# HG changeset patch # User Christian Urban # Date 1396526143 -3600 # Node ID e3ecf558aef254d512fdcc8709dfc676b2ff2955 # Parent 23eeaac32d210cc6dc31000659e088bd1685a735 recursive function theories / UF_rec still need coding of tapes and programs diff -r 23eeaac32d21 -r e3ecf558aef2 thys/Hoare_tm.thy --- a/thys/Hoare_tm.thy Thu Apr 03 12:47:07 2014 +0100 +++ b/thys/Hoare_tm.thy Thu Apr 03 12:55:43 2014 +0100 @@ -63,6 +63,7 @@ *) type_synonym tconf = "nat \ (nat \ tm_inst) \ nat \ int \ (int \ Block)" +(* updates the position/tape according to an action *) fun next_tape :: "taction \ (int \ (int \ Block)) \ (int \ (int \ Block))" where diff -r 23eeaac32d21 -r e3ecf558aef2 thys/Recs.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/thys/Recs.thy Thu Apr 03 12:55:43 2014 +0100 @@ -0,0 +1,860 @@ +theory Recs +imports Main Fact + "~~/src/HOL/Number_Theory/Primes" + "~~/src/HOL/Library/Nat_Bijection" + "~~/src/HOL/Library/Discrete" +begin + +declare One_nat_def[simp del] + +(* + some definitions from + + A Course in Formal Languages, Automata and Groups + I M Chiswell + + and + + Lecture on undecidability + Michael M. Wolf +*) + +lemma if_zero_one [simp]: + "(if P then 1 else 0) = (0::nat) \ \ P" + "(0::nat) < (if P then 1 else 0) = P" + "(if P then 0 else 1) = (if \P then 1 else (0::nat))" +by (simp_all) + +lemma nth: + "(x # xs) ! 0 = x" + "(x # y # xs) ! 1 = y" + "(x # y # z # xs) ! 2 = z" + "(x # y # z # u # xs) ! 3 = u" +by (simp_all) + + +section {* Some auxiliary lemmas about @{text "\"} and @{text "\"} *} + +lemma setprod_atMost_Suc[simp]: + "(\i \ Suc n. f i) = (\i \ n. f i) * f(Suc n)" +by(simp add:atMost_Suc mult_ac) + +lemma setprod_lessThan_Suc[simp]: + "(\i < Suc n. f i) = (\i < n. f i) * f n" +by (simp add:lessThan_Suc mult_ac) + +lemma setsum_add_nat_ivl2: "n \ p \ + setsum f {.. nat" + shows "(\i < n. f i) = 0 \ (\i < n. f i = 0)" + "(\i \ n. f i) = 0 \ (\i \ n. f i = 0)" +by (auto) + +lemma setprod_eq_zero [simp]: + fixes f::"nat \ nat" + shows "(\i < n. f i) = 0 \ (\i < n. f i = 0)" + "(\i \ n. f i) = 0 \ (\i \ n. f i = 0)" +by (auto) + +lemma setsum_one_less: + fixes n::nat + assumes "\i < n. f i \ 1" + shows "(\i < n. f i) \ n" +using assms +by (induct n) (auto) + +lemma setsum_one_le: + fixes n::nat + assumes "\i \ n. f i \ 1" + shows "(\i \ n. f i) \ Suc n" +using assms +by (induct n) (auto) + +lemma setsum_eq_one_le: + fixes n::nat + assumes "\i \ n. f i = 1" + shows "(\i \ n. f i) = Suc n" +using assms +by (induct n) (auto) + +lemma setsum_least_eq: + fixes f::"nat \ nat" + assumes h0: "p \ n" + assumes h1: "\i \ {..i \ {p..n}. f i = 0" + shows "(\i \ n. f i) = p" +proof - + have eq_p: "(\i \ {..i \ {p..n}. f i) = 0" + using h2 by auto + have "(\i \ n. f i) = (\i \ {..i \ {p..n}. f i)" + using h0 by (simp add: setsum_add_nat_ivl2) + also have "... = (\i \ {..i \ n. f i) = p" using eq_p by simp +qed + +lemma nat_mult_le_one: + fixes m n::nat + assumes "m \ 1" "n \ 1" + shows "m * n \ 1" +using assms by (induct n) (auto) + +lemma setprod_one_le: + fixes f::"nat \ nat" + assumes "\i \ n. f i \ 1" + shows "(\i \ n. f i) \ 1" +using assms +by (induct n) (auto intro: nat_mult_le_one) + +lemma setprod_greater_zero: + fixes f::"nat \ nat" + assumes "\i \ n. f i \ 0" + shows "(\i \ n. f i) \ 0" +using assms by (induct n) (auto) + +lemma setprod_eq_one: + fixes f::"nat \ nat" + assumes "\i \ n. f i = Suc 0" + shows "(\i \ n. f i) = Suc 0" +using assms by (induct n) (auto) + +lemma setsum_cut_off_less: + fixes f::"nat \ nat" + assumes h1: "m \ n" + and h2: "\i \ {m..i < n. f i) = (\i < m. f i)" +proof - + have eq_zero: "(\i \ {m..i < n. f i) = (\i \ {..i \ {m..i \ {..i < n. f i) = (\i < m. f i)" by simp +qed + +lemma setsum_cut_off_le: + fixes f::"nat \ nat" + assumes h1: "m \ n" + and h2: "\i \ {m..n}. f i = 0" + shows "(\i \ n. f i) = (\i < m. f i)" +proof - + have eq_zero: "(\i \ {m..n}. f i) = 0" + using h2 by auto + have "(\i \ n. f i) = (\i \ {..i \ {m..n}. f i)" + using h1 by (simp add: setsum_add_nat_ivl2) + also have "... = (\i \ {..i \ n. f i) = (\i < m. f i)" by simp +qed + +lemma setprod_one [simp]: + fixes n::nat + shows "(\i < n. Suc 0) = Suc 0" + "(\i \ n. Suc 0) = Suc 0" +by (induct n) (simp_all) + + + +section {* Recursive Functions *} + +datatype recf = Z + | S + | Id nat nat + | Cn nat recf "recf list" + | Pr nat recf recf + | Mn nat recf + +fun arity :: "recf \ nat" + where + "arity Z = 1" +| "arity S = 1" +| "arity (Id m n) = m" +| "arity (Cn n f gs) = n" +| "arity (Pr n f g) = Suc n" +| "arity (Mn n f) = n" + +text {* Abbreviations for calculating the arity of the constructors *} + +abbreviation + "CN f gs \ Cn (arity (hd gs)) f gs" + +abbreviation + "PR f g \ Pr (arity f) f g" + +abbreviation + "MN f \ Mn (arity f - 1) f" + +text {* the evaluation function and termination relation *} + +fun rec_eval :: "recf \ nat list \ nat" + where + "rec_eval Z xs = 0" +| "rec_eval S xs = Suc (xs ! 