# HG changeset patch # User Christian Urban # Date 1395414479 0 # Node ID 38cef5407d823ab72a197aaff51b4c966a2a8dfb # Parent 6c722e960f2ed86aa066cd0e226b51a25942bf59 updated various files to Isabelle-2013-2 diff -r 6c722e960f2e -r 38cef5407d82 ROOT --- a/ROOT Fri Mar 21 13:49:20 2014 +0000 +++ b/ROOT Fri Mar 21 15:07:59 2014 +0000 @@ -9,3 +9,7 @@ session "Hoare_abc" in "thys" = "Hoare_tm" + theories Hoare_abc + +session "TM" in "thys" = Hoare_abc + + theories + TM_Assemble \ No newline at end of file diff -r 6c722e960f2e -r 38cef5407d82 thys/AList.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/thys/AList.thy Fri Mar 21 15:07:59 2014 +0000 @@ -0,0 +1,698 @@ +(* Title: HOL/Library/AList.thy + Author: Norbert Schirmer, Tobias Nipkow, Martin Wildmoser, TU Muenchen +*) + +header {* Implementation of Association Lists *} + +theory AList +imports Main +begin + +text {* + The operations preserve distinctness of keys and + function @{term "clearjunk"} distributes over them. Since + @{term clearjunk} enforces distinctness of keys it can be used + to establish the invariant, e.g. for inductive proofs. +*} + +subsection {* @{text update} and @{text updates} *} + +primrec update :: "'key \ 'val \ ('key \ 'val) list \ ('key \ 'val) list" where + "update k v [] = [(k, v)]" + | "update k v (p#ps) = (if fst p = k then (k, v) # ps else p # update k v ps)" + +lemma update_conv': "map_of (update k v al) = (map_of al)(k\v)" + by (induct al) (auto simp add: fun_eq_iff) + +corollary update_conv: "map_of (update k v al) k' = ((map_of al)(k\v)) k'" + by (simp add: update_conv') + +lemma dom_update: "fst ` set (update k v al) = {k} \ fst ` set al" + by (induct al) auto + +lemma update_keys: + "map fst (update k v al) = + (if k \ set (map fst al) then map fst al else map fst al @ [k])" + by (induct al) simp_all + +lemma distinct_update: + assumes "distinct (map fst al)" + shows "distinct (map fst (update k v al))" + using assms by (simp add: update_keys) + +lemma update_filter: + "a\k \ update k v [q\ps . fst q \ a] = [q\update k v ps . fst q \ a]" + by (induct ps) auto + +lemma update_triv: "map_of al k = Some v \ update k v al = al" + by (induct al) auto + +lemma update_nonempty [simp]: "update k v al \ []" + by (induct al) auto + +lemma update_eqD: "update k v al = update k v' al' \ v = v'" +proof (induct al arbitrary: al') + case Nil thus ?case + by (cases al') (auto split: split_if_asm) +next + case Cons thus ?case + by (cases al') (auto split: split_if_asm) +qed + +lemma update_last [simp]: "update k v (update k v' al) = update k v al" + by (induct al) auto + +text {* Note that the lists are not necessarily the same: + @{term "update k v (update k' v' []) = [(k', v'), (k, v)]"} and + @{term "update k' v' (update k v []) = [(k, v), (k', v')]"}.*} +lemma update_swap: "k\k' + \ map_of (update k v (update k' v' al)) = map_of (update k' v' (update k v al))" + by (simp add: update_conv' fun_eq_iff) + +lemma update_Some_unfold: + "map_of (update k v al) x = Some y \ + x = k \ v = y \ x \ k \ map_of al x = Some y" + by (simp add: update_conv' map_upd_Some_unfold) + +lemma image_update [simp]: + "x \ A \ map_of (update x y al) ` A = map_of al ` A" + by (simp add: update_conv') + +definition updates :: "'key list \ 'val list \ ('key \ 'val) list \ ('key \ 'val) list" where + "updates ks vs = fold (prod_case update) (zip ks vs)" + +lemma updates_simps [simp]: + "updates [] vs ps = ps" + "updates ks [] ps = ps" + "updates (k#ks) (v#vs) ps = updates ks vs (update k v ps)" + by (simp_all add: updates_def) + +lemma updates_key_simp [simp]: + "updates (k # ks) vs ps = + (case vs of [] \ ps | v # vs \ updates ks vs (update k v ps))" + by (cases vs) simp_all + +lemma updates_conv': "map_of (updates ks vs al) = (map_of al)(ks[\]vs)" +proof - + have "map_of \ fold (prod_case update) (zip ks vs) = + fold (\(k, v) f. f(k \ v)) (zip ks vs) \ map_of" + by (rule fold_commute) (auto simp add: fun_eq_iff update_conv') + then show ?thesis by (auto simp add: updates_def fun_eq_iff map_upds_fold_map_upd foldl_conv_fold split_def) +qed + +lemma updates_conv: "map_of (updates ks vs al) k = ((map_of al)(ks[\]vs)) k" + by (simp add: updates_conv') + +lemma distinct_updates: + assumes "distinct (map fst al)" + shows "distinct (map fst (updates ks vs al))" +proof - + have "distinct (fold + (\(k, v) al. if k \ set al then al else al @ [k]) + (zip ks vs) (map fst al))" + by (rule fold_invariant [of "zip ks vs" "\_. True"]) (auto intro: assms) + moreover have "map fst \ fold (prod_case update) (zip ks vs) = + fold (\(k, v) al. if k \ set al then al else al @ [k]) (zip ks vs) \ map fst" + by (rule fold_commute) (simp add: update_keys split_def prod_case_beta comp_def) + ultimately show ?thesis by (simp add: updates_def fun_eq_iff) +qed + +lemma updates_append1[simp]: "size ks < size vs \ + updates (ks@[k]) vs al = update k (vs!size ks) (updates ks vs al)" + by (induct ks arbitrary: vs al) (auto split: list.splits) + +lemma updates_list_update_drop[simp]: + "\size ks \ i; i < size vs\ + \ updates ks (vs[i:=v]) al = updates ks vs al" + by (induct ks arbitrary: al vs i) (auto split:list.splits nat.splits) + +lemma update_updates_conv_if: " + map_of (updates xs ys (update x y al)) = + map_of (if x \ set(take (length ys) xs) then updates xs ys al + else (update x y (updates xs ys al)))" + by (simp add: updates_conv' update_conv' map_upd_upds_conv_if) + +lemma updates_twist [simp]: + "k \ set ks \ + map_of (updates ks vs (update k v al)) = map_of (update k v (updates ks vs al))" + by (simp add: updates_conv' update_conv') + +lemma updates_apply_notin[simp]: + "k \ set ks ==> map_of (updates ks vs al) k = map_of al k" + by (simp add: updates_conv) + +lemma updates_append_drop[simp]: + "size xs = size ys \ updates (xs@zs) ys al = updates xs ys al" + by (induct xs arbitrary: ys al) (auto split: list.splits) + +lemma updates_append2_drop[simp]: + "size xs = size ys \ updates xs (ys@zs) al = updates xs ys al" + by (induct xs arbitrary: ys al) (auto split: list.splits) + + +subsection {* @{text delete} *} + +definition delete :: "'key \ ('key \ 'val) list \ ('key \ 'val) list" where + delete_eq: "delete k = filter (\(k', _). k \ k')" + +lemma delete_simps [simp]: + "delete k [] = []" + "delete k (p#ps) = (if fst p = k then delete k ps else p # delete k ps)" + by (auto simp add: delete_eq) + +lemma delete_conv': "map_of (delete k al) = (map_of al)(k := None)" + by (induct al) (auto simp add: fun_eq_iff) + +corollary delete_conv: "map_of (delete k al) k' = ((map_of al)(k := None)) k'" + by (simp add: delete_conv') + +lemma delete_keys: + "map fst (delete k al) = removeAll k (map fst al)" + by (simp add: delete_eq removeAll_filter_not_eq filter_map split_def comp_def) + +lemma distinct_delete: + assumes "distinct (map fst al)" + shows "distinct (map fst (delete k al))" + using assms by (simp add: delete_keys distinct_removeAll) + +lemma delete_id [simp]: "k \ fst ` set al \ delete k al = al" + by (auto simp add: image_iff delete_eq filter_id_conv) + +lemma delete_idem: "delete k (delete k al) = delete k al" + by (simp add: delete_eq) + +lemma map_of_delete [simp]: + "k' \ k \ map_of (delete k al) k' = map_of al k'" + by (simp add: delete_conv') + +lemma delete_notin_dom: "k \ fst ` set (delete k al)" + by (auto simp add: delete_eq) + +lemma dom_delete_subset: "fst ` set (delete k al) \ fst ` set al" + by (auto simp add: delete_eq) + +lemma delete_update_same: + "delete k (update k v al) = delete k al" + by (induct al) simp_all + +lemma delete_update: + "k \ l \ delete l (update k v al) = update k v (delete l al)" + by (induct al) simp_all + +lemma delete_twist: "delete x (delete y al) = delete y (delete x al)" + by (simp add: delete_eq conj_commute) + +lemma length_delete_le: "length (delete k al) \ length al" + by (simp add: delete_eq) + + +subsection {* @{text restrict} *} + +definition restrict :: "'key set \ ('key \ 'val) list \ ('key \ 'val) list" where + restrict_eq: "restrict A = filter (\(k, v). k \ A)" + +lemma restr_simps [simp]: + "restrict A [] = []" + "restrict A (p#ps) = (if fst p \ A then p # restrict A ps else restrict A