handouts/ho04.tex
author Christian Urban <christian dot urban at kcl dot ac dot uk>
Fri, 16 Oct 2015 08:42:21 +0100
changeset 352 1e1b0fe66107
parent 350 c4e7caa06c74
child 356 d9c784c71305
permissions -rw-r--r--
updated
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
251
5b5a68df6d16 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     1
\documentclass{article}
5b5a68df6d16 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     2
\usepackage{../style}
5b5a68df6d16 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     3
\usepackage{../langs}
282
3e3b927a85cf added ho04
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 251
diff changeset
     4
\usepackage{../graphics}
251
5b5a68df6d16 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     5
5b5a68df6d16 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     6
5b5a68df6d16 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     7
\begin{document}
5b5a68df6d16 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     8
282
3e3b927a85cf added ho04
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 251
diff changeset
     9
\section*{Handout 4 (Sulzmann \& Lu Algorithm)}
3e3b927a85cf added ho04
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 251
diff changeset
    10
3e3b927a85cf added ho04
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 251
diff changeset
    11
So far our algorithm based on derivatives was only able to say
3e3b927a85cf added ho04
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 251
diff changeset
    12
yes or no depending on whether a string was matched by regular
3e3b927a85cf added ho04
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 251
diff changeset
    13
expression or not. Often a more interesting question is to
3e3b927a85cf added ho04
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 251
diff changeset
    14
find out \emph{how} a regular expression matched a string?
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
    15
Answering this question will also help us with the problem we
319
e7b110f93697 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 296
diff changeset
    16
are after, namely tokenising an input string. 
282
3e3b927a85cf added ho04
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 251
diff changeset
    17
350
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
    18
The algorithm we will be looking at was designed by Sulzmann
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
    19
\& Lu in a rather recent paper (from 2014). A link to it is
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
    20
provided on KEATS, in case you are interested.\footnote{In my
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
    21
humble opinion this is an interesting instance of the research
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
    22
literature: it contains a very neat idea, but its presentation
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
    23
is rather sloppy. In earlier versions of their paper, a King's
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
    24
student and I found several rather annoying typos in their
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
    25
examples and definitions.} In order to give an answer for
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
    26
\emph{how} a regular expression matches a string, Sulzmann and
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
    27
Lu introduce \emph{values}. A value will be the output of the
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
    28
algorithm whenever the regular expression matches the string.
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
    29
If the string does not match the string, an error will be
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
    30
raised. Since the first phase of the algorithm by Sulzmann \&
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
    31
Lu is identical to the derivative based matcher from the first
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
    32
coursework, the function $nullable$ will be used to decide
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
    33
whether as string is matched by a regular expression. If
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
    34
$nullable$ says yes, then values are constructed that reflect
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
    35
how the regular expression matched the string. 
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
    36
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
    37
The definitions for values is given below. They are shown 
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
    38
together with the regular expressions $r$ to which
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
    39
they correspond:
283
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    40
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    41
\begin{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    42
\begin{tabular}{cc}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    43
\begin{tabular}{@{}rrl@{}}
319
e7b110f93697 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 296
diff changeset
    44
\multicolumn{3}{c}{regular expressions}\medskip\\
283
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    45
  $r$ & $::=$  & $\varnothing$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    46
      & $\mid$ & $\epsilon$   \\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    47
      & $\mid$ & $c$          \\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    48
      & $\mid$ & $r_1 \cdot r_2$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    49
      & $\mid$ & $r_1 + r_2$   \\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    50
  \\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    51
      & $\mid$ & $r^*$         \\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    52
\end{tabular}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    53
&
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    54
\begin{tabular}{@{\hspace{0mm}}rrl@{}}
319
e7b110f93697 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 296
diff changeset
    55
\multicolumn{3}{c}{values}\medskip\\
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
    56
   $v$ & $::=$  & \\
283
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    57
      &        & $Empty$   \\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    58
      & $\mid$ & $Char(c)$          \\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    59
      & $\mid$ & $Seq(v_1,v_2)$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    60
      & $\mid$ & $Left(v)$   \\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    61
      & $\mid$ & $Right(v)$  \\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    62
      & $\mid$ & $[v_1,\ldots\,v_n]$ \\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    63
\end{tabular}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    64
\end{tabular}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    65
\end{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    66
350
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
    67
\noindent The reason is that there is a very strong
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
    68
correspondence between them. There is no value for the
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
    69
$\varnothing$ regular expression, since it does not match any
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
    70
string. Otherwise there is exactly one value corresponding to
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
    71
each regular expression with the exception of $r_1 + r_2$
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
    72
where there are two values, namely $Left(v)$ and $Right(v)$
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
    73
corresponding to the two alternatives. Note that $r^*$ is
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
    74
associated with a list of values, one for each copy of $r$
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
    75
that was needed to match the string. This means we might also
350
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
    76
return the empty list $[]$, if no copy was needed in case
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
    77
of $r^*$. For sequence, there is exactly one value, composed 
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
    78
of two component values ($v_1$ and $v_2$).