0)" +| "rec_eval (Id m n) xs = xs ! n" +| "rec_eval (Cn n f gs) xs = rec_eval f (map (\x. rec_eval x xs) gs)" +| "rec_eval (Pr n f g) (0 # xs) = rec_eval f xs" +| "rec_eval (Pr n f g) (Suc x # xs) = + rec_eval g (x # (rec_eval (Pr n f g) (x # xs)) # xs)" +| "rec_eval (Mn n f) xs = (LEAST x. rec_eval f (x # xs) = 0)" + +inductive + terminates :: "recf \ nat list \ bool" +where + termi_z: "terminates Z [n]" +| termi_s: "terminates S [n]" +| termi_id: "\n < m; length xs = m\ \ terminates (Id m n) xs" +| termi_cn: "\terminates f (map (\g. rec_eval g xs) gs); + \g \ set gs. terminates g xs; length xs = n\ \ terminates (Cn n f gs) xs" +| termi_pr: "\\ y < x. terminates g (y # (rec_eval (Pr n f g) (y # xs) # xs)); + terminates f xs; + length xs = n\ + \ terminates (Pr n f g) (x # xs)" +| termi_mn: "\length xs = n; terminates f (r # xs); + rec_eval f (r # xs) = 0; + \ i < r. terminates f (i # xs) \ rec_eval f (i # xs) > 0\ \ terminates (Mn n f) xs" + + +section {* Arithmetic Functions *} + +text {* + @{text "constn n"} is the recursive function which computes + natural number @{text "n"}. +*} +fun constn :: "nat \ recf" + where + "constn 0 = Z" | + "constn (Suc n) = CN S [constn n]" + +definition + "rec_swap f = CN f [Id 2 1, Id 2 0]" + +definition + "rec_add = PR (Id 1 0) (CN S [Id 3 1])" + +definition + "rec_mult = PR Z (CN rec_add [Id 3 1, Id 3 2])" + +definition + "rec_power = rec_swap (PR (constn 1) (CN rec_mult [Id 3 1, Id 3 2]))" + +definition + "rec_fact_aux = PR (constn 1) (CN rec_mult [CN S [Id 3 0], Id 3 1])" + +definition + "rec_fact = CN rec_fact_aux [Id 1 0, Id 1 0]" + +definition + "rec_pred = CN (PR Z (Id 3 0)) [Id 1 0, Id 1 0]" + +definition + "rec_minus = rec_swap (PR (Id 1 0) (CN rec_pred [Id 3 1]))" + +lemma constn_lemma [simp]: + "rec_eval (constn n) xs = n" +by (induct n) (simp_all) + +lemma swap_lemma [simp]: + "rec_eval (rec_swap f) [x, y] = rec_eval f [y, x]" +by (simp add: rec_swap_def) + +lemma add_lemma [simp]: + "rec_eval rec_add [x, y] = x + y" +by (induct x) (simp_all add: rec_add_def) + +lemma mult_lemma [simp]: + "rec_eval rec_mult [x, y] = x * y" +by (induct x) (simp_all add: rec_mult_def) + +lemma power_lemma [simp]: + "rec_eval rec_power [x, y] = x ^ y" +by (induct y) (simp_all add: rec_power_def) + +lemma fact_aux_lemma [simp]: + "rec_eval rec_fact_aux [x, y] = fact x" +by (induct x) (simp_all add: rec_fact_aux_def) + +lemma fact_lemma [simp]: + "rec_eval rec_fact [x] = fact x" +by (simp add: rec_fact_def) + +lemma pred_lemma [simp]: + "rec_eval rec_pred [x] = x - 1" +by (induct x) (simp_all add: rec_pred_def) + +lemma minus_lemma [simp]: + "rec_eval rec_minus [x, y] = x - y" +by (induct y) (simp_all add: rec_minus_def) + + +section {* Logical functions *} + +text {* + The @{text "sign"} function returns 1 when the input argument + is greater than @{text "0"}. *} + +definition + "rec_sign = CN rec_minus [constn 1, CN rec_minus [constn 1, Id 1 0]]" + +definition + "rec_not = CN rec_minus [constn 1, Id 1 0]" + +text {* + @{text "rec_eq"} compares two arguments: returns @{text "1"} + if they are equal; @{text "0"} otherwise. *} +definition + "rec_eq = CN rec_minus [CN (constn 1) [Id 2 0], CN rec_add [rec_minus, rec_swap rec_minus]]" + +definition + "rec_noteq = CN rec_not [rec_eq]" + +definition + "rec_conj = CN rec_sign [rec_mult]" + +definition + "rec_disj = CN rec_sign [rec_add]" + +definition + "rec_imp = CN rec_disj [CN rec_not [Id 2 0], Id 2 1]" + +text {* @{term "rec_ifz [z, x, y]"} returns x if z is zero, + y otherwise; @{term "rec_if [z, x, y]"} returns x if z is *not* + zero, y otherwise *} + +definition + "rec_ifz = PR (Id 2 0) (Id 4 3)" + +definition + "rec_if = CN rec_ifz [CN rec_not [Id 3 0], Id 3 1, Id 3 2]" + + +lemma sign_lemma [simp]: + "rec_eval rec_sign [x] = (if x = 0 then 0 else 1)" +by (simp add: rec_sign_def) + +lemma not_lemma [simp]: + "rec_eval rec_not [x] = (if x = 0 then 1 else 0)" +by (simp add: rec_not_def) + +lemma eq_lemma [simp]: + "rec_eval rec_eq [x, y] = (if x = y then 1 else 0)" +by (simp add: rec_eq_def) + +lemma noteq_lemma [simp]: + "rec_eval rec_noteq [x, y] = (if x \ y then 1 else 0)" +by (simp add: rec_noteq_def) + +lemma conj_lemma [simp]: + "rec_eval rec_conj [x, y] = (if x = 0 \ y = 0 then 0 else 1)" +by (simp add: rec_conj_def) + +lemma disj_lemma [simp]: + "rec_eval rec_disj [x, y] = (if x = 0 \ y = 0 then 0 else 1)" +by (simp add: rec_disj_def) + +lemma imp_lemma [simp]: + "rec_eval rec_imp [x, y] = (if 0 < x \ y = 0 then 0 else 1)" +by (simp add: rec_imp_def) + +lemma ifz_lemma [simp]: + "rec_eval rec_ifz [z, x, y] = (if z = 0 then x else y)" +by (case_tac z) (simp_all add: rec_ifz_def) + +lemma if_lemma [simp]: + "rec_eval rec_if [z, x, y] = (if 0 < z then x else y)" +by (simp add: rec_if_def) + +section {* Less and Le Relations *} + +text {* + @{text "rec_less"} compares two arguments and returns @{text "1"} if + the first is less than the second; otherwise returns @{text "0"}. *} + +definition + "rec_less = CN rec_sign [rec_swap rec_minus]" + +definition + "rec_le = CN rec_disj [rec_less, rec_eq]" + +lemma less_lemma [simp]: + "rec_eval rec_less [x, y] = (if x < y then 1 else 0)" +by (simp add: rec_less_def) + +lemma le_lemma [simp]: + "rec_eval rec_le [x, y] = (if (x \ y) then 1 else 0)" +by(simp add: rec_le_def) + + +section {* Summation and Product Functions *} + +definition + "rec_sigma1 f = PR (CN f [CN Z [Id 1 0], Id 1 0]) + (CN rec_add [Id 3 1, CN f [CN S [Id 3 0], Id 3 2]])" + +definition + "rec_sigma2 f = PR (CN f [CN Z [Id 2 0], Id 2 0, Id 2 