ps)" + by (auto simp add: restrict_eq) + +lemma restr_conv': "map_of (restrict A al) = ((map_of al)|` A)" +proof + fix k + show "map_of (restrict A al) k = ((map_of al)|` A) k" + by (induct al) (simp, cases "k \ A", auto) +qed + +corollary restr_conv: "map_of (restrict A al) k = ((map_of al)|` A) k" + by (simp add: restr_conv') + +lemma distinct_restr: + "distinct (map fst al) \ distinct (map fst (restrict A al))" + by (induct al) (auto simp add: restrict_eq) + +lemma restr_empty [simp]: + "restrict {} al = []" + "restrict A [] = []" + by (induct al) (auto simp add: restrict_eq) + +lemma restr_in [simp]: "x \ A \ map_of (restrict A al) x = map_of al x" + by (simp add: restr_conv') + +lemma restr_out [simp]: "x \ A \ map_of (restrict A al) x = None" + by (simp add: restr_conv') + +lemma dom_restr [simp]: "fst ` set (restrict A al) = fst ` set al \ A" + by (induct al) (auto simp add: restrict_eq) + +lemma restr_upd_same [simp]: "restrict (-{x}) (update x y al) = restrict (-{x}) al" + by (induct al) (auto simp add: restrict_eq) + +lemma restr_restr [simp]: "restrict A (restrict B al) = restrict (A\B) al" + by (induct al) (auto simp add: restrict_eq) + +lemma restr_update[simp]: + "map_of (restrict D (update x y al)) = + map_of ((if x \ D then (update x y (restrict (D-{x}) al)) else restrict D al))" + by (simp add: restr_conv' update_conv') + +lemma restr_delete [simp]: + "(delete x (restrict D al)) = + (if x \ D then restrict (D - {x}) al else restrict D al)" +apply (simp add: delete_eq restrict_eq) +apply (auto simp add: split_def) +proof - + have "\y. y \ x \ x \ y" by auto + then show "[p \ al. fst p \ D \ x \ fst p] = [p \ al. fst p \ D \ fst p \ x]" + by simp + assume "x \ D" + then have "\y. y \ D \ y \ D \ x \ y" by auto + then show "[p \ al . fst p \ D \ x \ fst p] = [p \ al . fst p \ D]" + by simp +qed + +lemma update_restr: + "map_of (update x y (restrict D al)) = map_of (update x y (restrict (D-{x}) al))" + by (simp add: update_conv' restr_conv') (rule fun_upd_restrict) + +lemma update_restr_conv [simp]: + "x \ D \ + map_of (update x y (restrict D al)) = map_of (update x y (restrict (D-{x}) al))" + by (simp add: update_conv' restr_conv') + +lemma restr_updates [simp]: " + \ length xs = length ys; set xs \ D \ + \ map_of (restrict D (updates xs ys al)) = + map_of (updates xs ys (restrict (D - set xs) al))" + by (simp add: updates_conv' restr_conv') + +lemma restr_delete_twist: "(restrict A (delete a ps)) = delete a (restrict A ps)" + by (induct ps) auto + + +subsection {* @{text clearjunk} *} + +function clearjunk :: "('key \ 'val) list \ ('key \ 'val) list" where + "clearjunk [] = []" + | "clearjunk (p#ps) = p # clearjunk (delete (fst p) ps)" + by pat_completeness auto +termination by (relation "measure length") + (simp_all add: less_Suc_eq_le length_delete_le) + +lemma map_of_clearjunk: + "map_of (clearjunk al) = map_of al" + by (induct al rule: clearjunk.induct) + (simp_all add: fun_eq_iff) + +lemma clearjunk_keys_set: + "set (map fst (clearjunk al)) = set (map fst al)" + by (induct al rule: clearjunk.induct) + (simp_all add: delete_keys) + +lemma dom_clearjunk: + "fst ` set (clearjunk al) = fst ` set al" + using clearjunk_keys_set by simp + +lemma distinct_clearjunk [simp]: + "distinct (map fst (clearjunk al))" + by (induct al rule: clearjunk.induct) + (simp_all del: set_map add: clearjunk_keys_set delete_keys) + +lemma ran_clearjunk: + "ran (map_of (clearjunk al)) = ran (map_of al)" + by (simp add: map_of_clearjunk) + +lemma ran_map_of: + "ran (map_of al) = snd ` set (clearjunk al)" +proof - + have "ran (map_of al) = ran (map_of (clearjunk al))" + by (simp add: ran_clearjunk) + also have "\ = snd ` set (clearjunk al)" + by (simp add: ran_distinct) + finally show ?thesis . +qed + +lemma clearjunk_update: + "clearjunk (update k v al) = update k v (clearjunk al)" + by (induct al rule: clearjunk.induct) + (simp_all add: delete_update) + +lemma clearjunk_updates: + "clearjunk (updates ks vs al) = updates ks vs (clearjunk al)" +proof - + have "clearjunk \ fold (prod_case update) (zip ks vs) = + fold (prod_case update) (zip ks vs) \ clearjunk" + by (rule fold_commute) (simp add: clearjunk_update prod_case_beta o_def) + then show ?thesis by (simp add: updates_def fun_eq_iff) +qed + +lemma clearjunk_delete: + "clearjunk (delete x al) = delete x (clearjunk al)" + by (induct al rule: clearjunk.induct) (auto simp add: delete_idem delete_twist) + +lemma clearjunk_restrict: + "clearjunk (restrict A al) = restrict A (clearjunk al)" + by (induct al rule: clearjunk.induct) (auto simp add: restr_delete_twist) + +lemma distinct_clearjunk_id [simp]: + "distinct (map fst al) \ clearjunk al = al" + by (induct al rule: clearjunk.induct) auto + +lemma clearjunk_idem: + "clearjunk (clearjunk al) = clearjunk al" + by simp + +lemma length_clearjunk: + "length (clearjunk al) \ length al" +proof (induct al rule: clearjunk.induct [case_names Nil Cons]) + case Nil then show ?case by simp +next + case (Cons kv al) + moreover have "length (delete (fst kv) al) \ length al" by (fact length_delete_le) + ultimately have "length (clearjunk (delete (fst kv) al)) \ length al" by (rule order_trans) + then show ?case by simp +qed + +lemma delete_map: + assumes "\kv. fst (f kv) = fst kv" + shows "delete k (map f ps) = map f (delete k ps)" + by (simp add: delete_eq filter_map comp_def split_def assms) + +lemma clearjunk_map: + assumes "\kv. fst (f kv) = fst kv" + shows "clearjunk (map f ps) = map f (clearjunk ps)" + by (induct ps rule: clearjunk.induct [case_names Nil Cons]) + (simp_all add: clearjunk_delete delete_map assms) + + +subsection {* @{text map_ran} *} + +definition map_ran :: "('key \ 'val \ 'val) \ ('key \ 'val) list \ ('key \ 'val) list" where + "map_ran f = map (\(k, v). (k, f k v))" + +lemma map_ran_simps [simp]: + "map_ran f [] = []" + "map_ran f ((k, v) # ps) = (k, f k v) # map_ran f ps" + by (simp_all add: map_ran_def) + +lemma dom_map_ran: + "fst ` set (map_ran f al) = fst ` set al" + by (simp add: map_ran_def image_image split_def) + +lemma map_ran_conv: + "map_of (map_ran f al) k = Option.map (f k) (map_of al k)" + by (induct al) auto + +lemma distinct_map_ran: + "distinct (map fst al) \ distinct (map fst (map_ran f al))" + by (simp add: map_ran_def split_def comp_def) + +lemma map_ran_filter: + "map_ran f [p\ps. fst p \ a] = [p\map_ran f ps. fst p \ a]" + by (simp add: map_ran_def filter_map split_def comp_def) + +lemma clearjunk_map_ran: + "clearjunk (map_ran f al) = map_ran f (clearjunk al)" + by (simp add: map_ran_def split_def clearjunk_map) + + +subsection {* @{text merge} *} + +definition merge :: "('key \ 'val) list \ ('key \ 'val) list \ ('key \ 'val) list" where + "merge qs ps = foldr (\(k, v). update k v) ps qs" + +lemma merge_simps [simp]: + "merge qs [] = qs" + "merge qs (p#ps) = update (fst p) (snd p) (merge qs ps)" + by (simp_all add: merge_def split_def) + +lemma merge_updates: + "merge qs ps = updates (rev (map fst ps)) (rev (map snd ps)) qs" + by (simp add: merge_def updates_def foldr_conv_fold zip_rev zip_map_fst_snd) + +lemma dom_merge: "fst ` set (merge xs ys) = fst ` set xs \ fst ` set ys" + by (induct ys arbitrary: xs) (auto simp add: dom_update) + +lemma distinct_merge: + assumes "distinct (map fst xs)" + shows "distinct (map fst (merge xs ys))" +using assms by (simp add: merge_updates distinct_updates) + +lemma clearjunk_merge: + "clearjunk (merge xs ys) = merge (clearjunk xs) ys" + by (simp add: merge_updates clearjunk_updates) + +lemma merge_conv': + "map_of (merge xs ys) = map_of xs ++ map_of ys" +proof - + have "map_of \ fold (prod_case update) (rev ys) = + fold (\(k, v) m. m(k \ v)) (rev ys) \ map_of" + by (rule fold_commute) (simp add: update_conv' prod_case_beta split_def fun_eq_iff) + then show ?thesis + by (simp add: merge_def map_add_map_of_foldr foldr_conv_fold fun_eq_iff) +qed + +corollary merge_conv: + "map_of (merge xs ys) k = (map_of xs ++ map_of ys) k" + by (simp add: merge_conv') + +lemma merge_empty: "map_of (merge [] ys) = map_of ys" + by (simp add: merge_conv') + +lemma merge_assoc[simp]: "map_of (merge m1 (merge m2 m3)) = + map_of (merge (merge m1 m2) m3)" + by (simp add: merge_conv') + +lemma merge_Some_iff: + "(map_of (merge m n) k = Some x) = + (map_of n k = Some x \ map_of n k = None \ map_of m k = Some x)" + by (simp add: merge_conv' map_add_Some_iff) + +lemmas merge_SomeD [dest!] = merge_Some_iff [THEN iffD1] + +lemma merge_find_right[simp]: "map_of n k = Some v \ map_of (merge m n) k = Some v" + by (simp add: merge_conv') + +lemma merge_None [iff]: + "(map_of (merge m n) k = None) = (map_of n k = None \ map_of m k = None)" + by (simp add: merge_conv') + +lemma merge_upd[simp]: + "map_of (merge m (update k v n)) = map_of (update k v (merge m n))" + by (simp add: update_conv' merge_conv') + +lemma merge_updatess[simp]: + "map_of (merge m (updates xs ys n)) = map_of (updates xs ys (merge m n))" + by (simp add: updates_conv' merge_conv') + +lemma merge_append: "map_of (xs@ys) = map_of (merge ys xs)" + by (simp add: merge_conv') + + +subsection {* @{text compose} *} + +function compose :: "('key \ 'a) list \ ('a \ 'b) list \ ('key \ 'b) list" where + "compose [] ys = []" + | "compose (x#xs) ys = (case map_of ys (snd x) + of None \ compose (delete (fst x) xs) ys + | Some v \ (fst x, v) # compose xs ys)" + by pat_completeness auto +termination by (relation "measure (length \ fst)") + (simp_all add: less_Suc_eq_le length_delete_le) + +lemma compose_first_None [simp]: + assumes "map_of xs k = None" + shows "map_of (compose xs ys) k = None" +using assms by (induct xs ys rule: compose.induct) + (auto split: option.splits split_if_asm) + +lemma compose_conv: + shows "map_of (compose xs ys) k = (map_of ys \\<^sub>m map_of xs) k" +proof (induct xs ys rule: compose.induct) + case 1 then show ?case by simp +next + case (2 x xs ys) show ?case + proof (cases "map_of ys (snd x)") + case None with 2 + have hyp: "map_of (compose (delete (fst x) xs) ys) k = + (map_of ys \\<^sub>m map_of (delete (fst x) xs)) k" + by simp + show ?thesis + proof (cases "fst x = k") + case True + from True delete_notin_dom [of k xs] + have "map_of (delete (fst x) xs) k = None" + by (simp add: map_of_eq_None_iff) + with hyp show ?thesis + using True None + by simp + next + case False + from False have "map_of (delete (fst x) xs) k = map_of xs k" + by simp + with hyp show ?thesis + using False None + by (simp add: map_comp_def) + qed + next + case (Some v) + with 2 + have "map_of (compose xs ys) k = (map_of ys \\<^sub>m map_of xs) k" + by simp + with Some show ?thesis + by (auto simp add: map_comp_def) + qed +qed + +lemma compose_conv': + shows "map_of (compose xs ys) = (map_of ys \\<^sub>m map_of xs)" + by (rule ext) (rule compose_conv) + +lemma compose_first_Some [simp]: + assumes "map_of xs k = Some v" + shows "map_of (compose xs ys) k = map_of ys v" +using assms by (simp add: compose_conv) + +lemma dom_compose: "fst ` set (compose xs ys) \ fst ` set xs" +proof (induct xs ys rule: compose.induct) + case 1 thus ?case by simp +next + case (2 x xs ys) + show ?case + proof (cases "map_of ys (snd x)") + case None + with "2.hyps" + have "fst ` set (compose (delete (fst x) xs) ys) \ fst ` set (delete (fst x) xs)" + by simp + also + have "\ \ fst ` set xs" + by (rule dom_delete_subset) + finally show ?thesis + using None + by auto + next + case (Some v) + with "2.hyps" + have "fst ` set (compose xs ys) \ fst ` set xs" + by simp + with Some show ?thesis + by auto + qed +qed + +lemma distinct_compose: + assumes "distinct (map fst xs)" + shows "distinct (map fst (compose xs ys))" +using assms +proof (induct xs ys rule: compose.induct) + case 1 thus ?case by simp +next + case (2 x xs ys) + show ?case + proof (cases "map_of ys (snd x)") + case None + with 2 show ?thesis by simp + next + case (Some v) + with 2 dom_compose [of xs ys] show ?thesis + by (auto) + qed +qed + +lemma compose_delete_twist: "(compose (delete k xs) ys) = delete k (compose xs ys)" +proof (induct xs ys rule: compose.induct) + case 1 thus ?case by simp +next + case (2 x xs ys) + show ?case + proof (cases "map_of ys (snd x)") + case None + with 2 have + hyp: "compose (delete k (delete (fst x) xs)) ys = + delete k (compose (delete (fst x) xs) ys)" + by simp + show ?thesis + proof (cases "fst x = k") + case True + with None hyp + show ?thesis + by (simp add: delete_idem) + next + case False + from None False hyp + show ?thesis + by (simp add: delete_twist) + qed + next + case (Some v) + with 2 have hyp: "compose (delete k xs) ys = delete k (compose xs ys)" by simp + with Some show ?thesis + by simp + qed +qed + +lemma compose_clearjunk: "compose xs (clearjunk ys) = compose xs ys" + by (induct xs ys rule: compose.induct) + (auto simp add: map_of_clearjunk split: option.splits) + +lemma clearjunk_compose: "clearjunk (compose xs ys) = compose (clearjunk xs) ys" + by (induct xs rule: clearjunk.induct) + (auto split: option.splits simp add: clearjunk_delete delete_idem + compose_delete_twist) + +lemma compose_empty [simp]: + "compose xs [] = []" + by (induct xs) (auto simp add: compose_delete_twist) + +lemma compose_Some_iff: + "(map_of (compose xs ys) k = Some v) = + (\k'. map_of xs k = Some k' \ map_of ys k' = Some v)" + by (simp add: compose_conv map_comp_Some_iff) + +lemma map_comp_None_iff: + "(map_of (compose xs ys) k = None) = + (map_of xs k = None \ (\k'. map_of xs k = Some k' \ map_of ys k' = None)) " + by (simp add: compose_conv map_comp_None_iff) + +subsection {* @{text map_entry} *} + +fun map_entry :: "'key \ ('val \ 'val) \ ('key \ 'val) list \ ('key \ 'val) list" +where + "map_entry k f [] = []" +| "map_entry k f (p # ps) = (if fst p = k then (k, f (snd p)) # ps else p # map_entry k f ps)" + +lemma map_of_map_entry: + "map_of (map_entry k f xs) = (map_of xs)(k := case map_of xs k of None => None | Some v' => Some (f v'))" +by (induct xs) auto + +lemma dom_map_entry: + "fst ` set (map_entry k f xs) = fst ` set xs" +by (induct xs) auto + +lemma distinct_map_entry: + assumes "distinct (map fst xs)" + shows "distinct (map fst (map_entry k f xs))" +using assms by (induct xs) (auto simp add: dom_map_entry) + +subsection {* @{text map_default} *} + +fun map_default :: "'key \ 'val \ ('val \ 'val) \ ('key \ 'val) list \ ('key \ 'val) list" +where + "map_default k v f [] = [(k, v)]" +| "map_default k v f (p # ps) = (if fst p = k then (k, f (snd p)) # ps else p # map_default k v f ps)" + +lemma map_of_map_default: + "map_of (map_default k v f xs) = (map_of xs)(k := case map_of xs k of None => Some v | Some v' => Some (f v'))" +by (induct xs) auto + +lemma dom_map_default: + "fst ` set (map_default k v f xs) = insert k (fst ` set xs)" +by (induct xs) auto + +lemma distinct_map_default: + assumes "distinct (map fst xs)" + shows "distinct (map fst (map_default k v f xs))" +using assms by (induct xs) (auto simp add: dom_map_default) + +hide_const (open) update updates delete restrict clearjunk merge compose map_entry + +end diff -r 6c722e960f2e -r 38cef5407d82 thys/LetElim.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/thys/LetElim.thy Fri Mar 21 15:07:59 2014 +0000 @@ -0,0 +1,804 @@ +theory LetElim +imports Main Data_slot +begin + +ML {* + val _ = print_depth 100 +*} + +ML {* + val trace_elim = Attrib.setup_config_bool @{binding trace_elim} (K false) +*} + +ML {* (* aux functions *) + val tracing = (fn ctxt => fn str => + if (Config.get ctxt trace_elim) then tracing str else ()) + + val empty_env = (Vartab.empty, Vartab.empty) + + fun match_env ctxt pat trm env = + Pattern.match (ctxt |> Proof_Context.theory_of) (pat, trm) env + + fun match ctxt pat trm = match_env ctxt pat trm empty_env; + + val inst = Envir.subst_term; + + fun term_of_thm thm = thm |> prop_of |> HOLogic.dest_Trueprop + + fun last [a] = a | + last (a::b) = last b + + fun but_last [a] = [] | + but_last (a::b) = a::(but_last b) + + fun foldr f [] = (fn x => x) | + foldr f (x :: xs) = (f x) o (foldr f xs) + + fun concat [] = [] | + concat (x :: xs) = x @ concat xs + + fun string_of_term ctxt t = t |> Syntax.pretty_term ctxt |> Pretty.str_of + fun string_of_cterm ctxt ct = ct |> term_of |> string_of_term ctxt + fun pterm ctxt t = + t |> string_of_term ctxt |> tracing ctxt + fun pcterm ctxt ct = ct |> string_of_cterm ctxt |> tracing ctxt + fun pthm ctxt thm = thm |> prop_of |> pterm ctxt + fun string_for_term ctxt t = + Print_Mode.setmp (filter (curry (op =) Symbol.xsymbolsN) + (print_mode_value ())) (Syntax.string_of_term ctxt) t + |> String.translate (fn c => if Char.isPrint c then str c else "") + |> Sledgehammer_Util.simplify_spaces + fun string_for_cterm ctxt ct = ct |> term_of |> string_for_term ctxt + fun attemp tac = fn i => fn st => (tac i st) handle exn => Seq.empty + fun try_tac tac = fn i => fn st => (tac i st) handle exn => (Seq.single st) + fun ctxt_show ctxt = ctxt |> Config.put Proof_Context.verbose true |> + Config.put Proof_Context.debug true |> + Config.put Display.show_hyps true |> + Config.put Display.show_tags true + fun swf f = (fn x => fn y => f y x) +*} (* aux end *) + +ML {* + fun close_form_over vars trm = + fold Logic.all (map Free vars) trm + fun try_star f g = (try_star f (g |> f)) handle _ => g + + fun bind_judgment ctxt name = + let + val thy = Proof_Context.theory_of ctxt; + val ([x], ctxt') = Proof_Context.add_fixes [(Binding.name name, NONE, NoSyn)] ctxt; + val (t as _ $ Free v) = Object_Logic.fixed_judgment thy x; + in ((v, t), ctxt') end; + + fun let_trm_of ctxt mjp = let + fun is_let_trm (((Const (@{const_name "Let"}, _)) $ let_expr) $ let_rest) = true + | is_let_trm _ = false + in + ZipperSearch.all_td_lr (mjp |> Zipper.mktop) + |> Seq.filter (fn z => is_let_trm (Zipper.trm z)) + |> Seq.hd |> Zipper.trm + end + + fun decr lev (Bound i) = if i >= lev then Bound (i - 1) else raise Same.SAME + | decr lev (Abs (a, T, body)) = Abs (a, T, decr (lev + 1) body) + | decr lev (t $ u) = (decr lev t $ decrh lev u handle Same.SAME => t $ decr lev u) + | decr _ _ = raise Same.SAME + and decrh lev t = (decr lev t handle Same.SAME => t); + + (* A new version of [result], copied from [obtain.ML] *) +fun eliminate_term ctxt xs tm = + let + val vs = map (dest_Free o Thm.term_of) xs; + val bads = Term.fold_aterms (fn t as Free v => + if member (op =) vs v then insert (op aconv) t else I | _ => I) tm []; + val _ = null bads orelse + error ("Result contains obtained parameters: " ^ + space_implode " " (map (Syntax.string_of_term ctxt) bads)); + in tm end; + +fun eliminate fix_ctxt rule xs As thm = + let + val thy = Proof_Context.theory_of fix_ctxt; + + val _ = eliminate_term fix_ctxt xs (Thm.full_prop_of thm); + val _ = Object_Logic.is_judgment thy (Thm.concl_of thm) orelse + error "Conclusion in obtained context must be object-logic judgment"; + + val ((_, [thm']), ctxt') = Variable.import true [thm] fix_ctxt; + val prems = Drule.strip_imp_prems (#prop (Thm.crep_thm thm')); + in + ((Drule.implies_elim_list thm' (map Thm.assume prems) + |> Drule.implies_intr_list (map Drule.norm_hhf_cterm As) + |> Drule.forall_intr_list xs) + COMP rule) + |> Drule.implies_intr_list prems + |> singleton (Variable.export ctxt' fix_ctxt) + end; + +fun obtain_export ctxt rule xs _ As = + (eliminate ctxt rule xs As, eliminate_term ctxt xs); + +fun check_result ctxt thesis th = + (case Thm.prems_of th of + [prem] => + if Thm.concl_of th aconv thesis andalso + Logic.strip_assums_concl prem aconv thesis then th + else error ("Guessed a different clause:\n" ^ Display.string_of_thm ctxt th) + | [] => error "Goal solved -- nothing guessed" + | _ => error ("Guess split into several cases:\n" ^ Display.string_of_thm ctxt th)); + +fun result tac facts ctxt = + let + val thy = Proof_Context.theory_of ctxt; + val cert = Thm.cterm_of thy; + + val ([thesisN], _) = Variable.variant_fixes [Auto_Bind.thesisN] ctxt + + val ((thesis_var, thesis), thesis_ctxt) = bind_judgment ctxt thesisN; + val rule = + (case SINGLE (Method.insert_tac facts 1 THEN tac thesis_ctxt) (Goal.init (cert thesis)) of + NONE => raise THM ("Obtain.result: tactic failed", 0, facts) + | SOME th => check_result ctxt thesis (Raw_Simplifier.norm_hhf (Goal.conclude th))); + + val closed_rule = Thm.forall_intr (cert (Free thesis_var)) rule; + val ((_, [rule']), ctxt') = Variable.import false [closed_rule] ctxt; + val obtain_rule = Thm.forall_elim (cert (Logic.varify_global (Free thesis_var))) rule'; + val ((params, stmt), fix_ctxt) = Variable.focus_cterm (Thm.cprem_of obtain_rule 1) ctxt'; + val (prems, ctxt'') = + Assumption.add_assms (obtain_export fix_ctxt obtain_rule (map #2 params)) + (Drule.strip_imp_prems stmt) fix_ctxt; + in ((params, prems), ctxt'') end; +*} + +ML {* +local + fun let_lhs ctxt vars let_rest = + case let_rest of + Const (@{const_name prod_case}, _) $ let_rest => + let + val (exp1, rest1) = let_lhs ctxt vars let_rest + val vars = Term.add_frees exp1 vars + val (exp2, rest2) = let_lhs ctxt vars rest1 + in ((Const (@{const_name Pair}, dummyT) $ exp1 $ exp2), rest2) end + | Abs (var, var_typ, rest) => let + val (vars', _) = Variable.variant_fixes ((map fst vars)@[var]) ctxt + val (_, var') = vars' |> split_last + val [(var, var_typ)] = Variable.variant_frees ctxt (map Free vars) [(var, var_typ)] in + (Free (var', var_typ), rest) end + + fun sg_lhs_f ctxt (vars, eqns, let_trm) = let + val (((Const (@{const_name "Let"}, _)) $ let_expr) $ let_rest) = let_trm + val let_rest = case let_rest of + Abs ("", _, let_rest$Bound 0) => decrh 0 let_rest + | _ => let_rest + val (lhs, let_trm) = let_rest |> let_lhs ctxt vars + val lhs = lhs|> Syntax.check_term ctxt + val let_expr = let_expr |> Syntax.check_term ctxt + val eqn = HOLogic.mk_eq (lhs, let_expr) |> Syntax.check_term ctxt + val eqns = (eqn::eqns) + val vars = Term.add_frees lhs vars + val let_trm = Term.subst_bounds ((map Free vars), let_trm) + in (vars, eqns, let_trm) end + fun dest_let ctxt let_trm = let + val (vars, eqns, lrest) = try_star (sg_lhs_f ctxt) ([], [], let_trm) + in (vars, eqns, lrest) end + +in + + fun let_elim_rule ctxt mjp = let + val ctxt = ctxt |> Variable.set_body false + val thy = Proof_Context.theory_of ctxt + val cterm = cterm_of thy + val tracing = tracing ctxt + val pthm = pthm ctxt + val pterm = pterm ctxt + val pcterm = pcterm ctxt + + val let_trm = let_trm_of ctxt mjp + val ([pname], _) = Variable.variant_fixes ["P"] ctxt + val P = Free (pname, dummyT) + val mjp = (Const (@{const_name Trueprop}, dummyT)$(P$let_trm)) + |> Syntax.check_term ctxt + val (Const (@{const_name Trueprop}, _)$((P as Free(_, _))$let_trm)) = mjp + val (vars, eqns, lrest) = dest_let ctxt let_trm + + val ([thesisN], _) = Variable.variant_fixes ["let_thesis"] ctxt + val thesis_p = Free (thesisN, @{typ bool}) |> HOLogic.mk_Trueprop + val next_p = (P $ lrest) |> (HOLogic.mk_Trueprop) + val that_prems = (P $ lrest) :: (rev eqns) |> map (HOLogic.mk_Trueprop) + val that_prop = Logic.list_implies (that_prems, thesis_p) + val that_prop = close_form_over vars that_prop + fun exists_on_lhs eq = let + val (lhs, rhs) = eq |> HOLogic.dest_eq + fun exists_on vars trm = let + fun sg_exists_on (n, ty) trm = HOLogic.mk_exists (n, ty, trm) + in fold sg_exists_on vars trm end + in exists_on (Term.add_frees lhs []) eq end + fun prove_eqn ctxt0 eqn = let + val (lhs, let_expr) = eqn |> HOLogic.dest_eq + val eq_e_prop = exists_on_lhs eqn |> HOLogic.mk_Trueprop + fun case_rule_of ctxt let_expr = let + val case_rule = Induct.find_casesT ctxt (let_expr |> type_of) |> hd + val case_var = case_rule |> swf Thm.cprem_of 1 |> Thm.term_of + |> Induct.vars_of |> hd |> cterm + val mt = Thm.match (case_var, let_expr |> cterm) + val case_rule = Thm.instantiate mt case_rule + in case_rule end + val case_rule = SOME (case_rule_of ctxt0 let_expr) handle _ => NONE + val my_case_tac = case case_rule of + SOME case_rule => (rtac case_rule 1) + | _ => all_tac + val eq_e = Goal.prove ctxt0 [] [] eq_e_prop + (K (my_case_tac THEN (auto_tac ctxt0))) + in eq_e end + val peqns = eqns |> map (prove_eqn ctxt) + fun add_result thm (facts, ctxt) = let + val ((_, [fact]), ctxt1) = (result (K (REPEAT (etac @{thm exE} 1))) [thm] ctxt) + in (fact::facts, ctxt1) end + val add_results = fold add_result + val (facts, ctxt1) = add_results (rev peqns) ([], ctxt) + (* val facts = rev facts *) + val ([mjp_p, that_p], ctxt2) = ctxt1 |> Assumption.add_assumes (map cterm [mjp, that_prop]) + val sym_facts = map (swf (curry (op