283
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
    79
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
    80
To emphasise the connection between regular expressions and
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
    81
values, I have in my implementation the convention that
350
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
    82
regular expressions and values have the same name, except that
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
    83
regular expressions are written entirely with upper-case
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
    84
letters, while values just start with a single upper-case
350
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
    85
character and the rest are lower-case letters. My definition
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
    86
of regular expressions and values in Scala is shown below. I use
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
    87
this in the REPL of Scala; when I use the Scala compiler I
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
    88
need to rename some constructors, because Scala on Macs does
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
    89
not like classes that are called \pcode{EMPTY} and
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
    90
\pcode{Empty}.
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
    91
 
350
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
    92
 {\small\lstinputlisting[language=Scala,numbers=none]
352
1e1b0fe66107 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 350
diff changeset
    93
{../progs/app01.scala}}
350
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
    94
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
    95
 
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
    96
{\small\lstinputlisting[language=Scala,numbers=none]
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
    97
{../progs/app02.scala}}
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
    98
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
    99
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   100
Graphically the algorithm by Sulzmann \& Lu can be illustrated
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   101
by the picture in Figure~\ref{Sulz} where the path from the
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   102
left to the right involving $der/nullable$ is the first phase
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   103
of the algorithm and $mkeps/inj$, the path from right to left,
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   104
the second phase. This picture shows the steps required when a
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   105
regular expression, say $r_1$, matches the string $abc$. We
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   106
first build the three derivatives (according to $a$, $b$ and
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   107
$c$). We then use $nullable$ to find out whether the resulting
296
796b9b81ac8d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 288
diff changeset
   108
regular expression can match the empty string. If yes, we call
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   109
the function $mkeps$.
283
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   110
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   111
\begin{figure}[t]
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   112
\begin{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   113
\begin{tikzpicture}[scale=2,node distance=1.2cm,
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   114
                    every node/.style={minimum size=7mm}]
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   115
\node (r1)  {$r_1$};
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   116
\node (r2) [right=of r1]{$r_2$};
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   117
\draw[->,line width=1mm](r1)--(r2) node[above,midway] {$der\,a$};
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   118
\node (r3) [right=of r2]{$r_3$};
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   119
\draw[->,line width=1mm](r2)--(r3) node[above,midway] {$der\,b$};
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   120
\node (r4) [right=of r3]{$r_4$};
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   121
\draw[->,line width=1mm](r3)--(r4) node[above,midway] {$der\,c$};
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   122
\draw (r4) node[anchor=west] {\;\raisebox{3mm}{$nullable$}};
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   123
\node (v4) [below=of r4]{$v_4$};
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   124
\draw[->,line width=1mm](r4) -- (v4);
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   125
\node (v3) [left=of v4] {$v_3$};
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   126
\draw[->,line width=1mm](v4)--(v3) node[below,midway] {$inj\,c$};
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   127
\node (v2) [left=of v3]{$v_2$};
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   128
\draw[->,line width=1mm](v3)--(v2) node[below,midway] {$inj\,b$};
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   129
\node (v1) [left=of v2] {$v_1$};
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   130
\draw[->,line width=1mm](v2)--(v1) node[below,midway] {$inj\,a$};
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   131
\draw (r4) node[anchor=north west] {\;\raisebox{-8mm}{$mkeps$}};
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   132
\end{tikzpicture}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   133
\end{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   134
\caption{The two phases of the algorithm by Sulzmann \& Lu.
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   135
\label{Sulz}}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   136
\end{figure}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   137
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   138
The $mkeps$ function calculates a value for how a regular
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   139
expression has matched the empty string. Its definition
283
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   140
is as follows:
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   141
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   142
\begin{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   143
\begin{tabular}{lcl}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   144
  $mkeps(\epsilon)$       & $\dn$ & $Empty$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   145
  $mkeps(r_1 + r_2)$      & $\dn$ & if $nullable(r_1)$  \\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   146
                          &       & then $Left(mkeps(r_1))$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   147
                          &       & else $Right(mkeps(r_2))$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   148
  $mkeps(r_1 \cdot r_2)$  & $\dn$ & $Seq(mkeps(r_1),mkeps(r_2))$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   149
  $mkeps(r^*)$            & $\dn$ & $[]$  \\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   150
\end{tabular}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   151
\end{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   152
296
796b9b81ac8d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 288
diff changeset
   153
\noindent There are no cases for $\varnothing$ and $c$, since
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   154
these regular expression cannot match the empty string. Note
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   155
also that in case of alternatives we give preference to the
283
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   156
regular expression on the left-hand side. This will become
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   157
important later on.
