diff -r 6c722e960f2e -r 38cef5407d82 thys/LetElim.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/thys/LetElim.thy Fri Mar 21 15:07:59 2014 +0000 @@ -0,0 +1,804 @@ +theory LetElim +imports Main Data_slot +begin + +ML {* + val _ = print_depth 100 +*} + +ML {* + val trace_elim = Attrib.setup_config_bool @{binding trace_elim} (K false) +*} + +ML {* (* aux functions *) + val tracing = (fn ctxt => fn str => + if (Config.get ctxt trace_elim) then tracing str else ()) + + val empty_env = (Vartab.empty, Vartab.empty) + + fun match_env ctxt pat trm env = + Pattern.match (ctxt |> Proof_Context.theory_of) (pat, trm) env + + fun match ctxt pat trm = match_env ctxt pat trm empty_env; + + val inst = Envir.subst_term; + + fun term_of_thm thm = thm |> prop_of |> HOLogic.dest_Trueprop + + fun last [a] = a | + last (a::b) = last b + + fun but_last [a] = [] | + but_last (a::b) = a::(but_last b) + + fun foldr f [] = (fn x => x) | + foldr f (x :: xs) = (f x) o (foldr f xs) + + fun concat [] = [] | + concat (x :: xs) = x @ concat xs + + fun string_of_term ctxt t = t |> Syntax.pretty_term ctxt |> Pretty.str_of + fun string_of_cterm ctxt ct = ct |> term_of |> string_of_term ctxt + fun pterm ctxt t = + t |> string_of_term ctxt |> tracing ctxt + fun pcterm ctxt ct = ct |> string_of_cterm ctxt |> tracing ctxt + fun pthm ctxt thm = thm |> prop_of |> pterm ctxt + fun string_for_term ctxt t = + Print_Mode.setmp (filter (curry (op =) Symbol.xsymbolsN) + (print_mode_value ())) (Syntax.string_of_term ctxt) t + |> String.translate (fn c => if Char.isPrint c then str c else "") + |> Sledgehammer_Util.simplify_spaces + fun string_for_cterm ctxt ct = ct |> term_of |> string_for_term ctxt + fun attemp tac = fn i => fn st => (tac i st) handle exn => Seq.empty + fun try_tac tac = fn i => fn st => (tac i st) handle exn => (Seq.single st) + fun ctxt_show ctxt = ctxt |> Config.put Proof_Context.verbose true |> + Config.put Proof_Context.debug true |> + Config.put Display.show_hyps true |> + Config.put Display.show_tags true + fun swf f = (fn x => fn y => f y x) +*} (* aux end *) + +ML {* + fun close_form_over vars trm = + fold Logic.all (map Free vars) trm + fun try_star f g = (try_star f (g |> f)) handle _ => g + + fun bind_judgment ctxt name = + let + val thy = Proof_Context.theory_of ctxt; + val ([x], ctxt') = Proof_Context.add_fixes [(Binding.name name, NONE, NoSyn)] ctxt; + val (t as _ $ Free v) = Object_Logic.fixed_judgment thy x; + in ((v, t), ctxt') end; + + fun let_trm_of ctxt mjp = let + fun is_let_trm (((Const (@{const_name "Let"}, _)) $ let_expr) $ let_rest) = true + | is_let_trm _ = false + in + ZipperSearch.all_td_lr (mjp |> Zipper.mktop) + |> Seq.filter (fn z => is_let_trm (Zipper.trm z)) + |> Seq.hd |> Zipper.trm + end + + fun decr lev (Bound i) = if i >= lev then Bound (i - 1) else raise Same.SAME + | decr lev (Abs (a, T, body)) = Abs (a, T, decr (lev + 1) body) + | decr lev (t $ u) = (decr lev t $ decrh lev u handle Same.SAME => t $ decr lev u) + | decr _ _ = raise Same.SAME + and decrh lev t = (decr lev t handle Same.SAME => t); + + (* A new version of [result], copied from [obtain.ML] *) +fun eliminate_term ctxt xs tm = + let + val vs = map (dest_Free o Thm.term_of) xs; + val bads = Term.fold_aterms (fn t as