progs/Matcher2.thy
author Christian Urban <christian.urban@kcl.ac.uk>
Sun, 19 Oct 2025 09:44:04 +0200
changeset 1011 31e011ce66e3
parent 1010 ae9ffbf979ff
permissions -rw-r--r--
updated
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
397
cf3ca219c727 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 385
diff changeset
     1
theory Matcher2
191
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     2
  imports "Main" 
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     3
begin
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     4
355
a259eec25156 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 272
diff changeset
     5
a259eec25156 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 272
diff changeset
     6
971
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
     7
section \<open>Regular Expressions\<close>
191
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     8
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     9
datatype rexp =
1011
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
    10
  ZERO
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
    11
| ONE
971
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
    12
| CH char
191
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    13
| SEQ rexp rexp
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    14
| ALT rexp rexp
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    15
| STAR rexp
1011
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
    16
191
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    17
| NOT rexp
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    18
| PLUS rexp
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    19
| OPT rexp
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    20
| NTIMES rexp nat
1011
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
    21
| BETWEEN rexp nat nat
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
    22
| UPTO rexp nat
362
57ea439feaff updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 361
diff changeset
    23
57ea439feaff updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 361
diff changeset
    24
971
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
    25
section \<open>Sequential Composition of Sets\<close>
191
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    26
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    27
definition
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    28
  Seq :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ;; _" [100,100] 100)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    29
where 
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    30
  "A ;; B = {s1 @ s2 | s1 s2. s1 \<in> A \<and> s2 \<in> B}"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    31
971
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
    32
text \<open>Two Simple Properties about Sequential Composition\<close>
191
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    33
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    34
lemma seq_empty [simp]:
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    35
  shows "A ;; {[]} = A"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    36
  and   "{[]} ;; A = A"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    37
by (simp_all add: Seq_def)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    38
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    39
lemma seq_null [simp]:
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    40
  shows "A ;; {} = {}"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    41
  and   "{} ;; A = {}"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    42
by (simp_all add: Seq_def)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    43
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    44
lemma seq_union:
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    45
  shows "A ;; (B \<union> C) = A ;; B \<union> A ;; C"
194
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
    46
  and   "(B \<union> C) ;; A = B ;; A \<union> C ;; A"
191
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    47
by (auto simp add: Seq_def)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    48
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    49
lemma seq_Union:
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    50
  shows "A ;; (\<Union>x\<in>B. C x) = (\<Union>x\<in>B. A ;; C x)"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    51
by (auto simp add: Seq_def)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    52
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    53
lemma seq_empty_in [simp]:
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    54
  "[] \<in> A ;; B \<longleftrightarrow> ([] \<in> A \<and> [] \<in> B)"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    55
by (simp add: Seq_def)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    56
194
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
    57
lemma seq_assoc: 
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
    58
  shows "A ;; (B ;; C) = (A ;; B) ;; C" 
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
    59
apply(auto simp add: Seq_def)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
    60
apply(metis append_assoc)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
    61
apply(metis)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
    62
done
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
    63
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
    64
971
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
    65
section \<open>Power for Sets\<close>
194
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
    66
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
    67
fun 
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
    68
  pow :: "string set \<Rightarrow> nat \<Rightarrow> string set" ("_ \<up> _" [101, 102] 101)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
    69
where
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
    70
   "A \<up> 0 = {[]}"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
    71
|  "A \<up> (Suc n) = A ;; (A \<up> n)"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
    72
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
    73
lemma pow_empty [simp]:
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
    74
  shows "[] \<in> A \<up> n \<longleftrightarrow> (n = 0 \<or> [] \<in> A)"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
    75
by (induct n) (auto)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
    76
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
    77
lemma pow_plus:
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
    78
  "A \<up> (n + m) = A \<up> n ;; A \<up> m"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
    79