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   158
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   159
The second phase of the algorithm is organised so that it will
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   160
calculate a value for how the derivative regular expression
350
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
   161
has matched a string. For this we need a function that
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
   162
reverses this ``chopping off'' for values which we did in the
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
   163
first phase for derivatives. The corresponding function is
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
   164
called $inj$ for injection. This function takes three
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
   165
arguments: the first one is a regular expression for which we
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
   166
want to calculate the value, the second is the character we
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
   167
want to inject and the third argument is the value where we
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
   168
will inject the character into. The result of this function is a
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
   169
new value. The definition of $inj$ is as follows: 
283
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   170
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   171
\begin{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   172
\begin{tabular}{l@{\hspace{1mm}}c@{\hspace{1mm}}l}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   173
  $inj\,(c)\,c\,Empty$            & $\dn$  & $Char\,c$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   174
  $inj\,(r_1 + r_2)\,c\,Left(v)$  & $\dn$  & $Left(inj\,r_1\,c\,v)$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   175
  $inj\,(r_1 + r_2)\,c\,Right(v)$ & $\dn$  & $Right(inj\,r_2\,c\,v)$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   176
  $inj\,(r_1 \cdot r_2)\,c\,Seq(v_1,v_2)$ & $\dn$  & $Seq(inj\,r_1\,c\,v_1,v_2)$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   177
  $inj\,(r_1 \cdot r_2)\,c\,Left(Seq(v_1,v_2))$ & $\dn$  & $Seq(inj\,r_1\,c\,v_1,v_2)$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   178
  $inj\,(r_1 \cdot r_2)\,c\,Right(v)$ & $\dn$  & $Seq(mkeps(r_1),inj\,r_2\,c\,v)$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   179
  $inj\,(r^*)\,c\,Seq(v,vs)$         & $\dn$  & $inj\,r\,c\,v\,::\,vs$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   180
\end{tabular}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   181
\end{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   182
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   183
\noindent This definition is by recursion on the regular
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   184
expression and by analysing the shape of the values. Therefore
296
796b9b81ac8d updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 288
diff changeset
   185
there are, for example, three cases for sequence regular
350
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
   186
expressions (for all possible shapes of the value). The last
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
   187
clause for the star regular expression returns a list where
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
   188
the first element is $inj\,r\,c\,v$ and the other elements are
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
   189
$vs$. That means $\_\,::\,\_$ should be read as list cons.
283
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   190
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   191
To understand what is going on, it might be best to do some
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   192
example calculations and compare them with Figure~\ref{Sulz}.
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   193
For this note that we have not yet dealt with the need of
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   194
simplifying regular expressions (this will be a topic on its
283
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   195
own later). Suppose the regular expression is $a \cdot (b
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   196
\cdot c)$ and the input string is $abc$. The derivatives from
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   197
the first phase are as follows:
283
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   198
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   199
\begin{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   200
\begin{tabular}{ll}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   201
$r_1$: & $a \cdot (b \cdot c)$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   202
$r_2$: & $\epsilon \cdot (b \cdot c)$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   203
$r_3$: & $(\varnothing \cdot (b \cdot c)) + (\epsilon \cdot c)$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   204
$r_4$: & $(\varnothing \cdot (b \cdot c)) + ((\varnothing \cdot c) + \epsilon)$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   205
\end{tabular}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   206
\end{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   207
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   208
\noindent According to the simple algorithm, we would test
350
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
   209
whether $r_4$ is nullable, which in this case it indeed is.
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
   210
This means we can use the function $mkeps$ to calculate a
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
   211
value for how $r_4$ was able to match the empty string.
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
   212
Remember that this function gives preference for alternatives
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
   213
on the left-hand side. However there is only $\epsilon$ on the
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
   214
very right-hand side of $r_4$ that matches the empty string.
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   215
Therefore $mkeps$ returns the value
283
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   216
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   217
\begin{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   218
$v_4:\;Right(Right(Empty))$
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   219
\end{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   220
350
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
   221
\noindent If there had been a $\epsilon$ on the left, then
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
   222
$mkeps$ would have returned something of the form
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
   223
$Left(\ldots)$. The point is that from this value we can
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
   224
directly read off which part of $r_4$ matched the empty
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
   225
string: take the right-alternative first, and then the
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
   226
right-alternative again. 
326
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   227
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   228
Next we have to ``inject'' the last character, that is $c$ in
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   229
the running example, into this value $v_4$ in order to
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   230
calculate how $r_3$ could have matched the string $c$.
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   231
According to the definition of $inj$ we obtain
283
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   232
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   233
\begin{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   234
$v_3:\;Right(Seq(Empty, Char(c)))$
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   235
\end{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   236
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   237
\noindent This is the correct result, because $r_3$ needs
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   238
to use the right-hand alternative, and then $\epsilon$ needs
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   239
to match the empty string and $c$ needs to match $c$.
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   240
Next we need to inject back the letter $b$ into $v_3$. This
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   241
gives
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   242
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   243
\begin{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   244
$v_2:\;Seq(Empty, Seq(Char(b), Char(c)))$
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   245
\end{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   246
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   247
\noindent which is again the correct result for how $r_2$
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   248
matched the string $bc$. Finally we need to inject back the
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   249
letter $a$ into $v_2$ giving the final result
283
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   250
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   251
\begin{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   252
$v_1:\;Seq(Char(a), Seq(Char(b), Char(c)))$
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   253
\end{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   254
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   255
\noindent This now corresponds to how the regular
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   256
expression $a \cdot (b \cdot c)$ matched the string $abc$.