Free v => + if member (op =) vs v then insert (op aconv) t else I | _ => I) tm []; + val _ = null bads orelse + error ("Result contains obtained parameters: " ^ + space_implode " " (map (Syntax.string_of_term ctxt) bads)); + in tm end; + +fun eliminate fix_ctxt rule xs As thm = + let + val thy = Proof_Context.theory_of fix_ctxt; + + val _ = eliminate_term fix_ctxt xs (Thm.full_prop_of thm); + val _ = Object_Logic.is_judgment thy (Thm.concl_of thm) orelse + error "Conclusion in obtained context must be object-logic judgment"; + + val ((_, [thm']), ctxt') = Variable.import true [thm] fix_ctxt; + val prems = Drule.strip_imp_prems (#prop (Thm.crep_thm thm')); + in + ((Drule.implies_elim_list thm' (map Thm.assume prems) + |> Drule.implies_intr_list (map Drule.norm_hhf_cterm As) + |> Drule.forall_intr_list xs) + COMP rule) + |> Drule.implies_intr_list prems + |> singleton (Variable.export ctxt' fix_ctxt) + end; + +fun obtain_export ctxt rule xs _ As = + (eliminate ctxt rule xs As, eliminate_term ctxt xs); + +fun check_result ctxt thesis th = + (case Thm.prems_of th of + [prem] => + if Thm.concl_of th aconv thesis andalso + Logic.strip_assums_concl prem aconv thesis then th + else error ("Guessed a different clause:\n" ^ Display.string_of_thm ctxt th) + | [] => error "Goal solved -- nothing guessed" + | _ => error ("Guess split into several cases:\n" ^ Display.string_of_thm ctxt th)); + +fun result tac facts ctxt = + let + val thy = Proof_Context.theory_of ctxt; + val cert = Thm.cterm_of thy; + + val ([thesisN], _) = Variable.variant_fixes [Auto_Bind.thesisN] ctxt + + val ((thesis_var, thesis), thesis_ctxt) = bind_judgment ctxt thesisN; + val rule = + (case SINGLE (Method.insert_tac facts 1 THEN tac thesis_ctxt) (Goal.init (cert thesis)) of + NONE => raise THM ("Obtain.result: tactic failed", 0, facts) + | SOME th => check_result ctxt thesis (Raw_Simplifier.norm_hhf (Goal.conclude th))); + + val closed_rule = Thm.forall_intr (cert (Free thesis_var)) rule; + val ((_, [rule']), ctxt') = Variable.import false [closed_rule] ctxt; + val obtain_rule = Thm.forall_elim (cert (Logic.varify_global (Free thesis_var))) rule'; + val ((params, stmt), fix_ctxt) = Variable.focus_cterm (Thm.cprem_of obtain_rule 1) ctxt'; + val (prems, ctxt'') = + Assumption.add_assms (obtain_export fix_ctxt obtain_rule (map #2 params)) + (Drule.strip_imp_prems stmt) fix_ctxt; + in ((params, prems), ctxt'') end; +*} + +ML {* +local + fun let_lhs ctxt vars let_rest = + case let_rest of + Const (@{const_name prod_case}, _) $ let_rest => + let + val (exp1, rest1) = let_lhs ctxt vars let_rest + val vars = Term.add_frees exp1 vars + val (exp2, rest2) = let_lhs ctxt vars rest1 + in ((Const (@{const_name Pair}, dummyT) $ exp1 $ exp2), rest2) end + | Abs (var, var_typ, rest) => let + val (vars', _) = Variable.variant_fixes ((map fst vars)@[var]) ctxt + val (_, var') = vars' |> split_last + val [(var, var_typ)] = Variable.variant_frees ctxt (map Free vars) [(var, var_typ)] in + (Free (var', var_typ), rest) end + + fun sg_lhs_f ctxt (vars, eqns, let_trm) = let + val (((Const (@{const_name "Let"}, _)) $ let_expr) $ let_rest) = let_trm + val let_rest = case let_rest of + Abs ("", _, let_rest$Bound 0) => decrh 0 let_rest + | _ => let_rest + val (lhs, let_trm) = let_rest |> let_lhs ctxt vars + val lhs = lhs|> Syntax.check_term ctxt + val let_expr = let_expr |> Syntax.check_term ctxt + val eqn = HOLogic.mk_eq (lhs, let_expr) |> Syntax.check_term ctxt + val eqns = (eqn::eqns) + val vars = Term.add_frees lhs vars + val let_trm = Term.subst_bounds ((map Free vars), let_trm) + in (vars, eqns, let_trm) end + fun dest_let ctxt let_trm = let + val (vars, eqns, lrest) = try_star (sg_lhs_f ctxt) ([], [], let_trm) + in (vars, eqns, lrest) end + +in + + fun let_elim_rule ctxt mjp = let + val ctxt = ctxt |> Variable.set_body false + val thy = Proof_Context.theory_of ctxt + val cterm = cterm_of thy + val tracing = tracing ctxt + val pthm = pthm ctxt + val pterm = pterm ctxt + val pcterm = pcterm ctxt + + val let_trm = let_trm_of ctxt mjp + val ([pname], _) = Variable.variant_fixes ["P"] ctxt + val P = Free (pname, dummyT) + val mjp = (Const (@{const_name Trueprop}, dummyT)$(P$let_trm)) + |> Syntax.check_term ctxt + val (Const (@{const_name Trueprop}, _)$((P as Free(_, _))$let_trm)) = mjp + val (vars, eqns, lrest) = dest_let ctxt let_trm + + val ([thesisN], _) = Variable.variant_fixes ["let_thesis"] ctxt + val thesis_p = Free (thesisN, @{typ bool}) |> HOLogic.mk_Trueprop + val next_p = (P $ lrest) |> (HOLogic.mk_Trueprop) + val that_prems = (P $ lrest) :: (rev eqns) |> map (HOLogic.mk_Trueprop) + val that_prop = Logic.list_implies (that_prems, thesis_p) + val that_prop = close_form_over vars that_prop + fun exists_on_lhs eq = let + val (lhs, rhs) = eq |> HOLogic.dest_eq + fun exists_on vars trm = let + fun sg_exists_on (n, ty) trm = HOLogic.mk_exists (n, ty, trm) + in fold sg_exists_on vars trm end + in exists_on (Term.add_frees lhs []) eq end + fun prove_eqn ctxt0 eqn = let + val (lhs, let_expr) = eqn |> HOLogic.dest_eq + val eq_e_prop = exists_on_lhs eqn |> HOLogic.mk_Trueprop + fun case_rule_of ctxt let_expr = let + val case_rule = Induct.find_casesT ctxt (let_expr |> type_of) |> hd + val case_var = case_rule |> swf Thm.cprem_of 1 |> Thm.term_of + |> Induct.vars_of |> hd |> cterm + val mt = Thm.match (case_var, let_expr |> cterm) + val case_rule = Thm.instantiate mt case_rule + in case_rule end + val case_rule = SOME (case_rule_of ctxt0 let_expr) handle _ => NONE + val my_case_tac = case case_rule of + SOME case_rule => (rtac case_rule 1) + | _ => all_tac + val eq_e = Goal.prove ctxt0 [] [] eq_e_prop + (K (my_case_tac THEN (auto_tac ctxt0))) + in eq_e end + val peqns = eqns |> map (prove_eqn ctxt) + fun add_result thm (facts, ctxt) = let + val ((_, [fact]), ctxt1) = (result (K (REPEAT (etac @{thm exE} 1))) [thm] ctxt) + in (fact::facts, ctxt1) end + val add_results = fold add_result + val (facts, ctxt1) = add_results (rev peqns) ([], ctxt) + (* val facts = rev facts *) + val ([mjp_p, that_p], ctxt2) = ctxt1 |> Assumption.add_assumes (map cterm [mjp, that_prop]) + val sym_facts = map (swf (curry (op RS)) @{thm sym}) facts + fun rsn eq that_p = eq RSN (2, that_p) + val rule1 = fold rsn (rev facts) that_p + val tac = (Method.insert_tac ([mjp_p]@sym_facts) 1) THEN (auto_tac ctxt2) + val next_pp = Goal.prove ctxt [] [] next_p (K tac) + val result = next_pp RS rule1 + val ctxt3 = fold (fn var => fn ctxt => (Variable.auto_fixes var ctxt)) + [mjp, thesis_p] ctxt2 + val [let_elim_rule] = Proof_Context.export ctxt3 ctxt [result] + in let_elim_rule end + + fun let_intro_rule ctxt mjp = let + val ctxt = ctxt |> Variable.set_body false + val thy = Proof_Context.theory_of ctxt + val cterm = cterm_of thy + val tracing = tracing ctxt + val pthm = pthm ctxt + val pterm = pterm ctxt + val pcterm = pcterm ctxt + + val ([thesisN], _) = Variable.variant_fixes ["let_thesis"] ctxt + val thesis_p = Free (thesisN, @{typ bool}) |> HOLogic.mk_Trueprop + val let_trm = let_trm_of ctxt mjp + val ([pname], _) = Variable.variant_fixes ["P"] ctxt + val P = Free (pname, dummyT) + val mjp = (Const (@{const_name Trueprop}, dummyT)$(P$let_trm)) + |> Syntax.check_term ctxt + val (Const (@{const_name Trueprop}, _)$((P as Free(_, _))$let_trm)) = mjp + val (((Const (@{const_name "Let"}, _)) $ let_expr) $ let_rest) = let_trm + val (vars, eqns, lrest) = dest_let ctxt let_trm + + val next_p = (P $ lrest) |> (HOLogic.mk_Trueprop) + val that_prems = (rev eqns) |> map (HOLogic.mk_Trueprop) + val that_prop = Logic.list_implies (that_prems, next_p) + val that_prop = close_form_over vars that_prop |> Syntax.check_term ctxt + fun exists_on_lhs eq = let + val (lhs, rhs) = eq |> HOLogic.dest_eq + fun exists_on vars trm = let + fun sg_exists_on (n, ty) trm = HOLogic.mk_exists (n, ty, trm) + in fold sg_exists_on vars trm end + in exists_on (Term.add_frees lhs []) eq end + fun prove_eqn ctxt0 eqn = let + val (lhs, let_expr) = eqn |> HOLogic.dest_eq + val eq_e_prop = exists_on_lhs eqn |> HOLogic.mk_Trueprop + fun case_rule_of ctxt let_expr = let + val case_rule = Induct.find_casesT ctxt (let_expr |> type_of) |> hd + val case_var = case_rule |> swf Thm.cprem_of 1 |> Thm.term_of + |> Induct.vars_of |> hd |> cterm + val mt = Thm.match (case_var, let_expr |> cterm) + val case_rule = Thm.instantiate mt case_rule + in case_rule end + val case_rule = SOME (case_rule_of ctxt0 let_expr) handle _ => NONE + val my_case_tac = case case_rule of + SOME case_rule => (rtac case_rule 1) + | _ => all_tac + val eq_e = Goal.prove ctxt0 [] [] eq_e_prop + (K (my_case_tac THEN (auto_tac ctxt0))) + in eq_e end + val peqns = eqns |> map (prove_eqn ctxt) + fun add_result thm (facts, ctxt) = let + val ((_, [fact]), ctxt1) = (result (K (REPEAT (etac @{thm exE} 1))) [thm] ctxt) + in (fact::facts, ctxt1) end + val add_results = fold add_result + val (facts, ctxt1) = add_results (rev peqns) ([], ctxt) + val sym_facts = map (swf (curry (op RS)) @{thm sym}) facts + val ([that_p], ctxt2) = ctxt1 |> Assumption.add_assumes (map cterm [that_prop]) + fun rsn eq that_p = eq RSN (1, that_p) + val rule1 = fold rsn (rev facts) that_p + val tac = (Method.insert_tac (rule1::sym_facts) 1) THEN (auto_tac ctxt2) + val result = Goal.prove ctxt [] [] mjp (K tac) + val ctxt3 = fold (fn var => fn ctxt => (Variable.auto_fixes var ctxt)) + [mjp, thesis_p] ctxt2 + val [let_intro_rule] = Proof_Context.export ctxt3 ctxt [result] + in let_intro_rule end + +end +*} + +ML {* + fun let_elim_tac ctxt i st = let + val thy = Proof_Context.theory_of ctxt + val cterm = cterm_of thy + val goal = nth (Thm.prems_of st) (i - 1) |> cterm + val mjp = goal |> Drule.strip_imp_prems |> swf nth 0 |> term_of + val rule = let_elim_rule ctxt mjp + val tac = (etac rule i