1]) + (CN rec_add [Id 4 1, CN f [CN S [Id 4 0], Id 4 2, Id 4 3]])" + +definition + "rec_accum1 f = PR (CN f [CN Z [Id 1 0], Id 1 0]) + (CN rec_mult [Id 3 1, CN f [CN S [Id 3 0], Id 3 2]])" + +definition + "rec_accum2 f = PR (CN f [CN Z [Id 2 0], Id 2 0, Id 2 1]) + (CN rec_mult [Id 4 1, CN f [CN S [Id 4 0], Id 4 2, Id 4 3]])" + +definition + "rec_accum3 f = PR (CN f [CN Z [Id 3 0], Id 3 0, Id 3 1, Id 3 2]) + (CN rec_mult [Id 5 1, CN f [CN S [Id 5 0], Id 5 2, Id 5 3, Id 5 4]])" + + +lemma sigma1_lemma [simp]: + shows "rec_eval (rec_sigma1 f) [x, y] = (\ z \ x. rec_eval f [z, y])" +by (induct x) (simp_all add: rec_sigma1_def) + +lemma sigma2_lemma [simp]: + shows "rec_eval (rec_sigma2 f) [x, y1, y2] = (\ z \ x. rec_eval f [z, y1, y2])" +by (induct x) (simp_all add: rec_sigma2_def) + +lemma accum1_lemma [simp]: + shows "rec_eval (rec_accum1 f) [x, y] = (\ z \ x. rec_eval f [z, y])" +by (induct x) (simp_all add: rec_accum1_def) + +lemma accum2_lemma [simp]: + shows "rec_eval (rec_accum2 f) [x, y1, y2] = (\ z \ x. rec_eval f [z, y1, y2])" +by (induct x) (simp_all add: rec_accum2_def) + +lemma accum3_lemma [simp]: + shows "rec_eval (rec_accum3 f) [x, y1, y2, y3] = (\ z \ x. (rec_eval f) [z, y1, y2, y3])" +by (induct x) (simp_all add: rec_accum3_def) + + +section {* Bounded Quantifiers *} + +definition + "rec_all1 f = CN rec_sign [rec_accum1 f]" + +definition + "rec_all2 f = CN rec_sign [rec_accum2 f]" + +definition + "rec_all3 f = CN rec_sign [rec_accum3 f]" + +definition + "rec_all1_less f = (let cond1 = CN rec_eq [Id 3 0, Id 3 1] in + let cond2 = CN f [Id 3 0, Id 3 2] + in CN (rec_all2 (CN rec_disj [cond1, cond2])) [Id 2 0, Id 2 0, Id 2 1])" + +definition + "rec_all2_less f = (let cond1 = CN rec_eq [Id 4 0, Id 4 1] in + let cond2 = CN f [Id 4 0, Id 4 2, Id 4 3] in + CN (rec_all3 (CN rec_disj [cond1, cond2])) [Id 3 0, Id 3 0, Id 3 1, Id 3 2])" + +definition + "rec_ex1 f = CN rec_sign [rec_sigma1 f]" + +definition + "rec_ex2 f = CN rec_sign [rec_sigma2 f]" + + +lemma ex1_lemma [simp]: + "rec_eval (rec_ex1 f) [x, y] = (if (\z \ x. 0 < rec_eval f [z, y]) then 1 else 0)" +by (simp add: rec_ex1_def) + +lemma ex2_lemma [simp]: + "rec_eval (rec_ex2 f) [x, y1, y2] = (if (\z \ x. 0 < rec_eval f [z, y1, y2]) then 1 else 0)" +by (simp add: rec_ex2_def) + +lemma all1_lemma [simp]: + "rec_eval (rec_all1 f) [x, y] = (if (\z \ x. 0 < rec_eval f [z, y]) then 1 else 0)" +by (simp add: rec_all1_def) + +lemma all2_lemma [simp]: + "rec_eval (rec_all2 f) [x, y1, y2] = (if (\z \ x. 0 < rec_eval f [z, y1, y2]) then 1 else 0)" +by (simp add: rec_all2_def) + +lemma all3_lemma [simp]: + "rec_eval (rec_all3 f) [x, y1, y2, y3] = (if (\z \ x. 0 < rec_eval f [z, y1, y2, y3]) then 1 else 0)" +by (simp add: rec_all3_def) + +lemma all1_less_lemma [simp]: + "rec_eval (rec_all1_less f) [x, y] = (if (\z < x. 0 < rec_eval f [z, y]) then 1 else 0)" +apply(auto simp add: Let_def rec_all1_less_def) +apply (metis nat_less_le)+ +done + +lemma all2_less_lemma [simp]: + "rec_eval (rec_all2_less f) [x, y1, y2] = (if (\z < x. 0 < rec_eval f [z, y1, y2]) then 1 else 0)" +apply(auto simp add: Let_def rec_all2_less_def) +apply(metis nat_less_le)+ +done + +section {* Quotients *} + +definition + "rec_quo = (let lhs = CN S [Id 3 0] in + let rhs = CN rec_mult [Id 3 2, CN S [Id 3 1]] in + let cond = CN rec_eq [lhs, rhs] in + let if_stmt = CN rec_if [cond, CN S [Id 3 1], Id 3 1] + in PR Z if_stmt)" + +fun Quo where + "Quo x 0 = 0" +| "Quo x (Suc y) = (if (Suc y = x * (Suc (Quo x y))) then Suc (Quo x y) else Quo x y)" + +lemma Quo0: + shows "Quo 0 y = 0" +by (induct y) (auto) + +lemma Quo1: + "x * (Quo x y) \ y" +by (induct y) (simp_all) + +lemma Quo2: + "b * (Quo b a) + a mod b = a" +by (induct a) (auto simp add: mod_Suc) + +lemma Quo3: + "n * (Quo n m) = m - m mod n" +using Quo2[of n m] by (auto) + +lemma Quo4: + assumes h: "0 < x" + shows "y < x + x * Quo x y" +proof - + have "x - (y mod x) > 0" using mod_less_divisor assms by auto + then have "y < y + (x - (y mod x))" by simp + then have "y < x + (y - (y mod x))" by simp + then show "y < x + x * (Quo x y)" by (simp add: Quo3) +qed + +lemma Quo_div: + shows "Quo x y = y div x" +apply(case_tac "x = 0") +apply(simp add: Quo0) +apply(subst split_div_lemma[symmetric]) +apply(auto intro: Quo1 Quo4) +done + +lemma Quo_rec_quo: + shows "rec_eval rec_quo [y, x] = Quo x y" +by (induct y) (simp_all add: rec_quo_def) + +lemma quo_lemma [simp]: + shows "rec_eval rec_quo [y, x] = y div x" +by (simp add: Quo_div Quo_rec_quo) + + +section {* Iteration *} + +definition + "rec_iter f = PR (Id 1 0) (CN f [Id 3 1])" + +fun Iter where + "Iter f 0 = id" +| "Iter f (Suc n) = f \ (Iter f n)" + +lemma Iter_comm: + "(Iter f n) (f x) = f ((Iter f n) x)" +by (induct n) (simp_all) + +lemma iter_lemma [simp]: + "rec_eval (rec_iter f) [n, x] = Iter (\x. rec_eval f [x]) n x" +by (induct n) (simp_all add: rec_iter_def) + + +section {* Bounded Maximisation *} + + +fun BMax_rec where + "BMax_rec R 0 = 0" +| "BMax_rec R (Suc n) = (if R (Suc n) then (Suc n) else BMax_rec R n)" + +definition + BMax_set :: "(nat \ bool) \ nat \ nat" +where + "BMax_set R x = Max ({z. z \ x \ R z} \ {0})" + +lemma BMax_rec_eq1: + "BMax_rec R x = (GREATEST z. (R z \ z \ x) \ z = 0)" +apply(induct