thys/Hoare_tm.thy
author Christian Urban <christian dot urban at kcl dot ac dot uk>
Thu, 03 Apr 2014 12:55:43 +0100 (2014-04-03)
changeset 15 e3ecf558aef2
parent 14 23eeaac32d21
permissions -rw-r--r--
recursive function theories / UF_rec still need coding of tapes and programs
header {* 
  Separation logic for Turing Machines
*}

theory Hoare_tm
imports Hoare_gen My_block Data_slot
begin


ML {*
fun pretty_terms ctxt trms =
  Pretty.block (Pretty.commas (map (Syntax.pretty_term ctxt) trms))
*}

ML {*
structure StepRules = Named_Thms
  (val name = @{binding "step"}
   val description = "Theorems for hoare rules for every step")
*}

ML {*
structure FwdRules = Named_Thms
  (val name = @{binding "fwd"}
   val description = "Theorems for fwd derivation of seperation implication")
*}

setup {* StepRules.setup *}
setup {* FwdRules.setup *}

method_setup prune = 
  {* Scan.succeed (SIMPLE_METHOD' o (K (K prune_params_tac))) *} 
  "pruning parameters"

lemma int_add_C: 
  "x + (y::int) = y + x"
  by simp

lemma int_add_A : "(x + y) + z = x + (y + (z::int))"
  by simp

lemma int_add_LC: "x + (y + (z::int)) = y + (x + z)"
  by simp

lemmas int_add_ac = int_add_A int_add_C int_add_LC


section {* Operational Semantics of TM *}

datatype taction = W0 | W1 | L | R

type_synonym tstate = nat

datatype Block = Oc | Bk

(* the successor state when tape symbol is Bk or Oc, respectively *)
type_synonym tm_inst = "(taction \<times> tstate) \<times> (taction \<times> tstate)"

(* - number of faults (nat)
   - TM program (nat \<rightharpoonup> tm_inst)
   - current state (nat)
   - position of head (int)
   - tape (int \<rightharpoonup> Block)
*)
type_synonym tconf = "nat \<times> (nat \<rightharpoonup> tm_inst) \<times> nat \<times> int \<times> (int \<rightharpoonup> Block)"

(* updates the position/tape according to an action *)
fun 
  next_tape :: "taction \<Rightarrow> (int \<times>  (int \<rightharpoonup> Block)) \<Rightarrow> (int \<times>  (int \<rightharpoonup> Block))"
where 
  "next_tape W0 (pos, m) = (pos, m(pos \<mapsto> Bk))" |
  "next_tape W1 (pos, m) = (pos, m(pos \<mapsto> Oc))" |
  "next_tape L  (pos, m) = (pos - 1, m)" |
  "next_tape R  (pos, m) = (pos + 1, m)"

fun tstep :: "tconf \<Rightarrow> tconf"
  where "tstep (faults, prog, pc, pos, m) = 
              (case (prog pc) of
                  Some ((action0, pc0), (action1, pc1)) \<Rightarrow> 
                     case (m pos) of
                       Some Bk \<Rightarrow> (faults, prog, pc0, next_tape action0 (pos, m)) |
                       Some Oc \<Rightarrow> (faults, prog, pc1, next_tape action1 (pos, m)) |
                       None \<Rightarrow> (faults + 1, prog, pc, pos, m)
                | None \<Rightarrow> (faults + 1, prog, pc, pos, m))"

lemma tstep_splits: 
  "(P (tstep s)) = ((\<forall> faults prog pc pos m action0 pc0 action1 pc1. 
                          s = (faults, prog, pc, pos, m) \<longrightarrow> 
                          prog pc = Some ((action0, pc0), (action1, pc1)) \<longrightarrow> 
                          m pos = Some Bk \<longrightarrow> P (faults, prog, pc0, next_tape action0 (pos, m))) \<and>
                    (\<forall> faults prog pc pos m action0 pc0 action1 pc1. 
                          s = (faults, prog, pc, pos, m) \<longrightarrow> 
                          prog pc = Some ((action0, pc0), (action1, pc1)) \<longrightarrow> 
                          m pos = Some Oc \<longrightarrow> P (faults, prog, pc1, next_tape action1 (pos, m))) \<and>
                    (\<forall> faults prog pc pos m action0 pc0 action1 pc1. 
                          s = (faults, prog, pc, pos, m) \<longrightarrow> 
                          prog pc = Some ((action0, pc0), (action1, pc1)) \<longrightarrow> 
                          m pos = None \<longrightarrow> P (faults + 1, prog, pc, pos, m)) \<and>
                    (\<forall> faults prog pc pos m . 
                          s =  (faults, prog, pc, pos, m) \<longrightarrow>
                          prog pc  = None \<longrightarrow> P (faults + 1, prog, pc, pos, m))
                   )"
  by (cases s) (auto split: option.splits Block.splits)

datatype tresource = 
    TM int Block      (* at the position int of the tape is a Bl or Oc *)
  | TC nat tm_inst    (* at the address nat is a certain instruction *)
  | TAt nat           (* TM is at state nat*)
  | TPos int          (* head of TM is at position int *)
  | TFaults nat       (* there are nat faults *)

definition "tprog_set prog = {TC i inst | i inst. prog i = Some inst}"
definition "tpc_set pc = {TAt pc}"
definition "tmem_set m = {TM i n | i n. m (i) = Some n}"
definition "tpos_set pos = {TPos pos}"
definition "tfaults_set faults = {TFaults faults}"

lemmas tpn_set_def = tprog_set_def tpc_set_def tmem_set_def tfaults_set_def tpos_set_def

fun trset_of :: "tconf \<Rightarrow> tresource set"
  where "trset_of (faults, prog, pc, pos, m) = 
               tprog_set prog \<union> tpc_set pc \<union> tpos_set pos \<union> tmem_set m \<union> tfaults_set faults"

interpretation tm: sep_exec tstep trset_of .



section {* Assembly language for TMs and its program logic *}

subsection {* The assembly language *}

datatype tpg = 
   TInstr tm_inst
 | TLabel nat
 | TSeq tpg tpg
 | TLocal "nat \<Rightarrow> tpg"

notation TLocal (binder "TL " 10)

abbreviation 
  tprog_instr :: "tm_inst \<Rightarrow> tpg" ("\<guillemotright> _" [61] 61)
where "\<guillemotright> i \<equiv> TInstr i"

abbreviation tprog_seq :: 
  "tpg \<Rightarrow> tpg \<Rightarrow> tpg" (infixr ";" 52)
where "c1 ; c2 \<equiv> TSeq c1 c2"

definition "sg e = (\<lambda>s. s = e)"

type_synonym tassert = "tresource set \<Rightarrow> bool"

abbreviation 
  t_hoare :: "tassert \<Rightarrow> tassert  \<Rightarrow> tassert \<Rightarrow> bool" ("(\<lbrace>(1_)\<rbrace>/ (_)/ \<lbrace>(1_)\<rbrace>)" 50)
where 
  "\<lbrace>p\<rbrace> c \<lbrace>q\<rbrace> == sep_exec.Hoare_gen tstep trset_of p c q"

abbreviation it_hoare ::
  "('a::sep_algebra \<Rightarrow> tresource set \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> (tresource set \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool"
      ("(1_).(\<lbrace>(1_)\<rbrace>/ (_)/ \<lbrace>(1_)\<rbrace>)" 50)
where "I. \<lbrace>P\<rbrace> c \<lbrace>Q\<rbrace> == sep_exec.IHoare tstep trset_of I P c Q"

(*
primrec tpg_len :: "tpg \<Rightarrow> nat" where 
  "tpg_len (TInstr ai) = 1" |
  "tpg_len (TSeq p1 p2) = tpg_len p1 + tpg_len " |
  "tpg_len (TLocal fp) = tpg_len (fp 0)" |
  "tpg_len (TLabel l) = 0" 
*)

primrec tassemble_to :: "tpg \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> tassert" 
  where 
  "tassemble_to (TInstr ai) i j = (sg ({TC i ai}) ** <(j = i + 1)>)" |
  "tassemble_to (TSeq p1 p2) i j = (EXS j'. (tassemble_to p1 i j') ** (tassemble_to p2 j' j))" |
  "tassemble_to (TLocal fp) i j  = (EXS l. (tassemble_to (fp l) i j))" | 
  "tassemble_to (TLabel l) i j = <(i = j \<and> j = l)>"

declare tassemble_to.simps [simp del]

lemmas tasmp = tassemble_to.simps (2, 3, 4)

abbreviation 
  tasmb_to :: "nat \<Rightarrow> tpg \<Rightarrow> nat \<Rightarrow> tassert" ("_ :[ _ ]: _" [60, 60, 60] 60)
  where 
  "i :[ tpg ]: j \<equiv> tassemble_to tpg i j"

lemma EXS_intro: 
  assumes h: "(P x) s"
  shows "(EXS x. P(x)) s"
  by (smt h pred_ex_def sep_conj_impl)

lemma EXS_elim: 
  assumes "(EXS x. P x) s"
  obtains x where "P x s"
  by (metis assms pred_ex_def)

lemma EXS_eq:
  fixes x
  assumes h: "Q (p x)" 
  and h1: "\<And> y s. \<lbrakk>p y s\<rbrakk> \<Longrightarrow> y = x"
  shows "p x = (EXS x. p x)"
proof
  fix s
  show "p x s = (EXS x. p x) s"
  proof
    assume "p x s"
    thus "(EXS x. p x) s" by (auto simp:pred_ex_def)
  next
    assume "(EXS x. p x) s"
    thus "p x s"
    proof(rule EXS_elim)
      fix y
      assume "p y s"
      from this[unfolded h1[OF this]] show "p x s" .
    qed
  qed
qed

definition "tpg_fold tpgs = foldr TSeq (butlast tpgs) (last tpgs)"

lemma tpg_fold_sg: 
  "tpg_fold [tpg] = tpg"
  by (simp add:tpg_fold_def)

lemma tpg_fold_cons: 
  assumes h: "tpgs \<noteq> []"
  shows "tpg_fold (tpg#tpgs) = (tpg; (tpg_fold tpgs))"
  using h
proof(induct tpgs arbitrary:tpg)
  case (Cons tpg1 tpgs1)
  thus ?case
  proof(cases "tpgs1 = []")
    case True
    thus ?thesis by (simp add:tpg_fold_def)
  next
    case False
    show ?thesis
    proof -
      have eq_1: "butlast (tpg # tpg1 # tpgs1) = tpg # (butlast (tpg1 # tpgs1))"
        by simp
      from False have eq_2: "last (tpg # tpg1 # tpgs1) = last (tpg1 # tpgs1)"
        by simp
      have eq_3: "foldr (op ;) (tpg # butlast (tpg1 # tpgs1)) (last (tpg1 # tpgs1)) = 
            (tpg ; (foldr (op ;) (butlast (tpg1 # tpgs1)) (last (tpg1 # tpgs1))))"
        by simp
      show ?thesis
        apply (subst (1) tpg_fold_def, unfold eq_1 eq_2 eq_3)
        by (fold tpg_fold_def, simp)
    qed
  qed
qed auto

lemmas tpg_fold_simps = tpg_fold_sg tpg_fold_cons

lemma tpg_fold_app:
  assumes h1: "tpgs1 \<noteq> []" 
  and h2: "tpgs2 \<noteq> []"
  shows "i:[(tpg_fold (tpgs1 @ tpgs2))]:j = i:[(tpg_fold (tpgs1); tpg_fold tpgs2)]:j"
  using h1 h2
proof(induct tpgs1 arbitrary: i j tpgs2)
  case (Cons tpg1' tpgs1')
  thus ?case (is "?L = ?R")
  proof(cases "tpgs1' = []")
    case False
    from h2 have "(tpgs1' @ tpgs2) \<noteq> []"
      by (metis Cons.prems(2) Nil_is_append_conv) 
    have "?L = (i :[ tpg_fold (tpg1' # (tpgs1' @ tpgs2)) ]: j )" by simp
    also have "\<dots> =  (i:[(tpg1'; (tpg_fold (tpgs1' @ tpgs2)))]:j )"
      by (simp add:tpg_fold_cons[OF `(tpgs1' @ tpgs2) \<noteq> []`])
    also have "\<dots> = ?R"
    proof -
      have "(EXS j'. i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold (tpgs1' @ tpgs2) ]: j) =
              (EXS j'. (EXS j'a. i :[ tpg1' ]: j'a \<and>* j'a :[ tpg_fold tpgs1' ]: j') \<and>* 
                               j' :[ tpg_fold tpgs2 ]: j)"
      proof(default+)
        fix s
        assume "(EXS j'. i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold (tpgs1' @ tpgs2) ]: j) s"
        thus "(EXS j'. (EXS j'a. i :[ tpg1' ]: j'a \<and>* j'a :[ tpg_fold tpgs1' ]: j') \<and>*
                  j' :[ tpg_fold tpgs2 ]: j) s"
        proof(elim EXS_elim)
          fix j'
          assume "(i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold (tpgs1' @ tpgs2) ]: j) s"
          from this[unfolded Cons(1)[OF False Cons(3)] tassemble_to.simps]
          show "(EXS j'. (EXS j'a. i :[ tpg1' ]: j'a \<and>* j'a :[ tpg_fold tpgs1' ]: j') \<and>*
                           j' :[ tpg_fold tpgs2 ]: j) s"
          proof(elim sep_conjE EXS_elim)
            fix x y j'a xa ya
            assume h: "(i :[ tpg1' ]: j') x"
                      "x ## y" "s = x + y"
                      "(j' :[ tpg_fold tpgs1' ]: j'a) xa"
                      "(j'a :[ tpg_fold tpgs2 ]: j) ya"
                      " xa ## ya" "y = xa + ya"
            show "(EXS j'. (EXS j'a. i :[ tpg1' ]: j'a \<and>* 
                                j'a :[ tpg_fold tpgs1' ]: j') \<and>* j' :[ tpg_fold tpgs2 ]: j) s"
               (is "(EXS j'. (?P j' \<and>* ?Q j')) s")
            proof(rule EXS_intro[where x = "j'a"])
              from `(j'a :[ tpg_fold tpgs2 ]: j) ya` have "(?Q j'a) ya" .
              moreover have "(?P j'a) (x + xa)" 
              proof(rule EXS_intro[where x = j'])
                have "x + xa = x + xa" by simp
                moreover from `x ## y` `y = xa + ya` `xa ## ya` 
                have "x ## xa" by (metis sep_disj_addD) 
                moreover note `(i :[ tpg1' ]: j') x` `(j' :[ tpg_fold tpgs1' ]: j'a) xa`
                ultimately show "(i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold tpgs1' ]: j'a) (x + xa)"
                  by (auto intro!:sep_conjI)
              qed
              moreover from `x##y` `y = xa + ya` `xa ## ya` 
              have "(x + xa) ## ya"
                by (metis sep_disj_addI1 sep_disj_commuteI)
              moreover from `s = x + y` `y = xa + ya`
              have "s = (x + xa) + ya"
                by (metis h(2) h(6) sep_add_assoc sep_disj_addD1 sep_disj_addD2) 
              ultimately show "(?P j'a \<and>* ?Q j'a) s"
                by (auto intro!:sep_conjI)
            qed
          qed
        qed
      next
        fix s
        assume "(EXS j'. (EXS j'a. i :[ tpg1' ]: j'a \<and>* j'a :[ tpg_fold tpgs1' ]: j') \<and>*
                                    j' :[ tpg_fold tpgs2 ]: j) s"
        thus "(EXS j'. i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold (tpgs1' @ tpgs2) ]: j) s"
        proof(elim EXS_elim sep_conjE)
          fix j' x y j'a xa ya
          assume h: "(j' :[ tpg_fold tpgs2 ]: j) y"
                    "x ## y" "s = x + y" "(i :[ tpg1' ]: j'a) xa"
                    "(j'a :[ tpg_fold tpgs1' ]: j') ya" "xa ## ya" "x = xa + ya"
          show "(EXS j'. i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold (tpgs1' @ tpgs2) ]: j) s"
          proof(rule EXS_intro[where x = j'a])
            from `(i :[ tpg1' ]: j'a) xa` have "(i :[ tpg1' ]: j'a) xa" .
            moreover have "(j'a :[ tpg_fold (tpgs1' @ tpgs2) ]: j) (ya + y)"
            proof(unfold Cons(1)[OF False Cons(3)] tassemble_to.simps)
              show "(EXS j'. j'a :[ tpg_fold tpgs1' ]: j' \<and>* j' :[ tpg_fold tpgs2 ]: j) (ya + y)"
              proof(rule EXS_intro[where x = "j'"])
                from `x ## y` `x = xa + ya` `xa ## ya`
                have "ya ## y" by (metis sep_add_disjD)
                moreover have "ya + y = ya + y" by simp
                moreover note `(j'a :[ tpg_fold tpgs1' ]: j') ya` 
                               `(j' :[ tpg_fold tpgs2 ]: j) y`
                ultimately show "(j'a :[ tpg_fold tpgs1' ]: j' \<and>* 
                                 j' :[ tpg_fold tpgs2 ]: j) (ya + y)"
                  by (auto intro!:sep_conjI)
              qed
            qed
            moreover from `s = x + y` `x = xa + ya`
            have "s = xa + (ya + y)"
              by (metis h(2) h(6) sep_add_assoc sep_add_disjD)
            moreover from `xa ## ya` `x ## y` `x = xa + ya`
            have "xa ## (ya + y)" by (metis sep_disj_addI3) 
            ultimately show "(i :[ tpg1' ]: j'a \<and>* j'a :[ tpg_fold (tpgs1' @ tpgs2) ]: j) s"
              by (auto intro!:sep_conjI)
          qed
        qed
      qed
      thus ?thesis 
        by (simp add:tassemble_to.simps, unfold tpg_fold_cons[OF False], 
             unfold tassemble_to.simps, simp)
    qed
    finally show ?thesis . 
  next
    case True
    thus ?thesis
      by (simp add:tpg_fold_cons[OF Cons(3)] tpg_fold_sg)
  qed 
qed auto
 

subsection {* Assertions and program logic for this assembly language *}

definition "st l = sg (tpc_set l)"
definition "ps p = sg (tpos_set p)" 
definition "tm a v = sg ({TM a v})"
definition "one i = tm i Oc"
definition "zero i= tm i Bk"
definition "any i = (EXS v. tm i v)"

declare trset_of.simps[simp del]

lemma stimes_sgD: 
  "(sg x \<and>* q) s \<Longrightarrow> q (s - x) \<and> x \<subseteq> s"
  apply(erule_tac sep_conjE)
  apply(unfold set_ins_def sg_def)
  by (metis Diff_Int Diff_cancel Diff_empty Un_Diff sup.cobounded1 sup_bot.left_neutral sup_commute)
  
lemma stD: 
  "(st i \<and>* r) (trset_of (ft, prog, i', pos, mem)) \<Longrightarrow> i' = i"
proof -
  assume "(st i \<and>* r) (trset_of (ft, prog, i', pos, mem))"
  from stimes_sgD [OF this[unfolded st_def], unfolded trset_of.simps]
  have "tpc_set i \<subseteq> tprog_set prog \<union> tpc_set i' \<union> tpos_set pos \<union>  
            tmem_set mem \<union> tfaults_set ft" by auto
  thus ?thesis
    by (unfold tpn_set_def, auto)
qed

lemma psD: 
  "(ps p \<and>* r) (trset_of (ft, prog, i', pos, mem)) \<Longrightarrow> pos = p"
proof -
  assume "(ps p ** r) (trset_of (ft, prog, i', pos, mem))"
  from stimes_sgD [OF this[unfolded ps_def], unfolded trset_of.simps]
  have "tpos_set p \<subseteq> tprog_set prog \<union> tpc_set i' \<union> 
                       tpos_set pos \<union> tmem_set mem \<union> tfaults_set ft"
    by simp
  thus ?thesis
    by (unfold tpn_set_def, auto)
qed

lemma codeD: "(st i ** sg {TC i inst} ** r) (trset_of (ft, prog, i', pos, mem))
       \<Longrightarrow> prog i = Some inst"
proof -
  assume "(st i ** sg {TC i inst} ** r) (trset_of (ft, prog, i', pos, mem))"
  thus ?thesis
    apply(unfold sep_conj_def set_ins_def sg_def trset_of.simps tpn_set_def)
    by auto
qed

lemma memD: "((tm a v) ** r) (trset_of (ft, prog, i, pos, mem))  \<Longrightarrow> mem a = Some v"
proof -
  assume "((tm a v) ** r) (trset_of (ft, prog, i, pos, mem))"
  from stimes_sgD[OF this[unfolded trset_of.simps tpn_set_def tm_def]]
  have "{TM a v} \<subseteq> {TC i inst |i inst. prog i = Some inst} \<union> {TAt i} \<union> 
    {TPos pos} \<union> {TM i n |i n. mem i = Some n} \<union> {TFaults ft}" by simp
  thus ?thesis by auto
qed

lemma t_hoare_seq: 
  assumes a1: "\<And> i j. \<lbrace>st i \<and>* p\<rbrace> i:[c1]:j \<lbrace>st j \<and>* q\<rbrace>"
  and     a2: "\<And> j k. \<lbrace>st j ** q\<rbrace> j:[c2]:k \<lbrace>st k ** r\<rbrace>" 
  shows "\<lbrace>st i \<and>* p\<rbrace> i:[(c1 ; c2)]:k \<lbrace>st k \<and>* r\<rbrace>"
proof(subst tassemble_to.simps, rule tm.code_exI)
  fix j'
  show "\<lbrace>st i \<and>* p\<rbrace>  i:[ c1 ]:j' \<and>* j':[ c2 ]:k \<lbrace>st k \<and>* r\<rbrace>"
  proof(rule tm.composition)
    from a1 show "\<lbrace>st i \<and>* p\<rbrace>  i:[ c1 ]:j' \<lbrace>st j' \<and>* q\<rbrace>" by auto
  next
    from a2 show "\<lbrace>st j' \<and>* q\<rbrace>  j':[ c2 ]:k \<lbrace>st k \<and>* r\<rbrace>" by auto
  qed
qed


lemma t_hoare_seq1:
  assumes a1: "\<And>j'. \<lbrace>st i \<and>* p\<rbrace> i:[c1]:j' \<lbrace>st j' \<and>* q\<rbrace>"
  assumes a2: "\<And>j'. \<lbrace>st j' \<and>* q\<rbrace> j':[c2]:k \<lbrace>st k' \<and>* r\<rbrace>"
  shows "\<lbrace>st i \<and>* p\<rbrace> i:[(c1 ; c2)]:k \<lbrace>st k' \<and>* r\<rbrace>"
proof(subst tassemble_to.simps, rule tm.code_exI)
  fix j'
  show "\<lbrace>st i \<and>* p\<rbrace>  i:[ c1 ]:j' \<and>* j':[ c2 ]:k \<lbrace>st k' \<and>* r\<rbrace>"
  proof(rule tm.composition)
    from a1 show "\<lbrace>st i \<and>* p\<rbrace>  i:[ c1 ]:j' \<lbrace>st j' \<and>* q\<rbrace>" by auto
  next
    from a2 show " \<lbrace>st j' \<and>* q\<rbrace>  j':[ c2 ]:k \<lbrace>st k' \<and>* r\<rbrace>" by auto
  qed
qed

lemma t_hoare_seq2:
  assumes h: "\<And>j. \<lbrace>st i ** p\<rbrace> i:[c1]:j \<lbrace>st k' \<and>* r\<rbrace>"
  shows "\<lbrace>st i ** p\<rbrace> i:[(c1 ; c2)]:j \<lbrace>st k' ** r\<rbrace>"
  apply (unfold tassemble_to.simps, rule tm.code_exI)
  by (rule tm.code_extension, rule h)

lemma t_hoare_local: 
  assumes h: "(\<And>l. \<lbrace>st i \<and>* p\<rbrace>  i :[ c l ]: j \<lbrace>st k \<and>* q\<rbrace>)"
  shows "\<lbrace>st i ** p\<rbrace> i:[TLocal c]:j \<lbrace>st k ** q\<rbrace>" using h
  by (unfold tassemble_to.simps, intro tm.code_exI, simp)

lemma t_hoare_label: 
  assumes "\<And>l. l = i \<Longrightarrow> \<lbrace>st l \<and>* p\<rbrace>  l:[ c l ]:j \<lbrace>st k \<and>* q\<rbrace>"
  shows "\<lbrace>st i \<and>* p\<rbrace> i:[(TLabel l; c l)]:j \<lbrace>st k \<and>* q\<rbrace>"
using assms
by (unfold tassemble_to.simps, intro tm.code_exI tm.code_condI, clarify, auto)

primrec t_split_cmd :: "tpg \<Rightarrow> (tpg \<times> tpg option)"
  where "t_split_cmd (\<guillemotright>inst) = (\<guillemotright>inst, None)" |
        "t_split_cmd (TLabel l) = (TLabel l, None)" |
        "t_split_cmd (TSeq c1 c2) = (case (t_split_cmd c2) of
                                      (c21, Some c22) \<Rightarrow> (TSeq c1 c21, Some c22) |
                                      (c21, None) \<Rightarrow> (c1, Some c21))" |
        "t_split_cmd (TLocal c) = (TLocal c, None)"

definition "t_last_cmd tpg = snd (t_split_cmd tpg)"

declare t_last_cmd_def [simp]

definition "t_blast_cmd tpg = fst (t_split_cmd tpg)"

declare t_blast_cmd_def [simp]

lemma "t_last_cmd (c1; c2; TLabel l) = Some (TLabel l)"
  by simp

lemma "t_blast_cmd (c1; c2; TLabel l) = (c1; c2)"
  by simp

lemma t_split_cmd_eq:
  assumes "t_split_cmd c = (c1, Some c2)"
  shows "i:[c]:j = i:[(c1; c2)]:j"
  using assms
proof(induct c arbitrary: c1 c2 i j)
  case (TSeq cx cy)
  from `t_split_cmd (cx ; cy) = (c1, Some c2)`
  show ?case
    apply (simp split:prod.splits option.splits)
    apply (cases cy, auto split:prod.splits option.splits)
    proof -
      fix a
      assume h: "t_split_cmd cy = (a, Some c2)"
      show "i :[ (cx ; cy) ]: j = i :[ ((cx ; a) ; c2) ]: j"
        apply (simp only: tassemble_to.simps(2) TSeq(2)[OF h] sep_conj_exists)
        apply (simp add:sep_conj_ac)
        by (simp add:pred_ex_def, default, auto)
    qed
qed auto

lemma t_hoare_label_last_pre: 
  assumes h1: "t_split_cmd c = (c', Some (TLabel l))"
  and h2: "l = j \<Longrightarrow> \<lbrace>p\<rbrace> i:[c']:j \<lbrace>q\<rbrace>"
  shows "\<lbrace>p\<rbrace> i:[c]:j \<lbrace>q\<rbrace>"
by (unfold t_split_cmd_eq[OF h1], 
    simp only:tassemble_to.simps sep_conj_cond, 
    intro tm.code_exI tm.code_condI, insert h2, auto)

lemma t_hoare_label_last: 
  assumes h1: "t_last_cmd c = Some (TLabel l)"
  and h2: "l = j \<Longrightarrow> \<lbrace>p\<rbrace> i:[t_blast_cmd c]:j \<lbrace>q\<rbrace>"
  shows "\<lbrace>p\<rbrace> i:[c]:j \<lbrace>q\<rbrace>"
proof -
    have "t_split_cmd c = (t_blast_cmd c, t_last_cmd c)"
      by simp
  from t_hoare_label_last_pre[OF this[unfolded h1]] h2
  show ?thesis by auto
qed


subsection {* Basic assertions for TM *}

(* ones between tape position i and j *)
function ones :: "int \<Rightarrow> int \<Rightarrow> tassert" where
  "ones i j = (if j < i then <(i = j + 1)> 
               else (one i) \<and>* ones (i + 1) j)"
by auto

termination 
  by (relation "measure(\<lambda> (i::int, j). nat (j - i + 1))") auto