by (induct n) (simp_all add: seq_assoc)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
    80
971
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
    81
section \<open>Kleene Star for Sets\<close>
191
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    82
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    83
inductive_set
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    84
  Star :: "string set \<Rightarrow> string set" ("_\<star>" [101] 102)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    85
  for A :: "string set"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    86
where
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    87
  start[intro]: "[] \<in> A\<star>"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    88
| step[intro]:  "\<lbrakk>s1 \<in> A; s2 \<in> A\<star>\<rbrakk> \<Longrightarrow> s1 @ s2 \<in> A\<star>"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    89
971
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
    90
text \<open>A Standard Property of Star\<close>
191
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    91
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    92
lemma star_decomp: 
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    93
  assumes a: "c # x \<in> A\<star>" 
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    94
  shows "\<exists>a b. x = a @ b \<and> c # a \<in> A \<and> b \<in> A\<star>"
194
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
    95
using a 
191
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    96
using a
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    97
by (induct x\<equiv>"c # x" rule: Star.induct) 
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    98
   (auto simp add: append_eq_Cons_conv)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    99
194
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   100
lemma star_cases:
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   101
  shows "A\<star> = {[]} \<union> A ;; A\<star>"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   102
unfolding Seq_def 
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   103
by (auto) (metis Star.simps)
191
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   104
194
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   105
lemma Star_in_Pow:
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   106
  assumes a: "s \<in> A\<star>"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   107
  shows "\<exists>n. s \<in> A \<up> n"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   108
using a
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   109
apply(induct)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   110
apply(auto)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   111
apply(rule_tac x="Suc n" in exI)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   112
apply(auto simp add: Seq_def)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   113
done
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   114
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   115
lemma Pow_in_Star:
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   116
  assumes a: "s \<in> A \<up> n"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   117
  shows "s \<in> A\<star>"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   118
using a
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   119
by (induct n arbitrary: s) (auto simp add: Seq_def)
191
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   120
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   121
194
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   122
lemma Star_def2: 
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   123
  shows "A\<star> = (\<Union>n. A \<up> n)"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   124
using Star_in_Pow Pow_in_Star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   125
by (auto)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   126
191
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   127
971
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   128
section \<open>Semantics of Regular Expressions\<close>
191
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   129
 
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   130
fun
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   131
  L :: "rexp \<Rightarrow> string set"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   132
where
1011
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   133
  "L (ZERO) = {}"
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   134
| "L (ONE) = {[]}"
971
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   135
| "L (CH c) = {[c]}"
191
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   136
| "L (SEQ r1 r2) = (L r1) ;; (L r2)"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   137
| "L (ALT r1 r2) = (L r1) \<union> (L r2)"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   138
| "L (STAR r) = (L r)\<star>"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   139
| "L (NOT r) = UNIV - (L r)"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   140
| "L (PLUS r) = (L r) ;; ((L r)\<star>)"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   141
| "L (OPT r) = (L r) \<union> {[]}"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   142
| "L (NTIMES r n) = (L r) \<up> n"
1011
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   143
| "L (BETWEEN r n m) = (\<Union>i\<in> {n..m} . ((L r) \<up> i))" 
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   144
| "L (UPTO r n) = (\<Union>i\<in> {..n} . ((L r) \<up> i))"
191
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   145
1011
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   146
lemma "L (NOT ZERO) = UNIV"
227
93bd75031ced added handout
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 198
diff changeset
   147
apply(simp)
93bd75031ced added handout
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 198
diff changeset
   148
done
93bd75031ced added handout
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 198
diff changeset
   149
971
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   150
section \<open>The Matcher\<close>
191
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   151
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   152
fun
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   153
 nullable :: "rexp \<Rightarrow> bool"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   154
where
1011
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   155
  "nullable (ZERO) = False"
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   156
| "nullable (ONE) = True"
971
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   157
| "nullable (CH c) = False"
191
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   158
| "nullable (ALT r1 r2) = (nullable r1 \<or> nullable r2)"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   159