x) +apply(auto intro: Greatest_equality Greatest_equality[symmetric]) +apply(simp add: le_Suc_eq) +by metis + +lemma BMax_rec_eq2: + "BMax_rec R x = Max ({z. z \ x \ R z} \ {0})" +apply(induct x) +apply(auto intro: Max_eqI Max_eqI[symmetric]) +apply(simp add: le_Suc_eq) +by metis + +lemma BMax_rec_eq3: + "BMax_rec R x = Max (Set.filter (\z. R z) {..x} \ {0})" +by (simp add: BMax_rec_eq2 Set.filter_def) + +definition + "rec_max1 f = PR Z (CN rec_ifz [CN f [CN S [Id 3 0], Id 3 2], CN S [Id 3 0], Id 3 1])" + +lemma max1_lemma [simp]: + "rec_eval (rec_max1 f) [x, y] = BMax_rec (\u. rec_eval f [u, y] = 0) x" +by (induct x) (simp_all add: rec_max1_def) + +definition + "rec_max2 f = PR Z (CN rec_ifz [CN f [CN S [Id 4 0], Id 4 2, Id 4 3], CN S [Id 4 0], Id 4 1])" + +lemma max2_lemma [simp]: + "rec_eval (rec_max2 f) [x, y1, y2] = BMax_rec (\u. rec_eval f [u, y1, y2] = 0) x" +by (induct x) (simp_all add: rec_max2_def) + + +section {* Encodings using Cantor's pairing function *} + +text {* + We use Cantor's pairing function from Nat_Bijection. + However, we need to prove that the formulation of the + decoding function there is recursive. For this we first + prove that we can extract the maximal triangle number + using @{term prod_decode}. +*} + +abbreviation Max_triangle_aux where + "Max_triangle_aux k z \ fst (prod_decode_aux k z) + snd (prod_decode_aux k z)" + +abbreviation Max_triangle where + "Max_triangle z \ Max_triangle_aux 0 z" + +abbreviation + "pdec1 z \ fst (prod_decode z)" + +abbreviation + "pdec2 z \ snd (prod_decode z)" + +abbreviation + "penc m n \ prod_encode (m, n)" + +lemma fst_prod_decode: + "pdec1 z = z - triangle (Max_triangle z)" +by (subst (3) prod_decode_inverse[symmetric]) + (simp add: prod_encode_def prod_decode_def split: prod.split) + +lemma snd_prod_decode: + "pdec2 z = Max_triangle z - pdec1 z" +by (simp only: prod_decode_def) + +lemma le_triangle: + "m \ triangle (n + m)" +by (induct_tac m) (simp_all) + +lemma Max_triangle_triangle_le: + "triangle (Max_triangle z) \ z" +by (subst (9) prod_decode_inverse[symmetric]) + (simp add: prod_decode_def prod_encode_def split: prod.split) + +lemma Max_triangle_le: + "Max_triangle z \ z" +proof - + have "Max_triangle z \ triangle (Max_triangle z)" + using le_triangle[of _ 0, simplified] by simp + also have "... \ z" by (rule Max_triangle_triangle_le) + finally show "Max_triangle z \ z" . +qed + +lemma w_aux: + "Max_triangle (triangle k + m) = Max_triangle_aux k m" +by (simp add: prod_decode_def[symmetric] prod_decode_triangle_add) + +lemma y_aux: "y \ Max_triangle_aux y k" +apply(induct k arbitrary: y rule: nat_less_induct) +apply(subst (1 2) prod_decode_aux.simps) +apply(simp) +apply(rule impI) +apply(drule_tac x="n - Suc y" in spec) +apply(drule mp) +apply(auto)[1] +apply(drule_tac x="Suc y" in spec) +apply(erule Suc_leD) +done + +lemma Max_triangle_greatest: + "Max_triangle z = (GREATEST k. (triangle k \ z \ k \ z) \ k = 0)" +apply(rule Greatest_equality[symmetric]) +apply(rule disjI1) +apply(rule conjI) +apply(rule Max_triangle_triangle_le) +apply(rule Max_triangle_le) +apply(erule disjE) +apply(erule conjE) +apply(subst (asm) (1) le_iff_add) +apply(erule exE) +apply(clarify) +apply(simp only: w_aux) +apply(rule y_aux) +apply(simp) +done + + +definition + "rec_triangle = CN rec_quo [CN rec_mult [Id 1 0, S], constn 2]" + +definition + "rec_max_triangle = + (let cond = CN rec_not [CN rec_le [CN rec_triangle [Id 2 0], Id 2 1]] in + CN (rec_max1 cond) [Id 1 0, Id 1 0])" + + +lemma triangle_lemma [simp]: + "rec_eval rec_triangle [x] = triangle x" +by (simp add: rec_triangle_def triangle_def) + +lemma max_triangle_lemma [simp]: + "rec_eval rec_max_triangle [x] = Max_triangle x" +by (simp add: Max_triangle_greatest rec_max_triangle_def Let_def BMax_rec_eq1) + + +text {* Encodings for Products *} + +definition + "rec_penc = CN rec_add [CN rec_triangle [CN rec_add [Id 2 0, Id 2 1]], Id 2 0]" + +definition + "rec_pdec1 = CN rec_minus [Id 1 0, CN rec_triangle [CN rec_max_triangle [Id 1 0]]]" + +definition + "rec_pdec2 = CN rec_minus [CN rec_max_triangle [Id 1 0], CN rec_pdec1 [Id 1 0]]" + +lemma pdec1_lemma [simp]: + "rec_eval rec_pdec1 [z] = pdec1 z" +by (simp add: rec_pdec1_def fst_prod_decode) + +lemma pdec2_lemma [simp]: + "rec_eval rec_pdec2 [z] = pdec2 z" +by (simp add: rec_pdec2_def snd_prod_decode) + +lemma penc_lemma [simp]: + "rec_eval rec_penc [m, n] = penc m n" +by (simp add: rec_penc_def prod_encode_def) + + +text {* Encodings of Lists *} + +fun + lenc :: "nat list \ nat" +where + "lenc [] = 0" +| "lenc (x # xs) = penc (Suc x) (lenc xs)" + +fun + ldec :: "nat \ nat \ nat" +where + "ldec z 0 = (pdec1 z) - 1" +| "ldec z (Suc n) = ldec (pdec2 z) n" + +lemma pdec_zero_simps [simp]: + "pdec1 0 = 0" + "pdec2 0 = 0" +by (simp_all add: prod_decode_def prod_decode_aux.simps) + +lemma ldec_zero: + "ldec 0 n = 0" +by (induct n) (simp_all add: prod_decode_def prod_decode_aux.simps) + +lemma list_encode_inverse: + "ldec (lenc xs) n = (if n < length xs then xs ! n else 0)" +by (induct xs arbitrary: n rule: lenc.induct) + (auto simp add: ldec_zero nth_Cons split: nat.splits) + +lemma lenc_length_le: + "length xs \ lenc xs" +by (induct xs) (simp_all add: prod_encode_def) + + +text {* Membership for the List Encoding *} + +fun within :: "nat \ nat \ bool" where + "within z 0 = (0 < z)" +| "within z (Suc n) = within (pdec2 z) n" + +definition enclen :: "nat \ nat" where + "enclen z = BMax_rec (\x. within z (x - 1)) z" + +lemma within_False [simp]: + "within 0 n = False" +by (induct n) (simp_all) + +lemma within_length [simp]: + "within (lenc xs) s = (s < length xs)" +apply(induct s arbitrary: xs) +apply(case_tac xs) +apply(simp_all add: prod_encode_def) +apply(case_tac xs) +apply(simp_all) +done + +text {* Length of Encoded Lists *} + +lemma enclen_length [simp]: + "enclen (lenc xs) = length xs" +unfolding enclen_def +apply(simp add: BMax_rec_eq1) +apply(rule Greatest_equality) +apply(auto simp add: lenc_length_le) +done + +lemma enclen_penc [simp]: + "enclen (penc (Suc x) (lenc xs)) = Suc (enclen (lenc xs))" +by (simp only: lenc.simps[symmetric] enclen_length) (simp) + +lemma enclen_zero [simp]: + "enclen 0 = 0" +by (simp add: enclen_def) + + +text {* Recursive Definitions for List Encodings *} + +fun + rec_lenc :: "recf list \ recf" +where + "rec_lenc [] = Z" +| "rec_lenc (f # fs) = CN rec_penc [CN S [f], rec_lenc fs]" + +definition + "rec_ldec = CN rec_pred [CN rec_pdec1 [rec_swap (rec_iter rec_pdec2)]]" + +definition + "rec_within = CN rec_less [Z, rec_swap (rec_iter rec_pdec2)]" + +definition + "rec_enclen = CN (rec_max1 (CN rec_not [CN rec_within [Id 2 1, CN rec_pred [Id 2 0]]])) [Id 1 0, Id 1 0]" + +lemma ldec_iter: + "ldec z n = pdec1 (Iter pdec2 n z) - 1" +by (induct n arbitrary: z) (simp | subst Iter_comm)+ + +lemma within_iter: + "within z n = (0 < Iter pdec2 n z)" +by (induct n arbitrary: z) (simp | subst Iter_comm)+ + +lemma lenc_lemma [simp]: + "rec_eval (rec_lenc fs) xs = lenc (map (\f. rec_eval f xs) fs)" +by (induct fs) (simp_all) + +lemma ldec_lemma [simp]: + "rec_eval rec_ldec [z, n] = ldec z n" +by (simp add: ldec_iter rec_ldec_def) + +lemma within_lemma [simp]: + "rec_eval rec_within [z, n] = (if within z n then 1 else 0)" +by (simp add: within_iter rec_within_def) + +lemma enclen_lemma [simp]: + "rec_eval rec_enclen [z] = enclen z" +by (simp add: rec_enclen_def enclen_def) + + +end + diff -r 23eeaac32d21 -r e3ecf558aef2 thys/UF_Rec.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/thys/UF_Rec.thy Thu Apr 03 12:55:43 2014 +0100 @@ -0,0 +1,667 @@ +theory UF_Rec +imports Recs Hoare_tm +begin + +section {* Coding of Turing Machines and Tapes*} + + +fun actnum :: "taction \ nat" + where + "actnum W0 = 0" +| "actnum W1 = 1" +| "actnum L = 2" +| "actnum R = 3" + + +fun cellnum :: "Block \ nat" where + "cellnum Bk = 0" +| "cellnum Oc = 1" + + +(* NEED TO CODE TAPES *) + +text {* Coding tapes *} + +fun code_tp :: "cell list \ nat list" + where + "code_tp [] = []" +| "code_tp (c # tp) = (cellnum c) # code_tp tp" + +fun Code_tp where + "Code_tp tp = lenc (code_tp tp)" + +lemma code_tp_append [simp]: + "code_tp (tp1 @ tp2) = code_tp tp1 @ code_tp tp2" +by(induct tp1) (simp_all) + +lemma code_tp_length [simp]: + "length (code_tp tp) = length tp" +by (induct tp) (simp_all) + +lemma code_tp_nth [simp]: + "n < length tp \ (code_tp tp) ! n = cellnum (tp ! n)" +apply(induct n arbitrary: tp) +apply(simp_all) +apply(case_tac [!] tp) +apply(simp_all) +done + +lemma code_tp_replicate [simp]: + "code_tp (c \ n) = (cellnum c) \ n" +by(induct n) (simp_all) + +text {* Coding Configurations and TMs *} + +fun Code_conf where + "Code_conf (s, l, r) = (s, Code_tp l, Code_tp r)" + +fun code_instr :: "instr \ nat" where + "code_instr i = penc (actnum (fst i)) (snd i)" + +fun Code_instr :: "instr \ instr \ nat" where + "Code_instr i = penc (code_instr (fst i)) (code_instr (snd i))" + +fun code_tprog :: "tprog \ nat list" + where + "code_tprog [] = []" +| "code_tprog (i # tm) = Code_instr i # code_tprog tm" + +lemma code_tprog_length [simp]: + "length (code_tprog tp) = length tp" +by (induct tp) (simp_all) + +lemma code_tprog_nth [simp]: + "n < length tp \ (code_tprog tp) ! n = Code_instr (tp ! n)" +by (induct tp arbitrary: n) (simp_all add: nth_Cons') + +fun Code_tprog :: "tprog \ nat" + where + "Code_tprog tm = lenc (code_tprog tm)" + + +section {* An Universal Function in HOL *} + +text {* Reading and writing the encoded tape *} + +fun Read where + "Read tp = ldec tp 0" + +fun Write where + "Write n tp = penc (Suc n) (pdec2 tp)" + +text {* + The @{text Newleft} and @{text Newright} functions on page 91 of B book. + They calculate the new left and right tape (@{text p} and @{text r}) + according to an action @{text a}. Adapted to our encoding functions. +*} + +fun Newleft :: "nat \ nat \ nat \ nat" + where + "Newleft l r a = (if a = 0 then l else + if a = 1 then l else + if a = 2 then pdec2 l else + if a = 3 then penc (Suc (Read r)) l + else l)" + +fun Newright :: "nat \ nat \ nat \ nat" + where + "Newright l r a = (if a = 0 then Write 0 r + else if a = 1 then Write 1 r + else if a = 2 then penc (Suc (Read l)) r + else if a = 3 then pdec2 r + else r)" + +text {* + The @{text "Action"} function given on page 92 of B book, which is used to + fetch Turing Machine intructions. In @{text "Action m q r"}, @{text "m"} is + the code of the Turing Machine, @{text "q"} is the current state of + Turing