RS)) @{thm sym}) facts + fun rsn eq that_p = eq RSN (2, that_p) + val rule1 = fold rsn (rev facts) that_p + val tac = (Method.insert_tac ([mjp_p]@sym_facts) 1) THEN (auto_tac ctxt2) + val next_pp = Goal.prove ctxt [] [] next_p (K tac) + val result = next_pp RS rule1 + val ctxt3 = fold (fn var => fn ctxt => (Variable.auto_fixes var ctxt)) + [mjp, thesis_p] ctxt2 + val [let_elim_rule] = Proof_Context.export ctxt3 ctxt [result] + in let_elim_rule end + + fun let_intro_rule ctxt mjp = let + val ctxt = ctxt |> Variable.set_body false + val thy = Proof_Context.theory_of ctxt + val cterm = cterm_of thy + val tracing = tracing ctxt + val pthm = pthm ctxt + val pterm = pterm ctxt + val pcterm = pcterm ctxt + + val ([thesisN], _) = Variable.variant_fixes ["let_thesis"] ctxt + val thesis_p = Free (thesisN, @{typ bool}) |> HOLogic.mk_Trueprop + val let_trm = let_trm_of ctxt mjp + val ([pname], _) = Variable.variant_fixes ["P"] ctxt + val P = Free (pname, dummyT) + val mjp = (Const (@{const_name Trueprop}, dummyT)$(P$let_trm)) + |> Syntax.check_term ctxt + val (Const (@{const_name Trueprop}, _)$((P as Free(_, _))$let_trm)) = mjp + val (((Const (@{const_name "Let"}, _)) $ let_expr) $ let_rest) = let_trm + val (vars, eqns, lrest) = dest_let ctxt let_trm + + val next_p = (P $ lrest) |> (HOLogic.mk_Trueprop) + val that_prems = (rev eqns) |> map (HOLogic.mk_Trueprop) + val that_prop = Logic.list_implies (that_prems, next_p) + val that_prop = close_form_over vars that_prop |> Syntax.check_term ctxt + fun exists_on_lhs eq = let + val (lhs, rhs) = eq |> HOLogic.dest_eq + fun exists_on vars trm = let + fun sg_exists_on (n, ty) trm = HOLogic.mk_exists (n, ty, trm) + in fold sg_exists_on vars trm end + in exists_on (Term.add_frees lhs []) eq end + fun prove_eqn ctxt0 eqn = let + val (lhs, let_expr) = eqn |> HOLogic.dest_eq + val eq_e_prop = exists_on_lhs eqn |> HOLogic.mk_Trueprop + fun case_rule_of ctxt let_expr = let + val case_rule = Induct.find_casesT ctxt (let_expr |> type_of) |> hd + val case_var = case_rule |> swf Thm.cprem_of 1 |> Thm.term_of + |> Induct.vars_of |> hd |> cterm + val mt = Thm.match (case_var, let_expr |> cterm) + val case_rule = Thm.instantiate mt case_rule + in case_rule end + val case_rule = SOME (case_rule_of ctxt0 let_expr) handle _ => NONE + val my_case_tac = case case_rule of + SOME case_rule => (rtac case_rule 1) + | _ => all_tac + val eq_e = Goal.prove ctxt0 [] [] eq_e_prop + (K (my_case_tac THEN (auto_tac ctxt0))) + in eq_e end + val peqns = eqns |> map (prove_eqn ctxt) + fun add_result thm (facts, ctxt) = let + val ((_, [fact]), ctxt1) = (result (K (REPEAT (etac @{thm exE} 1))) [thm] ctxt) + in (fact::facts, ctxt1) end + val add_results = fold add_result + val (facts, ctxt1) = add_results (rev peqns) ([], ctxt) + val sym_facts = map (swf (curry (op RS)) @{thm sym}) facts + val ([that_p], ctxt2) = ctxt1 |> Assumption.add_assumes (map cterm [that_prop]) + fun rsn eq that_p = eq RSN (1, that_p) + val rule1 = fold rsn (rev facts) that_p + val tac = (Method.insert_tac (rule1::sym_facts) 1) THEN (auto_tac ctxt2) + val result = Goal.prove ctxt [] [] mjp (K tac) + val ctxt3 = fold (fn var => fn ctxt => (Variable.auto_fixes var ctxt)) + [mjp, thesis_p] ctxt2 + val [let_intro_rule] = Proof_Context.export ctxt3 ctxt [result] + in let_intro_rule end + +end +*} + +ML {* + fun let_elim_tac ctxt i st = let + val thy = Proof_Context.theory_of ctxt + val cterm = cterm_of thy + val goal = nth (Thm.prems_of st) (i - 1) |> cterm + val mjp = goal |> Drule.strip_imp_prems |> swf nth 0 |> term_of + val rule = let_elim_rule ctxt mjp + val tac = (etac rule i st) + in tac end +*} + +ML {* +local +val case_names_tagN = "case_names"; + +val implode_args = space_implode ";"; +val explode_args = space_explode ";"; + +fun add_case_names NONE = I + | add_case_names (SOME names) = + Thm.untag_rule case_names_tagN + #> Thm.tag_rule (case_names_tagN, implode_args names); +in + fun let_elim_cases_tac ctxt facts = let + val tracing = tracing ctxt + val pthm = pthm ctxt + val pterm = pterm ctxt + val pcterm = pcterm ctxt + val mjp = facts |> swf nth 0 |> prop_of + val _ = tracing "let_elim_cases_tac: elim rule derived is:" + val rule = (let_elim_rule ctxt mjp) |> Rule_Cases.put_consumes (SOME 1) + |> add_case_names (SOME ["LetE"]) + val _ = rule |> pthm + in + Induct.induct_tac ctxt true [] [] [] (SOME [rule]) facts + end +end +*} + +ML {* + val ctxt = @{context} + val thy = Proof_Context.theory_of ctxt + val cterm = cterm_of thy + val mjp = @{prop "P (let (((x, y), w), ww) = e1; ((x1, y1), u) = g x y w; (x2, y2) = e3 + in f w x1 y1 u)"} +*} + +ML {* + val mjp1 = @{prop "P (let (((x, y), w), ww) = e1; ((x1, y1), u) = e2 in (w +x1 *y1 +u))"} + val mjp2 = @{prop "P (let ((x, y), (z, u)) = e; (u, v) = e1 in + (case u of (Some t) \ f t x y z | + None \ g x y z))"} + val mjp3 = @{prop "P (let x = e1; ((x1, y1), u) = e2 in f x w x1 y1 u)"} + val mjp = @{prop "P (let (((x, y), w), ww) = e1; ((x1, y1), u) = g x y w; (x2, y2) = e3 + in f w x1 y1 u)"} + val mjps = [mjp1, mjp2, mjp3, mjp] + val t = mjps |> map (let_elim_rule ctxt) + val t2 = mjps |> map (let_intro_rule ctxt) +*} + +ML {* +val let_elim_setup = + Method.setup @{binding let_elim} + (Scan.lift (Args.mode Induct.no_simpN) >> + (fn no_simp => fn ctxt => + METHOD_CASES (fn facts => (HEADGOAL + (let_elim_cases_tac ctxt facts))))) + "elimination of prems containing lets "; +*} + +setup {* let_elim_setup *} + +ML {* + val ctxt = @{context} + val mjp = @{prop "P (let (((x, y), w), ww) = e1; ((x1, y1), u) = g x y w; (x2, y2) = e3 x1 + in f w x1 y1 u)"} +*} + +ML {* +fun focus_params t ctxt = + let + val (xs, Ts) = + split_list (Term.variant_frees t (Term.strip_all_vars t)); (*as they are printed :-*) + (* val (xs', ctxt') = variant_fixes xs ctxt; *) + (* val ps = xs' ~~ Ts; *) + val ps = xs ~~ Ts + val (_, ctxt'') = ctxt |> Variable.add_fixes xs + in ((xs, ps), ctxt'') end + +fun focus_concl ctxt t = + let + val ((xs, ps), ctxt') = focus_params t ctxt + val t' = Term.subst_bounds (rev (map Free ps), Term.strip_all_body t); + in (t' |> Logic.strip_imp_concl, ctxt') end +*} + +ML {* +local +val case_names_tagN = "case_names"; + +val implode_args = space_implode ";"; +val explode_args = space_explode ";"; + +fun add_case_names NONE = I + | add_case_names (SOME names) = + Thm.untag_rule case_names_tagN + #> Thm.tag_rule (case_names_tagN, implode_args names); + +in + fun let_intro_cases_tac ctxt facts i st = let + val (mjp, _) = nth (Thm.prems_of st) (i - 1) |> focus_concl ctxt + val rule = (let_intro_rule ctxt mjp) |> add_case_names (SOME ["LetI"]) + in + Induct.induct_tac ctxt true [] [] [] (SOME [rule]) facts i st + end +end +*} + +ML {* +val let_intro_setup = + Method.setup @{binding let_intro} + (Scan.lift (Args.mode Induct.no_simpN) >> + (fn no_simp => fn ctxt => + METHOD_CASES (fn facts => (HEADGOAL + (let_intro_cases_tac ctxt facts))))) + "introduction rule for goals containing lets "; +*} + +setup {* let_intro_setup *} + +lemma assumes "Q xxx" "W uuuu" + shows "P (let (((x, y), w), ww) = e1; ((x1, y1), u) = g x y w; (x2, y2) = e3 x1 + in f w x1 y1 u) = www" + using assms +proof(let_intro) + case (LetI x y w ww x1 y1 u x2 y2) + thus ?case + oops + +lemma + assumes "P (let (((x, y), w), ww) = e1; ((x1, y1), u) = g x y w; (x2, y2) = e3 x1 + in f w x1 y1 u)" + and "Q xxx" "W uuuu" + shows "thesis" using assms + proof(let_elim) + case (LetE x y w ww x1 y1 u x2 y2) + thus ?case + oops + + +ML {* + val mjp = @{prop "P ( case (u@v) of + Nil \ f u v + | x#xs \ g u v x xs + )"} + val mjp1 = @{term "( case (h u v) of + None \ g u v x + | Some x \ (case v of + Nil \ f u v | + x#xs \ h x xs + ) + )"} +*} + + +ML {* + fun case_trm_of ctxt mjp = + ZipperSearch.all_td_lr (mjp |> Zipper.mktop) + |> Seq.filter (fn z => ((Case_Translation.strip_case ctxt true (Zipper.trm z)) <> NONE)) + |> Seq.hd |> Zipper.trm +*} + +ML {* +fun case_elim_rule ctxt mjp = let + val ctxt = ctxt |> Variable.set_body false + val thy = Proof_Context.theory_of ctxt; + val cterm = cterm_of thy + val ([thesisN], _) = Variable.variant_fixes ["my_thesis"] ctxt + val ((_, thesis_p), _) = bind_judgment