lemma ones_base_simp: 
  "j < i \<Longrightarrow> ones i j = <(i = j + 1)>"
  by simp

lemma ones_step_simp: 
  "\<not> j < i \<Longrightarrow> ones i j =  ((one i) \<and>* ones (i + 1) j)"
  by simp

lemmas ones_simps = ones_base_simp ones_step_simp

declare ones.simps [simp del] ones_simps [simp]

lemma ones_induct [case_names Base Step]:
  assumes h1: "\<And> i j. j < i \<Longrightarrow> P i j (<(i = j + (1::int))>)"
  and h2: "\<And> i j. \<lbrakk>\<not> j < i; P (i + 1) j (ones (i + 1) j)\<rbrakk> \<Longrightarrow> P i j ((one i) \<and>* ones (i + 1) j)"
  shows "P i j (ones i j)"
proof(induct i j rule:ones.induct)
  fix i j 
  assume ih: "(\<not> j < i \<Longrightarrow> P (i + 1) j (ones (i + 1) j))"
  show "P i j (ones i j)"
  proof(cases "j < i")
    case True
    with h1 [OF True]
    show ?thesis by auto
  next
    case False
    from h2 [OF False] and ih[OF False]
    have "P i j (one i \<and>* ones (i + 1) j)" by blast
    with False show ?thesis by auto
  qed
qed

function ones' ::  "int \<Rightarrow> int \<Rightarrow> tassert" where
  "ones' i j = (if j < i then <(i = j + 1)> 
                else ones' i (j - 1) \<and>* one j)"
by auto
termination by (relation "measure(\<lambda> (i::int, j). nat (j - i + 1))") auto

lemma ones_rev: "\<not> j < i \<Longrightarrow> (ones i j) = ((ones i (j - 1)) ** one j)"
proof(induct i j rule:ones_induct)
  case Base
  thus ?case by auto
next
  case (Step i j)
  show ?case
  proof(cases "j < i + 1")
    case True
    with Step show ?thesis
      by simp
  next
    case False
    with Step show ?thesis 
      by (auto simp:sep_conj_ac)
  qed
qed

lemma ones_rev_induct [case_names Base Step]:
  assumes h1: "\<And> i j. j < i \<Longrightarrow> P i j (<(i = j + (1::int))>)"
  and h2: "\<And> i j. \<lbrakk>\<not> j < i; P i (j - 1) (ones i (j - 1))\<rbrakk> \<Longrightarrow> P i j ((ones i (j - 1)) ** one j)"
  shows "P i j (ones i j)"
proof(induct i j rule:ones'.induct)
  fix i j 
  assume ih: "(\<not> j < i \<Longrightarrow> P i (j - 1) (ones i (j - 1)))"
  show "P i j (ones i j)"
  proof(cases "j < i")
    case True
    with h1 [OF True]
    show ?thesis by auto
  next
    case False
    from h2 [OF False] and ih[OF False]
    have "P i j (ones i (j - 1) \<and>* one j)" by blast
    with ones_rev and False
    show ?thesis
      by simp
  qed
qed

function zeros :: "int \<Rightarrow> int \<Rightarrow> tassert" where
  "zeros i j = (if j < i then <(i = j + 1)> else
                (zero i) ** zeros (i + 1) j)"
by auto
termination by (relation "measure(\<lambda> (i::int, j). nat (j - i + 1))") auto

lemma zeros_base_simp: "j < i \<Longrightarrow> zeros i j = <(i = j + 1)>"
  by simp

lemma zeros_step_simp: "\<not> j < i \<Longrightarrow> zeros i j = ((zero i) ** zeros (i + 1) j)"
  by simp

declare zeros.simps [simp del]
lemmas zeros_simps [simp] = zeros_base_simp zeros_step_simp

lemma zeros_induct [case_names Base Step]:
  assumes h1: "\<And> i j. j < i \<Longrightarrow> P i j (<(i = j + (1::int))>)"
  and h2: "\<And> i j. \<lbrakk>\<not> j < i; P (i + 1) j (zeros (i + 1) j)\<rbrakk> \<Longrightarrow> 
                                   P i j ((zero i) ** zeros (i + 1) j)"
  shows "P i j (zeros i j)"
proof(induct i j rule:zeros.induct)
  fix i j 
  assume ih: "(\<not> j < i \<Longrightarrow> P (i + 1) j (zeros (i + 1) j))"
  show "P i j (zeros i j)"
  proof(cases "j < i")
    case True
    with h1 [OF True]
    show ?thesis by auto
  next
    case False
    from h2 [OF False] and ih[OF False]
    have "P i j (zero i \<and>* zeros (i + 1) j)" by blast
    with False show ?thesis by auto
  qed
qed

lemma zeros_rev: "\<not> j < i \<Longrightarrow> (zeros i j) = ((zeros i (j - 1)) \<and>* zero j)"
proof(induct i j rule:zeros_induct)
  case (Base i j)
  thus ?case by auto
next
  case (Step i j)
  show ?case
  proof(cases "j < i + 1")
    case True
    with Step show ?thesis by auto
  next
    case False
    with Step show ?thesis by (auto simp:sep_conj_ac)
  qed
qed

lemma zeros_rev_induct [case_names Base Step]:
  assumes h1: "\<And> i j. j < i \<Longrightarrow> P i j (<(i = j + (1::int))>)"
  and h2: "\<And> i j. \<lbrakk>\<not> j < i; P i (j - 1) (zeros i (j - 1))\<rbrakk> \<Longrightarrow> 
                       P i j ((zeros i (j - 1)) ** zero j)"
  shows "P i j (zeros i j)"
proof(induct i j rule:ones'.induct)
  fix i j 
  assume ih: "(\<not> j < i \<Longrightarrow> P i (j - 1) (zeros i (j - 1)))"
  show "P i j (zeros i j)"
  proof(cases "j < i")
    case True
    with h1 [OF True]
    show ?thesis by auto
  next
    case False
    from h2 [OF False] and ih[OF False]
    have "P i j (zeros i (j - 1) \<and>* zero j)" by blast
    with zeros_rev and False
    show ?thesis by simp
  qed
qed

definition "rep i j k = ((ones i (i + (int k))) \<and>* <(j = i + int k)>)"

fun reps :: "int \<Rightarrow> int \<Rightarrow> nat list\<Rightarrow> tassert"
  where
  "reps i j [] = <(i = j + 1)>" |
  "reps i j [k] = (ones i (i + int k) ** <(j = i + int k)>)" |
  "reps i j (k # ks) = (ones i (i + int k) ** zero (i + int k + 1) ** reps (i + int k + 2) j ks)"

lemma reps_simp3: "ks \<noteq> [] \<Longrightarrow> 
  reps i j (k # ks) = (ones i (i + int k) ** zero (i + int k + 1) ** reps (i + int k + 2) j ks)"
  by (cases ks, auto)

definition "reps_sep_len ks = (if length ks \<le> 1 then 0 else (length ks) - 1)"

definition "reps_ctnt_len ks = (\<Sum> k \<leftarrow> ks. (1 + k))"

definition "reps_len ks = (reps_sep_len ks) + (reps_ctnt_len ks)"

definition "splited xs ys zs = ((xs = ys @ zs) \<and> (ys \<noteq> []) \<and> (zs \<noteq> []))"

lemma list_split: 
  assumes h: "k # ks = ys @ zs"
      and h1: "ys \<noteq> []"
  shows "(ys = [k] \<and> zs = ks) \<or> (\<exists> ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> ks = ys' @ zs)"
proof(cases ys)
  case Nil
  with h1 show ?thesis by auto
next
  case (Cons y' ys')
  with h have "k#ks = y'#(ys' @ zs)" by simp
  hence hh: "y' = k" "ks = ys' @ zs" by auto
  show ?thesis
  proof(cases "ys' = []")
    case False
    show ?thesis
    proof(rule disjI2)
      show " \<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> ks = ys' @ zs"
      proof(rule exI[where x = ys'])
        from False hh Cons show "ys' \<noteq> [] \<and> ys = k # ys' \<and> ks = ys' @ zs" by auto
      qed
    qed
  next
    case True
    show ?thesis
    proof(rule disjI1)
      from hh True Cons
      show "ys = [k] \<and> zs = ks" by auto
    qed
  qed
qed

lemma splited_cons[elim_format]: 
  assumes h: "splited (k # ks) ys zs"
  shows "(ys = [k] \<and> zs = ks) \<or> (\<exists> ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> splited ks ys' zs)"
proof -
  from h have "k # ks = ys @ zs" "ys \<noteq> [] " unfolding splited_def by auto
  from list_split[OF this]
  have "ys = [k] \<and> zs = ks \<or> (\<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> ks = ys' @ zs)" .
  thus ?thesis
  proof
    assume " ys = [k] \<and> zs = ks" thus ?thesis by auto
  next
    assume "\<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> ks = ys' @ zs"
    then obtain ys' where hh: "ys' \<noteq> []" "ys = k # ys'" "ks = ys' @ zs" by auto
    show ?thesis
    proof(rule disjI2)
      show "\<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> splited ks ys' zs"
      proof(rule exI[where x = ys'])
        from h have "zs \<noteq> []" by (unfold splited_def, simp)
        with hh(1) hh(3)
        have "splited ks ys' zs"
          by (unfold splited_def, auto)
        with hh(1) hh(2) show "ys' \<noteq> [] \<and> ys = k # ys' \<and> splited ks ys' zs" by auto
      qed
    qed
  qed
qed

lemma splited_cons_elim:
  assumes h: "splited (k # ks) ys zs"
  and h1: "\<lbrakk>ys = [k]; zs = ks\<rbrakk> \<Longrightarrow> P"
  and h2: "\<And> ys'. \<lbrakk>ys' \<noteq> []; ys = k#ys'; splited ks ys' zs\<rbrakk> \<Longrightarrow> P"
  shows P
proof(rule splited_cons[OF h])
  assume "ys = [k] \<and> zs = ks \<or> (\<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> splited ks ys' zs)"
  thus P
  proof
    assume hh: "ys = [k] \<and> zs = ks"
    show P
    proof(rule h1)
      from hh show "ys = [k]" by simp
    next
      from hh show "zs = ks" by simp
    qed
  next
    assume "\<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> splited ks ys' zs"
    then obtain ys' where hh: "ys' \<noteq> []" "ys = k # ys'"  "splited ks ys' zs" by auto
    from h2[OF this]
    show P .
  qed
qed

lemma list_nth_expand:
  "i < length xs \<Longrightarrow> xs = take i xs @ [xs!i] @ drop (Suc i) xs"
  by (metis Cons_eq_appendI append_take_drop_id drop_Suc_conv_tl eq_Nil_appendI)

lemma reps_len_nil: "reps_len [] = 0"
   by (auto simp:reps_len_def reps_sep_len_def reps_ctnt_len_def)

lemma reps_len_sg: "reps_len [k] = 1 + k"
  by (auto simp:reps_len_def reps_sep_len_def reps_ctnt_len_def)

lemma reps_len_cons: "ks \<noteq> [] \<Longrightarrow> (reps_len (k # ks)) = 2 + k + reps_len ks "
proof(induct ks arbitrary:k)
  case (Cons n ns)
  thus ?case
    by(cases "ns = []", 
      auto simp:reps_len_def reps_sep_len_def reps_ctnt_len_def)
qed auto

lemma reps_len_correct:
  assumes h: "(reps i j ks) s"
  shows "j = i + int (reps_len ks) - 1"
  using h
proof(induct ks arbitrary:i j s)
  case Nil
  thus ?case
    by (auto simp:reps_len_nil pasrt_def)
next
  case (Cons n ns)
  thus ?case
  proof(cases "ns = []")
    case False
    from Cons(2)[unfolded reps_simp3[OF False]]
    obtain s' where "(reps (i + int n + 2) j ns) s'"
      by (auto elim!:sep_conjE)
    from Cons.hyps[OF this]
    show ?thesis
      by (unfold reps_len_cons[OF False], simp)
  next
    case True
    with Cons(2)
    show ?thesis
      by (auto simp:reps_len_sg pasrt_def)
  qed
qed

lemma reps_len_expand: 
  shows "(EXS j. (reps i j ks)) = (reps i (i + int (reps_len ks) - 1) ks)"
proof(default+)
  fix s
  assume "(EXS j. reps i j ks) s"
  with reps_len_correct show "reps i (i + int (reps_len ks) - 1) ks s"
    by (auto simp:pred_ex_def)
next
  fix s
  assume "reps i (i + int (reps_len ks) - 1) ks s"
  thus "(EXS j. reps i j ks) s"  by (auto simp:pred_ex_def)
qed

lemma reps_len_expand1: "(EXS j. (reps i j ks \<and>* r)) = (reps i (i + int (reps_len ks) - 1) ks \<and>* r)"
by (metis reps_len_def reps_len_expand sep.mult_commute sep_conj_exists1)

lemma reps_splited:
  assumes h: "splited xs ys zs"
  shows "reps i j xs = (reps i (i + int (reps_len ys) - 1) ys \<and>* 
                        zero (i + int (reps_len ys)) \<and>* 
                        reps (i + int (reps_len ys) + 1) j zs)"
  using h
proof(induct xs arbitrary: i j ys zs)
  case Nil
  thus ?case
    by (unfold splited_def, auto)
next
  case (Cons k ks)
  from Cons(2)
  show ?case
  proof(rule splited_cons_elim)
    assume h: "ys = [k]" "zs = ks"
    with Cons(2)
    show ?thesis
    proof(cases "ks = []")
      case True
      with Cons(2) have False
        by (simp add:splited_def, cases ys, auto)
      thus ?thesis by auto
    next
      case False
      have ss: "i + int k + 1 = i + (1 + int k)"
           "i + int k + 2 = 2 + (i + int k)" by auto
      show ?thesis
        by (unfold h(1), unfold reps_simp3[OF False] reps.simps(2) 
            reps_len_sg, auto simp:sep_conj_ac,
            unfold ss h(2), simp)
    qed
  next
    fix ys'
    assume h: "ys' \<noteq> []" "ys = k # ys'" "splited ks ys' zs"
    hence nnks: "ks \<noteq> []"
      by (unfold splited_def, auto)
    have ss: "i + int k + 2 + int (reps_len ys') = 
              i + (2 + (int k + int (reps_len ys')))" by auto
    show ?thesis
      by (simp add: reps_simp3[OF nnks] reps_simp3[OF h(1)] 
                    Cons(1)[OF h(3)] h(2) 
                    reps_len_cons[OF h(1)]
                    sep_conj_ac, subst ss, simp)
  qed
qed


subsection {* A theory of list extension *}

definition "list_ext n xs = xs @ replicate ((Suc n) - length xs) 0"

lemma list_ext_len_eq: "length (list_ext a xs) = length xs + (Suc a - length xs)"
  by (metis length_append length_replicate list_ext_def)

lemma list_ext_len: "a < length (list_ext a xs)"
  by (unfold list_ext_len_eq, auto)

lemma list_ext_lt: "a < length xs \<Longrightarrow> list_ext a xs = xs"
  by (smt append_Nil2 list_ext_def replicate_0)

lemma list_ext_lt_get: 
  assumes h: "a' < length xs"
  shows "(list_ext a xs)!a' = xs!a'"
proof(cases "a < length xs")
  case True
  with h
  show ?thesis by (auto simp:list_ext_lt)
next
  case False
  with h show ?thesis
    apply (unfold list_ext_def)
    by (metis nth_append)
qed

lemma list_ext_get_upd: "((list_ext a xs)[a:=v])!a = v"
  by (metis list_ext_len nth_list_update_eq)

lemma nth_app: "length xs \<le> a \<Longrightarrow> (xs @ ys)!a = ys!(a - length xs)"
  by (metis not_less nth_append)


lemma list_ext_tail:
  assumes h1: "length xs \<le> a"
  and h2: "length xs \<le> a'"
  and h3: "a' \<le> a"
  shows "(list_ext a xs)!a' = 0"
proof -
  from h1 h2
  have "a' - length xs < length (replicate (Suc a - length xs) 0)"
    by (metis diff_less_mono h3 le_imp_less_Suc length_replicate)
  moreover from h1 have "replicate (Suc a - length xs) 0 \<noteq> []"
    by (smt empty_replicate)
  ultimately have "(replicate (Suc a - length xs) 0)!(a' - length xs) = 0"
    by (metis length_replicate nth_replicate)
  moreover have "(xs @ (replicate (Suc a - length xs) 0))!a' = 
            (replicate (Suc a - length xs) 0)!(a' - length xs)"
    by (rule nth_app[OF h2])
  ultimately show ?thesis
    by (auto simp:list_ext_def)
qed

lemmas list_ext_simps = list_ext_lt_get list_ext_lt list_ext_len list_ext_len_eq

lemma listsum_upd_suc:
  "a < length ks \<Longrightarrow> listsum (map Suc (ks[a := Suc (ks ! a)]))= (Suc (listsum (map Suc ks)))"
by (smt elem_le_listsum_nat 
     length_list_update list_ext_get_upd 
     list_update_overwrite listsum_update_nat map_update 
     nth_equalityI nth_list_update nth_map)

lemma reps_len_suc:
  assumes "a < length ks"
  shows "reps_len (ks[a:=Suc(ks!a)]) = 1 + reps_len ks"
proof(cases "length ks \<le> 1")
  case True
  with `a < length ks` 
  obtain k where "ks = [k]" "a = 0"
    by (smt length_0_conv length_Suc_conv)
  thus ?thesis
      apply (unfold `ks = [k]` `a = 0`)
      by (unfold reps_len_def reps_sep_len_def reps_ctnt_len_def, auto)
next
  case False
  have "Suc = (op + (Suc 0))"
    by (default, auto)
  with listsum_upd_suc[OF `a < length ks`] False
  show ?thesis
     by (unfold reps_len_def reps_sep_len_def reps_ctnt_len_def, simp)
qed
  
lemma ks_suc_len:
  assumes h1: "(reps i j ks) s"
  and h2: "ks!a = v"
  and h3: "a < length ks"
  and h4: "(reps i j' (ks[a:=Suc v])) s'"
  shows "j' = j + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1"
proof -
  from reps_len_correct[OF h1, unfolded list_ext_len_eq]
       reps_len_correct[OF h4, unfolded list_ext_len_eq] 
       reps_len_suc[OF `a < length ks`] h2 h3
  show ?thesis
    by (unfold list_ext_lt[OF `a < length ks`], auto)
qed

lemma ks_ext_len:
  assumes h1: "(reps i j ks) s"
  and h3: "length ks \<le> a"
  and h4: "reps i j' (list_ext a ks) s'"
  shows "j' = j + int (reps_len (list_ext a ks)) - int (reps_len ks)"
proof -
  from reps_len_correct[OF h1, unfolded  list_ext_len_eq]
    and reps_len_correct[OF h4, unfolded list_ext_len_eq]
  h3
  show ?thesis by auto
qed

definition 
  "reps' i j ks = 
     (if ks = [] then (<(i = j + 1)>)  else (reps i (j - 1) ks \<and>* zero j))"

lemma reps'_expand: 
  assumes h: "ks \<noteq> []"
  shows "(EXS j. reps' i j ks) = reps' i (i + int (reps_len ks)) ks"
proof -
  show ?thesis
  proof(default+)
    fix s
    assume "(EXS j. reps' i j ks) s"
    with h have "(EXS j. reps i (j - 1) ks \<and>* zero j) s" 
      by (simp add:reps'_def)
    hence "(reps i (i + int (reps_len ks) - 1) ks \<and>* zero (i + int (reps_len ks))) s"
    proof(elim EXS_elim)
      fix j
      assume "(reps i (j - 1) ks \<and>* zero j) s"
      then obtain s1 s2 where "s = s1 + s2" "s1 ## s2" "reps i (j - 1) ks s1" "zero j s2"
        by (auto elim!:sep_conjE)
      from reps_len_correct[OF this(3)]
      have "j = i + int (reps_len ks)" by auto
      with `reps i (j - 1) ks s1` have "reps i (i + int (reps_len ks) - 1) ks s1"
        by simp
      moreover from `j = i + int (reps_len ks)` and `zero j s2`
      have "zero (i + int (reps_len ks)) s2" by auto
      ultimately show "(reps i (i + int (reps_len ks) - 1) ks \<and>* zero (i + int (reps_len ks))) s"
        using `s = s1 + s2` `s1 ## s2` by (auto intro!:sep_conjI)
    qed
    thus "reps' i (i + int (reps_len ks)) ks s"
      by (simp add:h reps'_def)
  next
    fix s 
    assume "reps' i (i + int (reps_len ks)) ks s"
    thus "(EXS j. reps' i j ks) s"
      by (auto intro!:EXS_intro)
  qed
qed

lemma reps'_len_correct: 
  assumes h: "(reps' i j ks) s"
  and h1: "ks \<noteq> []"
  shows "(j = i + int (reps_len ks))"
proof -
  from h1 have "reps' i j ks s = (reps i (j - 1) ks \<and>* zero j) s" by (simp add:reps'_def)
  from h[unfolded this]
  obtain s' where "reps i (j - 1) ks s'"
    by (auto elim!:sep_conjE)
  from reps_len_correct[OF this]
  show ?thesis by simp
qed

lemma reps'_append:
  "reps' i j (ks1 @ ks2) = (EXS m. (reps' i (m - 1) ks1 \<and>* reps' m j ks2))"
proof(cases "ks1 = []")
  case True
  thus ?thesis
    by (auto simp:reps'_def pred_ex_def pasrt_def set_ins_def sep_conj_def)
next
  case False
  show ?thesis
  proof(cases "ks2 = []")
    case False
    from `ks1 \<noteq> []` and `ks2 \<noteq> []` 
    have "splited (ks1 @ ks2) ks1 ks2" by (auto simp:splited_def)
    from reps_splited[OF this, of i "j - 1"]
    have eq_1: "reps i (j - 1) (ks1 @ ks2) =
           (reps i (i + int (reps_len ks1) - 1) ks1 \<and>*
           zero (i + int (reps_len ks1)) \<and>* 
           reps (i + int (reps_len ks1) + 1) (j - 1) ks2)" .
    from `ks1 \<noteq> []`
    have eq_2: "reps' i j (ks1 @ ks2) = (reps i (j - 1) (ks1 @ ks2) \<and>* zero j)"
      by (unfold reps'_def, simp)
    show ?thesis
    proof(default+)
      fix s
      assume "reps' i j (ks1 @ ks2) s"
      show "(EXS m. reps' i (m - 1) ks1 \<and>* reps' m j ks2) s"
      proof(rule EXS_intro[where x = "i + int(reps_len ks1) + 1"])
        from `reps' i j (ks1 @ ks2) s`[unfolded eq_2 eq_1]
        and `ks1 \<noteq> []` `ks2 \<noteq> []`
        show "(reps' i (i + int (reps_len ks1) + 1 - 1) ks1 \<and>* 
                         reps' (i + int (reps_len ks1) + 1) j ks2) s"
          by (unfold reps'_def, simp, sep_cancel+)
      qed
    next
      fix s
      assume "(EXS m. reps' i (m - 1) ks1 \<and>* reps' m j ks2) s"
      thus "reps' i j (ks1 @ ks2) s"
      proof(elim EXS_elim)
        fix m
        assume "(reps' i (m - 1) ks1 \<and>* reps' m j ks2) s"
        then obtain s1 s2 where h: 
          "s = s1 + s2" "s1 ## s2" "reps' i (m - 1) ks1 s1"
          " reps' m j ks2 s2" by (auto elim!:sep_conjE)
        from reps'_len_correct[OF this(3) `ks1 \<noteq> []`]
        have eq_m: "m = i + int (reps_len ks1) + 1" by simp
        have "((reps i (i + int (reps_len ks1) - 1) ks1 \<and>* zero (i + int (reps_len ks1))) \<and>* 
               ((reps (i + int (reps_len ks1) + 1) (j - 1) ks2) \<and>* zero j)) s"
          (is "(?P \<and>* ?Q) s") 
        proof(rule sep_conjI)
          from h(3) eq_m `ks1 \<noteq> []` show "?P s1"
            by (simp add:reps'_def)
        next
          from h(4) eq_m `ks2 \<noteq> []` show "?Q s2"
            by (simp add:reps'_def)
        next
          from h(2) show "s1 ## s2" .
        next
          from h(1) show "s = s1 + s2" .
        qed
        thus "reps' i j (ks1 @ ks2) s"
          by (unfold eq_2 eq_1, auto simp:sep_conj_ac)
      qed
    qed
  next
    case True
    have "-1 + j = j - 1" by auto
    with `ks1 \<noteq> []` True
    show ?thesis
      apply (auto simp:reps'_def pred_ex_def pasrt_def)
      apply (unfold `-1 + j = j - 1`)
      by (fold sep_empty_def, simp only:sep_conj_empty)
  qed
qed

lemma reps'_sg: 
  "reps' i j [k] = 
       (<(j = i + int k + 1)> \<and>* ones i (i + int k) \<and>* zero j)"
  apply (unfold reps'_def, default, auto simp:sep_conj_ac)
  by (sep_cancel+, simp add:pasrt_def)+


section {* Basic macros for TM *}

definition "write_zero = (TL exit. \<guillemotright>((W0, exit), (W0, exit)); TLabel exit)"

lemma st_upd: 
  assumes pre: "(st i' ** r) (trset_of (f, x, i, y, z))"
  shows "(st i'' ** r) (trset_of (f, x,  i'', y, z))"
proof -
  from stimes_sgD[OF pre[unfolded st_def], unfolded trset_of.simps, unfolded stD[OF pre]]
  have "r (tprog_set x \<union> tpc_set i' \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f - tpc_set i')"
    by blast
  moreover have 
    "(tprog_set x \<union> tpc_set i' \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f - tpc_set i') =
     (tprog_set x \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f)"
    by (unfold tpn_set_def, auto)
  ultimately have r_rest: "r (tprog_set x \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f)"
    by auto
  show ?thesis
  proof(rule sep_conjI[where Q = r, OF _ r_rest])
    show "st i'' (tpc_set i'')" 
      by (unfold st_def sg_def, simp)
  next
    show "tpc_set i'' ## tprog_set x \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f"
      by (unfold tpn_set_def sep_disj_set_def, auto)
  next
    show "trset_of (f, x, i'', y, z) =
             tpc_set i'' + (tprog_set x \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f)"
      by (unfold trset_of.simps plus_set_def, auto)
  qed
qed

lemma pos_upd: 
  assumes pre: "(ps i ** r) (trset_of (f, x, y, i', z))"
  shows "(ps j ** r) (trset_of (f, x, y, j, z))"
proof -
  from stimes_sgD[OF pre[unfolded ps_def], unfolded trset_of.simps, unfolded psD[OF pre]]
  have "r (tprog_set x \<union> tpc_set y \<union> tpos_set i \<union> tmem_set z \<union> 
              tfaults_set f - tpos_set i)" (is "r ?xs")
    by blast
  moreover have 
    "?xs = tprog_set x \<union> tpc_set y  \<union> tmem_set z \<union> tfaults_set f"
    by (unfold tpn_set_def, auto)
  ultimately have r_rest: "r \<dots>"
    by auto
  show ?thesis
  proof(rule sep_conjI[where Q = r, OF _ r_rest])
    show "ps j (tpos_set j)" 
      by (unfold ps_def sg_def, simp)
  next
    show "tpos_set j ## tprog_set x \<union> tpc_set y \<union> tmem_set z \<union> tfaults_set f"
      by (unfold tpn_set_def sep_disj_set_def, auto)
  next
    show "trset_of (f, x, y, j, z) = 
             tpos_set j + (tprog_set x \<union> tpc_set y \<union> tmem_set z \<union> tfaults_set f)"
      by (unfold trset_of.simps plus_set_def, auto)
  qed
qed

lemma TM_in_simp: "({TM a v} \<subseteq> 
                      tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tmem_set mem \<union> tfaults_set f) = 
                             ({TM a v} \<subseteq> tmem_set mem)"
  by (unfold tpn_set_def, auto)