st) + in tac end +*} + +ML {* +local +val case_names_tagN = "case_names"; + +val implode_args = space_implode ";"; +val explode_args = space_explode ";"; + +fun add_case_names NONE = I + | add_case_names (SOME names) = + Thm.untag_rule case_names_tagN + #> Thm.tag_rule (case_names_tagN, implode_args names); +in + fun let_elim_cases_tac ctxt facts = let + val tracing = tracing ctxt + val pthm = pthm ctxt + val pterm = pterm ctxt + val pcterm = pcterm ctxt + val mjp = facts |> swf nth 0 |> prop_of + val _ = tracing "let_elim_cases_tac: elim rule derived is:" + val rule = (let_elim_rule ctxt mjp) |> Rule_Cases.put_consumes (SOME 1) + |> add_case_names (SOME ["LetE"]) + val _ = rule |> pthm + in + Induct.induct_tac ctxt true [] [] [] (SOME [rule]) facts + end +end +*} + +ML {* + val ctxt = @{context} + val thy = Proof_Context.theory_of ctxt + val cterm = cterm_of thy + val mjp = @{prop "P (let (((x, y), w), ww) = e1; ((x1, y1), u) = g x y w; (x2, y2) = e3 + in f w x1 y1 u)"} +*} + +ML {* + val mjp1 = @{prop "P (let (((x, y), w), ww) = e1; ((x1, y1), u) = e2 in (w +x1 *y1 +u))"} + val mjp2 = @{prop "P (let ((x, y), (z, u)) = e; (u, v) = e1 in + (case u of (Some t) \ f t x y z | + None \ g x y z))"} + val mjp3 = @{prop "P (let x = e1; ((x1, y1), u) = e2 in f x w x1 y1 u)"} + val mjp = @{prop "P (let (((x, y), w), ww) = e1; ((x1, y1), u) = g x y w; (x2, y2) = e3 + in f w x1 y1 u)"} + val mjps = [mjp1, mjp2, mjp3, mjp] + val t = mjps |> map (let_elim_rule ctxt) + val t2 = mjps |> map (let_intro_rule ctxt) +*} + +ML {* +val let_elim_setup = + Method.setup @{binding let_elim} + (Scan.lift (Args.mode Induct.no_simpN) >> + (fn no_simp => fn ctxt => + METHOD_CASES (fn facts => (HEADGOAL + (let_elim_cases_tac ctxt facts))))) + "elimination of prems containing lets "; +*} + +setup {* let_elim_setup *} + +ML {* + val ctxt = @{context} + val mjp = @{prop "P (let (((x, y), w), ww) = e1; ((x1, y1), u) = g x y w; (x2, y2) = e3 x1 + in f w x1 y1 u)"} +*} + +ML {* +fun focus_params t ctxt = + let + val (xs, Ts) = + split_list (Term.variant_frees t (Term.strip_all_vars t)); (*as they are printed :-*) + (* val (xs', ctxt') = variant_fixes xs ctxt; *) + (* val ps = xs' ~~ Ts; *) + val ps = xs ~~ Ts + val (_, ctxt'') = ctxt |> Variable.add_fixes xs + in ((xs, ps), ctxt'') end + +fun focus_concl ctxt t = + let + val ((xs, ps), ctxt') = focus_params t ctxt + val t' = Term.subst_bounds (rev (map Free ps), Term.strip_all_body t); + in (t' |> Logic.strip_imp_concl, ctxt') end +*} + +ML {* +local +val case_names_tagN = "case_names"; + +val implode_args = space_implode ";"; +val explode_args = space_explode ";"; + +fun add_case_names NONE = I + | add_case_names (SOME names) = + Thm.untag_rule case_names_tagN + #> Thm.tag_rule (case_names_tagN, implode_args names); + +in + fun let_intro_cases_tac ctxt facts i st = let + val (mjp, _) = nth (Thm.prems_of st) (i - 1) |> focus_concl ctxt + val rule = (let_intro_rule ctxt mjp) |> add_case_names (SOME ["LetI"]) + in + Induct.induct_tac ctxt true [] [] [] (SOME [rule]) facts i st + end +end +*} + +ML {* +val let_intro_setup = + Method.setup @{binding let_intro} + (Scan.lift (Args.mode Induct.no_simpN) >> + (fn no_simp => fn ctxt => + METHOD_CASES (fn facts => (HEADGOAL + (let_intro_cases_tac