ctxt thesisN + val case_trm = case_trm_of ctxt mjp + val (case_expr, case_eqns) = case_trm |> Case_Translation.strip_case ctxt true |> the + val ([pname], _) = Variable.variant_fixes ["P"] ctxt + val P = Free (pname, [(case_trm |> type_of)] ---> @{typ bool}) + val mjp_p = (P $ case_trm) |> HOLogic.mk_Trueprop + val ctxt0 = Proof_Context.init_global thy + val thats = case_eqns |> map (fn (lhs, rhs) => let + val vars = Term.add_frees lhs [] + in + Logic.list_implies ([(P$rhs)|>HOLogic.mk_Trueprop, + HOLogic.mk_eq (case_expr, lhs) |> HOLogic.mk_Trueprop], thesis_p) |> + close_form_over vars + end) |> + map (Term.map_types (Term.map_type_tvar (fn _ => dummyT))) |> + map (Syntax.check_term ctxt0) + val (mjp_p::that_ps, ctxt1) = ctxt |> Assumption.add_assumes (map cterm (mjp_p::thats)) + fun case_rule_of ctxt let_expr = let + val case_rule = Induct.find_casesT ctxt (let_expr |> type_of) |> hd + val case_var = case_rule |> swf Thm.cprem_of 1 |> Thm.term_of + |> Induct.vars_of |> hd |> cterm + val mt = Thm.match (case_var, let_expr |> cterm) + val case_rule = Thm.instantiate mt case_rule + in case_rule end + val case_rule = case_rule_of ctxt case_expr + val my_case_tac = (rtac case_rule) + val my_tac = ((Method.insert_tac (mjp_p::that_ps)) THEN' my_case_tac THEN' (K (auto_tac ctxt1))) 1 + val result = Goal.prove ctxt1 [] [] thesis_p (K my_tac) + val ctxt2 = fold (fn var => fn ctxt => (Variable.auto_fixes var ctxt)) + [P, thesis_p, mjp] ctxt1 + val [case_elim_rule] = Proof_Context.export ctxt2 ctxt [result] + val ocase_rule = Induct.find_casesT ctxt (case_expr |> type_of) |> hd + fun get_case_names rule = + AList.lookup (op =) (Thm.get_tags rule) "case_names" |> the + fun put_case_names names rule = + Thm.tag_rule ("case_names", names) rule + val case_elim_rule = put_case_names (get_case_names ocase_rule) case_elim_rule +in case_elim_rule end +*} + +ML {* + fun case_elim_cases_tac ctxt facts = let + val mjp = facts |> swf nth 0 |> prop_of + val rule = (case_elim_rule ctxt mjp) |> Rule_Cases.put_consumes (SOME 1) + in + Induct.induct_tac ctxt true [] [] [] (SOME [rule]) facts + end +*} + + +ML {* +val case_elim_setup = + Method.setup @{binding case_elim} + (Scan.lift (Args.mode Induct.no_simpN) >> + (fn no_simp => fn ctxt => + METHOD_CASES (fn facts => (HEADGOAL + (case_elim_cases_tac ctxt facts))))) + "elimination of prems containing case "; +*} + +setup {* case_elim_setup *} + +lemma assumes + "P (case h u v of None \ g u v x | Some x \ case v of [] \ f u v | x # xs \ h x xs)" + "GG u v" "PP w x" + shows "thesis" using assms +proof(case_elim) (* ccc *) + case None + thus ?case oops +(* +next + case (Some x) + thus ?case + proof(case_elim) + case Nil + thus ?case sorry + next + case (Cons y ys) + thus ?case sorry + qed +qed +*) + +ML {* +fun case_intro_rule ctxt mjp = let + val ctxt = ctxt |> Variable.set_body false + val tracing = tracing ctxt + val pthm = pthm ctxt + val pterm = pterm ctxt + val pcterm = pcterm ctxt + val thy = Proof_Context.theory_of ctxt + val cterm = cterm_of thy + val ([thesisN], _) = Variable.variant_fixes ["my_thesis"] ctxt + val ((_, thesis_p), _) = bind_judgment ctxt thesisN + val case_trm = case_trm_of ctxt mjp + val (case_expr, case_eqns) = case_trm |> Case_Translation.strip_case ctxt true |> the + val ([pname], _) = Variable.variant_fixes ["P"] ctxt + val P = Free (pname, [(case_trm |> type_of)] ---> @{typ bool}) + val mjp_p = (P $ case_trm) |> HOLogic.mk_Trueprop + val ctxt0 = Proof_Context.init_global thy + val thats = case_eqns |> map (fn (lhs, rhs) => let + val vars = Term.add_frees lhs [] + in + Logic.list_implies ([HOLogic.mk_eq (case_expr, lhs) |> HOLogic.mk_Trueprop], + (P$rhs)|>HOLogic.mk_Trueprop) |> + close_form_over vars + end) |> + map (Term.map_types (Term.map_type_tvar (fn _ => dummyT))) |> + map (Syntax.check_term ctxt0) + val (that_ps, ctxt1) = ctxt |> Assumption.add_assumes (map cterm (thats)) + fun case_rule_of ctxt let_expr = let + val case_rule = Induct.find_casesT ctxt (let_expr |> type_of) |> hd + val case_var = case_rule |> swf Thm.cprem_of 1 |> Thm.term_of + |> Induct.vars_of |> hd |> cterm + val mt = Thm.match (case_var, let_expr |> cterm) + val case_rule = Thm.instantiate mt case_rule + in case_rule end + + val case_rule = case_rule_of ctxt case_expr + val my_case_tac = (rtac case_rule) + val my_tac = ((Method.insert_tac (that_ps)) THEN' my_case_tac THEN' (K (auto_tac ctxt1))) 1 + val result = Goal.prove ctxt1 [] [] mjp_p (K my_tac) + val ctxt2 = fold (fn var => fn ctxt => (Variable.auto_fixes var ctxt)) + [P, thesis_p, mjp] ctxt1 + val [case_intro_rule] = Proof_Context.export ctxt2 ctxt [result] + val ocase_rule = Induct.find_casesT ctxt (case_expr |> type_of) |> hd + fun get_case_names rule = + AList.lookup (op =) (Thm.get_tags rule) "case_names" |> the + fun put_case_names names rule = + Thm.tag_rule ("case_names", names) rule + val case_intro_rule = put_case_names (get_case_names ocase_rule) case_intro_rule +in case_intro_rule end +*} + +ML {* + val t = [mjp, mjp1] |> map (case_intro_rule ctxt) +*} + +ML {* + fun case_intro_cases_tac ctxt facts i st = let + val (mjp, _) = nth (Thm.prems_of st) (i - 1) |> focus_concl ctxt + val rule = (case_intro_rule ctxt mjp) + in + Induct.induct_tac ctxt true [] [] [] (SOME [rule]) facts i st + end +*} + +ML {* +val case_intro_setup = + Method.setup @{binding case_intro} + (Scan.lift (Args.mode Induct.no_simpN) >> + (fn no_simp => fn ctxt => + METHOD_CASES (fn facts => (HEADGOAL + (case_intro_cases_tac ctxt facts))))) + "introduction rule for goals containing case"; +*} + +setup {* case_intro_setup *} + + +lemma assumes "QQ (let u = e1; (j, k) = e1; (b, a) = qq j k in TT j k b a)" + shows "P (hhh y ys)" using assms +proof(let_elim) + oops + +lemma assumes + "QQ (let (j, k) = e1; (m, n) = qq j k in TT j k m n)" + "PP w x" + shows "P (case h u v of None \ g u v x | Some x1 \ case v of [] \ f u v | xx # xs \ hhh xx xs)" + using assms +proof(case_intro) + case None + from None(2) + show ?case + proof(let_elim) + case (LetE j k a b) + with None + show ?case oops +(* + sorry + qed +next + case (Some x1) + thus ?case + proof(case_intro) + case Nil + from Nil(3) + show ?case + proof(let_elim) + case (LetE j k a b) + with Nil show ?case sorry + qed + next + case (Cons y ys) + from Cons(3) + show ?case + proof (let_elim) + case (LetE j k u v) + with Cons + show ?case sorry + qed + qed +qed +*) + +lemma assumes + "QQ (let (j, k) = e1; (m, n) = qq j k in TT j k m n)" + "PP w uux" + shows "P (case h u v of None \ g u v x | Some x1 \ case v of [] \ f u v | xx # xs \ hhh xx xs)" + using assms +proof(let_elim) + case (LetE j k m n) + thus ?case + proof(case_intro) + case None + thus ?case oops (* + next + case (Some x) + thus ?case + proof(case_intro) + case Nil + thus ?case sorry + next + case (Cons y ys) + thus ?case sorry + qed + qed +qed +*) + +lemma ifE [consumes 1, case_names If_true If_false]: + assumes "P (if b then e1 else e2)" + "\b; P e1\ \ thesis" + "\\ b; P e2\ \ thesis" + shows "thesis" using assms + by (auto split:if_splits) + +lemma ifI [case_names If_true If_false]: + assumes "b \ P e1" "\ b \ P e2" + shows "P (if b then e1 else e2)" using assms + by auto + +ML {* + fun if_elim_cases_tac ctxt facts = let + val rule = @{thm ifE} + in + Induct.induct_tac ctxt true [] [] [] (SOME [rule]) facts + end +*} + +ML {* +val if_elim_setup = + Method.setup @{binding if_elim} + (Scan.lift (Args.mode Induct.no_simpN) >> + (fn no_simp => fn ctxt => + METHOD_CASES (fn facts => (HEADGOAL + (if_elim_cases_tac ctxt facts))))) + "elimination of prems containing if "; +*} + +setup {* if_elim_setup *} + +ML {* + fun if_intro_cases_tac ctxt facts i st = let + val rule = @{thm ifI} + in + Induct.induct_tac ctxt true [] [] [] (SOME [rule]) facts i st + end +*} + +ML {* +val if_intro_setup = + Method.setup @{binding if_intro} + (Scan.lift (Args.mode Induct.no_simpN) >> + (fn no_simp => fn ctxt => + METHOD_CASES (fn facts => (HEADGOAL + (if_intro_cases_tac ctxt facts))))) + "introduction rule for goals containing if"; +*} + +setup {* if_intro_setup *} + +lemma assumes "(if (B x y) then f x y else g y x) = (t, p)" + "P1 xxx" "P2 yyy" + shows "that" using assms +proof(if_elim) + case If_true + thus ?case oops +(* +next + case If_false + thus ?case oops +*) + +lemma assumes "P1 xx" "P2 yy" + shows "P (if b then e1 else e2)" using assms +proof(if_intro) + case If_true + thus ?case oops +(* +next + case If_false + thus ?case sorry +qed +*) + +end \ No newline at end of file diff -r 6c722e960f2e -r 38cef5407d82 thys/StateMonad.