lemma tmem_set_upd: 
  "{TM a v} \<subseteq> tmem_set mem \<Longrightarrow> 
        tmem_set (mem(a:=Some v')) = ((tmem_set mem) - {TM a v}) \<union> {TM a v'}"
  by (unfold tpn_set_def, auto)

lemma tmem_set_disj: "{TM a v} \<subseteq> tmem_set mem \<Longrightarrow> 
                            {TM a v'} \<inter>  (tmem_set mem - {TM a v}) = {}"
  by (unfold tpn_set_def, auto)

lemma smem_upd: "((tm a v) ** r) (trset_of (f, x, y, z, mem))  \<Longrightarrow> 
                    ((tm a v') ** r) (trset_of (f, x, y, z, mem(a := Some v')))"
proof -
  have eq_s: "(tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tmem_set mem \<union> tfaults_set f - {TM a v}) =
    (tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> (tmem_set mem - {TM a v}) \<union> tfaults_set f)"
    by (unfold tpn_set_def, auto)
  assume g: "(tm a v \<and>* r) (trset_of (f, x, y, z, mem))"
  from this[unfolded trset_of.simps tm_def]
  have h: "(sg {TM a v} \<and>* r) (tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tmem_set mem \<union> tfaults_set f)" .
  hence h0: "r (tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> (tmem_set mem - {TM a v}) \<union> tfaults_set f)"
    by(sep_drule stimes_sgD, clarify, unfold eq_s, auto)
  from h TM_in_simp have "{TM a v} \<subseteq> tmem_set mem"
    by(sep_drule stimes_sgD, auto)
  from tmem_set_upd [OF this] tmem_set_disj[OF this]
  have h2: "tmem_set (mem(a \<mapsto> v')) = {TM a v'} \<union> (tmem_set mem - {TM a v})" 
           "{TM a v'} \<inter> (tmem_set mem - {TM a v}) = {}" by auto
  show ?thesis
  proof -
    have "(tm a v' ** r) (tmem_set (mem(a \<mapsto> v')) \<union> tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tfaults_set f)"
    proof(rule sep_conjI)
      show "tm a v' ({TM a v'})" by (unfold tm_def sg_def, simp)
    next
      from h0 show "r (tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> (tmem_set mem - {TM a v}) \<union> tfaults_set f)" .
    next
      show "{TM a v'} ## tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> (tmem_set mem - {TM a v}) \<union> tfaults_set f"
      proof -
        from g have " mem a = Some v"
          by(sep_frule memD, simp)
        thus "?thesis"
          by(unfold tpn_set_def set_ins_def, auto)
      qed
    next
      show "tmem_set (mem(a \<mapsto> v')) \<union> tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tfaults_set f =
    {TM a v'} + (tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> (tmem_set mem - {TM a v}) \<union> tfaults_set f)"
        by (unfold h2(1) set_ins_def eq_s, auto)
    qed
    thus ?thesis 
      apply (unfold trset_of.simps)
      by (metis sup_commute sup_left_commute)
  qed
qed

lemma hoare_write_zero: 
  "\<lbrace>st i ** ps p ** tm p v\<rbrace> 
     i:[write_zero]:j
   \<lbrace>st j ** ps p ** tm p Bk\<rbrace>"
proof(unfold write_zero_def, intro t_hoare_local, rule t_hoare_label_last, simp, simp)
  show "\<lbrace>st i \<and>* ps p \<and>* tm p v\<rbrace>  i :[ \<guillemotright> ((W0, j), W0, j) ]: j \<lbrace>st j \<and>* ps p \<and>* tm p Bk\<rbrace>"
  proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
        intro tm.code_condI, simp)
    assume eq_j: "j = Suc i"
    show "\<lbrace>st i \<and>* ps p \<and>* tm p v\<rbrace>  sg {TC i ((W0, Suc i), W0, Suc i)} 
          \<lbrace>st (Suc i) \<and>* ps p \<and>* tm p Bk\<rbrace>"
    proof(fold eq_j, unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
      fix ft prog cs i' mem r
      assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v \<and>* sg {TC i ((W0, j), W0, j)})
              (trset_of (ft, prog, cs, i', mem))"
      from h have "prog i = Some ((W0, j), W0, j)"
        apply(rule_tac r = "r \<and>* ps p \<and>* tm p v" in codeD)
        by(simp add: sep_conj_ac)
      from h and this have stp:
        "tm.run 1 (ft, prog, cs, i', mem) = (ft, prog, j, i', mem(i'\<mapsto> Bk))" (is "?x = ?y")
        apply(sep_frule psD)
        apply(sep_frule stD)
        apply(sep_frule memD, simp)
        by(cases v, unfold tm.run_def, auto)
      from h have "i' = p"
        by(sep_drule psD, simp)
      with h
      have "(r \<and>* ps p \<and>* st j \<and>* tm p Bk \<and>* sg {TC i ((W0, j), W0, j)}) (trset_of ?x)"
        apply(unfold stp)
        apply(sep_drule pos_upd, sep_drule st_upd, sep_drule smem_upd)
        apply(auto simp: sep_conj_ac)
        done
      thus "\<exists>k. (r \<and>* ps p \<and>* st j \<and>* tm p Bk \<and>* sg {TC i ((W0, j), W0, j)}) 
             (trset_of (tm.run (Suc k) (ft, prog, cs, i', mem)))"
        apply (rule_tac x = 0 in exI)
        by auto
    qed
  qed
qed

lemma hoare_write_zero_gen[step]: 
  assumes "p = q"
  shows  "\<lbrace>st i ** ps p ** tm q v\<rbrace> 
            i:[write_zero]:j
          \<lbrace>st j ** ps p ** tm q Bk\<rbrace>"
  by (unfold assms, rule hoare_write_zero)

definition "write_one = (TL exit. \<guillemotright>((W1, exit), (W1, exit)); TLabel exit)"

lemma hoare_write_one: 
  "\<lbrace>st i ** ps p ** tm p v\<rbrace> 
     i:[write_one]:j
   \<lbrace>st j ** ps p ** tm p Oc\<rbrace>"
proof(unfold write_one_def, intro t_hoare_local, rule t_hoare_label_last, simp+)
  fix l
  show "\<lbrace>st i \<and>* ps p \<and>* tm p v\<rbrace>  i :[ \<guillemotright> ((W1, j), W1, j) ]: j \<lbrace>st j \<and>* ps p \<and>* tm p Oc\<rbrace>"
  proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
        rule_tac tm.code_condI, simp add: sep_conj_ac)
    let ?j = "Suc i"
    show "\<lbrace>ps p \<and>* st i \<and>* tm p v\<rbrace>  sg {TC i ((W1, ?j), W1, ?j)} 
          \<lbrace>ps p \<and>* st ?j \<and>* tm p Oc\<rbrace>"
    proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
      fix ft prog cs i' mem r
      assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v \<and>* sg {TC i ((W1, ?j), W1, ?j)})
              (trset_of (ft, prog, cs, i', mem))"
      from h have "prog i = Some ((W1, ?j), W1, ?j)"
        apply(rule_tac r = "r \<and>* ps p \<and>* tm p v" in codeD)
        by(simp add: sep_conj_ac)
      from h and this have stp:
        "tm.run 1 (ft, prog, cs, i', mem) = 
                     (ft, prog, ?j, i', mem(i'\<mapsto> Oc))" (is "?x = ?y")
        apply(sep_frule psD)
        apply(sep_frule stD)
        apply(sep_frule memD, simp)
        by(cases v, unfold tm.run_def, auto)
      from h have "i' = p"
        by(sep_drule psD, simp)
      with h
      have "(r \<and>* ps p \<and>* st ?j \<and>* tm p Oc \<and>* sg {TC i ((W1, ?j), W1, ?j)}) (trset_of ?x)"
        apply(unfold stp)
        apply(sep_drule pos_upd, sep_drule st_upd, sep_drule smem_upd)
        apply(auto simp: sep_conj_ac)
        done
      thus "\<exists>k. (r \<and>* ps p \<and>* st ?j \<and>* tm p Oc \<and>* sg {TC i ((W1, ?j), W1, ?j)}) 
             (trset_of (tm.run (Suc k) (ft, prog, cs, i', mem)))"
        apply (rule_tac x = 0 in exI)
        by auto
    qed
  qed
qed

lemma hoare_write_one_gen[step]: 
  assumes "p = q"
  shows  "\<lbrace>st i ** ps p ** tm q v\<rbrace> 
              i:[write_one]:j
          \<lbrace>st j ** ps p ** tm q Oc\<rbrace>"
  by (unfold assms, rule hoare_write_one)

definition "move_left = (TL exit . \<guillemotright>((L, exit), (L, exit)); TLabel exit)"

lemma hoare_move_left: 
  "\<lbrace>st i ** ps p ** tm p v2\<rbrace> 
     i:[move_left]:j
   \<lbrace>st j ** ps (p - 1) **  tm p v2\<rbrace>"
proof(unfold move_left_def, intro t_hoare_local, rule t_hoare_label_last, simp+)
  fix l
  show "\<lbrace>st i \<and>* ps p \<and>* tm p v2\<rbrace>  i :[ \<guillemotright> ((L, l), L, l) ]: l
        \<lbrace>st l \<and>* ps (p - 1) \<and>* tm p v2\<rbrace>"
  proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
      intro tm.code_condI, simp add: sep_conj_ac)
    let ?j = "Suc i"
    show "\<lbrace>ps p \<and>* st i \<and>* tm p v2\<rbrace>  sg {TC i ((L, ?j), L, ?j)} 
          \<lbrace>st ?j \<and>* tm p v2 \<and>* ps (p - 1)\<rbrace>"
    proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
      fix ft prog cs i' mem r
      assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v2 \<and>* sg {TC i ((L, ?j), L, ?j)}) 
                       (trset_of (ft, prog, cs, i',  mem))"
      from h have "prog i = Some ((L, ?j), L, ?j)"
        apply(rule_tac r = "r \<and>* ps p \<and>* tm p v2" in codeD)
        by(simp add: sep_conj_ac)
      from h and this have stp:
        "tm.run 1 (ft, prog, cs, i', mem) = (ft, prog, ?j, i' - 1, mem)" (is "?x = ?y")
        apply(sep_frule psD)
        apply(sep_frule stD)
        apply(sep_frule memD, simp)
        apply(unfold tm.run_def, case_tac v2, auto)
        done
      from h have "i' = p"
        by(sep_drule psD, simp)
      with h
      have "(r \<and>* st ?j \<and>* tm p v2 \<and>* ps (p - 1) \<and>* sg {TC i ((L, ?j), L, ?j)}) 
               (trset_of ?x)"
        apply(unfold stp)
        apply(sep_drule pos_upd, sep_drule st_upd, simp)
      proof -
        assume "(st ?j \<and>* ps (p - 1) \<and>* r \<and>* tm p v2 \<and>* sg {TC i ((L, ?j), L, ?j)}) 
                   (trset_of (ft, prog, ?j, p - 1, mem))"
        thus "(r \<and>* st ?j \<and>* tm p v2 \<and>* ps (p - 1) \<and>* sg {TC i ((L, ?j), L, ?j)}) 
                    (trset_of (ft, prog, ?j, p - 1, mem))"
          by(simp add: sep_conj_ac)
      qed
      thus "\<exists>k. (r \<and>* st ?j \<and>* tm p v2 \<and>* ps (p - 1) \<and>* sg {TC i ((L, ?j), L, ?j)}) 
             (trset_of (tm.run (Suc k) (ft, prog, cs, i', mem)))"
        apply (rule_tac x = 0 in exI)
        by auto
    qed
  qed
qed

lemma hoare_move_left_gen[step]: 
  assumes "p = q"
  shows "\<lbrace>st i ** ps p ** tm q v2\<rbrace> 
            i:[move_left]:j
         \<lbrace>st j ** ps (p - 1) **  tm q v2\<rbrace>"
  by (unfold assms, rule hoare_move_left)

definition "move_right = (TL exit . \<guillemotright>((R, exit), (R, exit)); TLabel exit)"

lemma hoare_move_right: 
  "\<lbrace>st i ** ps p ** tm p v1 \<rbrace> 
     i:[move_right]:j
   \<lbrace>st j ** ps (p + 1) ** tm p v1 \<rbrace>"
proof(unfold move_right_def, intro t_hoare_local, rule t_hoare_label_last, simp+)
  fix l
  show "\<lbrace>st i \<and>* ps p \<and>* tm p v1\<rbrace>  i :[ \<guillemotright> ((R, l), R, l) ]: l
        \<lbrace>st l \<and>* ps (p + 1) \<and>* tm p v1\<rbrace>"
  proof(unfold tassemble_to.simps, simp only:sep_conj_cond, 
      intro tm.code_condI, simp add: sep_conj_ac)
    let ?j = "Suc i"
    show "\<lbrace>ps p \<and>* st i \<and>* tm p v1\<rbrace>  sg {TC i ((R, ?j), R, ?j)} 
          \<lbrace>st ?j \<and>* tm p v1 \<and>* ps (p + 1)\<rbrace>"
    proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
      fix ft prog cs i' mem r
      assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v1 \<and>* sg {TC i ((R, ?j), R, ?j)}) 
                       (trset_of (ft, prog, cs, i',  mem))"
      from h have "prog i = Some ((R, ?j), R, ?j)"
        apply(rule_tac r = "r \<and>* ps p \<and>* tm p v1" in codeD)
        by(simp add: sep_conj_ac)
      from h and this have stp:
        "tm.run 1 (ft, prog, cs, i', mem) = (ft, prog, ?j, i'+ 1, mem)" (is "?x = ?y")
        apply(sep_frule psD)
        apply(sep_frule stD)
        apply(sep_frule memD, simp)
        apply(unfold tm.run_def, case_tac v1, auto)
        done
      from h have "i' = p"
        by(sep_drule psD, simp)
      with h
      have "(r \<and>* st ?j \<and>* tm p v1 \<and>* ps (p + 1) \<and>* 
                sg {TC i ((R, ?j), R, ?j)}) (trset_of ?x)"
        apply(unfold stp)
        apply(sep_drule pos_upd, sep_drule st_upd, simp)
      proof -
        assume "(st ?j \<and>* ps (p + 1) \<and>* r \<and>* tm p v1 \<and>* sg {TC i ((R, ?j), R, ?j)}) 
                   (trset_of (ft, prog, ?j, p + 1, mem))"
        thus "(r \<and>* st ?j \<and>* tm p v1 \<and>* ps (p + 1) \<and>* sg {TC i ((R, ?j), R, ?j)}) 
                    (trset_of (ft, prog, ?j, p + 1, mem))"
          by (simp add: sep_conj_ac)
      qed
      thus "\<exists>k. (r \<and>* st ?j \<and>* tm p v1 \<and>* ps (p + 1) \<and>* sg {TC i ((R, ?j), R, ?j)}) 
             (trset_of (tm.run (Suc k) (ft, prog, cs, i', mem)))"
        apply (rule_tac x = 0 in exI)
        by auto
    qed
  qed
qed

lemma hoare_move_right_gen[step]: 
  assumes "p = q"
  shows "\<lbrace>st i ** ps p ** tm q v1 \<rbrace> 
           i:[move_right]:j
         \<lbrace>st j ** ps (p + 1) ** tm q v1 \<rbrace>"
  by (unfold assms, rule hoare_move_right)

definition "if_one e = (TL exit . \<guillemotright>((W0, exit), (W1, e)); TLabel exit)"

lemma hoare_if_one_true: 
  "\<lbrace>st i ** ps p ** one p\<rbrace> 
     i:[if_one e]:j
   \<lbrace>st e ** ps p ** one p\<rbrace>"
proof(unfold if_one_def, intro t_hoare_local, rule t_hoare_label_last, simp+)
  fix l
  show " \<lbrace>st i \<and>* ps p \<and>* one p\<rbrace>  i :[ \<guillemotright> ((W0, l), W1, e) ]: l \<lbrace>st e \<and>* ps p \<and>* one p\<rbrace>"
  proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
        intro tm.code_condI, simp add: sep_conj_ac)
    let ?j = "Suc i"
    show "\<lbrace>one p \<and>* ps p \<and>* st i\<rbrace>  sg {TC i ((W0, ?j), W1, e)} \<lbrace>one p \<and>* ps p \<and>* st e\<rbrace>"
    proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
      fix ft prog cs pc mem r
      assume h: "(r \<and>* one p \<and>* ps p \<and>* st i \<and>* sg {TC i ((W0, ?j), W1, e)}) 
        (trset_of (ft, prog, cs, pc, mem))"
      from h have k1: "prog i = Some ((W0, ?j), W1, e)"
        apply(rule_tac r = "r \<and>* one p \<and>* ps p" in codeD)
        by(simp add: sep_conj_ac)
      from h have k2: "pc = p"
        by(sep_drule psD, simp)
      from h and this have k3: "mem pc = Some Oc"
        apply(unfold one_def)
        by(sep_drule memD, simp)
      from h k1 k2 k3 have stp:
        "tm.run 1 (ft, prog, cs, pc, mem) = (ft, prog, e, pc, mem)" (is "?x = ?y")
        apply(sep_drule stD)
        by(unfold tm.run_def, auto)
      from h k2 
      have "(r \<and>* one p \<and>* ps p \<and>* st e \<and>* sg {TC i ((W0, ?j), W1, e)})  (trset_of ?x)"
        apply(unfold stp)
        by(sep_drule st_upd, simp add: sep_conj_ac)
      thus "\<exists>k.(r \<and>* one p \<and>* ps p \<and>* st e \<and>* sg {TC i ((W0, ?j), W1, e)})
             (trset_of (tm.run (Suc k) (ft, prog, cs, pc, mem)))"
        apply (rule_tac x = 0 in exI)
        by auto
    qed
  qed
qed

text {*
  The following problematic lemma is not provable now 
  lemma hoare_self: "\<lbrace>p\<rbrace> i :[ap]: j \<lbrace>p\<rbrace>" 
  apply(simp add: tm.Hoare_gen_def, clarify)
  apply(rule_tac x = 0 in exI, simp add: tm.run_def)
  done
*}

lemma hoare_if_one_true_gen[step]: 
  assumes "p = q"
  shows
  "\<lbrace>st i ** ps p ** one q\<rbrace> 
     i:[if_one e]:j
   \<lbrace>st e ** ps p ** one q\<rbrace>"
  by (unfold assms, rule hoare_if_one_true)

lemma hoare_if_one_true1: 
  "\<lbrace>st i ** ps p ** one p\<rbrace> 
     i:[(if_one e; c)]:j
   \<lbrace>st e ** ps p ** one p\<rbrace>"
proof(unfold tassemble_to.simps, rule tm.code_exI, 
       simp add: sep_conj_ac tm.Hoare_gen_def, clarify)  
  fix j' ft prog cs pos mem r
  assume h: "(r \<and>* one p \<and>* ps p \<and>* st i \<and>* j' :[ c ]: j \<and>* i :[ if_one e ]: j') 
    (trset_of (ft, prog, cs, pos, mem))"
  from tm.frame_rule[OF hoare_if_one_true]
  have "\<And> r. \<lbrace>st i \<and>* ps p \<and>* one p \<and>* r\<rbrace>  i :[ if_one e ]: j' \<lbrace>st e \<and>* ps p \<and>* one p \<and>* r\<rbrace>"
    by(simp add: sep_conj_ac)
  from this[unfolded tm.Hoare_gen_def tassemble_to.simps, rule_format, of "j' :[ c ]: j"] h
  have "\<exists> k. (r \<and>* one p \<and>* ps p \<and>* st e \<and>* i :[ if_one e ]: j' \<and>* j' :[ c ]: j)
    (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
    by(auto simp: sep_conj_ac)
  thus "\<exists>k. (r \<and>* one p \<and>* ps p \<and>* st e \<and>* j' :[ c ]: j \<and>* i :[ if_one e ]: j') 
    (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
    by(simp add: sep_conj_ac)
qed

lemma hoare_if_one_true1_gen[step]: 
  assumes "p = q"
  shows
  "\<lbrace>st i ** ps p ** one q\<rbrace> 
     i:[(if_one e; c)]:j
   \<lbrace>st e ** ps p ** one q\<rbrace>"
  by (unfold assms, rule hoare_if_one_true1)

lemma hoare_if_one_false: 
  "\<lbrace>st i ** ps p ** zero p\<rbrace> 
       i:[if_one e]:j
   \<lbrace>st j ** ps p ** zero p\<rbrace>"
proof(unfold if_one_def, intro t_hoare_local, rule t_hoare_label_last, simp+)
  show "\<lbrace>st i \<and>* ps p \<and>* zero p\<rbrace>  i :[ (\<guillemotright> ((W0, j), W1, e)) ]: j
        \<lbrace>st j \<and>* ps p \<and>* zero p\<rbrace>"
  proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
        intro tm.code_condI, simp add: sep_conj_ac)
    let ?j = "Suc i"
    show "\<lbrace>ps p \<and>* st i \<and>* zero p\<rbrace>  sg {TC i ((W0, ?j), W1, e)} \<lbrace>ps p \<and>*  zero p \<and>* st ?j \<rbrace>"
    proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
      fix ft prog cs pc mem r
      assume h: "(r \<and>* ps p \<and>* st i \<and>* zero p \<and>* sg {TC i ((W0, ?j), W1, e)})
        (trset_of (ft, prog, cs, pc, mem))"
      from h have k1: "prog i = Some ((W0, ?j), W1, e)"
        apply(rule_tac r = "r \<and>* zero p \<and>* ps p" in codeD)
        by(simp add: sep_conj_ac)
      from h have k2: "pc = p"
        by(sep_drule psD, simp)
      from h and this have k3: "mem pc = Some Bk"
        apply(unfold zero_def)
        by(sep_drule memD, simp)
      from h k1 k2 k3 have stp:
        "tm.run 1 (ft, prog, cs, pc, mem) = (ft, prog, ?j, pc, mem)" (is "?x = ?y")
        apply(sep_drule stD)
        by(unfold tm.run_def, auto)
      from h k2 
      have "(r \<and>* zero p \<and>* ps p \<and>* st ?j \<and>* sg {TC i ((W0, ?j), W1, e)})  (trset_of ?x)"
        apply (unfold stp)
        by (sep_drule st_upd[where i''="?j"], auto simp:sep_conj_ac)
      thus "\<exists>k. (r \<and>* ps p \<and>* zero p \<and>* st ?j \<and>*  sg {TC i ((W0, ?j), W1, e)})
             (trset_of (tm.run (Suc k) (ft, prog, cs, pc, mem)))"
        by(auto simp: sep_conj_ac)
    qed
  qed
qed

lemma hoare_if_one_false_gen[step]: 
  assumes "p = q"
  shows "\<lbrace>st i ** ps p ** zero q\<rbrace> 
             i:[if_one e]:j
         \<lbrace>st j ** ps p ** zero q\<rbrace>"
  by (unfold assms, rule hoare_if_one_false)

definition "if_zero e = (TL exit . \<guillemotright>((W0, e), (W1, exit)); TLabel exit)"

lemma hoare_if_zero_true: 
  "\<lbrace>st i ** ps p ** zero p\<rbrace> 
     i:[if_zero e]:j
   \<lbrace>st e ** ps p ** zero p\<rbrace>"
proof(unfold if_zero_def, intro t_hoare_local, rule t_hoare_label_last, simp+)
  fix l
  show "\<lbrace>st i \<and>* ps p \<and>* zero p\<rbrace>  i :[ \<guillemotright> ((W0, e), W1, l) ]: l \<lbrace>st e \<and>* ps p \<and>* zero p\<rbrace>"
  proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
        intro tm.code_condI, simp add: sep_conj_ac)
    let ?j = "Suc i"
    show "\<lbrace>ps p \<and>* st i \<and>* zero p\<rbrace>  sg {TC i ((W0, e), W1, ?j)} \<lbrace>ps p \<and>* st e \<and>* zero p\<rbrace>"
    proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
      fix ft prog cs pc mem r
      assume h: "(r \<and>* ps p \<and>* st i \<and>* zero p \<and>* sg {TC i ((W0, e), W1, ?j)})
        (trset_of (ft, prog, cs, pc, mem))"
      from h have k1: "prog i = Some ((W0, e), W1, ?j)"
        apply(rule_tac r = "r \<and>* zero p \<and>* ps p" in codeD)
        by(simp add: sep_conj_ac)
      from h have k2: "pc = p"
        by(sep_drule psD, simp)
      from h and this have k3: "mem pc = Some Bk"
        apply(unfold zero_def)
        by(sep_drule memD, simp)
      from h k1 k2 k3 have stp:
        "tm.run 1 (ft, prog, cs, pc, mem) = (ft, prog, e, pc, mem)" (is "?x = ?y")
        apply(sep_drule stD)
        by(unfold tm.run_def, auto)
      from h k2 
      have "(r \<and>* zero p \<and>* ps p \<and>* st e \<and>* sg {TC i ((W0, e), W1, ?j)})  (trset_of ?x)"
        apply(unfold stp)
        by(sep_drule st_upd, simp add: sep_conj_ac)
      thus "\<exists>k. (r \<and>* ps p \<and>* st e \<and>* zero p \<and>* sg {TC i ((W0, e), W1, ?j)})
             (trset_of (tm.run (Suc k) (ft, prog, cs, pc, mem)))"
        by(auto simp: sep_conj_ac)
    qed
  qed
qed

lemma hoare_if_zero_true_gen[step]: 
  assumes "p = q"
  shows
  "\<lbrace>st i ** ps p ** zero q\<rbrace> 
     i:[if_zero e]:j
   \<lbrace>st e ** ps p ** zero q\<rbrace>"
  by (unfold assms, rule hoare_if_zero_true)

lemma hoare_if_zero_true1: 
  "\<lbrace>st i ** ps p ** zero p\<rbrace> 
     i:[(if_zero e; c)]:j
   \<lbrace>st e ** ps p ** zero p\<rbrace>"
 proof(unfold tassemble_to.simps, rule tm.code_exI, simp add: sep_conj_ac 
        tm.Hoare_gen_def, clarify)  
  fix j' ft prog cs pos mem r
  assume h: "(r \<and>* ps p \<and>* st i \<and>* zero p \<and>* j' :[ c ]: j \<and>* i :[ if_zero e ]: j') 
    (trset_of (ft, prog, cs, pos, mem))"
  from tm.frame_rule[OF hoare_if_zero_true]
  have "\<And> r. \<lbrace>st i \<and>* ps p \<and>* zero p \<and>* r\<rbrace>  i :[ if_zero e ]: j' \<lbrace>st e \<and>* ps p \<and>* zero p \<and>* r\<rbrace>"
    by(simp add: sep_conj_ac)
  from this[unfolded tm.Hoare_gen_def tassemble_to.simps, rule_format, of "j' :[ c ]: j"] h
  have "\<exists> k. (r \<and>* zero p \<and>* ps p \<and>* st e \<and>* i :[ if_zero e ]: j' \<and>* j' :[ c ]: j)
    (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
    by(auto simp: sep_conj_ac)
  thus "\<exists>k. (r \<and>* ps p \<and>* st e \<and>* zero p \<and>* j' :[ c ]: j \<and>* i :[ if_zero e ]: j')  
    (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
    by(simp add: sep_conj_ac)
qed

lemma hoare_if_zero_true1_gen[step]: 
  assumes "p = q"
  shows
  "\<lbrace>st i ** ps p ** zero q\<rbrace> 
     i:[(if_zero e; c)]:j
   \<lbrace>st e ** ps p ** zero q\<rbrace>"
  by (unfold assms, rule hoare_if_zero_true1)