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   257
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   258
There are a few auxiliary functions that are of interest
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   259
when analysing this algorithm. One is called \emph{flatten},
283
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   260
written $|\_|$, which extracts the string ``underlying'' a 
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   261
value. It is defined recursively as
283
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   262
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   263
\begin{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   264
\begin{tabular}{lcl}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   265
  $|Empty|$     & $\dn$ & $[]$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   266
  $|Char(c)|$   & $\dn$ & $[c]$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   267
  $|Left(v)|$   & $\dn$ & $|v|$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   268
  $|Right(v)|$  & $\dn$ & $|v|$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   269
  $|Seq(v_1,v_2)|$& $\dn$ & $|v_1| \,@\, |v_2|$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   270
  $|[v_1,\ldots ,v_n]|$ & $\dn$ & $|v_1| \,@\ldots @\, |v_n|$\\
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   271
\end{tabular}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   272
\end{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   273
350
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
   274
\noindent Using flatten we can see what are the strings behind 
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
   275
the values calculated by $mkeps$ and $inj$. In our running 
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
   276
example:
283
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   277
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   278
\begin{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   279
\begin{tabular}{ll}
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   280
$|v_4|$: & $[]$\\
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   281
$|v_3|$: & $c$\\
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   282
$|v_2|$: & $bc$\\
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   283
$|v_1|$: & $abc$
283
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   284
\end{tabular}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   285
\end{center}
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   286
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   287
\noindent This indicates that $inj$ indeed is injecting, or
350
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
   288
adding, back a character into the value. If we continue until
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
   289
all characters are injected back, we have a value that can 
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
   290
indeed say how the string $abc$ was matched.
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
   291
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
   292
There is a problem, however, with the described algorithm
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
   293
so far: it is very slow. We need to include the simplification 
c4e7caa06c74 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 326
diff changeset
   294
from Lecture 2. This is what we shall do next.
282
3e3b927a85cf added ho04
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 251
diff changeset
   295
3e3b927a85cf added ho04
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 251
diff changeset
   296
283
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   297
\subsubsection*{Simplification}
282
3e3b927a85cf added ho04
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 251
diff changeset
   298
283
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   299
Generally the matching algorithms based on derivatives do
c14e5ebf0c3b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 282
diff changeset
   300
poorly unless the regular expressions are simplified after
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   301
each derivative step. But this is a bit more involved in the
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   302
algorithm of Sulzmann \& Lu. So what follows might require you
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   303
to read several times before it makes sense and also might
326
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   304
require that you do some example calculations yourself. As a
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   305
first example consider the last derivation step in our earlier
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   306
example:
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   307
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   308
\begin{center}
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   309
$r_4 = der\,c\,r_3 = 
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   310
(\varnothing \cdot (b \cdot c)) + ((\varnothing \cdot c) + \epsilon)$
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   311
\end{center}
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   312
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   313
\noindent Simplifying this regular expression would just give
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   314
us $\epsilon$. Running $mkeps$ with this regular expression as
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   315
input, however, would then provide us with $Empty$ instead of
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   316
$Right(Right(Empty))$ that was obtained without the
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   317
simplification. The problem is we need to recreate this more
326
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   318
complicated value, rather than just return $Empty$.
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   319
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   320
This will require what I call \emph{rectification functions}.
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   321
They need to be calculated whenever a regular expression gets
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   322
simplified. Rectification functions take a value as argument
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   323
and return a (rectified) value. Let us first take a look again
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   324
at our simplification rules:
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   325
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   326
\begin{center}
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   327
\begin{tabular}{l@{\hspace{2mm}}c@{\hspace{2mm}}l}
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   328
$r \cdot \varnothing$ & $\mapsto$ & $\varnothing$\\ 
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   329
$\varnothing \cdot r$ & $\mapsto$ & $\varnothing$\\ 
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   330
$r \cdot \epsilon$ & $\mapsto$ & $r$\\ 
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   331
$\epsilon \cdot r$ & $\mapsto$ & $r$\\ 
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   332
$r + \varnothing$ & $\mapsto$ & $r$\\ 
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   333
$\varnothing + r$ & $\mapsto$ & $r$\\ 
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   334
$r + r$ & $\mapsto$ & $r$\\ 
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   335
\end{tabular}
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   336
\end{center}
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   337
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   338
\noindent Applying them to $r_4$ will require several nested
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   339
simplifications in order end up with just $\epsilon$. However,
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   340
it is possible to apply them in a depth-first, or inside-out,
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   341
manner in order to calculate this simplified regular
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   342
expression.
