\dn false\\ |
|
237 |
i(c) &\dn false\\ |
|
238 |
i(r_1 + r_2) &\dn i(r_1) \vee i(r_2)\\ |
|
239 |
i(r_1 \cdot r_2) &\dn (\neg z(r_1) \wedge i(r_2)) \;\vee\; (\neg z(r_2) \wedge i(r_1))\\ |
|
240 |
i(r^*) &\dn \neg a(r) |
|
241 |
\end{align} |
|
242 |
||
243 |
Here the interesting bit is that as soon $r$ can match at least a single string, then $r^*$ |
|
244 |
will match infinitely many strings. |
|
245 |
} |
|
246 |
||
498 | 247 |
|
892 | 248 |
\item There are two kinds of automata that are generated for |
843 | 249 |
regular expression matching---DFAs and NFAs. (1) Regular expression engines like |
250 |
the one in Python generate NFAs. Explain what is the problem with such |
|
251 |
NFAs and what is the reason why they use NFAs. (2) Regular expression |
|
252 |
engines like the one in Rust generate DFAs. Explain what is the |
|
253 |
problem with these regex engines and also what is the problem with $a^{\{1000\}}$ |
|
254 |
in these engines. |
|
255 |
||
146
9da175d5eb63
added new hws
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
102
diff
changeset
|
256 |
%\item (Optional) The tokenizer in \texttt{regexp3.scala} takes as |
9da175d5eb63
added new hws
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
102
diff
changeset
|
257 |
%argument a string and a list of rules. The result is a list of tokens. Improve this tokenizer so |
9da175d5eb63
added new hws
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
102
diff
changeset
|
258 |
%that it filters out all comments and whitespace from the result. |
9da175d5eb63
added new hws
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
102
diff
changeset
|
259 |
|
9da175d5eb63
added new hws
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
102
diff
changeset
|
260 |
%\item (Optional) Modify the tokenizer in \texttt{regexp2.scala} so that it |
9da175d5eb63
added new hws
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
102
diff
changeset
|
261 |
%implements the \texttt{findAll} function. This function takes a regular |
9da175d5eb63
added new hws
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
102
diff
changeset
|
262 |
%expressions and a string, and returns all substrings in this string that |
444
3056a4c071b0
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
401
diff
changeset
|
263 |
%match the regular expression. |
3056a4c071b0
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
401
diff
changeset
|
264 |
|
3056a4c071b0
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
401
diff
changeset
|
265 |
\item \POSTSCRIPT |
31 | 266 |
\end{enumerate} |
267 |
||
268 |
||
269 |
\end{document} |
|
270 |
||
271 |
%%% Local Variables: |
|
272 |
%%% mode: latex |
|
273 |
%%% TeX-master: t |
|
274 |
%%% End: |