lemma hoare_if_zero_false: 
  "\<lbrace>st i ** ps p ** tm p Oc\<rbrace> 
     i:[if_zero e]:j
   \<lbrace>st j ** ps p ** tm p Oc\<rbrace>"
proof(unfold if_zero_def, intro t_hoare_local, rule t_hoare_label_last, simp, simp)
  fix l
  show "\<lbrace>st i \<and>* ps p \<and>* tm p Oc\<rbrace>  i :[ \<guillemotright> ((W0, e), W1, l) ]: l
        \<lbrace>st l \<and>* ps p \<and>* tm p Oc\<rbrace>"
  proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
      intro tm.code_condI, simp add: sep_conj_ac)
    let ?j = "Suc i"
    show "\<lbrace>ps p \<and>* st i \<and>* tm p Oc\<rbrace>  sg {TC i ((W0, e), W1, ?j)} 
          \<lbrace>ps p \<and>* st ?j \<and>* tm p Oc\<rbrace>"
    proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
      fix ft prog cs pc mem r
      assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p Oc \<and>* sg {TC i ((W0, e), W1, ?j)})
        (trset_of (ft, prog, cs, pc, mem))"
      from h have k1: "prog i = Some ((W0, e), W1, ?j)"
        apply(rule_tac r = "r \<and>* tm p Oc \<and>* ps p" in codeD)
        by(simp add: sep_conj_ac)
      from h have k2: "pc = p"
        by(sep_drule psD, simp)
      from h and this have k3: "mem pc = Some Oc"
        by(sep_drule memD, simp)
      from h k1 k2 k3 have stp:
        "tm.run 1 (ft, prog, cs, pc, mem) = (ft, prog, ?j, pc, mem)" (is "?x = ?y")
        apply(sep_drule stD)
        by(unfold tm.run_def, auto)
      from h k2 
      have "(r \<and>* tm p Oc \<and>* ps p \<and>* st ?j \<and>* sg {TC i ((W0, e), W1, ?j)})  (trset_of ?x)"
        apply(unfold stp)
        by(sep_drule st_upd, simp add: sep_conj_ac)
      thus "\<exists>k. (r \<and>* ps p \<and>* st ?j \<and>* tm p Oc \<and>* sg {TC i ((W0, e), W1, ?j)})
             (trset_of (tm.run (Suc k) (ft, prog, cs, pc, mem)))"
        by(auto simp: sep_conj_ac)
    qed
  qed
qed

lemma hoare_if_zero_false_gen[step]: 
  assumes "p = q"
  shows
  "\<lbrace>st i ** ps p ** tm q Oc\<rbrace> 
     i:[if_zero e]:j
   \<lbrace>st j ** ps p ** tm q Oc\<rbrace>"
  by (unfold assms, rule hoare_if_zero_false)


definition "jmp e = \<guillemotright>((W0, e), (W1, e))"

lemma hoare_jmp: 
  "\<lbrace>st i \<and>* ps p \<and>* tm p v\<rbrace>  i:[jmp e]:j \<lbrace>st e \<and>* ps p \<and>* tm p v\<rbrace>"
proof(unfold jmp_def tm.Hoare_gen_def tassemble_to.simps sep_conj_ac, clarify)
  fix ft prog cs pos mem r
  assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v \<and>* <(j = i + 1)> \<and>* sg {TC i ((W0, e), W1, e)})
    (trset_of (ft, prog, cs, pos, mem))"
  from h have k1: "prog i = Some ((W0, e), W1, e)"
    apply(rule_tac r = "r \<and>* <(j = i + 1)> \<and>* tm p v \<and>* ps p" in codeD)
    by(simp add: sep_conj_ac)
  from h have k2: "p = pos"
    by(sep_drule psD, simp)
  from h k2 have k3: "mem pos = Some v"
    by(sep_drule memD, simp)
  from h k1 k2 k3 have 
    stp: "tm.run 1 (ft, prog, cs, pos, mem) = (ft, prog, e, pos, mem)" (is "?x = ?y")
    apply(sep_drule stD)
    by(unfold tm.run_def, cases "mem pos", simp, cases v, auto)
  from h k2 
  have "(r \<and>* ps p \<and>* st e \<and>* tm p v \<and>* <(j = i + 1)> \<and>* 
           sg {TC i ((W0, e), W1, e)}) (trset_of ?x)"
    apply(unfold stp)
    by(sep_drule st_upd, simp add: sep_conj_ac)
  thus "\<exists> k. (r \<and>* ps p \<and>* st e \<and>* tm p v \<and>* <(j = i + 1)> \<and>* sg {TC i ((W0, e), W1, e)})
             (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
    apply (rule_tac x = 0 in exI)
    by auto
qed

lemma hoare_jmp_gen[step]: 
  assumes "p = q"
  shows "\<lbrace>st i \<and>* ps p \<and>* tm q v\<rbrace>  i:[jmp e]:j \<lbrace>st e \<and>* ps p \<and>* tm q v\<rbrace>"
  by (unfold assms, rule hoare_jmp)

lemma hoare_jmp1: 
  "\<lbrace>st i \<and>* ps p \<and>* tm p v\<rbrace> 
     i:[(jmp e; c)]:j
   \<lbrace>st e \<and>* ps p \<and>* tm p v\<rbrace>"
proof(unfold  tassemble_to.simps, rule tm.code_exI, simp 
              add: sep_conj_ac tm.Hoare_gen_def, clarify)
  fix j' ft prog cs pos mem r
  assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v \<and>* j' :[ c ]: j \<and>* i :[ jmp e ]: j') 
    (trset_of (ft, prog, cs, pos, mem))"
  from tm.frame_rule[OF hoare_jmp]
  have "\<And> r. \<lbrace>st i \<and>* ps p \<and>* tm p v \<and>* r\<rbrace>  i :[ jmp e ]: j' \<lbrace>st e \<and>* ps p \<and>* tm p v \<and>* r\<rbrace>"
    by(simp add: sep_conj_ac)
  from this[unfolded tm.Hoare_gen_def tassemble_to.simps, rule_format, of "j' :[ c ]: j"] h
  have "\<exists> k. (r \<and>* tm p v \<and>* ps p \<and>* st e \<and>* i :[ jmp e ]: j' \<and>* j' :[ c ]: j)
    (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
    by(auto simp: sep_conj_ac)
  thus "\<exists>k. (r \<and>* ps p \<and>* st e \<and>* tm p v \<and>* j' :[ c ]: j \<and>* i :[ jmp e ]: j')  
    (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
    by(simp add: sep_conj_ac)
qed


lemma hoare_jmp1_gen[step]: 
  assumes "p = q"
  shows "\<lbrace>st i \<and>* ps p \<and>* tm q v\<rbrace> 
            i:[(jmp e; c)]:j
         \<lbrace>st e \<and>* ps p \<and>* tm q v\<rbrace>"
  by (unfold assms, rule hoare_jmp1)


lemma condI: 
  assumes h1: b
  and h2: "b \<Longrightarrow> p s"
  shows "(<b> \<and>* p) s"
  by (metis (full_types) cond_true_eq1 h1 h2)

lemma condE:
  assumes "(<b> \<and>* p) s"
  obtains "b" and "p s"
proof(atomize_elim)
  from condD[OF assms]
  show "b \<and> p s" .
qed


section {* Tactics *}

ML {*
  val trace_step = Attrib.setup_config_bool @{binding trace_step} (K false)
  val trace_fwd = Attrib.setup_config_bool @{binding trace_fwd} (K false)
*}


ML {*
  val tracing  = (fn ctxt => fn str =>
                   if (Config.get ctxt trace_step) then tracing str else ())
  fun not_pred p = fn s => not (p s)
  fun break_sep_conj (Const (@{const_name sep_conj},_) $ t1 $ t2 $ _) =
         (break_sep_conj t1) @ (break_sep_conj t2)
    | break_sep_conj (Const (@{const_name sep_conj},_) $ t1 $ t2) =
            (break_sep_conj t1) @ (break_sep_conj t2)
                   (* dig through eta exanded terms: *)
    | break_sep_conj (Abs (_, _, t $ Bound 0)) = break_sep_conj t
    | break_sep_conj t = [t];

  val empty_env = (Vartab.empty, Vartab.empty)

  fun match_env ctxt pat trm env = 
            Pattern.match (ctxt |> Proof_Context.theory_of) (pat, trm) env

  fun match ctxt pat trm = match_env ctxt pat trm empty_env;

  val inst = Envir.subst_term;

  fun term_of_thm thm = thm |>  prop_of |> HOLogic.dest_Trueprop

  fun get_cmd ctxt code = 
      let val pat = term_of @{cpat "_:[(?cmd)]:_"}
          val pat1 = term_of @{cpat "?cmd::tpg"}
          val env = match ctxt pat code
      in inst env pat1 end

  fun is_seq_term (Const (@{const_name TSeq}, _) $ _ $ _) = true
    | is_seq_term _ = false

  fun get_hcmd  (Const (@{const_name TSeq}, _) $ hcmd $ _) = hcmd
    | get_hcmd hcmd = hcmd

  fun last [a]  = a |
      last (a::b) = last b

  fun but_last [a] = [] |
      but_last (a::b) = a::(but_last b)

  fun foldr f [] = (fn x => x) |
      foldr f (x :: xs) = (f x) o  (foldr f xs)

  fun concat [] = [] |
      concat (x :: xs) = x @ concat xs

  fun match_any ctxt pats tm = 
              fold 
                 (fn pat => fn b => (b orelse Pattern.matches 
                          (ctxt |> Proof_Context.theory_of) (pat, tm))) 
                 pats false

  fun is_ps_term (Const (@{const_name ps}, _) $ _) = true
    | is_ps_term _ = false

  fun string_of_term ctxt t = t |> Syntax.pretty_term ctxt |> Pretty.str_of
  fun string_of_cterm ctxt ct = ct |> term_of |> string_of_term ctxt
  fun pterm ctxt t =
          t |> string_of_term ctxt |> tracing ctxt
  fun pcterm ctxt ct = ct |> string_of_cterm ctxt |> tracing ctxt
  fun string_for_term ctxt t =
       Print_Mode.setmp (filter (curry (op =) Symbol.xsymbolsN)
                   (print_mode_value ())) (Syntax.string_of_term ctxt) t
         |> String.translate (fn c => if Char.isPrint c then str c else "")
         |> Sledgehammer_Util.simplify_spaces  
  fun string_for_cterm ctxt ct = ct |> term_of |> string_for_term ctxt
  fun attemp tac = fn i => fn st => (tac i st) handle exn => Seq.empty
  fun try_tac tac = fn i => fn st => (tac i st) handle exn => (Seq.single st)       
 (* aux end *) 
*}

ML {* (* Functions specific to Hoare triples *)
  fun get_pre ctxt t = 
    let val pat = term_of @{cpat "\<lbrace>?P\<rbrace> ?c \<lbrace>?Q\<rbrace>"} 
        val env = match ctxt pat t 
    in inst env (term_of @{cpat "?P::tresource set \<Rightarrow> bool"}) end

  fun can_process ctxt t = ((get_pre ctxt t; true) handle _ => false)

  fun get_post ctxt t = 
    let val pat = term_of @{cpat "\<lbrace>?P\<rbrace> ?c \<lbrace>?Q\<rbrace>"} 
        val env = match ctxt pat t 
    in inst env (term_of @{cpat "?Q::tresource set \<Rightarrow> bool"}) end;

  fun get_mid ctxt t = 
    let val pat = term_of @{cpat "\<lbrace>?P\<rbrace> ?c \<lbrace>?Q\<rbrace>"} 
        val env = match ctxt pat t 
    in inst env (term_of @{cpat "?c::tresource set \<Rightarrow> bool"}) end;

  fun is_pc_term (Const (@{const_name st}, _) $ _) = true
    | is_pc_term _ = false

  fun mk_pc_term x =
     Const (@{const_name st}, @{typ "nat \<Rightarrow> tresource set \<Rightarrow> bool"}) $ Free (x, @{typ "nat"})

  val sconj_term = term_of @{cterm "sep_conj::tassert \<Rightarrow> tassert \<Rightarrow> tassert"}

  fun mk_ps_term x =
     Const (@{const_name ps}, @{typ "int \<Rightarrow> tresource set \<Rightarrow> bool"}) $ Free (x, @{typ "int"})

  fun atomic tac  = ((SOLVED' tac) ORELSE' (K all_tac))

  fun map_simpset f = Context.proof_map (Simplifier.map_ss f)

  fun pure_sep_conj_ac_tac ctxt = 
         (auto_tac (map_simpset (fn ss => ss addsimps @{thms sep_conj_ac}) ctxt)
          |> SELECT_GOAL)


  fun potential_facts ctxt prop = Facts.could_unify (Proof_Context.facts_of ctxt) 
                                       ((Term.strip_all_body prop) |> Logic.strip_imp_concl);

  fun some_fact_tac ctxt = SUBGOAL (fn (goal, i) => 
                                      (Method.insert_tac (potential_facts ctxt goal) i) THEN
                                      (pure_sep_conj_ac_tac ctxt i));

  fun sep_conj_ac_tac ctxt = 
     (SOLVED' (auto_tac (ctxt |> map_simpset (fn ss => ss addsimps @{thms sep_conj_ac}))
       |> SELECT_GOAL)) ORELSE' (atomic (some_fact_tac ctxt))
*}

ML {*
type HoareTriple = {
  binding: binding,
  can_process: Proof.context -> term -> bool,
  get_pre: Proof.context -> term -> term,
  get_mid: Proof.context -> term -> term,
  get_post: Proof.context -> term -> term,
  is_pc_term: term -> bool,
  mk_pc_term: string -> term,
  sconj_term: term,
  sep_conj_ac_tac: Proof.context -> int -> tactic,
  hoare_seq1: thm,
  hoare_seq2: thm,
  pre_stren: thm,
  post_weaken: thm,
  frame_rule: thm
}

  val tm_triple = {binding = @{binding "tm_triple"}, 
                   can_process = can_process,
                   get_pre = get_pre,
                   get_mid = get_mid,
                   get_post = get_post,
                   is_pc_term = is_pc_term,
                   mk_pc_term = mk_pc_term,
                   sconj_term = sconj_term,
                   sep_conj_ac_tac = sep_conj_ac_tac,
                   hoare_seq1 = @{thm t_hoare_seq1},
                   hoare_seq2 = @{thm t_hoare_seq2},
                   pre_stren = @{thm tm.pre_stren},
                   post_weaken = @{thm tm.post_weaken},
                   frame_rule = @{thm tm.frame_rule}
                  }:HoareTriple
*}

ML {*
  val _ = data_slot "HoareTriples" "HoareTriple list" "[]"
*}

ML {*
  val _ = HoareTriples_store [tm_triple]
*}

ML {* (* aux1 functions *)

fun focus_params t ctxt =
  let
    val (xs, Ts) =
      split_list (Term.variant_frees t (Term.strip_all_vars t));  (*as they are printed :-*)
    (* val (xs', ctxt') = variant_fixes xs ctxt; *)
    (* val ps = xs' ~~ Ts; *)
    val ps = xs ~~ Ts
    val (_, ctxt'') = ctxt |> Variable.add_fixes xs
  in ((xs, ps), ctxt'') end

fun focus_concl ctxt t =
  let
    val ((xs, ps), ctxt') = focus_params t ctxt
    val t' = Term.subst_bounds (rev (map Free ps), Term.strip_all_body t);
  in (t' |> Logic.strip_imp_concl, ctxt') end

  fun get_concl ctxt (i, state) = 
              nth (Thm.prems_of state) (i - 1) 
                            |> focus_concl ctxt |> (fn (x, _) => x |> HOLogic.dest_Trueprop)
 (* aux1 end *)
*}

ML {*
  fun indexing xs = upto (0, length xs - 1) ~~ xs
  fun select_idxs idxs ps = 
      map_index (fn (i, e) => if (member (op =) idxs i) then [e] else []) ps |> flat
  fun select_out_idxs idxs ps = 
      map_index (fn (i, e) => if (member (op =) idxs i) then [] else [e]) ps |> flat
  fun match_pres ctxt mf env ps qs = 
      let  fun sel_match mf env [] qs = [(env, [])]
             | sel_match mf env (p::ps) qs = 
                  let val pm = map (fn (i, q) => [(i, 
                                      let val _ = tracing ctxt "Matching:"
                                          val _ = [p, q] |>
                                            (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
                                          val r = mf p q env 
                                      in r end)]
                                      handle _ => (
                                      let val _ = tracing ctxt "Failed matching:"
                                          val _ = [p, q] |>
                                            (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
                                      in [] end)) qs |> flat
                      val r = pm |> map (fn (i, env') => 
                                let val qs' = filter_out (fn (j, q) => j = i) qs
                                in  sel_match mf env' ps qs' |> 
                                      map (fn (env'', idxs) => (env'', i::idxs)) end) 
                        |> flat
            in r end
   in sel_match mf env ps (indexing qs) end

  fun provable tac ctxt goal = 
          let 
              val _ = tracing ctxt "Provable trying to prove:"
              val _ = [goal] |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
          in
             (Goal.prove ctxt [] [] goal (fn {context, ...} => tac context 1); true)
                        handle exn => false
          end
  fun make_sense tac ctxt thm_assms env  = 
                thm_assms |>  map (inst env) |> forall (provable tac ctxt)
*}

ML {*
  fun triple_for ctxt goal = 
    filter (fn trpl => (#can_process trpl) ctxt goal) (HoareTriples.get (Proof_Context.theory_of ctxt)) |> hd

  fun step_terms_for thm goal ctxt = 
    let
       val _ = tracing ctxt "This is the new version of step_terms_for!"
       val _ = tracing ctxt "Tring to find triple processor: TP"
       val TP = triple_for ctxt goal
       val _ = #binding TP |> Binding.name_of |> tracing ctxt
       fun mk_sep_conj tms = foldr (fn tm => fn rtm => 
              ((#sconj_term TP)$tm$rtm)) (but_last tms) (last tms)
       val thm_concl = thm |> prop_of 
                 |> Logic.strip_imp_concl |> HOLogic.dest_Trueprop 
       val thm_assms = thm |> prop_of 
           |> Logic.strip_imp_prems 
       val cmd_pat = thm_concl |> #get_mid TP ctxt |> get_cmd ctxt 
       val cmd = goal |> #get_mid TP ctxt |> get_cmd ctxt
       val _ = tracing ctxt "matching command ... "
       val _ = tracing ctxt "cmd_pat = "
       val _ = pterm ctxt cmd_pat
       val (hcmd, env1, is_last) =  (cmd, match ctxt cmd_pat cmd, true)
             handle exn => (cmd |> get_hcmd, match ctxt cmd_pat (cmd |> get_hcmd), false)
       val _ = tracing ctxt "hcmd ="
       val _ = pterm ctxt hcmd
       val _ = tracing ctxt "match command succeed! "
       val _ = tracing ctxt "pres ="
       val pres = goal |> #get_pre TP ctxt |> break_sep_conj 
       val _ = pres |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
       val _ = tracing ctxt "pre_pats ="
       val pre_pats = thm_concl |> #get_pre TP ctxt |> inst env1 |> break_sep_conj
       val _ = pre_pats |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
       val _ = tracing ctxt "post_pats ="
       val post_pats = thm_concl |> #get_post TP ctxt |> inst env1 |> break_sep_conj
       val _ = post_pats |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
       val _ = tracing ctxt "Calculating sols"
       val sols = match_pres ctxt (match_env ctxt) env1 pre_pats pres 
       val _ = tracing ctxt "End calculating sols, sols ="
       val _ = tracing ctxt (@{make_string} sols)
       val _ = tracing ctxt "Calulating env2 and idxs"
       val (env2, idxs) = filter (fn (env, idxs) => make_sense (#sep_conj_ac_tac TP) 
                             ctxt thm_assms env) sols |> hd
       val _ = tracing ctxt "End calculating env2 and idxs"
       val _ = tracing ctxt "mterms ="
       val mterms = select_idxs idxs pres |> map (inst env2) 
       val _ = mterms |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
       val _ = tracing ctxt "nmterms = "
       val nmterms = select_out_idxs idxs pres |> map (inst env2) 
       val _ = nmterms |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
       val pre_cond = pre_pats |> map (inst env2) |> mk_sep_conj
       val post_cond = post_pats |> map (inst env2) |> mk_sep_conj 
       val post_cond_npc  = 
               post_cond |> break_sep_conj |> filter (not_pred (#is_pc_term TP)) 
               |> (fn x => x @ nmterms) |> mk_sep_conj |> cterm_of (Proof_Context.theory_of ctxt)
       fun mk_frame cond rest  = 
             if rest = [] then cond else ((#sconj_term TP)$ cond) $ (mk_sep_conj rest)
       val pre_cond_frame = mk_frame pre_cond nmterms |> cterm_of (Proof_Context.theory_of ctxt)
       fun post_cond_frame j' = post_cond |> break_sep_conj |> filter (not_pred (#is_pc_term TP)) 
               |> (fn x => [#mk_pc_term TP j']@x) |> mk_sep_conj
               |> (fn x => mk_frame x nmterms)
               |> cterm_of (Proof_Context.theory_of ctxt)
       val need_frame = (nmterms <> [])
    in 
         (post_cond_npc,
          pre_cond_frame, 
          post_cond_frame, need_frame, is_last)       
    end
*}

ML {*
  fun step_tac ctxt thm i state = 
     let  
       val _ = tracing ctxt "This is the new version of step_tac"
       val (goal, ctxt) = nth (Thm.prems_of state) (i - 1) 
                  |> focus_concl ctxt 
                  |> (apfst HOLogic.dest_Trueprop)
       val _ = tracing ctxt "step_tac: goal = "
       val _ = goal |> pterm ctxt
       val _ = tracing ctxt "Start to calculate intermediate terms ... "
       val (post_cond_npc, pre_cond_frame, post_cond_frame, need_frame, is_last) 
                        = step_terms_for thm goal ctxt
       val _ = tracing ctxt "Tring to find triple processor: TP"
       val TP = triple_for ctxt goal
       val _ = #binding TP |> Binding.name_of |> tracing ctxt
       fun mk_sep_conj tms = foldr (fn tm => fn rtm => 
              ((#sconj_term TP)$tm$rtm)) (but_last tms) (last tms)
       val _ = tracing ctxt "Calculate intermediate terms finished! "
       val post_cond_npc_str = post_cond_npc |> string_for_cterm ctxt
       val pre_cond_frame_str = pre_cond_frame |> string_for_cterm ctxt
       val _ = tracing ctxt "step_tac: post_cond_npc = "
       val _ = post_cond_npc |> pcterm ctxt
       val _ = tracing ctxt "step_tac: pre_cond_frame = "
       val _ = pre_cond_frame |> pcterm ctxt
       fun tac1 i state = 
             if is_last then (K all_tac) i state else
              res_inst_tac ctxt [(("q", 0), post_cond_npc_str)] 
                                          (#hoare_seq1 TP) i state
       fun tac2 i state = res_inst_tac ctxt [(("p", 0), pre_cond_frame_str)] 
                                          (#pre_stren TP) i state
       fun foc_tac post_cond_frame ctxt i state  =
           let
               val goal = get_concl ctxt (i, state)
               val pc_term = goal |> #get_post TP ctxt |> break_sep_conj 
                                |> filter (#is_pc_term TP) |> hd
               val (_$Free(j', _)) = pc_term
               val psd = post_cond_frame j'
               val str_psd = psd |> string_for_cterm ctxt
               val _ = tracing ctxt "foc_tac: psd = "
               val _ = psd |> pcterm ctxt
           in 
               res_inst_tac ctxt [(("q", 0), str_psd)] 
                                          (#post_weaken TP) i state
           end
     val frame_tac = if need_frame then (rtac (#frame_rule TP)) else (K all_tac)
     val print_tac = if (Config.get ctxt trace_step) then Tactical.print_tac else (K all_tac)
     val tac = (tac1 THEN' (K (print_tac "tac1 success"))) THEN' 
               (tac2 THEN' (K (print_tac "tac2 success"))) THEN' 
               ((foc_tac post_cond_frame ctxt) THEN' (K (print_tac "foc_tac success"))) THEN' 
               (frame_tac  THEN' (K (print_tac "frame_tac success"))) THEN' 
               (((rtac thm) THEN_ALL_NEW (#sep_conj_ac_tac TP ctxt)) THEN' (K (print_tac "rtac thm success"))) THEN' 
               (K (ALLGOALS (atomic (#sep_conj_ac_tac TP ctxt)))) THEN'
               (* (#sep_conj_ac_tac TP ctxt) THEN' (#sep_conj_ac_tac TP ctxt) THEN'  *)
               (K prune_params_tac)
   in 
        tac i state
   end

  fun unfold_cell_tac ctxt = (Local_Defs.unfold_tac ctxt @{thms one_def zero_def})
  fun fold_cell_tac ctxt = (Local_Defs.fold_tac ctxt @{thms one_def zero_def})
*}

ML {*
  fun sg_step_tac thms ctxt =
     let val sg_step_tac' =  (map (fn thm  => attemp (step_tac ctxt thm)) thms)
                               (* @ [attemp (goto_tac ctxt)]  *)
                              |> FIRST'
         val sg_step_tac'' = (K (unfold_cell_tac ctxt)) THEN' sg_step_tac' THEN' (K (fold_cell_tac ctxt))
     in
         sg_step_tac' ORELSE' sg_step_tac''
     end
  fun steps_tac thms ctxt i = REPEAT (sg_step_tac thms ctxt i) THEN (prune_params_tac)
*}

method_setup hstep = {* 
  Attrib.thms >> (fn thms => fn ctxt =>
                    (SIMPLE_METHOD' (fn i => 
                       sg_step_tac (thms@(StepRules.get ctxt)) ctxt i)))
  *} 
  "One step symbolic execution using step theorems."

method_setup hsteps = {* 
  Attrib.thms >> (fn thms => fn ctxt =>
                    (SIMPLE_METHOD' (fn i => 
                       steps_tac (thms@(StepRules.get ctxt)) ctxt i)))
  *} 
  "Sequential symbolic execution using step theorems."