285
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   343
326
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   344
The rectification we can implement by letting simp return
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   345
not just a (simplified) regular expression, but also a
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   346
rectification function. Let us consider the alternative case,
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   347
$r_1 + r_2$, first. By going depth-first, we first simplify
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   348
the component regular expressions $r_1$ and $r_2.$ This will
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   349
return simplified versions (if they can be simplified), say
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   350
$r_{1s}$ and $r_{2s}$, but also two rectification functions
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   351
$f_{1s}$ and $f_{2s}$. We need to assemble them in order to
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   352
obtain a rectified value for $r_1 + r_2$. In case $r_{1s}$
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   353
simplified to $\varnothing$, we continue the derivative
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   354
calculation with $r_{2s}$. The Sulzmann \& Lu algorithm would
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   355
return a corresponding value, say $v_{2s}$. But now this value
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   356
needs to be ``rectified'' to the value 
285
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   357
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   358
\begin{center}
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   359
$Right(v_{2s})$
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   360
\end{center}
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   361
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   362
\noindent The reason is that we look for the value that tells
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   363
us how $r_1 + r_2$ could have matched the string, not just
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   364
$r_2$ or $r_{2s}$. Unfortunately, this is still not the right
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   365
value in general because there might be some simplifications
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   366
that happened inside $r_2$ and for which the simplification
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   367
function retuned also a rectification function $f_{2s}$. So in
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   368
fact we need to apply this one too which gives
285
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   369
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   370
\begin{center}
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   371
$Right(f_{2s}(v_{2s}))$
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   372
\end{center}
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   373
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   374
\noindent This is now the correct, or rectified, value. Since
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   375
the simplification will be done in the first phase of the
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   376
algorithm, but the rectification needs to be done to the
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   377
values in the second phase, it is advantageous to calculate
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   378
the rectification as a function, remember this function and
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   379
then apply the value to this function during the second phase.
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   380
So if we want to implement the rectification as function, we 
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   381
would need to return
285
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   382
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   383
\begin{center}
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   384
$\lambda v.\,Right(f_{2s}(v))$
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   385
\end{center}
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   386
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   387
\noindent which is the lambda-calculus notation for
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   388
a function that expects a value $v$ and returns everything
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   389
after the dot where $v$ is replaced by whatever value is 
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   390
given.
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   391
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   392
Let us package this idea with rectification functions
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   393
into a single function (still only considering the alternative
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   394
case):
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   395
285
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   396
\begin{center}
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   397
\begin{tabular}{l}
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   398
$simp(r)$:\\
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   399
\quad case $r = r_1 + r_2$\\
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   400
\qquad let $(r_{1s}, f_{1s}) = simp(r_1)$\\
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   401
\qquad \phantom{let} $(r_{2s}, f_{2s}) = simp(r_2)$\smallskip\\
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   402
\qquad case $r_{1s} = \varnothing$: 
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   403
       return $(r_{2s}, \lambda v. \,Right(f_{2s}(v)))$\\
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   404
\qquad case $r_{2s} = \varnothing$: 
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   405
       return $(r_{1s}, \lambda v. \,Left(f_{1s}(v)))$\\
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   406
\qquad case $r_{1s} = r_{2s}$:
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   407
       return $(r_{1s}, \lambda v. \,Left(f_{1s}(v)))$\\
285
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   408
\qquad otherwise: 
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   409
       return $(r_{1s} + r_{2s}, f_{alt}(f_{1s}, f_{2s}))$\\
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   410
\end{tabular}
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   411
\end{center}
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   412
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   413
\noindent We first recursively call the simplification with
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   414
$r_1$ and $r_2$. This gives simplified regular expressions,
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   415
$r_{1s}$ and $r_{2s}$, as well as two rectification functions
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   416
$f_{1s}$ and $f_{2s}$. We next need to test whether the
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   417
simplified regular expressions are $\varnothing$ so as to make
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   418
further simplifications. In case $r_{1s}$ is $\varnothing$,
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   419
then we can return $r_{2s}$ (the other alternative). However
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   420
for this we need to build a corresponding rectification 
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   421
function, which as said above is
285
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   422
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   423
\begin{center}
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   424
$\lambda v.\,Right(f_{2s}(v))$
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   425
\end{center}
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   426
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   427
\noindent The case where $r_{2s} = \varnothing$ is similar:
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   428
We return $r_{1s}$ and rectify with $Left(\_)$ and the
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   429
other calculated rectification function $f_{1s}$. This gives
284
0afe43616b6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 283
diff changeset
   430
285
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   431
\begin{center}
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   432
$\lambda v.\,Left(f_{1s}(v))$
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   433
\end{center}
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   434
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   435
\noindent The next case where $r_{1s} = r_{2s}$ can be treated
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   436
like the one where $r_{2s} = \varnothing$. We return $r_{1s}$
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   437
and rectify with $Left(\_)$ and so on.