| "nullable (SEQ r1 r2) = (nullable r1 \<and> nullable r2)"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   160
| "nullable (STAR r) = True"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   161
| "nullable (NOT r) = (\<not>(nullable r))"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   162
| "nullable (PLUS r) = (nullable r)"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   163
| "nullable (OPT r) = True"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   164
| "nullable (NTIMES r n) = (if n = 0 then True else nullable r)"
1011
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   165
| "nullable (BETWEEN r n m) = (if m < n then False else (if n = 0 then True else nullable r))"
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   166
| "nullable (UPTO r n) = True"
361
9c7eb266594c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 355
diff changeset
   167
397
cf3ca219c727 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 385
diff changeset
   168
1010
ae9ffbf979ff updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 972
diff changeset
   169
fun der :: "char \<Rightarrow> rexp \<Rightarrow> rexp"
191
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   170
where
1011
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   171
  "der c (ZERO) = ZERO"
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   172
| "der c (ONE) = ZERO"
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   173
| "der c (CH d) = (if c = d then ONE else ZERO)"
191
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   174
| "der c (ALT r1 r2) = ALT (der c r1) (der c r2)"
1011
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   175
| "der c (SEQ r1 r2) = ALT (SEQ (der c r1) r2) (if nullable r1 then der c r2 else ZERO)"
191
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   176
| "der c (STAR r) = SEQ (der c r) (STAR r)"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   177
| "der c (NOT r) = NOT(der c r)"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   178
| "der c (PLUS r) = SEQ (der c r) (STAR r)"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   179
| "der c (OPT r) = der c r"
1011
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   180
| "der c (NTIMES r n) = (if n = 0 then ZERO else (SEQ (der c r) (NTIMES r (n - 1))))"
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   181
| "der c (BETWEEN r n m) = 
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   182
        (if m = 0 then ZERO else 
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   183
        (if n = 0 then SEQ (der c r) (UPTO r (m - 1))
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   184
         else SEQ (der c r) (BETWEEN r (n - 1) (m - 1))))"
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   185
| "der c (UPTO r n) = (if n = 0 then ZERO else SEQ (der c r) (UPTO r (n - 1)))"
191
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   186
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   187
fun 
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   188
 ders :: "string \<Rightarrow> rexp \<Rightarrow> rexp"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   189
where
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   190
  "ders [] r = r"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   191
| "ders (c # s) r = ders s (der c r)"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   192
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   193
fun
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   194
  matcher :: "rexp \<Rightarrow> string \<Rightarrow> bool"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   195
where
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   196
  "matcher r s = nullable (ders s r)"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   197
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   198
971
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   199
section \<open>Correctness Proof of the Matcher\<close>
191
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   200
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   201
lemma nullable_correctness:
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   202
  shows "nullable r  \<longleftrightarrow> [] \<in> (L r)"
355
a259eec25156 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 272
diff changeset
   203
apply(induct r) 
a259eec25156 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 272
diff changeset
   204
apply(auto simp add: Seq_def) 
a259eec25156 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 272
diff changeset
   205
done
191
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   206
971
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   207
section \<open>Left-Quotient of a Set\<close>
191
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   208
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   209
definition
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   210
  Der :: "char \<Rightarrow> string set \<Rightarrow> string set"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   211
where
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   212
  "Der c A \<equiv> {s. [c] @ s \<in> A}"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   213
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   214
lemma Der_null [simp]:
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   215
  shows "Der c {} = {}"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   216
unfolding Der_def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   217
by auto
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   218
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   219
lemma Der_empty [simp]:
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   220
  shows "Der c {[]} = {}"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   221
unfolding Der_def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   222
by auto
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   223
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   224
lemma Der_char [simp]:
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   225
  shows "Der c {[d]} = (if c = d then {[]} else {})"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   226
unfolding Der_def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   227
by auto
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   228
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   229
lemma Der_union [simp]:
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   230
  shows "Der c (A \<union> B) = Der c A \<union> Der c B"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   231
unfolding Der_def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   232
by auto
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   233
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   234