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/thys/StateMonad.thy Fri Mar 21 15:07:59 2014 +0000 @@ -0,0 +1,481 @@ +theory StateMonad +imports + "~~/src/HOL/Library/Monad_Syntax" +begin + +datatype ('result, 'state) SM = SM "'state => ('result \ 'state) option" + +fun execute :: "('result, 'state) SM \ 'state \ ('result \ 'state) option" where + "execute (SM f) = f" + +lemma SM_cases [case_names succeed fail]: + fixes f and s + assumes succeed: "\x s'. execute f h = Some (x, s') \ P" + assumes fail: "execute f h = None \ P" + shows P + using assms by (cases "execute f h") auto + +lemma SM_execute [simp]: + "SM (execute f) = f" by (cases f) simp_all + +lemma SM_eqI: + "(\h. execute f h = execute g h) \ f = g" + by (cases f, cases g) (auto simp: fun_eq_iff) + +ML {* structure Execute_Simps = Named_Thms +( + val name = @{binding execute_simps} + val description = "simplification rules for execute" +) *} + +setup Execute_Simps.setup + +lemma execute_Let [execute_simps]: + "execute (let x = t in f x) = (let x = t in execute (f x))" + by (simp add: Let_def) + + +subsubsection {* Specialised lifters *} + +definition sm :: "('state \ 'a \ 'state) \ ('a, 'state) SM" where + "sm f = SM (Some \ f)" + +definition tap :: "('state \ 'a) \ ('a, 'state) SM" where + "tap f = SM (\s. Some (f s, s))" + +definition "sm_get = tap id" + +definition "sm_map f = sm (\ s.((), f s))" + +definition "sm_set s' = sm_map (\ s. s)" + +lemma execute_tap [execute_simps]: + "execute (tap f) h = Some (f h, h)" + by (simp add: tap_def) + + +lemma execute_heap [execute_simps]: + "execute (sm f) = Some \ f" + by (simp add: sm_def) + +definition guard :: "('state \ bool) \ ('state \ 'a \ 'state) + \ ('a, 'state) SM" where + "guard P f = SM (\h. if P h then Some (f h) else None)" + +lemma execute_guard [execute_simps]: + "\ P h \ execute (guard P f) h = None" + "P h \ execute (guard P f) h = Some (f h)" + by (simp_all add: guard_def) + + +subsubsection {* Predicate classifying successful computations *} + +definition success :: "('a, 'state) SM \ 'state \ bool" where + "success f h = (execute f h \ None)" + +lemma successI: + "execute f h \ None \ success f h" + by (simp add: success_def) + +lemma successE: + assumes "success f h" + obtains r h' where "r = fst (the (execute c h))" + and "h' = snd (the (execute c h))" + and "execute f h \ None" + using assms by (simp add: success_def) + +ML {* structure Success_Intros = Named_Thms +( + val name = @{binding success_intros} + val description = "introduction rules for success" +) *} + +setup Success_Intros.setup + +lemma success_tapI [success_intros]: + "success (tap f) h" + by (rule successI) (simp add: execute_simps) + +lemma success_heapI [success_intros]: + "success (sm f) h" + by (rule successI) (simp add: execute_simps) + +lemma success_guardI [success_intros]: + "P h \ success (guard P f) h" + by (rule successI) (simp add: execute_guard) + +lemma success_LetI [success_intros]: + "x = t \ success (f x) h \ success (let x = t in f x) h" + by (simp add: Let_def) + +lemma success_ifI: + "(c \ success t h) \ (\ c \ success e h) \ + success (if c then t else e) h" + by (simp add: success_def) + +subsubsection {* Predicate for a simple relational calculus *} + +text {* + The @{text effect} predicate states that when a computation @{text c} + runs with the state @{text h} will result in return value @{text r} + and a state @{text "h'"}, i.e.~no exception occurs. +*} + +definition effect :: "('a, 'state) SM \ 'state \ 'state \ 'a \ bool" where + effect_def: "effect c h h' r = (execute c h = Some (r, h'))" + +lemma effectI: + "execute c h = Some (r, h') \ effect c h h' r" + by (simp add: effect_def) + +lemma effectE: + assumes "effect c h h' r" + obtains "r = fst (the (execute c h))" + and "h' = snd (the (execute c h))" + and "success c h" +proof (rule that) + from assms have *: "execute c h = Some (r, h')" by (simp add: effect_def) + then show "success c h" by (simp add: success_def) + from * have "fst (the (execute c h)) = r" and "snd (the (execute c h)) = h'" + by simp_all + then show "r = fst (the (execute c h))" + and "h' = snd (the (execute c h))" by simp_all +qed + +lemma effect_success: + "effect c h h' r \ success c h" + by (simp add: effect_def success_def) + +lemma success_effectE: + assumes "success c h" + obtains r h' where "effect c h h' r" + using assms by (auto simp add: effect_def success_def) + +lemma effect_deterministic: + assumes "effect f h h' a" + and "effect f h h'' b" + shows "a = b" and "h' = h''" + using assms unfolding effect_def by auto + +ML {* structure Effect_Intros = Named_Thms +( + val name = @{binding effect_intros} + val description = "introduction rules for effect" +) *} + +ML {* structure Effect_Elims = Named_Thms +( + val name = @{binding effect_elims} + val description = "elimination rules for effect" +) *} + +setup "Effect_Intros.setup #> Effect_Elims.setup" + +lemma effect_LetI [effect_intros]: + assumes "x = t" "effect (f x) h h' r" + shows "effect (let x = t in f x) h h' r" + using assms by simp + +lemma effect_LetE [effect_elims]: + assumes "effect (let x = t in f x) h h' r" + obtains "effect (f t) h h' r" + using assms by simp + +lemma effect_ifI: + assumes "c \ effect t h h' r" + and "\ c \ effect e h h' r" + shows "effect (if c then t else e) h h' r" + by (cases c) (simp_all add: assms) + +lemma effect_ifE: + assumes "effect (if c then t else e) h h' r" + obtains "c" "effect t h h' r" + | "\ c" "effect e h h' r" + using assms by (cases c) simp_all + +lemma effect_tapI [effect_intros]: + assumes "h' = h" "r = f h" + shows "effect (tap f) h h' r" + by (rule effectI) (simp add: assms execute_simps) + +lemma effect_tapE [effect_elims]: + assumes "effect (tap f) h h' r" + obtains "h' = h" and "r = f h" + using assms by (rule effectE) (auto simp add: execute_simps) + +lemma effect_heapI [effect_intros]: + assumes "h' = snd (f h)" "r = fst (f h)" + shows "effect (sm f) h h' r" + by (rule effectI) (simp add: assms execute_simps) + +lemma effect_heapE [effect_elims]: + assumes "effect (sm f) h h' r" + obtains "h' = snd (f h)" and "r = fst (f h)" + using assms by (rule effectE) (simp add: execute_simps) + +lemma effect_guardI [effect_intros]: + assumes "P h" "h' = snd (f h)" "r = fst (f h)" + shows "effect (guard P f) h h' r" + by (rule effectI) (simp add: assms execute_simps) + +lemma effect_guardE [effect_elims]: + assumes "effect (guard P f) h h' r" + obtains "h' = snd (f h)" "r = fst (f h)" "P h" + using assms by (rule effectE) + (auto simp add: execute_simps elim!: successE, + cases "P h", auto simp add: execute_simps) + + +subsubsection {* Monad combinators *} + +definition return :: "'a \ ('a, 'state) SM" where + "return x = sm (Pair x)" + +lemma execute_return [execute_simps]: + "execute (return x) = Some \ Pair x" + by (simp add: return_def execute_simps) + +lemma success_returnI [success_intros]: + "success (return x) h" + by (rule successI) (simp add: execute_simps) + +lemma effect_returnI [effect_intros]: + "h = h' \ effect (return x) h h' x" + by (rule effectI) (simp add: execute_simps) + +lemma effect_returnE [effect_elims]: + assumes "effect (return x) h h' r" + obtains "r = x" "h' = h" + using assms by (rule effectE) (simp add: execute_simps) + +definition raise :: "string \ ('a, 'state) SM" where + -- {* the string is just decoration *} + "raise s = SM (\_. None)" + +lemma execute_raise [execute_simps]: + "execute (raise s) = (\_. None)" + by (simp add: raise_def) + +lemma effect_raiseE [effect_elims]: + assumes "effect (raise x) h h' r" + obtains "False" + using assms by (rule effectE) (simp add: success_def execute_simps) + +definition bind :: "('a, 'state) SM \ ('a \ ('b, 