Machine, and @{text "r"} is the scanned cell of is the right tape. +*} + +fun Actn :: "nat \ nat \ nat" where + "Actn n 0 = pdec1 (pdec1 n)" +| "Actn n _ = pdec1 (pdec2 n)" + +fun Action :: "nat \ nat \ nat \ nat" + where + "Action m q c = (if q \ 0 \ within m (q - 1) then Actn (ldec m (q - 1)) c else 4)" + +fun Newstat :: "nat \ nat \ nat" where + "Newstat n 0 = pdec2 (pdec1 n)" +| "Newstat n _ = pdec2 (pdec2 n)" + +fun Newstate :: "nat \ nat \ nat \ nat" + where + "Newstate m q r = (if q \ 0 then Newstat (ldec m (q - 1)) r else 0)" + +fun Conf :: "nat \ (nat \ nat) \ nat" + where + "Conf (q, l, r) = lenc [q, l, r]" + +fun State where + "State cf = ldec cf 0" + +fun Left where + "Left cf = ldec cf 1" + +fun Right where + "Right cf = ldec cf 2" + +text {* + @{text "Steps cf m k"} computes the TM configuration after @{text "k"} steps of + execution of TM coded as @{text "m"}. @{text Step} is a single step of the TM. +*} + +fun Step :: "nat \ nat \ nat" + where + "Step cf m = Conf (Newstate m (State cf) (Read (Right cf)), + Newleft (Left cf) (Right cf) (Action m (State cf) (Read (Right cf))), + Newright (Left cf) (Right cf) (Action m (State cf) (Read (Right cf))))" + +fun Steps :: "nat \ nat \ nat \ nat" + where + "Steps cf p 0 = cf" +| "Steps cf p (Suc n) = Steps (Step cf p) p n" + +lemma Step_Steps_comm: + "Step (Steps cf p n) p = Steps (Step cf p) p n" +by (induct n arbitrary: cf) (simp_all only: Steps.simps) + + +text {* Decoding tapes back into numbers. *} + +definition Stknum :: "nat \ nat" + where + "Stknum z \ (\i < enclen z. ldec z i)" + +lemma Stknum_append: + "Stknum (Code_tp (tp1 @ tp2)) = Stknum (Code_tp tp1) + Stknum (Code_tp tp2)" +apply(simp only: Code_tp.simps) +apply(simp only: code_tp_append) +apply(simp only: Stknum_def) +apply(simp only: enclen_length length_append code_tp_length) +apply(simp only: list_encode_inverse) +apply(simp only: enclen_length length_append code_tp_length) +apply(simp) +apply(subgoal_tac "{.. {length tp1 ..x. x + length tp1) ` {0.. n)) = n * a" +apply(induct n) +apply(simp_all add: Stknum_def list_encode_inverse del: replicate.simps) +done + +lemma result: + "Stknum (Code_tp ( @ Bk \ l)) - 1 = n" +apply(simp only: Stknum_append) +apply(simp only: tape_of_nat.simps) +apply(simp only: Code_tp.simps) +apply(simp only: code_tp_replicate) +apply(simp only: cellnum.simps) +apply(simp only: Stknum_up) +apply(simp) +done + + +section {* Standard Tapes *} + +definition + "right_std z \ (\i \ enclen z. 1 \ i \ (\j < i. ldec z j = 1) \ (\j < enclen z - i. ldec z (i + j) = 0))" + +definition + "left_std z \ (\j < enclen z. ldec z j = 0)" + +lemma ww: + "(\k l. 1 \ k \ tp = Oc \ k @ Bk \ l) \ + (\i\length tp. 1 \ i \ (\j < i. tp ! j = Oc) \ (\j < length tp - i. tp ! (i + j) = Bk))" +apply(rule iffI) +apply(erule exE)+ +apply(simp) +apply(rule_tac x="k" in exI) +apply(auto)[1] +apply(simp add: nth_append) +apply(simp add: nth_append) +apply(erule exE) +apply(rule_tac x="i" in exI) +apply(rule_tac x="length tp - i" in exI) +apply(auto) +apply(rule sym) +apply(subst append_eq_conv_conj) +apply(simp) +apply(rule conjI) +apply (smt length_replicate length_take nth_equalityI nth_replicate nth_take) +by (smt length_drop length_replicate nth_drop nth_equalityI nth_replicate) + +lemma right_std: + "(\k l. 1 \ k \ tp = Oc \ k @ Bk \ l) \ right_std (Code_tp tp)" +apply(simp only: ww) +apply(simp add: right_std_def) +apply(simp only: list_encode_inverse) +apply(simp) +apply(auto) +apply(rule_tac x="i" in exI) +apply(simp) +apply(rule conjI) +apply (metis Suc_eq_plus1 Suc_neq_Zero cellnum.cases cellnum.simps(1) leD less_trans linorder_neqE_nat) +apply(auto) +by (metis One_nat_def cellnum.cases cellnum.simps(2) less_diff_conv n_not_Suc_n nat_add_commute) + +lemma left_std: + "(\k. tp = Bk \ k) \ left_std (Code_tp tp)" +apply(simp add: left_std_def) +apply(simp only: list_encode_inverse) +apply(simp) +apply(auto) +apply(rule_tac x="length tp" in exI) +apply(induct tp) +apply(simp) +apply(simp) +apply(auto) +apply(case_tac a) +apply(auto) +apply(case_tac a) +apply(auto) +by (metis Suc_less_eq nth_Cons_Suc) + + +section {* Standard- and Final Configurations, the Universal Function *} + +text {* + @{text "Std cf"} returns true, if the configuration @{text "cf"} + is a stardard tape. +*} + +fun Std :: "nat \ bool" + where + "Std cf = (left_std (Left cf) \ right_std (Right cf))" + +text{* + @{text "Stop m cf k"} means that afer @{text k} steps of + execution the TM coded by @{text m} and started in configuration + @{text cf} is in a stardard final configuration. *} + +fun Final :: "nat \ bool" + where + "Final cf = (State cf = 0)" + +fun Stop :: "nat \ nat \ nat \ bool" + where + "Stop m cf k = (Final (Steps cf m k) \ Std (Steps cf m k))" + +text{* + @{text "Halt"} is the function calculating the steps a TM needs to + execute before reaching a stardard final configuration. This recursive + function is the only one that uses unbounded minimization. So it is the + only non-primitive recursive function needs to be used in the construction + of the universal function @{text "UF"}. +*} + +fun Halt :: "nat \ nat \ nat" + where + "Halt m cf = (LEAST k. Stop m cf k)" + +fun UF :: "nat \ nat \ nat" + where + "UF m cf = Stknum (Right (Steps cf m (Halt m cf))) - 1" + + +section {* The UF simulates Turing machines *} + +lemma Update_left_simulate: + shows "Newleft (Code_tp l) (Code_tp r) (actnum a) = Code_tp (fst (update a (l, r)))" +apply(induct a) +apply(simp_all) +apply(case_tac l) +apply(simp_all) +apply(case_tac r) +apply(simp_all) +done + +lemma Update_right_simulate: + shows "Newright (Code_tp l) (Code_tp r) (actnum a) = Code_tp (snd (update a (l, r)))" +apply(induct a) +apply(simp_all) +apply(case_tac r) +apply(simp_all) +apply(case_tac r) +apply(simp_all) +apply(case_tac l) +apply(simp_all) +apply(case_tac r) +apply(simp_all) +done + +lemma Fetch_state_simulate: + "tm_wf tp \ Newstate (Code_tprog tp) st (cellnum c) = snd (fetch tp st c)" +apply(induct tp st c rule: fetch.induct) +apply(simp_all add: list_encode_inverse split: cell.split) +done + +lemma Fetch_action_simulate: + "tm_wf tp \ Action (Code_tprog tp) st (cellnum c) = actnum (fst (fetch tp st c))" +apply(induct tp st c rule: fetch.induct) +apply(simp_all add: list_encode_inverse split: cell.split) +done + +lemma Read_simulate: + "Read (Code_tp tp) = cellnum (read tp)" +apply(case_tac tp) +apply(simp_all) +done + +lemma misc: + "2 < (3::nat)" + "1 < (3::nat)" + "0 < (3::nat)" + "length [x] = 1" + "length [x, y] = 2" + "length [x, y , z] = 3" + "[x, y, z] ! 0 = x" + "[x, y, z] ! 1 = y" + "[x, y, z] ! 2 = z" +apply(simp_all) +done + +lemma Step_simulate: + assumes "tm_wf tp" + shows "Step (Conf (Code_conf (st, l, r))) (Code_tprog tp) = Conf (Code_conf (step (st, l, r) tp))" +apply(subst step.simps) +apply(simp only: Let_def) +apply(subst Step.simps) +apply(simp only: Conf.simps Code_conf.simps Right.simps Left.simps) +apply(simp only: list_encode_inverse) +apply(simp only: misc if_True Code_tp.simps) +apply(simp only: prod_case_beta) +apply(subst Fetch_state_simulate[OF assms, symmetric]) +apply(simp only: State.simps) +apply(simp only: list_encode_inverse) +apply(simp only: misc if_True) +apply(simp only: Read_simulate[simplified Code_tp.simps]) +apply(simp only: Fetch_action_simulate[OF assms]) +apply(simp only: Update_left_simulate[simplified Code_tp.simps]) +apply(simp only: Update_right_simulate[simplified Code_tp.simps]) +apply(case_tac "update (fst (fetch tp st (read r))) (l, r)") +apply(simp only: Code_conf.simps) +apply(simp only: Conf.simps) +apply(simp) +done + +lemma Steps_simulate: + assumes "tm_wf tp" + shows "Steps (Conf (Code_conf cf)) (Code_tprog tp) n = Conf (Code_conf (steps cf tp n))" +apply(induct n arbitrary: cf) +apply(simp) +apply(simp only: Steps.simps steps.simps) +apply(case_tac cf) +apply(simp only: ) +apply(subst Step_simulate) +apply(rule assms) +apply(drule_tac x="step (a, b, c) tp" in meta_spec) +apply(simp) +done + +lemma Final_simulate: + "Final (Conf (Code_conf cf)) = is_final cf" +by (case_tac cf) (simp) + +lemma Std_simulate: + "Std (Conf (Code_conf cf)) = std_tape cf" +apply(case_tac cf) +apply(simp only: std_tape_def) +apply(simp only: Code_conf.simps) +apply(simp only: Conf.simps) +apply(simp only: Std.simps) +apply(simp only: Left.simps Right.simps) +apply(simp only: list_encode_inverse) +apply(simp only: misc if_True) +apply(simp only: left_std[symmetric] right_std[symmetric]) +apply(simp) +by (metis Suc_le_D Suc_neq_Zero append_Cons nat.exhaust not_less_eq_eq replicate_Suc) + + +lemma UF_simulate: + assumes "tm_wf tm" + shows "UF (Code_tprog tm) (Conf (Code_conf cf)) = + Stknum (Right (Conf + (Code_conf (steps cf tm (LEAST n. is_final (steps cf tm n) \ std_tape (steps cf tm n)))))) - 1" +apply(simp only: UF.simps) +apply(subst Steps_simulate[symmetric, OF assms]) +apply(subst Final_simulate[symmetric]) +apply(subst Std_simulate[symmetric]) +apply(simp only: Halt.simps) +apply(simp only: Steps_simulate[symmetric, OF assms]) +apply(simp only: Stop.simps[symmetric]) +done + + +section {* Universal Function as Recursive Functions *} + +definition + "rec_read = CN rec_ldec [Id 1 0, constn 0]" + +definition + "rec_write = CN rec_penc [CN S [Id 2 0], CN rec_pdec2 [Id 2 1]]" + +definition + "rec_newleft = + (let cond0 = CN rec_eq [Id 3 2, constn 0] in + let cond1 = CN rec_eq [Id 3 2, constn 1] in + let cond2 = CN rec_eq [Id 3 2, constn 2] in + let cond3 = CN rec_eq [Id 3 2, constn 3] in + let case3 = CN rec_penc [CN S [CN rec_read [Id 3 1]], Id 3 0] in + CN rec_if [cond0, Id 3 0, + CN rec_if [cond1, Id 3 0, + CN rec_if [cond2, CN rec_pdec2 [Id 3 0], + CN rec_if [cond3, case3, Id 3 0]]]])" + +definition + "rec_newright = + (let cond0 = CN rec_eq [Id 3 2, constn 0] in + let cond1 = CN rec_eq [Id 3 2, constn 1] in + let cond2 = CN rec_eq [Id 3 2, constn 2] in + let cond3 = CN rec_eq [Id 3 2, constn 3] in + let case2 = CN rec_penc [CN S [CN rec_read [Id 3 0]], Id 3 1] in + CN rec_if [cond0, CN rec_write [constn 0, Id 3 1], + CN rec_if [cond1, CN rec_write [constn 1, Id 3 1], + CN rec_if [cond2, case2, + CN rec_if [cond3, CN rec_pdec2 [Id 3 1], Id 3 1]]]])" + +definition + "rec_actn = rec_swap (PR (CN rec_pdec1 [CN rec_pdec1 [Id 1 0]]) + (CN rec_pdec1 [CN rec_pdec2 [Id 3 2]]))" + +definition + "rec_action = (let cond1 = CN rec_noteq [Id 3 1, Z] in + let cond2 = CN rec_within [Id 3 0, CN rec_pred [Id 3 1]] in + let if_branch = CN rec_actn [CN rec_ldec [Id 3 