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   438
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   439
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   440
The otherwise-case is slightly more complicated. In this case
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   441
neither $r_{1s}$ nor $r_{2s}$ are $\varnothing$ and also
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   442
$r_{1s} \not= r_{2s}$, which means no further simplification
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   443
can be applied. Accordingly, we return $r_{1s} + r_{2s}$ as
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   444
the simplified regular expression. In principle we also do not
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   445
have to do any rectification, because no simplification was
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   446
done in this case. But this is actually not true: There might
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   447
have been simplifications inside $r_{1s}$ and $r_{2s}$. We
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   448
therefore need to take into account the calculated
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   449
rectification functions $f_{1s}$ and $f_{2s}$. We can do this
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   450
by defining a rectification function $f_{alt}$ which takes two
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   451
rectification functions as arguments and applies them
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   452
according to whether the value is of the form $Left(\_)$ or
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   453
$Right(\_)$:
285
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   454
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   455
\begin{center}
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   456
\begin{tabular}{l@{\hspace{1mm}}l}
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   457
$f_{alt}(f_1, f_2) \dn$\\
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   458
\qquad $\lambda v.\,$ case $v = Left(v')$: 
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   459
      & return $Left(f_1(v'))$\\
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   460
\qquad \phantom{$\lambda v.\,$} case $v = Right(v')$: 
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   461
      & return $Right(f_2(v'))$\\      
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   462
\end{tabular}
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   463
\end{center}
8a222559278f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 284
diff changeset
   464
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   465
The other interesting case with simplification is the sequence
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   466
case. In this case the main simplification function is as
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   467
follows
286
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   468
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   469
\begin{center}
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   470
\begin{tabular}{l}
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   471
$simp(r)$:\qquad\qquad (continued)\\
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   472
\quad case $r = r_1 \cdot r_2$\\
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   473
\qquad let $(r_{1s}, f_{1s}) = simp(r_1)$\\
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   474
\qquad \phantom{let} $(r_{2s}, f_{2s}) = simp(r_2)$\smallskip\\
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   475
\qquad case $r_{1s} = \varnothing$: 
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   476
       return $(\varnothing, f_{error})$\\
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   477
\qquad case $r_{2s} = \varnothing$: 
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   478
       return $(\varnothing, f_{error})$\\
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   479
\qquad case $r_{1s} = \epsilon$: 
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   480
return $(r_{2s}, \lambda v. \,Seq(f_{1s}(Empty), f_{2s}(v)))$\\
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   481
\qquad case $r_{2s} = \epsilon$: 
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   482
return $(r_{1s}, \lambda v. \,Seq(f_{1s}(v), f_{2s}(Empty)))$\\
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   483
\qquad otherwise: 
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   484
       return $(r_{1s} \cdot r_{2s}, f_{seq}(f_{1s}, f_{2s}))$\\
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   485
\end{tabular}
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   486
\end{center}
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   487
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   488
\noindent whereby in the last line $f_{seq}$ is again pushing
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   489
the two rectification functions into the two components of the
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   490
Seq-value:
286
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   491
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   492
\begin{center}
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   493
\begin{tabular}{l@{\hspace{1mm}}l}
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   494
$f_{seq}(f_1, f_2) \dn$\\
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   495
\qquad $\lambda v.\,$ case $v = Seq(v_1, v_2)$: 
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   496
      & return $Seq(f_1(v_1), f_2(v_2))$\\
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   497
\end{tabular}
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   498
\end{center}
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   499
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   500
\noindent Note that in the case of $r_{1s} = \varnothing$
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   501
(similarly $r_{2s}$) we use the function $f_{error}$ for
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   502
rectification. If you think carefully, then you will realise
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   503
that this function will actually never been called. This is
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   504
because a sequence with $\varnothing$ will never recognise any
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   505
string and therefore the second phase of the algorithm would
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   506
never been called. The simplification function still expects
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   507
us to give a function. So in my own implementation I just
326
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   508
returned a function that raises an error. In the case
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   509
where $r_{1s} = \epsilon$ (similarly $r_{2s}$) we have
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   510
to create a sequence where the first component is a rectified
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   511
version of $Empty$. Therefore we call $f_{1s}$ with $Empty$.