ML {*
  fun goto_tac ctxt thm i state = 
     let  
       val (goal, ctxt) = nth (Thm.prems_of state) (i - 1) 
                             |> focus_concl ctxt |> (apfst HOLogic.dest_Trueprop)
       val _ = tracing ctxt "goto_tac: goal = "
       val _ = goal |> string_of_term ctxt |> tracing ctxt
       val (post_cond_npc, pre_cond_frame, post_cond_frame, need_frame, is_last) 
                        = step_terms_for thm goal ctxt
       val _ = tracing ctxt "Tring to find triple processor: TP"
       val TP = triple_for ctxt goal
       val _ = #binding TP |> Binding.name_of |> tracing ctxt
       val _ = tracing ctxt "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
       val post_cond_npc_str = post_cond_npc |> string_for_cterm ctxt
       val pre_cond_frame_str = pre_cond_frame |> string_for_cterm ctxt
       val _ = tracing ctxt "goto_tac: post_cond_npc = "
       val _ = post_cond_npc_str |> tracing ctxt
       val _ = tracing ctxt "goto_tac: pre_cond_frame = "
       val _ = pre_cond_frame_str |> tracing ctxt
       fun tac1 i state = 
             if is_last then (K all_tac) i state else
              res_inst_tac ctxt [] 
                                          (#hoare_seq2 TP) i state
       fun tac2 i state = res_inst_tac ctxt [(("p", 0), pre_cond_frame_str)] 
                                          (#pre_stren TP) i state
       fun foc_tac post_cond_frame ctxt i state  =
           let
               val goal = get_concl ctxt (i, state)
               val pc_term = goal |> #get_post TP ctxt |> break_sep_conj 
                                |> filter (#is_pc_term TP) |> hd
               val (_$Free(j', _)) = pc_term
               val psd = post_cond_frame j'
               val str_psd = psd |> string_for_cterm ctxt
               val _ = tracing ctxt "goto_tac: psd = "
               val _ = str_psd |> tracing ctxt
           in 
               res_inst_tac ctxt [(("q", 0), str_psd)] 
                                          (#post_weaken TP) i state
           end
     val frame_tac = if need_frame then (rtac (#frame_rule TP)) else (K all_tac)
     val _ = tracing ctxt "goto_tac: starting to apply tacs"
     val print_tac = if (Config.get ctxt trace_step) then Tactical.print_tac else (K all_tac)
     val tac = (tac1 THEN' (K (print_tac "tac1 success"))) THEN' 
               (tac2 THEN' (K (print_tac "tac2 success"))) THEN' 
               ((foc_tac post_cond_frame ctxt) THEN' (K (print_tac "foc_tac success"))) THEN' 
               (frame_tac THEN' (K (print_tac "frame_tac success"))) THEN' 
               ((((rtac thm) THEN_ALL_NEW (#sep_conj_ac_tac TP ctxt))) THEN'
                 (K (print_tac "rtac success"))
               ) THEN' 
               (K (ALLGOALS (atomic (#sep_conj_ac_tac TP ctxt)))) THEN'
               (K prune_params_tac)
   in 
        tac i state
   end
*}

ML {*
  fun sg_goto_tac thms ctxt =
     let val sg_goto_tac' =  (map (fn thm  => attemp (goto_tac ctxt thm)) thms)
                              |> FIRST'
         val sg_goto_tac'' = (K (unfold_cell_tac ctxt)) THEN' sg_goto_tac' THEN' (K (fold_cell_tac ctxt))
     in
         sg_goto_tac' ORELSE' sg_goto_tac''
     end
  fun gotos_tac thms ctxt i = REPEAT (sg_goto_tac thms ctxt i) THEN (prune_params_tac)
*}

method_setup hgoto = {* 
  Attrib.thms >> (fn thms => fn ctxt =>
                    (SIMPLE_METHOD' (fn i => 
                       sg_goto_tac (thms@(StepRules.get ctxt)) ctxt i)))
  *} 
  "One step symbolic execution using goto theorems."

subsection {* Tactic for forward reasoning *}

ML {*
fun mk_msel_rule ctxt conclusion idx term =
let 
  val cjt_count = term |> break_sep_conj |> length
  fun variants nctxt names = fold_map Name.variant names nctxt;

  val (state, nctxt0) = Name.variant "s" (Variable.names_of ctxt);

  fun sep_conj_prop cjts =
        FunApp.fun_app_free
          (FunApp.fun_app_foldr SepConj.sep_conj_term cjts) state
        |> HOLogic.mk_Trueprop;

  (* concatenate string and string of an int *)
  fun conc_str_int str int = str ^ Int.toString int;

  (* make the conjunct names *)
  val (cjts, _) = ListExtra.range 1 cjt_count
                  |> map (conc_str_int "a") |> variants nctxt0;

 fun skel_sep_conj names (Const (@{const_name sep_conj}, _) $ t1 $ t2 $ y) =
     (let val nm1 = take (length (break_sep_conj t1)) names 
          val nm2 = drop (length (break_sep_conj t1)) names
          val t1' = skel_sep_conj nm1 t1 
          val t2' = skel_sep_conj nm2 t2 
      in (SepConj.sep_conj_term $ t1' $ t2' $ y) end)
  | skel_sep_conj names (Const (@{const_name sep_conj}, _) $ t1 $ t2) =
     (let val nm1 = take (length (break_sep_conj t1)) names 
          val nm2 = drop (length (break_sep_conj t1)) names
          val t1' = skel_sep_conj nm1 t1 
          val t2' = skel_sep_conj nm2 t2 
     in (SepConj.sep_conj_term $ t1' $ t2') end)
   | skel_sep_conj names (Abs (x, y, t $ Bound 0)) = 
                  let val t' = (skel_sep_conj names t) 
                      val ty' = t' |> type_of |> domain_type
                  in (Abs (x, ty', (t' $ Bound 0))) end
  | skel_sep_conj names t = Free (hd names, SepConj.sep_conj_term |> type_of |> domain_type);
  val _ = tracing ctxt "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
  val oskel = skel_sep_conj cjts term;
  val _ = tracing ctxt "yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy"
  val ttt = oskel |> type_of
  val _ = tracing ctxt "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz"
  val orig = FunApp.fun_app_free oskel state |> HOLogic.mk_Trueprop
  val _ = tracing ctxt "uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu"
  val is_selected = member (fn (x, y) => x = y) idx
  val all_idx = ListExtra.range 0 cjt_count
  val selected_idx = idx
  val unselected_idx = filter_out is_selected all_idx
  val selected = map (nth cjts) selected_idx
  val unselected = map (nth cjts) unselected_idx

  fun fun_app_foldr f [a,b] = FunApp.fun_app_free (FunApp.fun_app_free f a) b
  | fun_app_foldr f [a] = Free (a, SepConj.sep_conj_term |> type_of |> domain_type)
  | fun_app_foldr f (x::xs) = (FunApp.fun_app_free f x) $ (fun_app_foldr f xs)
  | fun_app_foldr _ _ = raise Fail "fun_app_foldr";

  val reordered_skel = 
      if unselected = [] then (fun_app_foldr SepConj.sep_conj_term selected)
          else (SepConj.sep_conj_term $ (fun_app_foldr SepConj.sep_conj_term selected)
                        $ (fun_app_foldr SepConj.sep_conj_term unselected))

  val reordered =  FunApp.fun_app_free reordered_skel state  |> HOLogic.mk_Trueprop
  val goal = Logic.mk_implies
               (if conclusion then (orig, reordered) else (reordered, orig));
  val rule =
   Goal.prove ctxt [] [] goal (fn _ => 
        auto_tac (ctxt |> map_simpset (fn ss => ss addsimps @{thms sep_conj_ac})))
         |> Drule.export_without_context
in
   rule
end
*}

lemma fwd_rule: 
  assumes "\<And> s . U s \<longrightarrow> V s"
  shows "(U ** RR) s \<Longrightarrow> (V ** RR) s"
  by (metis assms sep_globalise)

ML {*
  fun sg_sg_fwd_tac ctxt thm pos i state = 
  let  

  val tracing  = (fn str =>
                   if (Config.get ctxt trace_fwd) then Output.tracing str else ())
  fun pterm t =
          t |> string_of_term ctxt |> tracing
  fun pcterm ct = ct |> string_of_cterm ctxt |> tracing

  fun atm thm = 
  let
  (* val thm = thm |> Drule.forall_intr_vars *)
  val res =  thm |> cprop_of |> Object_Logic.atomize
  val res' = Raw_Simplifier.rewrite_rule [res] thm
  in res' end

  fun find_idx ctxt pats terms = 
     let val result = 
              map (fn pat => (find_index (fn trm => ((match ctxt pat trm; true)
                                              handle _ => false)) terms)) pats
     in (assert_all (fn x => x >= 0) result (K "match of precondition failed"));
         result
     end

  val goal = nth (Drule.cprems_of state) (i - 1) |> term_of
  val _ = tracing "goal = "
  val _ = goal |> pterm
  
  val ctxt_orig = ctxt

  val ((ps, goal), ctxt) = Variable.focus goal ctxt_orig
  
  val prems = goal |> Logic.strip_imp_prems 

  val cprem = nth prems (pos - 1)
  val (_ $ (the_prem $ _)) = cprem
  val cjts = the_prem |> break_sep_conj
  val thm_prems = thm |> cprems_of |> hd |> Thm.dest_arg |> Thm.dest_fun
  val thm_assms = thm |> cprems_of |> tl |> map term_of
  val thm_cjts = thm_prems |> term_of |> break_sep_conj
  val thm_trm = thm |> prop_of

  val _ = tracing "cjts = "
  val _ = cjts |> map pterm
  val _ = tracing "thm_cjts = "
  val _ = thm_cjts |> map pterm

  val _ = tracing "Calculating sols"
  val sols = match_pres ctxt (match_env ctxt) empty_env thm_cjts cjts
  val _ = tracing "End calculating sols, sols ="
  val _ = tracing (@{make_string} sols)
  val _ = tracing "Calulating env2 and idxs"
  val (env2, idx) = filter (fn (env, idxs) => make_sense sep_conj_ac_tac ctxt thm_assms env) sols |> hd
  val ([thm'_trm], ctxt') = thm_trm |> inst env2 |> single 
                            |> (fn trms => Variable.import_terms true trms ctxt)
  val thm'_prem  = Logic.strip_imp_prems thm'_trm |> hd 
  val thm'_concl = Logic.strip_imp_concl thm'_trm 
  val thm'_prem = (Goal.prove ctxt' [] [thm'_prem] thm'_concl 
                  (fn {context, prems = [prem]} =>  
                      (rtac (prem RS thm)  THEN_ALL_NEW (sep_conj_ac_tac ctxt)) 1))
  val [thm'] = Variable.export ctxt' ctxt_orig [thm'_prem]
  val trans_rule = 
       mk_msel_rule ctxt true idx the_prem
  val _ = tracing "trans_rule = "
  val _ = trans_rule |> cprop_of |> pcterm
  val app_rule = 
      if (length cjts = length thm_cjts) then thm' else
       ((thm' |> atm) RS @{thm fwd_rule})
  val _ = tracing "app_rule = "
  val _ = app_rule |> cprop_of |> pcterm
  val print_tac = if (Config.get ctxt trace_fwd) then Tactical.print_tac else (K all_tac)
  val the_tac = (dtac trans_rule THEN' (K (print_tac "dtac1 success"))) THEN'
                ((dtac app_rule THEN' (K (print_tac "dtac2 success"))))
in
  (the_tac i state) handle _ => no_tac state
end
*}

ML {*
  fun sg_fwd_tac ctxt thm i state = 
  let  
    val goal = nth (Drule.cprems_of state) (i - 1)          
    val prems = goal |> term_of |> Term.strip_all_body |> Logic.strip_imp_prems 
    val posx = ListExtra.range 1 (length prems)
  in
      ((map (fn pos => attemp (sg_sg_fwd_tac ctxt thm pos)) posx) |> FIRST') i state
  end

  fun fwd_tac ctxt thms i state =
       ((map (fn thm => sg_fwd_tac ctxt thm) thms) |> FIRST') i state
*}

method_setup fwd = {* 
  Attrib.thms >> (fn thms => fn ctxt =>
                    (SIMPLE_METHOD' (fn i => 
                       fwd_tac ctxt (thms@(FwdRules.get ctxt))  i)))
  *} 
  "Forward derivation of separation implication"

text {* Testing the fwd tactic *}

lemma ones_abs:
  assumes "(ones u v \<and>* ones w x) s" "w = v + 1"
  shows "ones u x s"
  using assms(1) unfolding assms(2)
proof(induct u v arbitrary: x s rule:ones_induct)
  case (Base i j x s)
  thus ?case by (auto elim!:condE)
next
  case (Step i j x s)
  hence h: "\<And> x s. (ones (i + 1) j \<and>* ones (j + 1) x) s \<longrightarrow> ones (i + 1) x s"
    by metis
  hence "(ones (i + 1) x \<and>* one i) s"
    by (rule fwd_rule, insert Step(3), auto simp:sep_conj_ac)
  thus ?case
    by (smt condD ones.simps sep_conj_commute)
qed

lemma one_abs: "(one m) s \<Longrightarrow> (ones m m) s"
 by (smt cond_true_eq2 ones.simps)

lemma ones_reps_abs: 
  assumes "ones m n s"
          "m \<le> n"
  shows "(reps m n [nat (n - m)]) s"
  using assms
  by simp

lemma reps_reps'_abs: 
  assumes "(reps m n xs \<and>* zero u) s" "u = n + 1" "xs \<noteq> []"
  shows "(reps' m u xs) s"
  unfolding assms using assms
  by (unfold reps'_def, simp)

lemma reps'_abs:
  assumes "(reps' m n xs \<and>* reps' u v ys) s" "u = n + 1"
  shows "(reps' m v (xs @ ys)) s"
  apply (unfold reps'_append, rule_tac x = u in EXS_intro)
  by (insert assms, simp)

lemmas abs_ones = one_abs ones_abs

lemmas abs_reps' = ones_reps_abs reps_reps'_abs reps'_abs


section {* Modular TM programming and verification *}

definition "right_until_zero = 
                 (TL start exit. 
                  TLabel start;
                     if_zero exit;
                     move_right;
                     jmp start;
                  TLabel exit
                 )"

lemma ones_false [simp]: "j < i - 1 \<Longrightarrow> (ones i j) = sep_false"
  by (simp add:pasrt_def)
  
lemma hoare_right_until_zero: 
  "\<lbrace>st i ** ps u ** ones u (v - 1) ** zero v \<rbrace> 
     i:[right_until_zero]:j
   \<lbrace>st j ** ps v ** ones u (v - 1) ** zero v \<rbrace>"
proof(unfold right_until_zero_def, 
      intro t_hoare_local t_hoare_label, clarify, 
      rule t_hoare_label_last, simp, simp)
  fix la
  let ?body = "i :[ (if_zero la ; move_right ; jmp i) ]: la"
  let ?j = la
  show "\<lbrace>st i \<and>* ps u \<and>* ones u (v - 1) \<and>* zero v\<rbrace>  ?body
        \<lbrace>st ?j \<and>* ps v \<and>* ones u (v - 1) \<and>* zero v\<rbrace>" (is "?P u (v - 1) (ones u (v - 1))")
  proof(induct "u" "v - 1" rule:ones_induct)
    case (Base k)
    moreover have "\<lbrace>st i \<and>* ps v \<and>* zero v\<rbrace> ?body
                   \<lbrace>st ?j \<and>* ps v \<and>* zero v\<rbrace>" by hsteps
    ultimately show ?case by (auto intro!:tm.pre_condI simp:sep_conj_cond)
  next
    case (Step k)
    moreover have "\<lbrace>st i \<and>* ps k \<and>* (one k \<and>* ones (k + 1) (v - 1)) \<and>* zero v\<rbrace> 
                     i :[ (if_zero ?j ; move_right ; jmp i) ]: ?j
                   \<lbrace>st ?j \<and>* ps v \<and>* (one k \<and>* ones (k + 1) (v - 1)) \<and>* zero v\<rbrace>"
    proof -
      have s1: "\<lbrace>st i \<and>* ps k \<and>* (one k \<and>* ones (k + 1) (v - 1)) \<and>* zero v\<rbrace>
                          ?body 
                \<lbrace>st i \<and>* ps (k + 1) \<and>* one k \<and>* ones (k + 1) (v - 1) \<and>* zero v\<rbrace>"
      proof(cases "k + 1 \<ge> v")
        case True
        with Step(1) have "v = k + 1" by arith
        thus ?thesis
          apply(simp add: one_def)
          by hsteps
      next
        case False
        hence eq_ones: "ones (k + 1) (v - 1) = 
                         (one (k + 1) \<and>* ones ((k + 1) + 1) (v - 1))"
          by simp
        show ?thesis
          apply(simp only: eq_ones)
          by hsteps
      qed
      note Step(2)[step]
      have s2: "\<lbrace>st i \<and>* ps (k + 1) \<and>* one k \<and>* ones (k + 1) (v - 1) \<and>* zero v\<rbrace>
                        ?body
                \<lbrace>st ?j \<and>* ps v \<and>* one k \<and>* ones (k + 1) (v - 1) \<and>* zero v\<rbrace>"
        by hsteps
      from tm.sequencing [OF s1 s2, step] 
      show ?thesis 
        by (auto simp:sep_conj_ac)
    qed
    ultimately show ?case by simp
  qed
qed

lemma hoare_right_until_zero_gen[step]: 
  assumes "u = v" "w = x - 1"
  shows  "\<lbrace>st i ** ps u ** ones v w ** zero x \<rbrace> 
              i:[right_until_zero]:j
          \<lbrace>st j ** ps x ** ones v w ** zero x \<rbrace>"
  by (unfold assms, rule hoare_right_until_zero)

definition "left_until_zero = 
                 (TL start exit. 
                  TLabel start;
                    if_zero exit;
                    move_left;
                    jmp start;
                  TLabel exit
                 )"

lemma hoare_left_until_zero: 
  "\<lbrace>st i ** ps v ** zero u ** ones (u + 1) v \<rbrace> 
     i:[left_until_zero]:j
   \<lbrace>st j ** ps u ** zero u ** ones (u + 1) v \<rbrace>"
proof(unfold left_until_zero_def, 
      intro t_hoare_local t_hoare_label, clarify, 
      rule t_hoare_label_last, simp+)
  fix la
  let ?body = "i :[ (if_zero la ; move_left ; jmp i) ]: la"
  let ?j = la
  show "\<lbrace>st i \<and>* ps v \<and>* zero u \<and>* ones (u + 1) v\<rbrace> ?body
        \<lbrace>st ?j \<and>* ps u \<and>* zero u \<and>* ones (u + 1) v\<rbrace>"
  proof(induct "u+1" v  rule:ones_rev_induct)
    case (Base k)
    thus ?case
      by (simp add:sep_conj_cond, intro tm.pre_condI, simp, hstep)
  next
    case (Step k)
    have "\<lbrace>st i \<and>* ps k \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace> 
               ?body
          \<lbrace>st ?j \<and>* ps u \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace>"
    proof(rule tm.sequencing[where q = 
           "st i \<and>* ps (k - 1) \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k"])
      show "\<lbrace>st i \<and>* ps k \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace> 
                ?body
            \<lbrace>st i \<and>* ps (k - 1) \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace>"
      proof(induct "u + 1" "k - 1" rule:ones_rev_induct)
        case Base with Step(1) have "k = u + 1" by arith
        thus ?thesis
          by (simp, hsteps)
      next
        case Step
        show ?thesis
          apply (unfold ones_rev[OF Step(1)], simp)
          apply (unfold one_def)
          by hsteps
      qed
    next
      note Step(2) [step]
      show "\<lbrace>st i \<and>* ps (k - 1) \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace> 
                ?body
            \<lbrace>st ?j \<and>* ps u \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace>" by hsteps
    qed
    thus ?case by (unfold ones_rev[OF Step(1)], simp)
  qed
qed

lemma hoare_left_until_zero_gen[step]: 
  assumes "u = x" "w = v + 1"
  shows  "\<lbrace>st i ** ps u ** zero v ** ones w x \<rbrace> 
               i:[left_until_zero]:j
          \<lbrace>st j ** ps v ** zero v ** ones w x \<rbrace>"
  by (unfold assms, rule hoare_left_until_zero)

definition "right_until_one = 
                 (TL start exit. 
                  TLabel start;
                     if_one exit;
                     move_right;
                     jmp start;
                  TLabel exit
                 )"

lemma hoare_right_until_one: 
  "\<lbrace>st i ** ps u ** zeros u (v - 1) ** one v \<rbrace> 
     i:[right_until_one]:j
   \<lbrace>st j ** ps v ** zeros u (v - 1) ** one v \<rbrace>"
proof(unfold right_until_one_def, 
      intro t_hoare_local t_hoare_label, clarify, 
      rule t_hoare_label_last, simp+)
  fix la
  let ?body = "i :[ (if_one la ; move_right ; jmp i) ]: la"
  let ?j = la
  show "\<lbrace>st i \<and>* ps u \<and>* zeros u (v - 1) \<and>* one v\<rbrace> ?body
       \<lbrace>st ?j \<and>* ps v \<and>* zeros u (v - 1) \<and>* one v\<rbrace>"
  proof(induct u "v - 1" rule:zeros_induct)
    case (Base k)
    thus ?case
      by (simp add:sep_conj_cond, intro tm.pre_condI, simp, hsteps)
  next
    case (Step k)
    have "\<lbrace>st i \<and>* ps k \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace> 
            ?body
          \<lbrace>st ?j \<and>* ps v \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace>"
    proof(rule tm.sequencing[where q = 
           "st i \<and>* ps (k + 1) \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v"])
      show "\<lbrace>st i \<and>* ps k \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace> 
               ?body
           \<lbrace>st i \<and>* ps (k + 1) \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace>"
      proof(induct "k + 1" "v - 1" rule:zeros_induct)
        case Base
        with Step(1) have eq_v: "k + 1 = v" by arith
        from Base show ?thesis
          apply (simp add:sep_conj_cond, intro tm.pre_condI, simp)
          apply (hstep, clarsimp)
          by hsteps
      next
        case Step
        thus ?thesis
          by (simp, hsteps)
      qed
    next
      note Step(2)[step]
        show "\<lbrace>st i \<and>* ps (k + 1) \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace> 
                ?body
              \<lbrace>st ?j \<and>* ps v \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace>"
          by hsteps
    qed
    thus ?case by (auto simp: sep_conj_ac Step(1))
  qed
qed

lemma hoare_right_until_one_gen[step]: 
  assumes "u = v" "w = x - 1"
  shows
  "\<lbrace>st i ** ps u ** zeros v w ** one x \<rbrace> 
     i:[right_until_one]:j
   \<lbrace>st j **  ps x ** zeros v w ** one x \<rbrace>"
  by (unfold assms, rule hoare_right_until_one)

definition "left_until_one = 
                 (TL start exit. 
                  TLabel start;
                    if_one exit;
                    move_left;
                    jmp start;
                  TLabel exit
                 )"

lemma hoare_left_until_one: 
  "\<lbrace>st i ** ps v ** one u ** zeros (u + 1) v \<rbrace> 
     i:[left_until_one]:j
   \<lbrace>st j ** ps u ** one u ** zeros (u + 1) v \<rbrace>"
proof(unfold left_until_one_def, 
      intro t_hoare_local t_hoare_label, clarify, 
      rule t_hoare_label_last, simp+)
  fix la
  let ?body = "i :[ (if_one la ; move_left ; jmp i) ]: la"
  let ?j = la
  show "\<lbrace>st i \<and>* ps v \<and>* one u \<and>* zeros (u + 1) v\<rbrace> ?body
        \<lbrace>st ?j \<and>* ps u \<and>* one u \<and>* zeros (u + 1) v\<rbrace>"
  proof(induct u v rule: ones'.induct)
    fix ia ja
    assume h: "\<not> ja < ia \<Longrightarrow>
             \<lbrace>st i \<and>* ps (ja - 1) \<and>* one ia \<and>* zeros (ia + 1) (ja - 1)\<rbrace> ?body
             \<lbrace>st ?j \<and>* ps ia \<and>* one ia \<and>* zeros (ia + 1) (ja - 1)\<rbrace>"
    show "\<lbrace>st i \<and>* ps ja \<and>* one ia \<and>* zeros (ia + 1) ja\<rbrace>  ?body
      \<lbrace>st ?j \<and>* ps ia \<and>* one ia \<and>* zeros (ia + 1) ja\<rbrace>"
    proof(cases "ja < ia")
      case False
      note lt = False
      from h[OF this] have [step]: 
        "\<lbrace>st i \<and>* ps (ja - 1) \<and>* one ia \<and>* zeros (ia + 1) (ja - 1)\<rbrace> ?body
         \<lbrace>st ?j \<and>* ps ia \<and>* one ia \<and>* zeros (ia + 1) (ja - 1)\<rbrace>" .
      show ?thesis
      proof(cases "ja = ia")
        case True 
        moreover
        have "\<lbrace>st i \<and>* ps ja \<and>* one ja\<rbrace> ?body \<lbrace>st ?j \<and>* ps ja \<and>* one ja\<rbrace>" 
          by hsteps
        ultimately show ?thesis by auto
      next
        case False
        with lt have k1: "ia < ja" by auto       
        from zeros_rev[of "ja" "ia + 1"] this
        have eq_zeros: "zeros (ia + 1) ja = (zeros (ia + 1) (ja - 1) \<and>* zero ja)" 
          by simp        
        have s1: "\<lbrace>st i \<and>* ps ja \<and>* one ia \<and>* zeros (ia + 1) (ja - 1) \<and>* zero ja\<rbrace>
                      ?body
                  \<lbrace>st i \<and>* ps (ja - 1) \<and>* one ia \<and>* zeros (ia + 1) (ja - 1) \<and>* zero ja\<rbrace>"
        proof(cases "ia + 1 \<ge> ja")
          case True
          from k1 True have "ja = ia + 1" by arith
          moreover have "\<lbrace>st i \<and>* ps (ia + 1) \<and>* one (ia + 1 - 1) \<and>* zero (ia + 1)\<rbrace>  
            i :[ (if_one ?j ; move_left ; jmp i) ]: ?j 
                \<lbrace>st i \<and>* ps (ia + 1 - 1) \<and>* one (ia + 1 - 1) \<and>* zero (ia + 1)\<rbrace>"
            by (hsteps)
          ultimately show ?thesis
            by (simp)
        next
          case False
          from zeros_rev[of "ja - 1" "ia + 1"] False
          have k: "zeros (ia + 1) (ja - 1) = 
                      (zeros (ia + 1) (ja - 1 - 1) \<and>* zero (ja - 1))"
            by auto
          show ?thesis
            apply (unfold k, simp)
            by hsteps
        qed      
        have s2: "\<lbrace>st i \<and>* ps (ja - 1) \<and>* one ia \<and>* zeros (ia + 1) (ja - 1) \<and>* zero ja\<rbrace>
                      ?body
                  \<lbrace>st ?j \<and>* ps ia \<and>* one ia \<and>* zeros (ia + 1) (ja - 1) \<and>* zero ja\<rbrace>"
          by hsteps
        from tm.sequencing[OF s1 s2, step]
        show ?thesis 
          apply (unfold eq_zeros)
          by hstep
      qed (* ccc *)
    next
      case True
      thus ?thesis by (auto intro:tm.hoare_sep_false)
    qed
  qed
qed

lemma hoare_left_until_one_gen[step]: 
  assumes "u = x" "w = v + 1"
  shows  "\<lbrace>st i ** ps u ** one v ** zeros w x \<rbrace> 
              i:[left_until_one]:j
          \<lbrace>st j ** ps v ** one v ** zeros w x \<rbrace>"
  by (unfold assms, rule hoare_left_until_one)

definition "left_until_double_zero = 
            (TL start exit.
              TLabel start;
              if_zero exit;
              left_until_zero;
              move_left;
              if_one start;
              TLabel exit)"

declare ones.simps[simp del]

lemma reps_simps3: "ks \<noteq> [] \<Longrightarrow> 
  reps i j (k # ks) = (ones i (i + int k) ** zero (i + int k + 1) ** reps (i + int k + 2) j ks)"
by(case_tac ks, simp, simp add: reps.simps)

lemma cond_eqI:
  assumes h: "b \<Longrightarrow> r = s"
  shows "(<b> ** r) = (<b> ** s)"
proof(cases b)
  case True
  from h[OF this] show ?thesis by simp
next
  case False
  thus ?thesis
    by (unfold sep_conj_def set_ins_def pasrt_def, auto)
qed

lemma reps_rev: "ks \<noteq> [] 
       \<Longrightarrow> reps i j (ks @ [k]) =  (reps i (j - int (k + 1) - 1 ) ks \<and>* 
                                          zero (j - int (k + 1)) \<and>* ones (j - int k) j)"
proof(induct ks arbitrary: i j)
  case Nil
  thus ?case by simp
next
  case (Cons a ks)
  show ?case
  proof(cases "ks = []")
    case True
    thus ?thesis
    proof -
      have eq_cond: "(j = i + int a + 2 + int k) = (-2 + (j - int k) = i + int a)" by auto
      have "(<(-2 + (j - int k) = i + int a)> \<and>*
            one i \<and>* ones (i + 1) (i + int a) \<and>*
            zero (i + int a + 1) \<and>* one (i + int a + 2) \<and>* ones (3 + (i + int a)) (i + int a + 2 + int k))
            =
            (<(-2 + (j - int k) = i + int a)> \<and>* one i \<and>* ones (i + 1) (i + int a) \<and>*
            zero (j - (1 + int k)) \<and>* one (j - int k) \<and>* ones (j - int k + 1) j)"
        (is "(<?X> \<and>* ?L) = (<?X> \<and>* ?R)")
      proof(rule cond_eqI)
        assume h: "-2 + (j - int k) = i + int a"
        hence eqs:  "i + int a + 1 = j - (1 + int k)" 
                    "i + int a + 2 = j - int k"
                    "3 + (i + int a) = j - int k + 1"
                    "(i + int a + 2 + int k) = j"
        by auto
        show "?L = ?R"
          by (unfold eqs, auto simp:sep_conj_ac)
      qed
      with True
      show ?thesis
        apply (simp del:ones_simps reps.simps)
        apply (simp add:sep_conj_cond eq_cond)
        by (auto simp:sep_conj_ac)
    qed
  next
    case False
    from Cons(1)[OF False, of "i + int a + 2" j] this
    show ?thesis
      by(simp add: reps_simps3 sep_conj_ac)
  qed
qed