ctxt facts))))) + "introduction rule for goals containing lets "; +*} + +setup {* let_intro_setup *} + +lemma assumes "Q xxx" "W uuuu" + shows "P (let (((x, y), w), ww) = e1; ((x1, y1), u) = g x y w; (x2, y2) = e3 x1 + in f w x1 y1 u) = www" + using assms +proof(let_intro) + case (LetI x y w ww x1 y1 u x2 y2) + thus ?case + oops + +lemma + assumes "P (let (((x, y), w), ww) = e1; ((x1, y1), u) = g x y w; (x2, y2) = e3 x1 + in f w x1 y1 u)" + and "Q xxx" "W uuuu" + shows "thesis" using assms + proof(let_elim) + case (LetE x y w ww x1 y1 u x2 y2) + thus ?case + oops + + +ML {* + val mjp = @{prop "P ( case (u@v) of + Nil \ f u v + | x#xs \ g u v x xs + )"} + val mjp1 = @{term "( case (h u v) of + None \ g u v x + | Some x \ (case v of + Nil \ f u v | + x#xs \ h x xs + ) + )"} +*} + + +ML {* + fun case_trm_of ctxt mjp = + ZipperSearch.all_td_lr (mjp |> Zipper.mktop) + |> Seq.filter (fn z => ((Case_Translation.strip_case ctxt true (Zipper.trm z)) <> NONE)) + |> Seq.hd |> Zipper.trm +*} + +ML {* +fun case_elim_rule ctxt mjp = let + val ctxt = ctxt |> Variable.set_body false + val thy = Proof_Context.theory_of ctxt; + val cterm = cterm_of thy + val ([thesisN], _) = Variable.variant_fixes ["my_thesis"] ctxt + val ((_, thesis_p), _) = bind_judgment ctxt thesisN + val case_trm = case_trm_of ctxt mjp + val (case_expr, case_eqns) = case_trm |> Case_Translation.strip_case ctxt true |> the + val ([pname], _) = Variable.variant_fixes ["P"] ctxt + val P = Free (pname, [(case_trm |> type_of)] ---> @{typ bool}) + val mjp_p = (P $ case_trm) |> HOLogic.mk_Trueprop + val ctxt0 = Proof_Context.init_global thy + val thats = case_eqns |> map (fn (lhs, rhs) => let + val vars = Term.add_frees lhs [] + in + Logic.list_implies ([(P$rhs)|>HOLogic.mk_Trueprop, + HOLogic.mk_eq (case_expr, lhs) |> HOLogic.mk_Trueprop], thesis_p) |> + close_form_over vars + end) |> + map (Term.map_types (Term.map_type_tvar (fn _ => dummyT))) |> + map (Syntax.check_term ctxt0) + val (mjp_p::that_ps, ctxt1) = ctxt |> Assumption.add_assumes (map cterm (mjp_p::thats)) + fun case_rule_of ctxt let_expr = let + val case_rule = Induct.find_casesT ctxt (let_expr |> type_of) |> hd + val case_var = case_rule |> swf Thm.cprem_of 1 |> Thm.term_of + |> Induct.vars_of |> hd |> cterm + val mt = Thm.match (case_var, let_expr |> cterm) + val case_rule = Thm.instantiate mt case_rule + in case_rule end + val case_rule = case_rule_of ctxt case_expr + val my_case_tac = (rtac case_rule) + val my_tac = ((Method.insert_tac (mjp_p::that_ps)) THEN' my_case_tac THEN' (K (auto_tac ctxt1))) 1 + val result = Goal.prove ctxt1 [] [] thesis_p (K my_tac) + val ctxt2 = fold (fn var => fn ctxt => (Variable.auto_fixes var ctxt)) + [P, thesis_p, mjp] ctxt1 + val [case_elim_rule] = Proof_Context.export ctxt2 ctxt [result] + val ocase_rule = Induct.find_casesT ctxt (case_expr |> type_of) |> hd + fun get_case_names rule = + AList.lookup (op =) (Thm.get_tags rule) "case_names" |> the + fun put_case_names names rule = + Thm.tag_rule ("case_names", names) rule + val case_elim_rule = put_case_names (get_case_names ocase_rule) case_elim_rule +in case_elim_rule end +*} + +ML {* + fun case_elim_cases_tac ctxt facts = let + val mjp = facts |> swf nth 0 |> prop_of + val rule = (case_elim_rule