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   512
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   513
Since we only simplify regular expressions of the form $r_1 +
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   514
r_2$ and $r_1 \cdot r_2$ we do not have to do anything else
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   515
in the remaining cases. The rectification function will
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   516
be just the identity, which in lambda-calculus terms is
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   517
just
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   518
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   519
\begin{center}
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   520
$\lambda v.\,v$
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   521
\end{center}
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   522
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   523
\noindent This completes the high-level version of the
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   524
simplification function, which is also shown again in 
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   525
Figure~\ref{simp}. This can now be used in a \emph{lexing
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   526
function} as follows:
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   527
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   528
\begin{figure}[t]
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   529
\begin{center}
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   530
\begin{tabular}{l}
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   531
$simp(r)$:\\
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   532
\quad case $r = r_1 + r_2$\\
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   533
\qquad let $(r_{1s}, f_{1s}) = simp(r_1)$\\
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   534
\qquad \phantom{let} $(r_{2s}, f_{2s}) = simp(r_2)$\smallskip\\
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   535
\qquad case $r_{1s} = \varnothing$: 
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   536
       return $(r_{2s}, \lambda v. \,Right(f_{2s}(v)))$\\
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   537
\qquad case $r_{2s} = \varnothing$: 
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   538
       return $(r_{1s}, \lambda v. \,Left(f_{1s}(v)))$\\
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   539
\qquad case $r_{1s} = r_{2s}$:
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   540
       return $(r_{1s}, \lambda v. \,Left(f_{1s}(v)))$\\
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   541
\qquad otherwise: 
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   542
       return $(r_{1s} + r_{2s}, f_{alt}(f_{1s}, f_{2s}))$
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   543
       \medskip\\
286
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   544
287
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   545
\quad case $r = r_1 \cdot r_2$\\
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   546
\qquad let $(r_{1s}, f_{1s}) = simp(r_1)$\\
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   547
\qquad \phantom{let} $(r_{2s}, f_{2s}) = simp(r_2)$\smallskip\\
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   548
\qquad case $r_{1s} = \varnothing$: 
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   549
       return $(\varnothing, f_{error})$\\
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   550
\qquad case $r_{2s} = \varnothing$: 
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   551
       return $(\varnothing, f_{error})$\\
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   552
\qquad case $r_{1s} = \epsilon$: 
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   553
return $(r_{2s}, \lambda v. \,Seq(f_{1s}(Empty), f_{2s}(v)))$\\
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   554
\qquad case $r_{2s} = \epsilon$: 
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   555
return $(r_{1s}, \lambda v. \,Seq(f_{1s}(v), f_{2s}(Empty)))$\\
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   556
\qquad otherwise: 
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   557
       return $(r_{1s} \cdot r_{2s}, f_{seq}(f_{1s}, f_{2s}))$
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   558
       \medskip\\
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   559
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   560
\quad otherwise:\\
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   561
\qquad return $(r, \lambda v.\,v)$\\
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   562
\end{tabular}
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   563
\end{center}
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   564
\caption{The simplification function that returns a simplified 
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   565
regular expression and a rectification function.\label{simp}}
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   566
\end{figure}
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   567
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   568
\begin{center}
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   569
\begin{tabular}{lcl}
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   570
$lex\,r\,[]$ & $\dn$ & if $nullable(r)$ then $mkeps(r)$\\
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   571
             &       & else $error$\\
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   572
$lex\,r\,c\!::\!s$ & $\dn$ & let 
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   573
   $(r_{simp}, f_{rect}) = simp(der(c, r))$\\
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   574
& & $inj\,r\,c\,f_{rect}(lex\,r_{simp}\,s)$              
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   575
\end{tabular}
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   576
\end{center}
2c50b8b5886c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 286
diff changeset
   577
326
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   578
\noindent This corresponds to the $matches$ function we have
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   579
seen in earlier lectures. In the first clause we are given an
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   580
empty string, $[]$, and need to test wether the regular
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   581
expression is $nullable$. If yes, we can proceed normally and
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   582
just return the value calculated by $mkeps$. The second clause
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   583
is for strings where the first character is $c$, say, and the
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   584
rest of the string is $s$. We first build the derivative of
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   585
$r$ with respect to $c$; simplify the resulting regular
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   586
expression. We continue lexing with the simplified regular
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   587
expression and the string $s$. Whatever will be returned as
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   588
value, we sill need to rectify using the $f_{rect}$ from the
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   589
simplification and finally inject $c$ back into the
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   590
(rectified) value.
286
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   591
19020b75d75e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 285
diff changeset
   592
288
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   593
\subsubsection*{Records}
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   594
326
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   595
Remember we wanted to tokenize input strings, that means
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   596
splitting strings into their ``word'' components. Furthermore
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   597
we want to classify each token as being a keyword or
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   598
identifier and so on. For this one more feature will be
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   599
required, which I call a \emph{record} regular expression.
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   600
While values encode how a regular expression matches a string,
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   601
records can be used to ``focus'' on some particular parts of
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   602
the regular expression and ``forget'' about others. 