lemma Der_insert_nil [simp]:
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   235
  shows "Der c (insert [] A) = Der c A"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   236
unfolding Der_def 
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   237
by auto 
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   238
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   239
lemma Der_seq [simp]:
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   240
  shows "Der c (A ;; B) = (Der c A) ;; B \<union> (if [] \<in> A then Der c B else {})"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   241
unfolding Der_def Seq_def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   242
by (auto simp add: Cons_eq_append_conv)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   243
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   244
lemma Der_star [simp]:
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   245
  shows "Der c (A\<star>) = (Der c A) ;; A\<star>"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   246
proof -    
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   247
  have "Der c (A\<star>) = Der c ({[]} \<union> A ;; A\<star>)"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   248
    by (simp only: star_cases[symmetric])
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   249
  also have "... = Der c (A ;; A\<star>)"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   250
    by (simp only: Der_union Der_empty) (simp)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   251
  also have "... = (Der c A) ;; A\<star> \<union> (if [] \<in> A then Der c (A\<star>) else {})"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   252
    by simp
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   253
  also have "... =  (Der c A) ;; A\<star>"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   254
    unfolding Seq_def Der_def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   255
    by (auto dest: star_decomp)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   256
  finally show "Der c (A\<star>) = (Der c A) ;; A\<star>" .
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   257
qed
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   258
971
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   259
lemma test:
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   260
  assumes "[] \<in> A"
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   261
  shows "Der c (A \<up> n) \<subseteq> (Der c A) ;; (A \<up> n)"
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   262
  using assms
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   263
  apply(induct n)
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   264
   apply(simp)
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   265
  apply(simp)
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   266
  apply(auto simp add: Der_def Seq_def)
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   267
  apply blast
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   268
  by force
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   269
1011
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   270
971
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   271
lemma Der_ntimes [simp]:
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   272
  shows "Der c (A  \<up> (Suc n)) = (Der c A) ;; (A \<up> n)"
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   273
proof -    
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   274
  have "Der c (A  \<up> (Suc n)) = Der c (A ;; A \<up> n)"
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   275
    by(simp)
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   276
  also have "... = (Der c A) ;; (A \<up> n) \<union> (if [] \<in> A then Der c (A \<up> n) else {})"
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   277
    by simp
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   278
  also have "... =  (Der c A) ;; (A \<up> n)"
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   279
    using test by force
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   280
  finally show "Der c (A  \<up> (Suc n)) = (Der c A) ;; (A \<up> n)" .
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   281
qed
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   282
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   283
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   284
191
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   285
lemma Der_UNIV [simp]:
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   286
  "Der c (UNIV - A) = UNIV - Der c A"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   287
unfolding Der_def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   288
by (auto)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   289
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   290
lemma Der_pow [simp]:
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   291
  shows "Der c (A \<up> (Suc n)) = (Der c A) ;; (A \<up> n) \<union> (if [] \<in> A then Der c (A \<up> n) else {})"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   292
unfolding Der_def 
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   293
by(auto simp add: Cons_eq_append_conv Seq_def)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   294
1011
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   295
lemma concI_if_Nil2: "[] \<in> B \<Longrightarrow> xs \<in> A \<Longrightarrow> xs \<in> A ;; B"
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   296
  using Matcher2.Seq_def by auto
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   297
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   298
lemma Der_pow2:
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   299
  shows "Der c (A \<up> n) = (if n = 0 then {} else (Der c A) ;; (A \<up> (n - 1)))"
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   300
  apply(induct n arbitrary: A)
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   301
  using Der_ntimes by auto
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   302
1010
ae9ffbf979ff updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 972
diff changeset
   303
191
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   304
lemma Der_UNION [simp]: 
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   305
  shows "Der c (\<Union>x\<in>A. B x) = (\<Union>x\<in>A. Der c (B x))"
971
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   306
  by (auto simp add: Der_def)
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   307
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   308
lemma if_f:
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   309
  shows "f(if B then C else D) = (if B then f(C) else f(D))"
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   310
  by simp