lemma hoare_if_one_reps:
  assumes nn: "ks \<noteq> []"
  shows "\<lbrace>st i ** ps v ** reps u v ks\<rbrace> 
           i:[if_one e]:j
        \<lbrace>st e ** ps v ** reps u v ks\<rbrace>"
proof(rule rev_exhaust[of ks])
  assume "ks = []" with nn show ?thesis by simp
next
  fix y ys
  assume eq_ks: "ks = ys @ [y]"
  show " \<lbrace>st i \<and>* ps v \<and>* reps u v ks\<rbrace>  i :[ if_one e ]: j \<lbrace>st e \<and>* ps v \<and>* reps u v ks\<rbrace>"
  proof(cases "ys = []")
    case False
    have "\<lbrace>st i \<and>* ps v \<and>* reps u v (ys @ [y])\<rbrace>  i :[ if_one e ]: j \<lbrace>st e \<and>* ps v \<and>* reps u v (ys @ [y])\<rbrace>"
      apply(unfold reps_rev[OF False], simp del:ones_simps add:ones_rev)
      by hstep
    thus ?thesis
      by (simp add:eq_ks)
  next
    case True
    with eq_ks
    show ?thesis
      apply (simp del:ones_simps add:ones_rev sep_conj_cond, intro tm.pre_condI, simp)
      by hstep
  qed
qed

lemma hoare_if_one_reps_gen[step]:
  assumes nn: "ks \<noteq> []" "u = w"
  shows "\<lbrace>st i ** ps u ** reps v w ks\<rbrace> 
           i:[if_one e]:j
        \<lbrace>st e ** ps u ** reps v w ks\<rbrace>"
  by (unfold `u = w`, rule hoare_if_one_reps[OF `ks \<noteq> []`])

lemma hoare_if_zero_ones_false[step]:
  assumes "\<not> w < u" "v = w"
  shows  "\<lbrace>st i \<and>* ps v \<and>* ones u w\<rbrace> 
             i :[if_zero e]: j
          \<lbrace>st j \<and>* ps v \<and>* ones u w\<rbrace>"
  by (unfold `v = w` ones_rev[OF `\<not> w < u`], hstep)

lemma hoare_left_until_double_zero_nil[step]:
  assumes "u = v"
  shows   "\<lbrace>st i ** ps u ** zero v\<rbrace> 
                  i:[left_until_double_zero]:j
           \<lbrace>st j ** ps u ** zero v\<rbrace>"
  apply (unfold `u = v` left_until_double_zero_def, 
      intro t_hoare_local t_hoare_label, clarsimp, 
      rule t_hoare_label_last, simp+)
  by (hsteps)

lemma hoare_if_zero_reps_false:
  assumes nn: "ks \<noteq> []"
  shows "\<lbrace>st i ** ps v ** reps u v ks\<rbrace> 
           i:[if_zero e]:j
        \<lbrace>st j ** ps v ** reps u v ks\<rbrace>"
proof(rule rev_exhaust[of ks])
  assume "ks = []" with nn show ?thesis by simp
next
  fix y ys
  assume eq_ks: "ks = ys @ [y]"
  show " \<lbrace>st i \<and>* ps v \<and>* reps u v ks\<rbrace>  i :[ if_zero e ]: j \<lbrace>st j \<and>* ps v \<and>* reps u v ks\<rbrace>"
  proof(cases "ys = []")
    case False
    have "\<lbrace>st i \<and>* ps v \<and>* reps u v (ys @ [y])\<rbrace>  i :[ if_zero e ]: j \<lbrace>st j \<and>* ps v \<and>* reps u v (ys @ [y])\<rbrace>"
      apply(unfold reps_rev[OF False], simp del:ones_simps add:ones_rev)
      by hstep
    thus ?thesis
      by (simp add:eq_ks)
  next
    case True
    with eq_ks
    show ?thesis
      apply (simp del:ones_simps add:ones_rev sep_conj_cond, intro tm.pre_condI, simp)
      by hstep
  qed
qed

lemma hoare_if_zero_reps_false_gen[step]:
  assumes "ks \<noteq> []" "u = w"
  shows "\<lbrace>st i ** ps u ** reps v w ks\<rbrace> 
           i:[if_zero e]:j
        \<lbrace>st j ** ps u ** reps v w ks\<rbrace>"
  by (unfold `u = w`, rule hoare_if_zero_reps_false[OF `ks \<noteq> []`])


lemma hoare_if_zero_reps_false1:
  assumes nn: "ks \<noteq> []"
  shows "\<lbrace>st i ** ps u ** reps u v ks\<rbrace> 
           i:[if_zero e]:j
        \<lbrace>st j ** ps u ** reps u v ks\<rbrace>"
proof -
  from nn obtain y ys where eq_ys: "ks = y#ys"
    by (metis neq_Nil_conv)
  show ?thesis
    apply (unfold eq_ys)
    by (case_tac ys, (simp, hsteps)+)
qed

lemma hoare_if_zero_reps_false1_gen[step]:
  assumes nn: "ks \<noteq> []"
  and h: "u = w"
  shows "\<lbrace>st i ** ps u ** reps w v ks\<rbrace> 
           i:[if_zero e]:j
        \<lbrace>st j ** ps u ** reps w v ks\<rbrace>"
  by (unfold h, rule hoare_if_zero_reps_false1[OF `ks \<noteq> []`])

lemma hoare_left_until_double_zero: 
  assumes h: "ks \<noteq> []"
  shows   "\<lbrace>st i ** ps v ** zero u ** zero (u + 1) ** reps (u+2) v ks\<rbrace> 
                  i:[left_until_double_zero]:j
           \<lbrace>st j ** ps u ** zero u ** zero (u + 1) ** reps (u+2) v ks\<rbrace>"
proof(unfold left_until_double_zero_def, 
      intro t_hoare_local t_hoare_label, clarsimp, 
      rule t_hoare_label_last, simp+)
  fix la
  let ?body = "i :[ (if_zero la ; left_until_zero ; move_left ; if_one i) ]: j"
  let ?j = j
  show "\<lbrace>st i \<and>* ps v \<and>* zero u \<and>* zero (u + 1) \<and>* reps (u + 2) v ks\<rbrace> 
           ?body
        \<lbrace>st ?j \<and>* ps u \<and>* zero u \<and>* zero (u + 1) \<and>* reps (u + 2) v ks\<rbrace>"
    using h
  proof(induct ks arbitrary: v rule:rev_induct)
    case Nil
    with h show ?case by auto
  next
    case (snoc k ks)
    show ?case
    proof(cases "ks = []")
      case True
      have eq_ones: 
        "ones (u + 2) (u + 2 + int k) = (ones (u + 2) (u + 1 + int k) \<and>* one (u + 2 + int k))"
        by (smt ones_rev)
      have eq_ones': "(one (u + 2) \<and>* ones (3 + u) (u + 2 + int k)) = 
            (one (u + 2 + int k) \<and>* ones (u + 2) (u + 1 + int k))"
        by (smt eq_ones ones.simps sep.mult_commute)
      thus ?thesis
        apply (insert True, simp del:ones_simps add:sep_conj_cond)
        apply (rule tm.pre_condI, simp del:ones_simps, unfold eq_ones)
        apply hsteps
        apply (rule_tac p = "st j' \<and>* ps (u + 2 + int k) \<and>* zero u \<and>* 
                             zero (u + 1) \<and>* ones (u + 2) (u + 2 + int k)" 
                  in tm.pre_stren)
        by (hsteps)
    next
      case False
      from False have spt: "splited (ks @ [k]) ks [k]" by (unfold splited_def, auto)
      show ?thesis
        apply (unfold reps_splited[OF spt], simp del:ones_simps add:sep_conj_cond)
        apply (rule tm.pre_condI, simp del:ones_simps)
        apply (rule_tac q = "st i \<and>*
               ps (1 + (u + int (reps_len ks))) \<and>*
               zero u \<and>*
               zero (u + 1) \<and>*
               reps (u + 2) (1 + (u + int (reps_len ks))) ks \<and>*
               zero (u + 2 + int (reps_len ks)) \<and>*
               ones (3 + (u + int (reps_len ks))) (3 + (u + int (reps_len ks)) + int k)" in
               tm.sequencing)
        apply hsteps[1]
        by (hstep snoc(1))
    qed 
  qed
qed

lemma hoare_left_until_double_zero_gen[step]: 
  assumes h1: "ks \<noteq> []"
      and h: "u = y" "w = v + 1" "x = v + 2"
  shows   "\<lbrace>st i ** ps u ** zero v ** zero w ** reps x y ks\<rbrace> 
                  i:[left_until_double_zero]:j
           \<lbrace>st j ** ps v ** zero v ** zero w ** reps x y ks\<rbrace>"
  by (unfold h, rule hoare_left_until_double_zero[OF h1])

lemma hoare_jmp_reps1:
  assumes "ks \<noteq> []"
  shows  "\<lbrace> st i \<and>* ps u \<and>* reps u v ks\<rbrace>
                 i:[jmp e]:j
          \<lbrace> st e \<and>* ps u \<and>* reps u v ks\<rbrace>"
proof -
  from assms obtain k ks' where Cons:"ks = k#ks'"
    by (metis neq_Nil_conv)
  thus ?thesis
  proof(cases "ks' = []")
    case True with Cons
    show ?thesis
      apply(simp add:sep_conj_cond reps.simps, intro tm.pre_condI, simp add:ones_simps)
      by (hgoto hoare_jmp_gen)
  next
    case False
    show ?thesis
      apply (unfold `ks = k#ks'` reps_simp3[OF False], simp add:ones_simps)
      by (hgoto hoare_jmp[where p = u])
  qed
qed

lemma hoare_jmp_reps1_gen[step]:
  assumes "ks \<noteq> []" "u = v"
  shows  "\<lbrace> st i \<and>* ps u \<and>* reps v w ks\<rbrace>
                 i:[jmp e]:j
          \<lbrace> st e \<and>* ps u \<and>* reps v w ks\<rbrace>"
  by (unfold assms, rule hoare_jmp_reps1[OF `ks \<noteq> []`])

lemma hoare_jmp_reps:
      "\<lbrace> st i \<and>* ps u \<and>* reps u v ks \<and>* tm (v + 1) x \<rbrace>
                 i:[(jmp e; c)]:j
       \<lbrace> st e \<and>* ps u \<and>* reps u v ks \<and>* tm (v + 1) x \<rbrace>"
proof(cases "ks")
  case Nil
  thus ?thesis
    by (simp add:sep_conj_cond, intro tm.pre_condI, simp, hsteps)
next
  case (Cons k ks')
  thus ?thesis
  proof(cases "ks' = []")
    case True with Cons
    show ?thesis
      apply(simp add:sep_conj_cond, intro tm.pre_condI, simp)
      by (hgoto hoare_jmp[where p = u])
  next
    case False
    show ?thesis
      apply (unfold `ks = k#ks'` reps_simp3[OF False], simp)
      by (hgoto hoare_jmp[where p = u])
  qed
qed

definition "shift_right =
            (TL start exit.
              TLabel start;
                 if_zero exit;
                 write_zero;
                 move_right;
                 right_until_zero;
                 write_one;
                 move_right;
                 jmp start;
              TLabel exit
            )"

lemma hoare_shift_right_cons:
  assumes h: "ks \<noteq> []"
  shows "\<lbrace>st i \<and>* ps u ** reps u v ks \<and>* zero (v + 1) \<and>* zero (v + 2) \<rbrace> 
            i:[shift_right]:j
         \<lbrace>st j ** ps (v + 2) ** zero u ** reps (u + 1) (v + 1) ks ** zero (v + 2) \<rbrace>"
proof(unfold shift_right_def, intro t_hoare_local t_hoare_label, clarify, 
      rule t_hoare_label_last, auto)
  fix la
  have eq_ones: "\<And> u k. (one (u + int k + 1) \<and>* ones (u + 1) (u + int k)) = 
                                   (one (u + 1) \<and>* ones (2 + u) (u + 1 + int k))"
    by (smt cond_true_eq2 ones.simps ones_rev sep.mult_assoc sep.mult_commute 
               sep.mult_left_commute sep_conj_assoc sep_conj_commute 
               sep_conj_cond1 sep_conj_cond2 sep_conj_cond3 sep_conj_left_commute
               sep_conj_trivial_strip2)
  show "\<lbrace>st i \<and>* ps u \<and>* reps u v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace> 
         i :[ (if_zero la ;
               write_zero ; move_right ; right_until_zero ; write_one ; move_right ; jmp i) ]: la
         \<lbrace>st la \<and>* ps (v + 2) \<and>* zero u \<and>* reps (u + 1) (v + 1) ks \<and>* zero (v + 2)\<rbrace>"
    using h
  proof(induct ks arbitrary:i u v)
    case (Cons k ks)
    thus ?case 
    proof(cases "ks = []")
      let ?j = la
      case True
      let ?body = "i :[ (if_zero ?j ;
                      write_zero ;
                      move_right ; 
                      right_until_zero ; 
                      write_one ; move_right ; jmp i) ]: ?j"
      have first_interation: 
           "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 1) \<and>* 
                                                                             zero (u + int k + 2)\<rbrace> 
                ?body
            \<lbrace>st i \<and>*
             ps (u + int k + 2) \<and>*
             one (u + int k + 1) \<and>* ones (u + 1) (u + int k) \<and>* zero u \<and>* zero (u + int k + 2)\<rbrace>"
        apply (hsteps)
        by (simp add:sep_conj_ac, sep_cancel+, smt)
      hence "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 1) \<and>* 
                                                                             zero (u + int k + 2)\<rbrace> 
                   ?body
             \<lbrace>st ?j \<and>* ps (u + int k + 2) \<and>* zero u \<and>* one (u + 1) \<and>* 
                         ones (2 + u) (u + 1 + int k) \<and>* zero (u + int k + 2)\<rbrace>"
      proof(rule tm.sequencing)
        show "\<lbrace>st i \<and>*
               ps (u + int k + 2) \<and>*
               one (u + int k + 1) \<and>* ones (u + 1) (u + int k) \<and>* zero u \<and>* zero (u + int k + 2)\<rbrace> 
                      ?body
              \<lbrace>st ?j \<and>*
               ps (u + int k + 2) \<and>*
               zero u \<and>* one (u + 1) \<and>* ones (2 + u) (u + 1 + int k) \<and>* zero (u + int k + 2)\<rbrace>"
          apply (hgoto hoare_if_zero_true_gen)
          by (simp add:sep_conj_ac eq_ones)
      qed
      with True 
      show ?thesis
        by (simp, simp only:sep_conj_cond, intro tm.pre_condI, auto simp:sep_conj_ac)
    next
      case False
      let ?j = la
      let ?body = "i :[ (if_zero ?j ;
                        write_zero ;
                        move_right ; right_until_zero ; 
                        write_one ; move_right ; jmp i) ]: ?j"
      have eq_ones': 
         "(one (u + int k + 1) \<and>*
           ones (u + 1) (u + int k) \<and>*
           zero u \<and>* reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2))
                   =
           (zero u \<and>*
             ones (u + 1) (u + int k) \<and>*
             one (u + int k + 1) \<and>* reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2))"
        by (simp add:eq_ones sep_conj_ac)
      have "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 1) \<and>* 
                 reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace> 
                    ?body
            \<lbrace>st i \<and>* ps (u + int k + 2) \<and>* zero u \<and>* ones (u + 1) (u + int k) \<and>* 
                 one (u + int k + 1) \<and>* reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace>"
        apply (hsteps)
        by (auto simp:sep_conj_ac, sep_cancel+, smt)
      hence "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 1) \<and>* 
                 reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace> 
                     ?body
            \<lbrace>st ?j \<and>* ps (v + 2) \<and>* zero u \<and>* one (u + 1) \<and>* ones (2 + u) (u + 1 + int k) \<and>*
                 zero (2 + (u + int k)) \<and>* reps (3 + (u + int k)) (v + 1) ks \<and>* zero (v + 2)\<rbrace>"
      proof(rule tm.sequencing)
        have eq_ones': 
          "\<And> u k. (one (u + int k + 1) \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 2)) =
             (one (u + 1) \<and>* zero (2 + (u + int k)) \<and>* ones (2 + u) (u + 1 + int k))"
          by (smt eq_ones sep.mult_assoc sep_conj_commute)
        show "\<lbrace>st i \<and>* ps (u + int k + 2) \<and>* zero u \<and>*
                    ones (u + 1) (u + int k) \<and>* one (u + int k + 1) \<and>* reps (u + int k + 2) v ks \<and>* 
                    zero (v + 1) \<and>* zero (v + 2)\<rbrace> 
                      ?body
              \<lbrace>st ?j \<and>* ps (v + 2) \<and>* zero u \<and>* one (u + 1) \<and>* ones (2 + u) (u + 1 + int k) \<and>*
                      zero (2 + (u + int k)) \<and>* reps (3 + (u + int k)) (v + 1) ks \<and>* zero (v + 2)\<rbrace>"
          apply (hsteps Cons.hyps)
          by (simp add:sep_conj_ac eq_ones, sep_cancel+, smt)
      qed
      thus ?thesis
        by (unfold reps_simp3[OF False], auto simp:sep_conj_ac)
    qed 
  qed auto
qed

lemma hoare_shift_right_cons_gen[step]:
  assumes h: "ks \<noteq> []"
  and h1: "u = v" "x = w + 1" "y = w + 2"
  shows "\<lbrace>st i \<and>* ps u ** reps v w ks \<and>* zero x \<and>* zero y \<rbrace> 
            i:[shift_right]:j
         \<lbrace>st j ** ps y ** zero v ** reps (v + 1) x ks ** zero y\<rbrace>"
  by (unfold h1, rule hoare_shift_right_cons[OF h])

lemma shift_right_nil [step]: 
  assumes "u = v"
  shows
       "\<lbrace> st i \<and>* ps u \<and>* zero v \<rbrace>
               i:[shift_right]:j
        \<lbrace> st j \<and>* ps u \<and>* zero v \<rbrace>"
  by (unfold assms shift_right_def, intro t_hoare_local t_hoare_label, clarify, 
          rule t_hoare_label_last, simp+, hstep)


text {*
  @{text "clear_until_zero"} is useful to implement @{text "drag"}.
*}

definition "clear_until_zero = 
             (TL start exit.
              TLabel start;
                 if_zero exit;
                 write_zero;
                 move_right;
                 jmp start;
              TLabel exit)"

lemma  hoare_clear_until_zero[step]: 
         "\<lbrace>st i ** ps u ** ones u v ** zero (v + 1)\<rbrace>
              i :[clear_until_zero]: j
          \<lbrace>st j ** ps (v + 1) ** zeros u v ** zero (v + 1)\<rbrace> "
proof(unfold clear_until_zero_def, intro t_hoare_local, rule t_hoare_label,
    rule t_hoare_label_last, simp+)
  let ?body = "i :[ (if_zero j ; write_zero ; move_right ; jmp i) ]: j"
  show "\<lbrace>st i \<and>* ps u \<and>* ones u v \<and>* zero (v + 1)\<rbrace> ?body 
        \<lbrace>st j \<and>* ps (v + 1) \<and>* zeros u v \<and>* zero (v + 1)\<rbrace>"
  proof(induct u v rule: zeros.induct)
    fix ia ja
    assume h: "\<not> ja < ia \<Longrightarrow>
             \<lbrace>st i \<and>* ps (ia + 1) \<and>* ones (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>  ?body
             \<lbrace>st j \<and>* ps (ja + 1) \<and>* zeros (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>"
    show "\<lbrace>st i \<and>* ps ia \<and>* ones ia ja \<and>* zero (ja + 1)\<rbrace> ?body
           \<lbrace>st j \<and>* ps (ja + 1) \<and>* zeros ia ja \<and>* zero (ja + 1)\<rbrace>"
    proof(cases "ja < ia")
      case True
      thus ?thesis
        by (simp add: ones.simps zeros.simps sep_conj_ac, simp only:sep_conj_cond,
               intro tm.pre_condI, simp, hsteps)
    next
      case False
      note h[OF False, step]
      from False have ones_eq: "ones ia ja = (one ia \<and>* ones (ia + 1) ja)"
        by(simp add: ones.simps)
      from False have zeros_eq: "zeros ia ja = (zero ia \<and>* zeros (ia + 1) ja)"
        by(simp add: zeros.simps)
      have s1: "\<lbrace>st i \<and>* ps ia \<and>* one ia \<and>* ones (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>  ?body 
                 \<lbrace>st i \<and>* ps (ia + 1) \<and>* zero ia \<and>* ones (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>"
      proof(cases "ja < ia + 1")
        case True
        from True False have "ja = ia" by auto
        thus ?thesis
          apply(simp add: ones.simps)
          by (hsteps)
      next
        case False
        from False have "ones (ia + 1) ja = (one (ia + 1) \<and>* ones (ia + 1 + 1) ja)"
          by(simp add: ones.simps)
        thus ?thesis
          by (simp, hsteps)
      qed
      have s2: "\<lbrace>st i \<and>* ps (ia + 1) \<and>* zero ia \<and>* ones (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>
                ?body
                \<lbrace>st j \<and>* ps (ja + 1) \<and>* zero ia \<and>* zeros (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>"
        by hsteps
      from tm.sequencing[OF s1 s2] have 
        "\<lbrace>st i \<and>* ps ia \<and>* one ia \<and>* ones (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>  ?body
        \<lbrace>st j \<and>* ps (ja + 1) \<and>* zero ia \<and>* zeros (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>" .
      thus ?thesis
        unfolding ones_eq zeros_eq by(simp add: sep_conj_ac)
    qed
  qed
qed

lemma  hoare_clear_until_zero_gen[step]: 
  assumes "u = v" "x = w + 1"
  shows "\<lbrace>st i ** ps u ** ones v w ** zero x\<rbrace>
              i :[clear_until_zero]: j
        \<lbrace>st j ** ps x ** zeros v w ** zero x\<rbrace>"
  by (unfold assms, rule hoare_clear_until_zero)

definition "shift_left = 
            (TL start exit.
              TLabel start;
                 if_zero exit;
                 move_left;
                 write_one;
                 right_until_zero;
                 move_left;
                 write_zero;
                 move_right;
                 move_right;
                 jmp start;
              TLabel exit)
           "

declare ones_simps[simp del]

lemma hoare_move_left_reps[step]:
  assumes "ks \<noteq> []" "u = v"
  shows 
    "\<lbrace>st i ** ps u ** reps v w ks\<rbrace> 
         i:[move_left]:j
     \<lbrace>st j ** ps (u - 1) **  reps v w ks\<rbrace>"
proof -
  from `ks \<noteq> []` obtain y ys where eq_ks: "ks = y#ys"
    by (metis neq_Nil_conv)
  show ?thesis
    apply (unfold assms eq_ks)
    apply (case_tac ys, simp)
    my_block
      have "(ones v (v + int y)) = (one v \<and>* ones (v + 1) (v + int y))"
        by (smt ones_step_simp)
    my_block_end
    apply (unfold this, hsteps)
    by (simp add:this, hsteps)
qed

lemma hoare_shift_left_cons:
  assumes h: "ks \<noteq> []"
  shows "\<lbrace>st i \<and>* ps u \<and>* tm (u - 1) x \<and>* reps u v ks \<and>* zero (v + 1) \<and>* zero (v + 2) \<rbrace> 
                                   i:[shift_left]:j
         \<lbrace>st j \<and>* ps (v + 2) \<and>* reps (u - 1) (v - 1) ks \<and>* zero v \<and>* zero (v + 1) \<and>* zero (v + 2) \<rbrace>"
proof(unfold shift_left_def, intro t_hoare_local t_hoare_label, clarify, 
      rule t_hoare_label_last, simp+, clarify, prune)
  show " \<lbrace>st i \<and>* ps u \<and>* tm (u - 1) x \<and>* reps u v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace> 
             i :[ (if_zero j ;
                   move_left ;
                   write_one ;
                   right_until_zero ;
                   move_left ; write_zero ; 
                   move_right ; move_right ; jmp i) ]: j
         \<lbrace>st j \<and>* ps (v + 2) \<and>* reps (u - 1) (v - 1) ks \<and>* zero v \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace>"
    using h
  proof(induct ks arbitrary:i u v x)
    case (Cons k ks)
    thus ?case 
    proof(cases "ks = []")
      let ?body = "i :[ (if_zero j ;  move_left ; write_one ; right_until_zero ;
                   move_left ; write_zero ; move_right ; move_right ; jmp i) ]: j"
      case True 
      have "\<lbrace>st i \<and>* ps u \<and>* tm (u - 1) x \<and>* (one u \<and>* ones (u + 1) (u + int k)) \<and>* 
                                          zero (u + int k + 1) \<and>* zero (u + int k + 2)\<rbrace> 
                         ?body
            \<lbrace>st j \<and>* ps (u + int k + 2) \<and>* (one (u - 1) \<and>* ones u (u - 1 + int k)) \<and>*
                       zero (u + int k) \<and>* zero (u + int k + 1) \<and>* zero (u + int k + 2)\<rbrace>"
      apply(rule tm.sequencing [where q = "st i \<and>* ps (u + int k + 2) \<and>*
                (one (u - 1) \<and>* ones u (u - 1 + int k)) \<and>*
                zero (u + int k) \<and>* zero (u + int k + 1) \<and>* zero (u + int k + 2)"])
          apply (hsteps)
          apply (rule_tac p = "st j' \<and>* ps (u - 1) \<and>* ones (u - 1) (u + int k) \<and>*
                                zero (u + int k + 1) \<and>* zero (u + int k + 2)" 
            in tm.pre_stren)
          apply (hsteps)
          my_block
            have "(ones (u - 1) (u + int k)) = (ones (u - 1) (u + int k - 1) \<and>* one (u + int k))"
              by (smt ones_rev)
          my_block_end
          apply (unfold this)
          apply hsteps
          apply (simp add:sep_conj_ac, sep_cancel+)
          apply (smt ones.simps sep.mult_assoc sep_conj_commuteI)
          apply (simp add:sep_conj_ac)+
          apply (sep_cancel+)
          apply (smt ones.simps sep.mult_left_commute sep_conj_commuteI this)
          by hstep
        with True show ?thesis
        by (simp add:ones_simps, simp only:sep_conj_cond, intro tm.pre_condI, simp)
    next 
      case False
      let ?body = "i :[ (if_zero j ; move_left ; write_one ;right_until_zero ; move_left ; 
                                write_zero ; move_right ; move_right ; jmp i) ]: j"
      have "\<lbrace>st i \<and>* ps u \<and>* tm (u - 1) x \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>* 
                zero (u + int k + 1) \<and>* reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace> 
                ?body
            \<lbrace>st j \<and>* ps (v + 2) \<and>* one (u - 1) \<and>* ones u (u - 1 + int k) \<and>*
                        zero (u + int k) \<and>* reps (1 + (u + int k)) (v - 1) ks \<and>*
                                              zero v \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace>"
        apply (rule tm.sequencing[where q = "st i \<and>* ps (u + int k + 2) \<and>* 
                  zero (u + int k + 1) \<and>* reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* 
                  zero (v + 2) \<and>* one (u - 1) \<and>* ones u (u - 1 + int k) \<and>* zero (u + int k)"])
        apply (hsteps)
        apply (rule_tac p = "st j' \<and>* ps (u - 1) \<and>* 
                               ones (u - 1) (u + int k) \<and>*
                               zero (u + int k + 1) \<and>* 
                               reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)
            " in tm.pre_stren)
        apply hsteps
        my_block
          have "(ones (u - 1) (u + int k)) = 
            (ones (u - 1) (u + int k - 1) \<and>* one (u + int k))"
            by (smt ones_rev)
        my_block_end
        apply (unfold this)
        apply (hsteps)
        apply (sep_cancel+)
        apply (smt ones.simps sep.mult_assoc sep_conj_commuteI)
        apply (sep_cancel+)
        apply (smt ones.simps this)
        my_block
          have eq_u: "1 + (u + int k) = u + int k + 1" by simp
          from Cons.hyps[OF `ks \<noteq> []`, of i "u + int k + 2" Bk v, folded zero_def] 
          have "\<lbrace>st i \<and>* ps (u + int k + 2) \<and>* zero (u + int k + 1) \<and>*
                            reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace> 
                               ?body
                      \<lbrace>st j \<and>* ps (v + 2) \<and>*  reps (1 + (u + int k)) (v - 1) ks \<and>* 
                                                zero v \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace>"
          by (simp add:eq_u)
        my_block_end my_note hh[step] = this 
        by hsteps
      thus ?thesis
        by (unfold reps_simp3[OF False], auto simp:sep_conj_ac ones_simps)
    qed
  qed auto
qed

lemma hoare_shift_left_cons_gen[step]:
  assumes h: "ks \<noteq> []"
          "v = u - 1" "w = u" "y = x + 1" "z = x + 2"
  shows "\<lbrace>st i \<and>* ps u \<and>* tm v vv \<and>* reps w x ks \<and>* tm y Bk \<and>* tm z Bk\<rbrace> 
                                   i:[shift_left]:j
         \<lbrace>st j \<and>* ps z \<and>* reps v (x - 1) ks \<and>* zero x \<and>* zero y \<and>* zero z \<rbrace>"
  by (unfold assms, fold zero_def, rule hoare_shift_left_cons[OF `ks \<noteq> []`])

definition "bone c1 c2 = (TL exit l_one.
                                if_one l_one;
                                  (c1;
                                   jmp exit);
                                TLabel l_one;
                                      c2;
                                TLabel exit
                              )"

lemma hoare_bone_1_out:
  assumes h: 
        "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
                         i:[c1]:j
                  \<lbrace>st e \<and>* q \<rbrace>
        "
  shows "\<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
              i:[(bone c1 c2)]:j
         \<lbrace>st e \<and>* q \<rbrace>
        "
apply (unfold bone_def, intro t_hoare_local)
apply hsteps
apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
by (rule h)

lemma hoare_bone_1:
  assumes h: 
        "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
                         i:[c1]:j
                  \<lbrace>st j \<and>* ps v \<and>* tm v x \<and>* q \<rbrace>
        "
  shows "\<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
              i:[(bone c1 c2)]:j
         \<lbrace>st j \<and>* ps v \<and>* tm v x \<and>* q \<rbrace>
        "
proof -
  note h[step]
  show ?thesis
    apply (unfold bone_def, intro t_hoare_local)
    apply (rule t_hoare_label_last, auto)
    apply hsteps
    apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
    by hsteps
qed

lemma hoare_bone_2:
  assumes h: 
        "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
                         i:[c2]:j
                  \<lbrace>st j \<and>* q \<rbrace>
        "
  shows "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
              i:[(bone c1 c2)]:j
         \<lbrace>st j \<and>* q \<rbrace>
        "
apply (unfold bone_def, intro t_hoare_local)
apply (rule_tac q = "st la \<and>* ps u \<and>* one u \<and>* p" in tm.sequencing)
apply hsteps
apply (subst tassemble_to.simps(2), intro tm.code_exI, intro tm.code_extension1)
apply (subst tassemble_to.simps(2), intro tm.code_exI, intro tm.code_extension1)
apply (subst tassemble_to.simps(2), intro tm.code_exI)
apply (subst tassemble_to.simps(4), intro tm.code_condI, simp)
apply (subst tassemble_to.simps(2), intro tm.code_exI)
apply (subst tassemble_to.simps(4), simp add:sep_conj_cond, rule tm.code_condI, simp)
by (rule h)

lemma hoare_bone_2_out:
  assumes h: 
        "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
                         i:[c2]:j
                  \<lbrace>st e \<and>* q \<rbrace>
        "
  shows "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
              i:[(bone c1 c2)]:j
         \<lbrace>st e \<and>* q \<rbrace>
        "
apply (unfold bone_def, intro t_hoare_local)
apply (rule_tac q = "st la \<and>* ps u \<and>* one u \<and>* p" in tm.sequencing)
apply hsteps
apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension1)
apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension1)
apply (subst tassemble_to.simps(2), intro tm.code_exI)
apply (subst tassemble_to.simps(4), rule tm.code_condI, simp)
apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
by (rule h)

definition "bzero c1 c2 = (TL exit l_zero.
                                if_zero l_zero;
                                  (c1;
                                   jmp exit);
                                TLabel l_zero;
                                      c2;
                                TLabel exit
                              )"

lemma hoare_bzero_1:
  assumes h[step]: 
        "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
                         i:[c1]:j
                 \<lbrace>st j \<and>* ps v \<and>* tm v x \<and>* q \<rbrace>
        "
  shows "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
              i:[(bzero c1 c2)]:j
         \<lbrace>st j \<and>* ps v \<and>* tm v x \<and>* q \<rbrace>
        "
apply (unfold bzero_def, intro t_hoare_local)
apply hsteps
apply (rule_tac c = " ((c1 ; jmp l) ; TLabel la ; c2 ; TLabel l)" in t_hoare_label_last, auto)
apply (subst tassemble_to.simps(2), intro tm.code_exI, intro tm.code_extension)
by hsteps

lemma hoare_bzero_1_out:
  assumes h[step]: 
        "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
                         i:[c1]:j
                 \<lbrace>st e \<and>* q \<rbrace>
        "
  shows "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
              i:[(bzero c1 c2)]:j
         \<lbrace>st e \<and>* q \<rbrace>
        "
apply (unfold bzero_def, intro t_hoare_local)
apply hsteps
apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
by (rule h)

lemma hoare_bzero_2:
  assumes h: 
        "\<And> i j. \<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
                         i:[c2]:j
                 \<lbrace>st j \<and>* q \<rbrace>
        "
  shows "\<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
              i:[(bzero c1 c2)]:j
         \<lbrace>st j \<and>* q \<rbrace>
        "
  apply (unfold bzero_def, intro t_hoare_local)
  apply (rule_tac q = "st la \<and>* ps u \<and>* zero u \<and>* p" in tm.sequencing)
  apply hsteps
  apply (subst tassemble_to.simps(2), intro tm.code_exI, intro tm.code_extension1)
  apply (subst tassemble_to.simps(2), intro tm.code_exI, intro tm.code_extension1)
  apply (subst tassemble_to.simps(2), intro tm.code_exI)
  apply (subst tassemble_to.simps(4))
  apply (rule tm.code_condI, simp)
  apply (subst tassemble_to.simps(2))
  apply (rule tm.code_exI)
  apply (subst tassemble_to.simps(4), simp add:sep_conj_cond)
  apply (rule tm.code_condI, simp)
  by (rule h)

lemma hoare_bzero_2_out:
  assumes h: 
        "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
                         i:[c2]:j
                  \<lbrace>st e \<and>* q \<rbrace>
        "
  shows "\<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p\<rbrace>
              i:[(bzero c1 c2)]:j
         \<lbrace>st e \<and>* q \<rbrace>
        "
apply (unfold bzero_def, intro t_hoare_local)
apply (rule_tac q = "st la \<and>* ps u \<and>* zero u \<and>* p" in tm.sequencing)
apply hsteps
apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension1)
apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension1)
apply (subst tassemble_to.simps(2), intro tm.code_exI)
apply (subst tassemble_to.simps(4), rule tm.code_condI, simp)
apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
by (rule h)

definition "skip_or_set = bone (write_one; move_right; move_right)
                               (right_until_zero; move_right)"

lemma reps_len_split: 
  assumes "xs \<noteq> []" "ys \<noteq> []"
  shows "reps_len (xs @ ys) = reps_len xs + reps_len ys + 1"
  using assms
proof(induct xs arbitrary:ys)
  case (Cons x1 xs1)
  show ?case
  proof(cases "xs1 = []")
    case True
    thus ?thesis
      by (simp add:reps_len_cons[OF `ys \<noteq> []`] reps_len_sg)
  next
    case False
    hence " xs1 @ ys \<noteq> []" by simp
    thus ?thesis
      apply (simp add:reps_len_cons[OF `xs1@ys \<noteq> []`] reps_len_cons[OF `xs1 \<noteq> []`])
      by (simp add: Cons.hyps[OF `xs1 \<noteq> []` `ys \<noteq> []`])
  qed
qed auto

lemma hoare_skip_or_set_set:
  "\<lbrace> st i \<and>* ps u \<and>* zero u \<and>* zero (u + 1) \<and>* tm (u + 2) x\<rbrace>
         i:[skip_or_set]:j
   \<lbrace> st j \<and>* ps (u + 2) \<and>* one u \<and>* zero (u + 1) \<and>* tm (u + 2) x\<rbrace>"
  apply(unfold skip_or_set_def)
  apply(rule_tac q = "st j \<and>* ps (u + 2) \<and>* tm (u + 2) x \<and>* one u \<and>* zero (u + 1)" 
    in tm.post_weaken)
  apply(rule hoare_bone_1)
  apply hsteps
  by (auto simp:sep_conj_ac, sep_cancel+, smt)

lemma hoare_skip_or_set_set_gen[step]:
  assumes "u = v" "w = v + 1" "x = v + 2"
  shows "\<lbrace>st i \<and>* ps u \<and>* zero v \<and>* zero w \<and>* tm x xv\<rbrace>
                   i:[skip_or_set]:j
         \<lbrace>st j \<and>* ps x \<and>* one v \<and>* zero w \<and>* tm x xv\<rbrace>"
  by (unfold assms, rule hoare_skip_or_set_set)

lemma hoare_skip_or_set_skip:
  "\<lbrace> st i \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace>
         i:[skip_or_set]:j
   \<lbrace> st j \<and>*  ps (v + 2) \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace>"
proof -
   show ?thesis
     apply(unfold skip_or_set_def, unfold reps.simps, simp add:sep_conj_cond)
     apply(rule tm.pre_condI, simp)
     apply(rule_tac p = "st i \<and>* ps u \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>* 
                             zero (u + int k + 1)" 
                   in tm.pre_stren)
     apply (rule_tac q = "st j \<and>* ps (u + int k + 2) \<and>* 
                          one u \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 1)
              " in tm.post_weaken)
     apply (rule hoare_bone_2)
     apply (rule_tac p = " st i \<and>* ps u \<and>* ones u (u + int k) \<and>* zero (u + int k + 1) 
       " in tm.pre_stren)
     apply hsteps
     apply (simp add:sep_conj_ac, sep_cancel+, auto simp:sep_conj_ac ones_simps)
     by (sep_cancel+, smt)
 qed

lemma hoare_skip_or_set_skip_gen[step]:
  assumes "u = v" "x = w + 1"
  shows  "\<lbrace> st i \<and>* ps u \<and>* reps v w [k] \<and>* zero x\<rbrace>
                  i:[skip_or_set]:j
          \<lbrace> st j \<and>*  ps (w + 2) \<and>* reps v w [k] \<and>* zero x\<rbrace>"
  by (unfold assms, rule hoare_skip_or_set_skip)


definition "if_reps_z e = (move_right;
                              bone (move_left; jmp e) (move_left)
                             )"

lemma hoare_if_reps_z_true:
  assumes h: "k = 0"
  shows 
   "\<lbrace>st i \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace> 
      i:[if_reps_z e]:j 
    \<lbrace>st e \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace>"
  apply (unfold reps.simps, simp add:sep_conj_cond)
  apply (rule tm.pre_condI, simp add:h)
  apply (unfold if_reps_z_def)
  apply (simp add:ones_simps)
  apply (hsteps)
  apply (rule_tac p = "st j' \<and>* ps (u + 1) \<and>* zero (u + 1) \<and>* one u" in tm.pre_stren)
  apply (rule hoare_bone_1_out)
  by (hsteps)

lemma hoare_if_reps_z_true_gen[step]:
  assumes "k = 0" "u = v" "x = w + 1"
  shows "\<lbrace>st i \<and>* ps u \<and>* reps v w [k] \<and>* zero x\<rbrace> 
                  i:[if_reps_z e]:j 
         \<lbrace>st e \<and>* ps u \<and>* reps v w [k] \<and>* zero x\<rbrace>"
  by (unfold assms, rule hoare_if_reps_z_true, simp)

lemma hoare_if_reps_z_false:
  assumes h: "k \<noteq> 0"
  shows 
   "\<lbrace>st i \<and>* ps u \<and>* reps u v [k]\<rbrace> 
      i:[if_reps_z e]:j 
    \<lbrace>st j \<and>* ps u \<and>* reps u v [k]\<rbrace>"
proof -
  from h obtain k' where "k = Suc k'" by (metis not0_implies_Suc)
  show ?thesis
    apply (unfold `k = Suc k'`)
    apply (simp add:sep_conj_cond, rule tm.pre_condI, simp)
    apply (unfold if_reps_z_def)
    apply (simp add:ones_simps)
    apply hsteps
    apply (rule_tac p = "st j' \<and>* ps (u + 1) \<and>* one (u + 1) \<and>* one u \<and>* 
                          ones (2 + u) (u + (1 + int k'))" in tm.pre_stren)
    apply (rule_tac hoare_bone_2)
    by (hsteps)
qed

lemma hoare_if_reps_z_false_gen[step]:
  assumes h: "k \<noteq> 0" "u = v"
  shows 
   "\<lbrace>st i \<and>* ps u \<and>* reps v w [k]\<rbrace> 
      i:[if_reps_z e]:j 
    \<lbrace>st j \<and>* ps u \<and>* reps v w [k]\<rbrace>"
  by (unfold assms, rule hoare_if_reps_z_false[OF `k \<noteq> 0`])

definition "if_reps_nz e = (move_right;
                              bzero (move_left; jmp e) (move_left)
                           )"

lemma EXS_postI: 
  assumes "\<lbrace>P\<rbrace> 
            c
           \<lbrace>Q x\<rbrace>"
  shows "\<lbrace>P\<rbrace> 
          c
        \<lbrace>EXS x. Q x\<rbrace>"
by (metis EXS_intro assms tm.hoare_adjust)

lemma hoare_if_reps_nz_true:
  assumes h: "k \<noteq> 0"
  shows 
   "\<lbrace>st i \<and>* ps u \<and>* reps u v [k]\<rbrace> 
      i:[if_reps_nz e]:j 
    \<lbrace>st e \<and>* ps u \<and>* reps u v [k]\<rbrace>"
proof -
  from h obtain k' where "k = Suc k'" by (metis not0_implies_Suc)
  show ?thesis
    apply (unfold `k = Suc k'`)
    apply (unfold reps.simps, simp add:sep_conj_cond, rule tm.pre_condI, simp)
    apply (unfold if_reps_nz_def)
    apply (simp add:ones_simps)
    apply hsteps
    apply (rule_tac p = "st j' \<and>* ps (u + 1) \<and>* one (u + 1) \<and>* one u \<and>*
                            ones (2 + u) (u + (1 + int k'))" in tm.pre_stren)
    apply (rule hoare_bzero_1_out)
    by hsteps
qed


lemma hoare_if_reps_nz_true_gen[step]:
  assumes h: "k \<noteq> 0" "u = v"
  shows 
   "\<lbrace>st i \<and>* ps u \<and>* reps v w [k]\<rbrace> 
      i:[if_reps_nz e]:j 
    \<lbrace>st e \<and>* ps u \<and>* reps v w [k]\<rbrace>"
  by (unfold assms, rule hoare_if_reps_nz_true[OF `k\<noteq> 0`])

lemma hoare_if_reps_nz_false:
  assumes h: "k = 0"
  shows 
   "\<lbrace>st i \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace> 
      i:[if_reps_nz e]:j 
    \<lbrace>st j \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace>"
  apply (simp add:h sep_conj_cond)
  apply (rule tm.pre_condI, simp)
  apply (unfold if_reps_nz_def)
  apply (simp add:ones_simps)
  apply (hsteps)
  apply (rule_tac p = "st j' \<and>* ps (u + 1) \<and>*  zero (u + 1) \<and>* one u" in tm.pre_stren)
  apply (rule hoare_bzero_2)
  by (hsteps)

lemma hoare_if_reps_nz_false_gen[step]:
  assumes h: "k = 0" "u = v" "x = w + 1"
  shows 
   "\<lbrace>st i \<and>* ps u \<and>* reps v w [k] \<and>* zero x\<rbrace> 
      i:[if_reps_nz e]:j 
    \<lbrace>st j \<and>* ps u \<and>* reps v w [k] \<and>* zero x\<rbrace>"
  by (unfold assms, rule hoare_if_reps_nz_false, simp)

definition "skip_or_sets n = tpg_fold (replicate n skip_or_set)"



lemma hoare_skip_or_sets_set:
  shows "\<lbrace>st i \<and>* ps u \<and>* zeros u (u + int (reps_len (replicate (Suc n) 0))) \<and>* 
                                  tm (u + int (reps_len (replicate (Suc n) 0)) + 1) x\<rbrace> 
            i:[skip_or_sets (Suc n)]:j 
         \<lbrace>st j \<and>* ps (u + int (reps_len (replicate (Suc n) 0)) + 1) \<and>* 
                     reps' u  (u + int (reps_len (replicate (Suc n) 0))) (replicate (Suc n) 0) \<and>*
                                 tm (u + int (reps_len (replicate (Suc n) 0)) + 1) x \<rbrace>"
proof(induct n arbitrary:i j u x)
  case 0
  from 0 show ?case
    apply (simp add:reps'_def reps_len_def reps_ctnt_len_def reps_sep_len_def reps.simps)
    apply (unfold skip_or_sets_def, simp add:tpg_fold_sg)
    apply hsteps
    by (auto simp:sep_conj_ac, smt cond_true_eq2 ones.simps sep_conj_left_commute)
next
    case (Suc n)
    { fix n
      have "listsum (replicate n (Suc 0)) = n"
        by (induct n, auto)
    } note eq_sum = this
    have eq_len: "\<And>n. n \<noteq> 0 \<Longrightarrow> reps_len (replicate (Suc n) 0) = reps_len (replicate n 0) + 2"
      by (simp add:reps_len_def reps_sep_len_def reps_ctnt_len_def)
    have eq_zero: "\<And> u v. (zeros u (u + int (v + 2))) = 
           (zeros u (u + (int v)) \<and>* zero (u + (int v) + 1) \<and>* zero (u + (int v) + 2))"
      by (smt sep.mult_assoc zeros_rev)
    hence eq_z: 
      "zeros u (u + int (reps_len (replicate (Suc (Suc n)) 0)))  = 
       (zeros u (u + int (reps_len (replicate (Suc n) 0))) \<and>*
       zero ((u + int (reps_len (replicate (Suc n) 0))) + 1) \<and>* 
       zero ((u + int (reps_len (replicate (Suc n) 0))) + 2))
      " by (simp only:eq_len)
    have hh: "\<And>x. (replicate (Suc (Suc n)) x) = (replicate (Suc n) x) @ [x]"
      by (metis replicate_Suc replicate_append_same)
    have hhh: "replicate (Suc n) skip_or_set \<noteq> []" "[skip_or_set] \<noteq> []" by auto
    have eq_code: 
          "(i :[ skip_or_sets (Suc (Suc n)) ]: j) = 
           (i :[ (skip_or_sets (Suc n); skip_or_set) ]: j)"
    proof(unfold skip_or_sets_def)
      show "i :[ tpg_fold (replicate (Suc (Suc n)) skip_or_set) ]: j =
               i :[ (tpg_fold (replicate (Suc n) skip_or_set) ; skip_or_set) ]: j"
        apply (insert tpg_fold_app[OF hhh, of i j], unfold hh)
        by (simp only:tpg_fold_sg)
    qed
    have "Suc n \<noteq> 0" by simp
    show ?case 
      apply (unfold eq_z eq_code)
      apply (hstep Suc(1))
      apply (unfold eq_len[OF `Suc n \<noteq> 0`])
      apply hstep
      apply (auto simp:sep_conj_ac)[1]
      apply (sep_cancel+, prune) 
      apply (fwd abs_ones)
      apply ((fwd abs_reps')+, simp add:int_add_ac)
      by (metis replicate_append_same)
  qed

lemma hoare_skip_or_sets_set_gen[step]:
  assumes h: "p2 = p1" 
             "p3 = p1 + int (reps_len (replicate (Suc n) 0))"
             "p4 = p3 + 1"
  shows "\<lbrace>st i \<and>* ps p1 \<and>* zeros p2 p3 \<and>* tm p4 x\<rbrace> 
            i:[skip_or_sets (Suc n)]:j 
         \<lbrace>st j \<and>* ps p4 \<and>* reps' p2  p3 (replicate (Suc n) 0) \<and>* tm p4 x\<rbrace>"
  apply (unfold h)
  by (rule hoare_skip_or_sets_set)

declare reps.simps[simp del]

lemma hoare_skip_or_sets_skip:
  assumes h: "n < length ks"
  shows "\<lbrace>st i \<and>* ps u \<and>* reps' u v (take n ks) \<and>* reps' (v + 1) w [ks!n] \<rbrace> 
            i:[skip_or_sets (Suc n)]:j 
         \<lbrace>st j \<and>* ps (w+1) \<and>* reps' u v (take n ks) \<and>* reps' (v + 1) w [ks!n]\<rbrace>"
  using h
proof(induct n arbitrary: i j u v w ks)
  case 0
  show ?case 
    apply (subst (1 5) reps'_def, simp add:sep_conj_cond, intro tm.pre_condI, simp)
    apply (unfold skip_or_sets_def, simp add:tpg_fold_sg)
    apply (unfold reps'_def, simp del:reps.simps)
    apply hsteps
    by (sep_cancel+, smt+)
next
  case (Suc n)
  from `Suc n < length ks` have "n < length ks" by auto
  note h =  Suc(1) [OF this]
  show ?case 
    my_block
      from `Suc n < length ks` 
      have eq_take: "take (Suc n) ks = take n ks @ [ks!n]"
        by (metis not_less_eq not_less_iff_gr_or_eq take_Suc_conv_app_nth)
    my_block_end
    apply (unfold this)
    apply (subst reps'_append, simp add:sep_conj_exists, rule tm.precond_exI)
    my_block
      have "(i :[ skip_or_sets (Suc (Suc n)) ]: j) = 
                 (i :[ (skip_or_sets (Suc n); skip_or_set )]: j)"
      proof -
        have eq_rep: 
          "(replicate (Suc (Suc n)) skip_or_set) = ((replicate (Suc n) skip_or_set) @ [skip_or_set])"
          by (metis replicate_Suc replicate_append_same)
        have "replicate (Suc n) skip_or_set \<noteq> []" "[skip_or_set] \<noteq> []" by auto
        from tpg_fold_app[OF this]
        show ?thesis
          by (unfold skip_or_sets_def eq_rep, simp del:replicate.simps add:tpg_fold_sg)
      qed
    my_block_end
    apply (unfold this)
    my_block
       fix i j m 
       have "\<lbrace>st i \<and>* ps u \<and>* (reps' u (m - 1) (take n ks) \<and>* reps' m v [ks ! n])\<rbrace> 
                            i :[ (skip_or_sets (Suc n)) ]: j
             \<lbrace>st j \<and>* ps (v + 1) \<and>* (reps' u (m - 1) (take n ks) \<and>* reps' m v [ks ! n])\<rbrace>"
                  apply (rule h[THEN tm.hoare_adjust])
                  by (sep_cancel+, auto)
    my_block_end my_note h_c1 = this
    my_block
      fix j' j m 
      have "\<lbrace>st j' \<and>* ps (v + 1) \<and>* reps' (v + 1) w [ks ! Suc n]\<rbrace> 
                          j' :[ skip_or_set ]: j
            \<lbrace>st j \<and>* ps (w + 1) \<and>* reps' (v + 1) w [ks ! Suc n]\<rbrace>"
        apply (unfold reps'_def, simp)
        apply (rule hoare_skip_or_set_skip[THEN tm.hoare_adjust])
        by (sep_cancel+, smt)+
    my_block_end
    apply (hstep h_c1 this)+ 
    by ((fwd abs_reps'), simp, sep_cancel+)
qed

lemma hoare_skip_or_sets_skip_gen[step]:
  assumes h: "n < length ks" "u = v" "x = w + 1"
  shows "\<lbrace>st i \<and>* ps u \<and>* reps' v w (take n ks) \<and>* reps' x y [ks!n] \<rbrace> 
            i:[skip_or_sets (Suc n)]:j 
         \<lbrace>st j \<and>* ps (y+1) \<and>* reps' v w (take n ks) \<and>* reps' x y [ks!n]\<rbrace>"
  by (unfold assms, rule hoare_skip_or_sets_skip[OF `n < length ks`])

lemma fam_conj_interv_simp:
    "(fam_conj {(ia::int)<..} p) = ((p (ia + 1)) \<and>* fam_conj {ia + 1 <..} p)"
by (smt Collect_cong fam_conj_insert_simp greaterThan_def 
        greaterThan_eq_iff greaterThan_iff insertI1 
        insert_compr lessThan_iff mem_Collect_eq)

lemma zeros_fam_conj:
  assumes "u \<le> v"
  shows "(zeros u v \<and>* fam_conj {v<..} zero) = fam_conj {u - 1<..} zero"
proof -
  have "{u - 1<..v} ## {v <..}" by (auto simp:set_ins_def)
  from fam_conj_disj_simp[OF this, symmetric]
  have "(fam_conj {u - 1<..v} zero \<and>* fam_conj {v<..} zero) = fam_conj ({u - 1<..v} + {v<..}) zero" .
  moreover 
  from `u \<le> v` have eq_set: "{u - 1 <..} = {u - 1 <..v} + {v <..}" by (auto simp:set_ins_def)
  moreover have "fam_conj {u - 1<..v} zero = zeros u v"
  proof -
    have "({u - 1<..v}) = ({u .. v})" by auto
    moreover {
      fix u v 
      assume "u  \<le> (v::int)"
      hence "fam_conj {u .. v} zero = zeros u v"
      proof(induct rule:ones_induct)
        case (Base i j)
        thus ?case by auto
      next
        case (Step i j)
        thus ?case
        proof(cases "i = j") 
          case True
          show ?thesis
            by (unfold True, simp add:fam_conj_simps)
        next
          case False 
          with `i \<le> j` have hh: "i + 1 \<le> j" by auto
          hence eq_set: "{i..j} = (insert i {i + 1 .. j})"
            by (smt simp_from_to)
          have "i \<notin> {i + 1 .. j}" by simp
          from fam_conj_insert_simp[OF this, folded eq_set]
          have "fam_conj {i..j} zero = (zero i \<and>* fam_conj {i + 1..j} zero)" .
          with Step(2)[OF hh] Step
          show ?thesis by simp
        qed
      qed
    } 
    moreover note this[OF `u  \<le> v`]
    ultimately show ?thesis by simp
  qed
  ultimately show ?thesis by smt
qed

declare replicate.simps [simp del]