0, CN rec_pred [Id 3 1]], Id 3 2] + in CN rec_if [CN rec_conj [cond1, cond2], if_branch, constn 4])" + +definition + "rec_newstat = rec_swap (PR (CN rec_pdec2 [CN rec_pdec1 [Id 1 0]]) + (CN rec_pdec2 [CN rec_pdec2 [Id 3 2]]))" + +definition + "rec_newstate = (let cond = CN rec_noteq [Id 3 1, Z] in + let if_branch = CN rec_newstat [CN rec_ldec [Id 3 0, CN rec_pred [Id 3 1]], Id 3 2] + in CN rec_if [cond, if_branch, Z])" + +definition + "rec_conf = rec_lenc [Id 3 0, Id 3 1, Id 3 2]" + +definition + "rec_state = CN rec_ldec [Id 1 0, Z]" + +definition + "rec_left = CN rec_ldec [Id 1 0, constn 1]" + +definition + "rec_right = CN rec_ldec [Id 1 0, constn 2]" + +definition + "rec_step = (let left = CN rec_left [Id 2 0] in + let right = CN rec_right [Id 2 0] in + let state = CN rec_state [Id 2 0] in + let read = CN rec_read [right] in + let action = CN rec_action [Id 2 1, state, read] in + let newstate = CN rec_newstate [Id 2 1, state, read] in + let newleft = CN rec_newleft [left, right, action] in + let newright = CN rec_newright [left, right, action] + in CN rec_conf [newstate, newleft, newright])" + +definition + "rec_steps = PR (Id 2 0) (CN rec_step [Id 4 1, Id 4 3])" + +definition + "rec_stknum = CN rec_minus + [CN (rec_sigma1 (CN rec_ldec [Id 2 1, Id 2 0])) [CN rec_enclen [Id 1 0], Id 1 0], + CN rec_ldec [Id 1 0, CN rec_enclen [Id 1 0]]]" + +definition + "rec_right_std = (let bound = CN rec_enclen [Id 1 0] in + let cond1 = CN rec_le [CN (constn 1) [Id 2 0], Id 2 0] in + let cond2 = rec_all1_less (CN rec_eq [CN rec_ldec [Id 2 1, Id 2 0], constn 1]) in + let bound2 = CN rec_minus [CN rec_enclen [Id 2 1], Id 2 0] in + let cond3 = CN (rec_all2_less + (CN rec_eq [CN rec_ldec [Id 3 2, CN rec_add [Id 3 1, Id 3 0]], Z])) + [bound2, Id 2 0, Id 2 1] in + CN (rec_ex1 (CN rec_conj [CN rec_conj [cond1, cond2], cond3])) [bound, Id 1 0])" + +definition + "rec_left_std = (let cond = CN rec_eq [CN rec_ldec [Id 2 1, Id 2 0], Z] + in CN (rec_all1_less cond) [CN rec_enclen [Id 1 0], Id 1 0])" + +definition + "rec_std = CN rec_conj [CN rec_left_std [CN rec_left [Id 1 0]], + CN rec_right_std [CN rec_right [Id 1 0]]]" + +definition + "rec_final = CN rec_eq [CN rec_state [Id 1 0], Z]" + +definition + "rec_stop = (let steps = CN rec_steps [Id 3 2, Id 3 1, Id 3 0] in + CN rec_conj [CN rec_final [steps], CN rec_std [steps]])" + +definition + "rec_halt = MN (CN rec_not [CN rec_stop [Id 3 1, Id 3 2, Id 3 0]])" + +definition + "rec_uf = CN rec_pred + [CN rec_stknum + [CN rec_right + [CN rec_steps [CN rec_halt [Id 2 0, Id 2 1], Id 2 1, Id 2 0]]]]" + +lemma read_lemma [simp]: + "rec_eval rec_read [x] = Read x" +by (simp add: rec_read_def) + +lemma write_lemma [simp]: + "rec_eval rec_write [x, y] = Write x y" +by (simp add: rec_write_def) + +lemma newleft_lemma [simp]: + "rec_eval rec_newleft [p, r, a] = Newleft p r a" +by (simp add: rec_newleft_def Let_def) + +lemma newright_lemma [simp]: + "rec_eval rec_newright [p, r, a] = Newright p r a" +by (simp add: rec_newright_def Let_def) + +lemma act_lemma [simp]: + "rec_eval rec_actn [n, c] = Actn n c" +apply(simp add: rec_actn_def) +apply(case_tac c) +apply(simp_all) +done + +lemma action_lemma [simp]: + "rec_eval rec_action [m, q, c] = Action m q c" +by (simp add: rec_action_def) + +lemma newstat_lemma [simp]: + "rec_eval rec_newstat [n, c] = Newstat n c" +apply(simp add: rec_newstat_def) +apply(case_tac c) +apply(simp_all) +done + +lemma newstate_lemma [simp]: + "rec_eval rec_newstate [m, q, r] = Newstate m q r" +by (simp add: rec_newstate_def) + +lemma conf_lemma [simp]: + "rec_eval rec_conf [q, l, r] = Conf (q, l, r)" +by(simp add: rec_conf_def) + +lemma state_lemma [simp]: + "rec_eval rec_state [cf] = State cf" +by (simp add: rec_state_def) + +lemma left_lemma [simp]: + "rec_eval rec_left [cf] = Left cf" +by (simp add: rec_left_def) + +lemma right_lemma [simp]: + "rec_eval rec_right [cf] = Right cf" +by (simp add: rec_right_def) + +lemma step_lemma [simp]: + "rec_eval rec_step [cf, m] = Step cf m" +by (simp add: Let_def rec_step_def) + +lemma steps_lemma [simp]: + "rec_eval rec_steps [n, cf, p] = Steps cf p n" +by (induct n) (simp_all add: rec_steps_def Step_Steps_comm del: Step.simps) + +lemma stknum_lemma [simp]: + "rec_eval rec_stknum [z] = Stknum z" +by (simp add: rec_stknum_def Stknum_def lessThan_Suc_atMost[symmetric]) + +lemma left_std_lemma [simp]: + "rec_eval rec_left_std [z] = (if left_std z then 1 else 0)" +by (simp add: Let_def rec_left_std_def left_std_def) + +lemma right_std_lemma [simp]: + "rec_eval rec_right_std [z] = (if right_std z then 1 else 0)" +by (simp add: Let_def rec_right_std_def right_std_def) + +lemma std_lemma [simp]: + "rec_eval rec_std [cf] = (if Std cf then 1 else 0)" +by (simp add: rec_std_def) + +lemma final_lemma [simp]: + "rec_eval rec_final [cf] = (if Final cf then 1 else 0)" +by (simp add: rec_final_def) + +lemma stop_lemma [simp]: + "rec_eval rec_stop [m, cf, k] = (if Stop m cf k then 1 else 0)" +by (simp add: Let_def rec_stop_def) + +lemma halt_lemma [simp]: + "rec_eval rec_halt [m, cf] = Halt m cf" +by (simp add: rec_halt_def del: Stop.simps) + +lemma uf_lemma [simp]: + "rec_eval rec_uf [m, cf] = UF m cf" +by (simp add: rec_uf_def) + +(* value "size rec_uf" *) +end +