288
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   603
326
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   604
Let us look at an example. Suppose you have the regular
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   605
expression $a\cdot b + a\cdot c$. Clearly this regular expression can only
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   606
recognise two strings. But suppose you are not interested
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   607
whether it can recognise $ab$ or $ac$, but rather if it
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   608
matched, then what was the last character of the matched
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   609
string\ldots either $b$ or $c$. You can do this by annotating
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   610
the regular expression with a record, written in general
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   611
$(x:r)$, where $x$ is just an identifier (in my implementation
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   612
a plain string) and $r$ is a regular expression. A record will
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   613
be regarded as a regular expression. The extended definition
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   614
in Scala therefore looks as follows:
288
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   615
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   616
{\small\lstinputlisting[language=Scala]
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   617
{../progs/app03.scala}}
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   618
326
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   619
\noindent Since we regard records as regular expressions we
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   620
need to extend the functions $nullable$ and $der$. Similarly
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   621
$mkeps$ and $inj$ need to be extended. This means we also need
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   622
to extend the definition of values, which in Scala looks as
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   623
follows:
288
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   624
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   625
{\small\lstinputlisting[language=Scala]
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   626
{../progs/app04.scala}}
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   627
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   628
\noindent Let us now look at the purpose of records more
326
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   629
closely and let us return to our question whether the string
288
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   630
terminated in a $b$ or $c$. We can do this as follows: we
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   631
annotate the regular expression $ab + ac$ with a record
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   632
as follows
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   633
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   634
\begin{center}
326
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   635
$a\cdot (x:b) + a\cdot (x:c)$
288
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   636
\end{center}
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   637
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   638
\noindent This regular expression can still only recognise
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   639
the strings $ab$ and $ac$, but we can now use a function
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   640
that takes a value and returns all records. I call this
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   641
function \emph{env} for environment\ldots it builds a list
326
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   642
of identifiers associated with a string. This function
288
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   643
can be defined as follows:
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   644
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   645
\begin{center}
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   646
\begin{tabular}{lcl}
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   647
  $env(Empty)$     & $\dn$ & $[]$\\
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   648
  $env(Char(c))$   & $\dn$ & $[]$\\
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   649
  $env(Left(v))$   & $\dn$ & $env(v)$\\
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   650
  $env(Right(v))$  & $\dn$ & $env(v)$\\
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   651
  $env(Seq(v_1,v_2))$& $\dn$ & $env(v_1) \,@\, env(v_2)$\\
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   652
  $env([v_1,\ldots ,v_n])$ & $\dn$ & 
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   653
     $env(v_1) \,@\ldots @\, env(v_n)$\\
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   654
  $env(Rec(x:v))$ & $\dn$ & $(x:|v|) :: env(v)$\\
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   655
\end{tabular}
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   656
\end{center}
251
5b5a68df6d16 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   657
326
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   658
\noindent where in the last clause we use the flatten function
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   659
defined earlier. As can be seen, the function $env$ ``picks''
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   660
out all underlying strings where a record is given. Since
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   661
there can be more than one, the environment will potentially
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   662
contain many ``records''. If we now postprocess the value
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   663
calculated by $lex$ extracting all records using $env$, we can
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   664
answer the question whether the last element in the string was
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   665
an $b$ or a $c$. Lets see this in action: if we use $a\cdot b
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   666
+ a\cdot c$ and $ac$ the calculated value will be
288
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   667
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   668
\begin{center}
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   669
$Right(Seq(Char(a), Char(c)))$
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   670
\end{center}
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   671
326
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   672
\noindent If we use instead $a\cdot (x:b) + a\cdot (x:c)$ and
288
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   673
use the $env$ function to extract the recording for 
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   674
$x$ we obtain
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   675
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   676
\begin{center}
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   677
$[(x:c)]$
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   678
\end{center}
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   679
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   680
\noindent If we had given the string $ab$ instead, then the
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   681
record would have been $[(x:b)]$. The fun starts if we 
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   682
iterate this. Consider the regular expression 
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   683
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   684
\begin{center}
326
94700593a2d5 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 319
diff changeset
   685
$(a\cdot (x:b) + a\cdot (y:c))^*$
288
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   686
\end{center}
251
5b5a68df6d16 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   687
288
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   688
\noindent and the string $ababacabacab$. This string is 
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   689
clearly matched by the regular expression, but we are only
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   690
interested in the sequence of $b$s and $c$s. Using $env$
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   691
we obtain
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   692
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   693
\begin{center}
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   694
$[(x:b), (x:b), (y:c), (x:b), (y:c), (x:b)]$
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   695
\end{center}
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   696
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   697
\noindent While this feature might look silly, it is in fact
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   698
quite useful. For example if we want to match the name of
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   699
an email we might use the regular expression
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   700
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   701
\[
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   702
(name: [a\mbox{-}z0\mbox{-}9\_\!\_\,.-]^+)\cdot @\cdot 
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   703
(domain: [a\mbox{-}z0\mbox{-}9\,.-]^+)\cdot .\cdot 
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   704
(top\_level: [a\mbox{-}z\,.]^{\{2,6\}})
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   705
\]
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   706
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   707
\noindent Then if we match the email address
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   708
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   709
\[
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   710
\texttt{christian.urban@kcl.ac.uk}
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   711
\]
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   712
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   713
\noindent we can use the $env$ function and find out
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   714
what the name, domain and top-level part of the email
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   715
address are:
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   716
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   717
\begin{center}
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   718
$[(name:\texttt{christian.urban}), 
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   719
  (domain:\texttt{kcl}), 
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   720
  (top\_level:\texttt{ac.uk})]$
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   721
\end{center}
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   722
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   723
\noindent As you will see in the next lecture, this is now all
39aeca14af8c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 287
diff changeset
   724
we need to tokenise an input string and classify each token.
251
5b5a68df6d16 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   725
\end{document}
5b5a68df6d16 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   726
5b5a68df6d16 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   727
%%% Local Variables: 
5b5a68df6d16 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   728
%%% mode: latex
5b5a68df6d16 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   729
%%% TeX-master: t
5b5a68df6d16 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   730
%%% End: