diff -r f8b2bf858caf -r 457240e42972 thys/Hoare_gen.thy --- a/thys/Hoare_gen.thy Thu Mar 27 11:50:37 2014 +0000 +++ b/thys/Hoare_gen.thy Thu Mar 27 13:06:27 2014 +0000 @@ -30,20 +30,26 @@ lemmas sep_conj_cond = sep_conj_cond1 sep_conj_cond2 sep_conj_cond3 -lemma cond_true_eq[simp]: " = \" +lemma cond_true_eq [simp]: + " = \" by(unfold sep_empty_def pasrt_def, auto) -lemma cond_true_eq1: "( \* p) = p" - by(simp) +lemma cond_true_eq1: + "( \* p) = p" + by (simp) -lemma false_simp [simp]: " = sep_false" (* move *) +lemma cond_true_eq2: + "(p \* ) = p" + by simp + +lemma false_simp [simp]: + " = sep_false" (* move *) by (simp add:pasrt_def) -lemma cond_true_eq2: "(p \* ) = p" - by simp - -lemma condD: "( \* r) s \ b \ r s" -by (unfold sep_conj_def pasrt_def, auto) +lemma condD: + "( \* r) s \ b \ r s" +unfolding sep_conj_def pasrt_def +by auto locale sep_exec = fixes step :: "'conf \ 'conf" @@ -189,8 +195,8 @@ lemma hoare_sep_false: "\sep_false\ c \q\" - by(unfold Hoare_gen_def, clarify, simp) - +unfolding Hoare_gen_def +by auto lemma pred_exI: assumes "(P(x) \* r) s"