ctxt mjp) |> Rule_Cases.put_consumes (SOME 1) + in + Induct.induct_tac ctxt true [] [] [] (SOME [rule]) facts + end +*} + + +ML {* +val case_elim_setup = + Method.setup @{binding case_elim} + (Scan.lift (Args.mode Induct.no_simpN) >> + (fn no_simp => fn ctxt => + METHOD_CASES (fn facts => (HEADGOAL + (case_elim_cases_tac ctxt facts))))) + "elimination of prems containing case "; +*} + +setup {* case_elim_setup *} + +lemma assumes + "P (case h u v of None \ g u v x | Some x \ case v of [] \ f u v | x # xs \ h x xs)" + "GG u v" "PP w x" + shows "thesis" using assms +proof(case_elim) (* ccc *) + case None + thus ?case oops +(* +next + case (Some x) + thus ?case + proof(case_elim) + case Nil + thus ?case sorry + next + case (Cons y ys) + thus ?case sorry + qed +qed +*) + +ML {* +fun case_intro_rule ctxt mjp = let + val ctxt = ctxt |> Variable.set_body false + val tracing = tracing ctxt + val pthm = pthm ctxt + val pterm = pterm ctxt + val pcterm = pcterm ctxt + val thy = Proof_Context.theory_of ctxt + val cterm = cterm_of thy + val ([thesisN], _) = Variable.variant_fixes ["my_thesis"] ctxt + val ((_, thesis_p), _) = bind_judgment ctxt thesisN + val case_trm = case_trm_of ctxt mjp + val (case_expr, case_eqns) = case_trm |> Case_Translation.strip_case ctxt true |> the + val ([pname], _) = Variable.variant_fixes ["P"] ctxt + val P = Free (pname, [(case_trm |> type_of)] ---> @{typ bool}) + val mjp_p = (P $ case_trm) |> HOLogic.mk_Trueprop + val ctxt0 = Proof_Context.init_global thy + val thats = case_eqns |> map (fn (lhs, rhs) => let + val vars = Term.add_frees lhs [] + in + Logic.list_implies ([HOLogic.mk_eq (case_expr, lhs) |> HOLogic.mk_Trueprop], + (P$rhs)|>HOLogic.mk_Trueprop) |> + close_form_over vars + end) |> + map (Term.map_types (Term.map_type_tvar (fn _ => dummyT))) |> + map (Syntax.check_term ctxt0) + val (that_ps, ctxt1) = ctxt |> Assumption.add_assumes (map cterm (thats)) + fun case_rule_of ctxt let_expr = let + val case_rule = Induct.find_casesT ctxt (let_expr |> type_of) |> hd + val case_var = case_rule |> swf Thm.cprem_of 1 |> Thm.term_of + |> Induct.vars_of |> hd |> cterm + val mt = Thm.match (case_var, let_expr |> cterm) + val case_rule = Thm.instantiate mt case_rule + in case_rule end + + val case_rule = case_rule_of ctxt case_expr + val my_case_tac = (rtac case_rule) + val my_tac = ((Method.insert_tac (that_ps)) THEN' my_case_tac THEN' (K (auto_tac ctxt1))) 1 + val result = Goal.prove ctxt1 [] [] mjp_p (K my_tac) + val ctxt2 = fold (fn var => fn ctxt => (Variable.auto_fixes var ctxt)) + [P, thesis_p, mjp] ctxt1 + val [case_intro_rule] = Proof_Context.export ctxt2 ctxt [result] + val ocase_rule = Induct.find_casesT ctxt (case_expr |> type_of) |> hd + fun get_case_names rule = + AList.lookup (op =) (Thm.get_tags rule) "case_names" |> the + fun put_case_names names rule = + Thm.tag_rule ("case_names", names) rule + val case_intro_rule = put_case_names (get_case_names ocase_rule) case_intro_rule +in case_intro_rule end +*} + +ML {* + val t = [mjp, mjp1] |> map (case_intro_rule ctxt) +*} + +ML {* + fun case_intro_cases_tac ctxt facts i st = let + val (mjp, _) = nth (Thm.prems_of st) (i - 1) |> focus_concl ctxt + val rule = (case_intro_rule ctxt mjp) + in + Induct.induct_tac ctxt