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   311
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   312
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   313
lemma der_correctness:
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   314
  shows "L (der c r) = Der c (L r)"
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   315
proof(induct r)
1011
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   316
  case ZERO
971
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   317
  then show ?case by simp
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   318
next
1011
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   319
  case ONE
971
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   320
  then show ?case by simp
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   321
next
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   322
  case (CH x)
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   323
  then show ?case by simp
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   324
next
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   325
  case (SEQ r1 r2)
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   326
  then show ?case
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   327
    by (simp add: nullable_correctness) 
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   328
next
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   329
  case (ALT r1 r2)
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   330
  then show ?case by simp
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   331
next
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   332
  case (STAR r)
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   333
  then show ?case
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   334
    by simp 
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   335
next
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   336
  case (NOT r)
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   337
  then show ?case by simp
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   338
next
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   339
  case (PLUS r)
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   340
  then show ?case by simp
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   341
next
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   342
  case (OPT r)
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   343
  then show ?case by simp
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   344
next
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   345
  case (NTIMES r n)
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   346
  then show ?case
1010
ae9ffbf979ff updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 972
diff changeset
   347
    apply(auto simp add: Seq_def)
ae9ffbf979ff updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 972
diff changeset
   348
    using Der_ntimes Matcher2.Seq_def less_iff_Suc_add apply fastforce
ae9ffbf979ff updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 972
diff changeset
   349
    using Der_ntimes Matcher2.Seq_def less_iff_Suc_add by auto
971
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   350
next
1011
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   351
  case (BETWEEN r n m)
971
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   352
  then show ?case 
1010
ae9ffbf979ff updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 972
diff changeset
   353
    apply(auto simp add: Seq_def)
1011
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   354
    apply (metis (mono_tags, lifting) Der_ntimes Matcher2.Seq_def Suc_pred atLeast0AtMost atMost_iff diff_Suc_Suc
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   355
        diff_is_0_eq mem_Collect_eq)
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   356
      apply(subst (asm) Der_pow2)
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   357
      apply(case_tac xa)
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   358
       apply(simp)
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   359
      apply(auto simp add: Seq_def)[1]
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   360
    apply (metis atMost_iff diff_Suc_1' diff_le_mono)
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   361
    apply (metis (mono_tags, lifting) Der_ntimes Matcher2.Seq_def Suc_le_mono Suc_pred atLeastAtMost_iff
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   362
        mem_Collect_eq)
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   363
    apply(subst (asm) Der_pow2)
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   364
      apply(case_tac xa)
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   365
       apply(simp)
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   366
    apply(auto simp add: Seq_def)[1]
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   367
    by force
971
51e00f223792 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 456
diff changeset
   368
next
1011
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   369
  case (UPTO r x2)
1010
ae9ffbf979ff updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 972
diff changeset
   370
  then show ?case 
ae9ffbf979ff updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 972
diff changeset
   371
    apply(auto simp add: Seq_def)
ae9ffbf979ff updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 972
diff changeset
   372
    apply (metis (mono_tags, lifting) Der_ntimes Matcher2.Seq_def Suc_le_mono Suc_pred atMost_iff
ae9ffbf979ff updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 972
diff changeset
   373
        mem_Collect_eq)
1011
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   374
    apply(subst (asm) Der_pow2)
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   375
    apply(case_tac xa)
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   376
     apply(simp)
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   377
    apply(auto simp add: Seq_def)
31e011ce66e3 updated
Christian Urban <christian.urban@kcl.ac.uk>
parents: 1010
diff changeset
   378
    by (metis atMost_iff diff_Suc_1' diff_le_mono)
455
1dbf84ade62c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 397
diff changeset
   379
qed
191
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   380
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   381
lemma matcher_correctness:
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   382
  shows "matcher r s \<longleftrightarrow> s \<in> L r"
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   383
by (induct s arbitrary: r)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   384
   (simp_all add: nullable_correctness der_correctness Der_def)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   385
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   386
end