'state) SM) \ ('b, 'state) SM" where + "bind f g = SM (\h. case execute f h of + Some (x, h') \ execute (g x) h' + | None \ None)" + +adhoc_overloading + Monad_Syntax.bind StateMonad.bind + + +lemma execute_bind [execute_simps]: + "execute f h = Some (x, h') \ execute (f \= g) h = execute (g x) h'" + "execute f h = None \ execute (f \= g) h = None" + by (simp_all add: bind_def) + +lemma execute_bind_case: + "execute (f \= g) h = (case (execute f h) of + Some (x, h') \ execute (g x) h' | None \ None)" + by (simp add: bind_def) + +lemma execute_bind_success: + "success f h \ execute (f \= g) h = execute (g (fst (the (execute f h)))) (snd (the (execute f h)))" + by (cases f h rule: SM_cases) (auto elim!: successE simp add: bind_def) + +lemma success_bind_executeI: + "execute f h = Some (x, h') \ success (g x) h' \ success (f \= g) h" + by (auto intro!: successI elim!: successE simp add: bind_def) + +lemma success_bind_effectI [success_intros]: + "effect f h h' x \ success (g x) h' \ success (f \= g) h" + by (auto simp add: effect_def success_def bind_def) + +lemma effect_bindI [effect_intros]: + assumes "effect f h h' r" "effect (g r) h' h'' r'" + shows "effect (f \= g) h h'' r'" + using assms + apply (auto intro!: effectI elim!: effectE successE) + apply (subst execute_bind, simp_all) + done + +lemma effect_bindE [effect_elims]: + assumes "effect (f \= g) h h'' r'" + obtains h' r where "effect f h h' r" "effect (g r) h' h'' r'" + using assms by (auto simp add: effect_def bind_def split: option.split_asm) + +lemma execute_bind_eq_SomeI: + assumes "execute f h = Some (x, h')" + and "execute (g x) h' = Some (y, h'')" + shows "execute (f \= g) h = Some (y, h'')" + using assms by (simp add: bind_def) + +lemma return_bind [simp]: "return x \= f = f x" + by (rule SM_eqI) (simp add: execute_bind execute_simps) + +lemma bind_return [simp]: "f \= return = f" + by (rule SM_eqI) (simp add: bind_def execute_simps split: option.splits) + +lemma bind_bind [simp]: "(f \= g) \= k = (f :: ('a, 'state) SM) \= (\x. g x \= k)" + by (rule SM_eqI) (simp add: bind_def execute_simps split: option.splits) + +lemma raise_bind [simp]: "raise e \= f = raise e" + by (rule SM_eqI) (simp add: execute_simps) + + +subsection {* Generic combinators *} + +subsubsection {* Assertions *} + +definition assert :: "('a \ bool) \ 'a \ ('a, 'state) SM" where + "assert P x = (if P x then return x else raise ''assert'')" + +lemma execute_assert [execute_simps]: + "P x \ execute (assert P x) h = Some (x, h)" + "\ P x \ execute (assert P x) h = None" + by (simp_all add: assert_def execute_simps) + +lemma success_assertI [success_intros]: + "P x \ success (assert P x) h" + by (rule successI) (simp add: execute_assert) + +lemma effect_assertI [effect_intros]: + "P x \ h' = h \ r = x \ effect (assert P x) h h' r" + by (rule effectI) (simp add: execute_assert) + +lemma effect_assertE [effect_elims]: + assumes "effect (assert P x) h h' r" + obtains "P x" "r = x" "h' = h" + using assms by (rule effectE) (cases "P x", simp_all add: execute_assert success_def) + +lemma assert_cong [fundef_cong]: + assumes "P = P'" + assumes "\x. P' x \ f x = f' x" + shows "(assert P x >>= f) = (assert P' x >>= f')" + by (rule SM_eqI) (insert assms, simp add: assert_def) + + +subsubsection {* Plain lifting *} + +definition lift :: "('a \ 'b) \ 'a \ ('b, 'state) SM" where + "lift f = return o f" + +lemma lift_collapse [simp]: + "lift f x = return (f x)" + by (simp add: lift_def) + +lemma bind_lift: + "(f \= lift g) = (f \= (\x. return (g x)))" + by (simp add: lift_def comp_def) + + +subsubsection {* Iteration -- warning: this is rarely useful! *} + +primrec fold_map :: "('a \ ('b, 'state) SM) \ 'a list \ ('b list, 'state) SM" where + "fold_map f [] = return []" +| "fold_map f (x # xs) = do { + y \ f x; + ys \ fold_map f xs; + return (y # ys) + }" + +lemma fold_map_append: + "fold_map f (xs @ ys) = fold_map f xs \= (\xs. fold_map f ys \= (\ys. return (xs @ ys)))" + by (induct xs) simp_all + +lemma execute_fold_map_unchanged_heap [execute_simps]: + assumes "\x. x \ set xs \ \y. execute (f x) h = Some (y, h)" + shows "execute (fold_map f xs) h = + Some (List.map (\x. fst (the (execute (f x) h))) xs, h)" +using assms proof (induct xs) + case Nil show ?case by (simp add: execute_simps) +next + case (Cons x xs) + from Cons.prems obtain y + where y: "execute (f x) h = Some (y, h)" by auto + moreover from Cons.prems Cons.hyps have "execute (fold_map f xs) h = + Some (map (\x. fst (the (execute (f x) h))) xs, h)" by auto + ultimately show ?case by (simp, simp only: execute_bind(1), simp add: execute_simps) +qed + + +subsection {* Partial function definition setup *} + +definition SM_ord :: "('a, 'state) SM \ ('a, 'state) SM \ bool" where + "SM_ord = img_ord execute (fun_ord option_ord)" + +definition SM_lub :: "('a , 'state) SM set \ ('a, 'state) SM" where + "SM_lub = img_lub execute SM (fun_lub (flat_lub None))" + +interpretation sm!: partial_function_definitions SM_ord SM_lub +proof - + have "partial_function_definitions (fun_ord option_ord) (fun_lub (flat_lub None))" + by (rule partial_function_lift) (rule flat_interpretation) + then have "partial_function_definitions (img_ord execute (fun_ord option_ord)) + (img_lub execute SM (fun_lub (flat_lub None)))" + by (rule partial_function_image) (auto intro: SM_eqI) + then show "partial_function_definitions SM_ord SM_lub" + by (simp only: SM_ord_def SM_lub_def) +qed + +declaration {* Partial_Function.init "sm" @{term sm.fixp_fun} + @{term sm.mono_body} @{thm sm.fixp_rule_uc} @{thm sm.fixp_induct_uc} NONE *} + + +abbreviation "mono_SM \ monotone (fun_ord SM_ord) SM_ord" + +lemma SM_ordI: + assumes "\h. execute x h = None \ execute x h = execute y h" + shows "SM_ord x y" + using assms unfolding SM_ord_def img_ord_def fun_ord_def flat_ord_def + by blast + +lemma SM_ordE: + assumes "SM_ord x y" + obtains "execute x h = None" | "execute x h = execute y h" + using assms unfolding SM_ord_def img_ord_def fun_ord_def flat_ord_def + by atomize_elim blast + +lemma bind_mono [partial_function_mono]: + assumes mf: "mono_SM B" and mg: "\y. mono_SM (\f. C y f)" + shows "mono_SM (\f. B f \= (\y. C y f))" +proof (rule monotoneI) + fix f g :: "'a \ ('b, 'c) SM" assume fg: "fun_ord SM_ord f g" + from mf + have 1: "SM_ord (B f) (B g)" by (rule monotoneD) (rule fg) + from mg + have 2: "\y'. SM_ord (C y' f) (C y' g)" by (rule monotoneD) (rule fg) + + have "SM_ord (B f \= (\y. C y f)) (B g \= (\y. C y f))" + (is "SM_ord ?L ?R") + proof (rule SM_ordI) + fix h + from 1 show "execute ?L h = None \ execute ?L h = execute ?R h" + by (rule SM_ordE[where h = h]) (auto simp: execute_bind_case) + qed + also + have "SM_ord (B g \= (\y'. C y' f)) (B g \= (\y'. C y' g))" + (is "SM_ord ?L ?R") + proof (rule SM_ordI) + fix h + show "execute ?L h = None \ execute ?L h = execute ?R h" + proof (cases "execute (B g) h") + case None + then have "execute ?L h = None" by (auto simp: execute_bind_case) + thus ?thesis .. + next + case Some + then obtain r h' where "execute (B g) h = Some (r, h')" + by (metis surjective_pairing) + then have "execute ?L h = execute (C r f) h'" + "execute ?R h = execute (C r g) h'" + by (auto simp: execute_bind_case) + with 2[of r] show ?thesis by (auto elim: SM_ordE) + qed + qed + finally (sm.leq_trans) + show "SM_ord (B f \= (\y. C y f)) (B g \= (\y'. C y' g))" . +qed + +end \ No newline at end of file diff -r 6c722e960f2e -r 38cef5407d82 thys/TM_Assemble.thy --- a/thys/TM_Assemble.thy Fri Mar 21 13:49:20 2014 +0000 +++ b/thys/TM_Assemble.thy Fri Mar 21 15:07:59 2014 +0000 @@ -868,7 +868,7 @@ assume h[rule_format]: "\k x ! k = i" from h1 h3 have p1: "l < length (sts' - sts)" - by (metis length_list_update min_max.inf.idem minus_list_len) + by (metis length_list_update min.idem minus_list_len) from p1 h2 h3 have p2: "(sts' - sts)!l = Bound" by (metis h1 minus_status.simps(2) nth_list_update_eq nth_sts_minus) from h[OF p1 p2] have "(<(i = x ! l)>) 0" @@ -1674,7 +1674,7 @@ proof(induct rule:nth_equalityI) case 1 show ?case - by (metis min_max.inf.commute plus_list_len) + by (metis min.commute plus_list_len) next case 2 { fix i