true [] [] [] (SOME [rule]) facts i st + end +*} + +ML {* +val case_intro_setup = + Method.setup @{binding case_intro} + (Scan.lift (Args.mode Induct.no_simpN) >> + (fn no_simp => fn ctxt => + METHOD_CASES (fn facts => (HEADGOAL + (case_intro_cases_tac ctxt facts))))) + "introduction rule for goals containing case"; +*} + +setup {* case_intro_setup *} + + +lemma assumes "QQ (let u = e1; (j, k) = e1; (b, a) = qq j k in TT j k b a)" + shows "P (hhh y ys)" using assms +proof(let_elim) + oops + +lemma assumes + "QQ (let (j, k) = e1; (m, n) = qq j k in TT j k m n)" + "PP w x" + shows "P (case h u v of None \ g u v x | Some x1 \ case v of [] \ f u v | xx # xs \ hhh xx xs)" + using assms +proof(case_intro) + case None + from None(2) + show ?case + proof(let_elim) + case (LetE j k a b) + with None + show ?case oops +(* + sorry + qed +next + case (Some x1) + thus ?case + proof(case_intro) + case Nil + from Nil(3) + show ?case + proof(let_elim) + case (LetE j k a b) + with Nil show ?case sorry + qed + next + case (Cons y ys) + from Cons(3) + show ?case + proof (let_elim) + case (LetE j k u v) + with Cons + show ?case sorry + qed + qed +qed +*) + +lemma assumes + "QQ (let (j, k) = e1; (m, n) = qq j k in TT j k m n)" + "PP w uux" + shows "P (case h u v of None \ g u v x | Some x1 \ case v of [] \ f u v | xx # xs \ hhh xx xs)" + using assms +proof(let_elim) + case (LetE j k m n) + thus ?case + proof(case_intro) + case None + thus ?case oops (* + next + case (Some x) + thus ?case + proof(case_intro) + case Nil + thus ?case sorry + next + case (Cons y ys) + thus ?case sorry + qed + qed +qed +*) + +lemma ifE [consumes 1, case_names If_true If_false]: + assumes "P (if b then e1 else e2)" + "\b; P e1\ \ thesis" + "\\ b; P e2\ \ thesis" + shows "thesis" using assms + by (auto split:if_splits) + +lemma ifI [case_names If_true If_false]: + assumes "b \ P e1" "\ b \ P e2" + shows "P (if b then e1 else e2)" using assms + by auto + +ML {* + fun if_elim_cases_tac ctxt facts = let + val rule = @{thm ifE} + in + Induct.induct_tac ctxt true [] [] [] (SOME [rule]) facts + end +*} + +ML {* +val if_elim_setup = + Method.setup @{binding if_elim} + (Scan.lift (Args.mode Induct.no_simpN) >> + (fn no_simp => fn ctxt => + METHOD_CASES (fn facts => (HEADGOAL + (if_elim_cases_tac ctxt facts))))) + "elimination of prems containing if "; +*} + +setup {* if_elim_setup *} + +ML {* + fun if_intro_cases_tac ctxt facts i st = let + val rule = @{thm ifI} + in + Induct.induct_tac ctxt true [] [] [] (SOME [rule]) facts i st + end +*} + +ML {* +val if_intro_setup = + Method.setup @{binding if_intro} + (Scan.lift (Args.mode Induct.no_simpN) >> + (fn no_simp => fn ctxt => + METHOD_CASES (fn facts => (HEADGOAL + (if_intro_cases_tac ctxt facts))))) + "introduction rule for goals containing if"; +*} + +setup {* if_intro_setup *} + +lemma assumes "(if (B x y) then f x y else g y x) = (t, p)" + "P1 xxx" "P2 yyy" + shows "that" using assms +proof(if_elim) + case If_true + thus ?case oops +(* +next + case If_false + thus ?case oops +*) + +lemma assumes "P1 xx" "P2 yy" + shows "P (if b then e1 else e2)" using assms +proof(if_intro) + case If_true + thus ?case oops +(* +next + case If_false + thus ?case sorry +qed +*) + +end \ No newline at end of file