lemma hoare_skip_or_sets_comb:
  assumes "length ks \<le> n"
  shows "\<lbrace>st i \<and>* ps u \<and>* reps u v ks \<and>* fam_conj {v<..} zero\<rbrace> 
                i:[skip_or_sets (Suc n)]:j 
         \<lbrace>st j \<and>* ps ((v + int (reps_len (list_ext n ks)) - int (reps_len ks))+ 2) \<and>* 
          reps' u (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1) (list_ext n ks) \<and>*
          fam_conj {(v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1)<..} zero \<rbrace>"
proof(cases "ks = []")
  case True
  show ?thesis
    apply (subst True, simp only:reps.simps sep_conj_cond)
    apply (rule tm.pre_condI, simp)
    apply (rule_tac p = "st i \<and>* ps (v + 1) \<and>*
            zeros (v + 1) (v + 1 + int (reps_len (replicate (Suc n) 0))) \<and>*
            tm (v + 2 + int (reps_len (replicate (Suc n) 0))) Bk \<and>* 
            fam_conj {(v + 2 + int (reps_len (replicate (Suc n) 0)))<..} zero
      " in tm.pre_stren)
    apply hsteps
    apply (auto simp:sep_conj_ac)[1]
    apply (auto simp:sep_conj_ac)[2]
    my_block
      from True have "(list_ext n ks) = (replicate (Suc n) 0)"
        by (metis append_Nil diff_zero list.size(3) list_ext_def)
    my_block_end my_note le_red = this
    my_block
      from True have "(reps_len ks) = 0"
        by (metis reps_len_nil)
    my_block_end
    apply (unfold this le_red, simp)
    my_block
      have "v + 2 + int (reps_len (replicate (Suc n) 0)) = 
            v + int (reps_len (replicate (Suc n) 0)) + 2" by smt
    my_block_end my_note eq_len = this
    apply (unfold this)
    apply (sep_cancel+)
    apply (fold zero_def)
    apply (subst fam_conj_interv_simp, simp)
    apply (simp only:int_add_ac)
    apply (simp only:sep_conj_ac, sep_cancel+)
    my_block
      have "v + 1 \<le> (2 + (v + int (reps_len (replicate (Suc n) 0))))" by simp
      from zeros_fam_conj[OF this]
      have "(fam_conj {v<..} zero) = (zeros (v + 1) (2 + (v + int (reps_len (replicate (Suc n) 0)))) \<and>*
                                        fam_conj {2 + (v + int (reps_len (replicate (Suc n) 0)))<..} zero)"
        by simp
    my_block_end
    apply (subst (asm) this, simp only:int_add_ac, sep_cancel+)
    by (smt cond_true_eq2 sep.mult_assoc sep.mult_commute 
            sep.mult_left_commute sep_conj_assoc sep_conj_commute 
         sep_conj_left_commute zeros.simps zeros_rev)
next 
  case False
  show ?thesis
    my_block
      have "(i:[skip_or_sets (Suc n)]:j) = 
              (i:[(skip_or_sets (length ks);  skip_or_sets (Suc n - length ks))]:j)"
        apply (unfold skip_or_sets_def)
        my_block
          have "(replicate (Suc n) skip_or_set) = 
                   (replicate (length ks) skip_or_set @ (replicate (Suc n - length ks) skip_or_set))"
            by (smt assms replicate_add)
        my_block_end
        apply (unfold this, rule tpg_fold_app, simp add:False)
        by (insert `length ks \<le> n`, simp)
    my_block_end
    apply (unfold this)
    my_block
      from False have "length ks = (Suc (length ks - 1))" by simp
    my_block_end
    apply (subst (1) this)
    my_block
      from False
      have "(reps u v ks \<and>* fam_conj {v<..} zero) =
            (reps' u (v + 1) ks \<and>* fam_conj {v+1<..} zero)"
        apply (unfold reps'_def, simp)
        by (subst fam_conj_interv_simp, simp add:sep_conj_ac)
    my_block_end
    apply (unfold this) 
    my_block
      fix i j
      have "\<lbrace>st i \<and>* ps u \<and>* reps' u (v + 1) ks \<rbrace> 
                i :[ skip_or_sets (Suc (length ks - 1))]: j
            \<lbrace>st j \<and>* ps (v + 2) \<and>* reps' u (v + 1) ks \<rbrace>"
        my_block
          have "ks = take (length ks - 1) ks @ [ks!(length ks - 1)]"
            by (smt False drop_0 drop_eq_Nil id_take_nth_drop)  
        my_block_end my_note eq_ks = this
        apply (subst (1) this)
        apply (unfold reps'_append, simp add:sep_conj_exists, rule tm.precond_exI)
        my_block
          from False have "(length ks - Suc 0) < length ks"
            by (smt `length ks = Suc (length ks - 1)`)
        my_block_end
        apply hsteps
        apply (subst eq_ks, unfold reps'_append, simp only:sep_conj_exists)
        by (rule_tac x = m in EXS_intro, simp add:sep_conj_ac, sep_cancel+, smt)
    my_block_end
    apply (hstep this)
    my_block
      fix u n
      have "(fam_conj {u <..} zero) = 
         (zeros (u + 1) (u + int n + 1) \<and>* tm (u + int n + 2) Bk \<and>* fam_conj {(u + int n + 2)<..} zero)"
        my_block
          have "u + 1 \<le> (u + int n + 2)" by auto
          from zeros_fam_conj[OF this, symmetric]
          have "fam_conj {u<..} zero = (zeros (u + 1) (u + int n + 2) \<and>* fam_conj {u + int n + 2<..} zero)"
            by simp
        my_block_end
        apply (subst this)
        my_block
          have "(zeros (u + 1) (u + int n + 2)) = 
                   ((zeros (u + 1) (u + int n + 1) \<and>* tm (u + int n + 2) Bk))"
            by (smt zero_def zeros_rev)
        my_block_end
        by (unfold this, auto simp:sep_conj_ac)
    my_block_end
    apply (subst (1) this[of _ "(reps_len (replicate (Suc (n - length ks)) 0))"])
    my_block
      from `length ks \<le> n`
      have "Suc n - length ks = Suc (n - length ks)" by auto 
    my_block_end my_note eq_suc = this
    apply (subst this)
    apply hsteps
    apply (simp add: sep_conj_ac this, sep_cancel+)
    apply (fwd abs_reps')+
    my_block
      have "(int (reps_len (replicate (Suc (n - length ks)) 0))) =
            (int (reps_len (list_ext n ks)) - int (reps_len ks) - 1)"
        apply (unfold list_ext_def eq_suc)
        my_block
          have "replicate (Suc (n - length ks)) 0 \<noteq> []" by simp
        my_block_end
        by (unfold reps_len_split[OF False this], simp)
    my_block_end
    apply (unfold this)
    my_block
      from `length ks \<le> n`
      have "(ks @ replicate (Suc (n - length ks)) 0) =  (list_ext n ks)"
        by (unfold list_ext_def, simp)
    my_block_end
    apply (unfold this, simp)
    apply (subst fam_conj_interv_simp, unfold zero_def, simp, simp add:int_add_ac sep_conj_ac)
    by (sep_cancel+, smt)
qed

lemma hoare_skip_or_sets_comb_gen:
  assumes "length ks \<le> n" "u = v" "w = x"
  shows "\<lbrace>st i \<and>* ps u \<and>* reps v w ks \<and>* fam_conj {x<..} zero\<rbrace> 
                i:[skip_or_sets (Suc n)]:j 
         \<lbrace>st j \<and>* ps ((x + int (reps_len (list_ext n ks)) - int (reps_len ks))+ 2) \<and>* 
          reps' u (x + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1) (list_ext n ks) \<and>*
          fam_conj {(x + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1)<..} zero \<rbrace>"
  by (unfold assms, rule hoare_skip_or_sets_comb[OF `length ks \<le> n`])

definition "locate n = (skip_or_sets (Suc n);
                        move_left;
                        move_left;
                        left_until_zero;
                        move_right
                       )"

lemma list_ext_tail_expand:
  assumes h: "length ks \<le> a"
  shows "list_ext a ks = take a (list_ext a ks) @ [(list_ext a ks)!a]"
proof -
  let ?l = "list_ext a ks"
  from h have eq_len: "length ?l = Suc a"
    by (smt list_ext_len_eq)
  hence "?l \<noteq> []" by auto
  hence "?l = take (length ?l - 1) ?l @ [?l!(length ?l - 1)]"
    by (metis `length (list_ext a ks) = Suc a` diff_Suc_1 le_refl 
                    lessI take_Suc_conv_app_nth take_all)
  from this[unfolded eq_len]
  show ?thesis by simp
qed

lemma reps'_nn_expand:
  assumes "xs \<noteq> []"
  shows "(reps' u v xs) = (reps u (v - 1) xs \<and>* zero v)"
  by (metis assms reps'_def)

lemma sep_conj_st1: "(p \<and>* st t \<and>* q) = (st t \<and>* p \<and>* q)"
  by (simp only:sep_conj_ac)

lemma sep_conj_st2: "(p \<and>* st t) = (st t \<and>* p)"
  by (simp only:sep_conj_ac)

lemma sep_conj_st3: "((st t \<and>* p) \<and>* r) = (st t \<and>* p \<and>* r)"
  by (simp only:sep_conj_ac)

lemma sep_conj_st4: "(EXS x. (st t \<and>* r x)) = ((st t) \<and>* (EXS x. r x))"
  apply (unfold pred_ex_def, default+)
  apply (safe)
  apply (sep_cancel, auto)
  by (auto elim!: sep_conjE intro!:sep_conjI)

lemmas sep_conj_st = sep_conj_st1 sep_conj_st2 sep_conj_st3 sep_conj_st4

lemma sep_conj_cond3 : "(<cond1> \<and>* <cond2>) = <(cond1 \<and> cond2)>"
  by (smt cond_eqI cond_true_eq sep_conj_commute sep_conj_empty)

lemma sep_conj_cond4 : "(<cond1> \<and>* <cond2> \<and>* r) = (<(cond1 \<and> cond2)> \<and>* r)"
  by (metis Hoare_gen.sep_conj_cond3 Hoare_tm.sep_conj_cond3)

lemmas sep_conj_cond = sep_conj_cond3 sep_conj_cond4 sep_conj_cond 

lemma hoare_left_until_zero_reps: 
  "\<lbrace>st i ** ps v ** zero u ** reps (u + 1) v [k]\<rbrace> 
        i:[left_until_zero]:j
   \<lbrace>st j ** ps u ** zero u ** reps (u + 1) v [k]\<rbrace>"
  apply (unfold reps.simps, simp only:sep_conj_cond)
  apply (rule tm.pre_condI, simp)
  by hstep

lemma hoare_left_until_zero_reps_gen[step]: 
  assumes "u = x" "w = v + 1"
  shows "\<lbrace>st i ** ps u ** zero v ** reps w x [k]\<rbrace> 
                i:[left_until_zero]:j
         \<lbrace>st j ** ps v ** zero v ** reps w x [k]\<rbrace>"
  by (unfold assms, rule hoare_left_until_zero_reps)

lemma reps_lenE:
  assumes "reps u v ks s"
  shows "( <(v = u + int (reps_len ks) - 1)> \<and>* reps u v ks ) s"
proof(rule condI)
  from reps_len_correct[OF assms] show "v = u + int (reps_len ks) - 1" .
next
  from assms show "reps u v ks s" .
qed

lemma condI1: 
  assumes "p s" "b"
  shows "(<b> \<and>* p) s"
proof(rule condI[OF assms(2)])
  from  assms(1) show "p s" .
qed

lemma hoare_locate_set:
  assumes "length ks \<le> n"
  shows "\<lbrace>st i \<and>* zero (u - 1) \<and>* ps u \<and>* reps u v ks \<and>* fam_conj {v<..} zero\<rbrace> 
                i:[locate n]:j 
         \<lbrace>st j \<and>* zero (u - 1) \<and>* 
             (EXS m w. ps m \<and>* reps' u (m - 1) (take n (list_ext n ks)) \<and>* 
                         reps m w [(list_ext n ks)!n] \<and>* fam_conj {w<..} zero)\<rbrace>"
proof(cases "take n (list_ext n ks) = []")
  case False
  show ?thesis
    apply (unfold locate_def)
    apply (hstep hoare_skip_or_sets_comb_gen)
    apply (subst (3) list_ext_tail_expand[OF `length ks \<le> n`])
    apply (subst (1) reps'_append, simp add:sep_conj_exists)
    apply (rule tm.precond_exI)
    apply (subst (1) reps'_nn_expand[OF False]) 
    apply (rule_tac p = "st j' \<and>* <(m = u + int (reps_len (take n (list_ext n ks))) + 1)> \<and>*
            ps (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 2) \<and>*
            ((reps u (m - 1 - 1) (take n (list_ext n ks)) \<and>* zero (m - 1)) \<and>*
             reps' m (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1)
              [list_ext n ks ! n]) \<and>*
            fam_conj
             {v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1<..}
             zero \<and>*
            zero (u - 1)" 
      in tm.pre_stren)
    my_block
      have "[list_ext n ks ! n] \<noteq> []" by simp
      from reps'_nn_expand[OF this]
      have "(reps' m (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1) [list_ext n ks ! n]) =
                (reps m (v + (int (reps_len (list_ext n ks)) - int (reps_len ks))) [list_ext n ks ! n] \<and>*
                   zero (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1))" 
        by simp
    my_block_end 
    apply (subst this)
    my_block
      have "(fam_conj {v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1<..} zero) =
             (zero (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 2) \<and>* 
              fam_conj {v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 2<..} zero)"
        by (subst fam_conj_interv_simp, smt)
    my_block_end
    apply (unfold this) 
    apply (simp only:sep_conj_st)
    apply hsteps
    apply (auto simp:sep_conj_ac)[1]
    apply (sep_cancel+)
    apply (rule_tac x = m in EXS_intro)
    apply (rule_tac x = "m + int (list_ext n ks ! n)" in EXS_intro)
    apply (simp add:sep_conj_ac del:ones_simps, sep_cancel+)
    apply (subst (asm) sep_conj_cond)+
    apply (erule_tac condE, clarsimp, simp add:sep_conj_ac int_add_ac)
    apply (fwd abs_reps')
    apply (fwd abs_reps')
    apply (simp add:sep_conj_ac int_add_ac)
    apply (sep_cancel+)
    apply (subst (asm) reps'_def, subst fam_conj_interv_simp, subst fam_conj_interv_simp, 
           simp add:sep_conj_ac int_add_ac)
    my_block
      fix s
      assume h: "(reps (1 + (u + int (reps_len (take n (list_ext n ks)))))
             (v + (- int (reps_len ks) + int (reps_len (list_ext n ks)))) [list_ext n ks ! n]) s"
      (is "?P s")
      from reps_len_correct[OF this] list_ext_tail_expand[OF `length ks \<le> n`]
      have hh: "v + (- int (reps_len ks) + 
                    int (reps_len (take n (list_ext n ks) @ [list_ext n ks ! n]))) =
                  1 + (u + int (reps_len (take n (list_ext n ks)))) + 
                       int (reps_len [list_ext n ks ! n]) - 1"
        by metis
      have "[list_ext n ks ! n] \<noteq> []" by simp
      from hh[unfolded reps_len_split[OF False this]]
      have "v  =  u + (int (reps_len ks)) - 1"
        by simp
      from condI1[where p = ?P, OF h this]
      have "(<(v = u + int (reps_len ks) - 1)> \<and>*
             reps (1 + (u + int (reps_len (take n (list_ext n ks)))))
             (v + (- int (reps_len ks) + int (reps_len (list_ext n ks)))) [list_ext n ks ! n]) s" .
    my_block_end
    apply (fwd this, (subst (asm) sep_conj_cond)+, erule condE, simp add:sep_conj_ac int_add_ac
              reps_len_sg)
    apply (fwd reps_lenE, (subst (asm) sep_conj_cond)+, erule condE, simp add:sep_conj_ac int_add_ac
            reps_len_sg)
    by (fwd reps_lenE, (subst (asm) sep_conj_cond)+, erule condE, simp add:sep_conj_ac)
next
  case True
  show ?thesis
    apply (unfold locate_def)
    apply (hstep hoare_skip_or_sets_comb)
    apply (subst (3) list_ext_tail_expand[OF `length ks \<le> n`])
    apply (subst (1) reps'_append, simp add:sep_conj_exists)
    apply (rule tm.precond_exI)
    my_block
      from True `length ks \<le> n`
      have "ks = []" "n = 0"
        apply (metis le0 le_antisym length_0_conv less_nat_zero_code list_ext_len take_eq_Nil)
        by (smt True length_take list.size(3) list_ext_len)
    my_block_end
    apply (unfold True this)
    apply (simp add:reps'_def list_ext_def reps.simps reps_len_def reps_sep_len_def 
                 reps_ctnt_len_def
      del:ones_simps)
    apply (subst sep_conj_cond)+
    apply (rule tm.pre_condI, simp del:ones_simps)
    apply (subst fam_conj_interv_simp, simp add:sep_conj_st del:ones_simps)
    apply (hsteps)
    apply (auto simp:sep_conj_ac)[1]
    apply (sep_cancel+)
    apply (rule_tac x = "(v + int (listsum (replicate (Suc 0) (Suc 0))))" in EXS_intro)+
    apply (simp only:sep_conj_ac, sep_cancel+)
    apply (auto)
    apply (subst fam_conj_interv_simp)
    apply (subst fam_conj_interv_simp)
    by smt
qed

lemma hoare_locate_set_gen[step]:
  assumes "length ks \<le> n" 
           "u = v - 1" "v = w" "x = y"
  shows "\<lbrace>st i \<and>* zero u \<and>* ps v \<and>* reps w x ks \<and>* fam_conj {y<..} zero\<rbrace> 
                i:[locate n]:j 
         \<lbrace>st j \<and>* zero u \<and>* 
             (EXS m w. ps m \<and>* reps' v (m - 1) (take n (list_ext n ks)) \<and>* 
                         reps m w [(list_ext n ks)!n] \<and>* fam_conj {w<..} zero)\<rbrace>"
  by (unfold assms, rule hoare_locate_set[OF `length ks \<le> n`])

lemma hoare_locate_skip: 
  assumes h: "n < length ks"
  shows 
   "\<lbrace>st i \<and>* ps u \<and>* zero (u - 1) \<and>* reps' u (v - 1) (take n ks) \<and>* reps' v w [ks!n] \<and>* tm (w + 1) x\<rbrace> 
      i:[locate n]:j 
    \<lbrace>st j \<and>* ps v \<and>* zero (u - 1) \<and>* reps' u (v - 1) (take n ks) \<and>* reps' v w [ks!n] \<and>* tm (w + 1) x\<rbrace>"
proof -
  show ?thesis
    apply (unfold locate_def)
    apply hsteps
    apply (subst (2 4) reps'_def, simp add:reps.simps sep_conj_cond del:ones_simps)
    apply (intro tm.pre_condI, simp del:ones_simps)
    apply hsteps
    apply (case_tac "(take n ks) = []", simp add:reps'_def sep_conj_cond del:ones_simps)
    apply (rule tm.pre_condI, simp del:ones_simps)
    apply hsteps
    apply (simp del:ones_simps add:reps'_def)
    by hsteps
qed


lemma hoare_locate_skip_gen[step]: 
  assumes "n < length ks"
          "v = u - 1" "w = u" "x = y - 1" "z' = z + 1"
  shows 
   "\<lbrace>st i \<and>* ps u \<and>* tm v Bk \<and>* reps' w x (take n ks) \<and>* reps' y z [ks!n] \<and>* tm z' vx\<rbrace> 
      i:[locate n]:j 
    \<lbrace>st j \<and>* ps y \<and>* tm v Bk \<and>* reps' w x (take n ks) \<and>* reps' y z [ks!n] \<and>* tm z' vx\<rbrace>"
  by (unfold assms, fold zero_def, rule hoare_locate_skip[OF `n < length ks`])

definition "Inc a = locate a; 
                    right_until_zero; 
                    move_right;
                    shift_right;
                    move_left;
                    left_until_double_zero;
                    write_one;
                    left_until_double_zero;
                    move_right;
                    move_right
                    "

lemma ones_int_expand: "(ones m (m + int k)) = (one m \<and>* ones (m + 1) (m + int k))"
  by (simp add:ones_simps)

lemma reps_splitedI:
  assumes h1: "(reps u v ks1 \<and>* zero (v + 1) \<and>* reps (v + 2) w ks2) s"
  and h2: "ks1 \<noteq> []"
  and h3: "ks2 \<noteq> []"
  shows "(reps u w (ks1 @ ks2)) s"
proof - 
  from h2 h3
  have "splited (ks1 @ ks2) ks1 ks2" by (auto simp:splited_def)
  from h1 obtain s1 where 
    "(reps u v ks1) s1" by (auto elim:sep_conjE)
  from h1 obtain s2 where 
    "(reps (v + 2) w ks2) s2" by (auto elim:sep_conjE)
  from reps_len_correct[OF `(reps u v ks1) s1`] 
  have eq_v: "v = u + int (reps_len ks1) - 1" .
  from reps_len_correct[OF `(reps (v + 2) w ks2) s2`]
  have eq_w: "w = v + 2 + int (reps_len ks2) - 1" .
  from h1
  have "(reps u (u + int (reps_len ks1) - 1) ks1 \<and>*
         zero (u + int (reps_len ks1)) \<and>* reps (u + int (reps_len ks1) + 1) w ks2) s"
    apply (unfold eq_v eq_w[unfolded eq_v])
    by (sep_cancel+, smt)
  thus ?thesis
    by(unfold reps_splited[OF `splited (ks1 @ ks2) ks1 ks2`], simp)
qed

lemma reps_sucI:
  assumes h: "(reps u v (xs@[x]) \<and>* one (1 + v)) s"
  shows "(reps u (1 + v) (xs@[Suc x])) s"
proof(cases "xs = []")
  case True
  from h obtain s' where "(reps u v (xs@[x])) s'" by (auto elim:sep_conjE)
  from reps_len_correct[OF this] have " v = u + int (reps_len (xs @ [x])) - 1" .
  with True have eq_v: "v = u + int x" by (simp add:reps_len_sg)
  have eq_one1: "(one (1 + (u + int x)) \<and>* ones (u + 1) (u + int x)) = ones (u + 1) (1 + (u + int x))"
    by (smt ones_rev sep.mult_commute)
  from h show ?thesis
    apply (unfold True, simp add:eq_v reps.simps sep_conj_cond sep_conj_ac ones_rev)
    by (sep_cancel+, simp add: eq_one1, smt)
next
  case False
  from h obtain s1 s2 where hh: "(reps u v (xs@[x])) s1" "s = s1 + s2" "s1 ## s2" "one (1 + v) s2"
    by (auto elim:sep_conjE)
  from hh(1)[unfolded reps_rev[OF False]]
  obtain s11 s12 s13 where hhh:
    "(reps u (v - int (x + 1) - 1) xs) s11"
    "(zero (v - int (x + 1))) s12" "(ones (v - int x) v) s13"
    "s11 ## (s12 + s13)" "s12 ## s13" "s1 = s11 + s12 + s13"
    apply (atomize_elim)
    apply(elim sep_conjE)+
    apply (rule_tac x = xa in exI)
    apply (rule_tac x = xaa in exI)
    apply (rule_tac x = ya in exI)
    apply (intro conjI, assumption+)
    by (auto simp:set_ins_def)
  show ?thesis
  proof(rule reps_splitedI[where v = "(v - int (x + 1) - 1)"])
    show "(reps u (v - int (x + 1) - 1) xs \<and>* zero (v - int (x + 1) - 1 + 1) \<and>* 
                                    reps (v - int (x + 1) - 1 + 2) (1 + v) [Suc x]) s"
    proof(rule sep_conjI)
      from hhh(1) show "reps u (v - int (x + 1) - 1) xs s11" .
    next
      show "(zero (v - int (x + 1) - 1 + 1) \<and>* reps (v - int (x + 1) - 1 + 2) (1 + v) [Suc x]) (s12 + (s13 + s2))"
      proof(rule sep_conjI)
        from hhh(2) show "zero (v - int (x + 1) - 1 + 1) s12" by smt
      next
        from hh(4) hhh(3)
        show "reps (v - int (x + 1) - 1 + 2) (1 + v) [Suc x] (s13 + s2)"
          apply (simp add:reps.simps del:ones_simps add:ones_rev)
          by (smt hh(3) hh(4) hhh(4) hhh(5) hhh(6) sep_add_disjD sep_conjI sep_disj_addI1)
      next
        show "s12 ## s13 + s2" 
          by (metis hh(3) hhh(4) hhh(5) hhh(6) sep_add_commute sep_add_disjD 
              sep_add_disjI2 sep_disj_addD sep_disj_addD1 sep_disj_addI1 sep_disj_commuteI)
      next
        show "s12 + (s13 + s2) = s12 + (s13 + s2)" by metis 
      qed
    next
      show "s11 ## s12 + (s13 + s2)"
        by (metis hh(3) hhh(4) hhh(5) hhh(6) sep_disj_addD1 sep_disj_addI1 sep_disj_addI3)
    next
      show "s = s11 + (s12 + (s13 + s2))"
        by (smt hh(2) hh(3) hhh(4) hhh(5) hhh(6) sep_add_assoc sep_add_commute 
             sep_add_disjD sep_add_disjI2 sep_disj_addD1 sep_disj_addD2 
              sep_disj_addI1 sep_disj_addI3 sep_disj_commuteI)
    qed
  next
    from False show "xs \<noteq> []" .
  next
    show "[Suc x] \<noteq> []" by simp
  qed
qed

lemma cond_expand: "(<cond> \<and>* p) s = (cond \<and> (p s))"
  by (metis (full_types) condD pasrt_def sep_conj_commuteI 
             sep_conj_sep_emptyI sep_empty_def sep_globalise)

lemma ones_rev1:
  assumes "\<not> (1 + n) < m"
  shows "(ones m n \<and>* one (1 + n)) = (ones m (1 + n))"
  by (insert ones_rev[OF assms, simplified], simp)

lemma reps_one_abs:
  assumes "(reps u v [k] \<and>* one w) s"
          "w = v + 1"
  shows "(reps u w [Suc k]) s"
  using assms unfolding assms
  apply (simp add:reps.simps sep_conj_ac)
  apply (subst (asm) sep_conj_cond)+
  apply (erule condE, simp)
  by (simp add:ones_rev sep_conj_ac, sep_cancel+, smt)

lemma reps'_reps_abs:
  assumes "(reps' u v xs \<and>* reps w x ys) s"
          "w = v + 1"  "ys \<noteq> []"
  shows "(reps u x (xs@ys)) s"
proof(cases "xs = []")
  case False
  with assms
  have h: "splited (xs@ys) xs ys" by (simp add:splited_def)
  from assms(1)[unfolded assms(2)]
  show ?thesis
    apply (unfold reps_splited[OF h])
    apply (insert False, unfold reps'_def, simp)
    apply (fwd reps_lenE, (subst (asm) sep_conj_cond)+)
    by (erule condE, simp)
next
  case True
  with assms
  show ?thesis
    apply (simp add:reps'_def)
    by (erule condE, simp)
qed

lemma reps_one_abs1:
  assumes "(reps u v (xs@[k]) \<and>* one w) s"
          "w = v + 1"
  shows "(reps u w (xs@[Suc k])) s"
proof(cases "xs = []")
  case True
  with assms reps_one_abs
  show ?thesis by simp
next
  case False
  hence "splited (xs@[k]) xs [k]" by (simp add:splited_def)
  from assms(1)[unfolded reps_splited[OF this] assms(2)]
  show ?thesis
    apply (fwd reps_one_abs)
    apply (fwd reps_reps'_abs) 
    apply (fwd reps'_reps_abs)
    by (simp add:assms)
qed
  
lemma tm_hoare_inc00: 
  assumes h: "a < length ks \<and> ks ! a = v"
  shows "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace> 
    i :[ Inc a ]: j
    \<lbrace>st j \<and>*
     ps u \<and>*
     zero (u - 2) \<and>*
     zero (u - 1) \<and>*
     reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1) (ks[a := Suc v]) \<and>*
     fam_conj {(ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1)<..} zero\<rbrace>"
  (is "\<lbrace> ?P \<rbrace> ?code \<lbrace> ?Q \<rbrace>")
proof -
  from h have "a < length ks" "ks ! a = v" by auto
  from list_nth_expand[OF `a < length ks`]
  have eq_ks: "ks = take a ks @ [ks!a] @ drop (Suc a) ks" .
  from `a < length ks` have "ks \<noteq> []" by auto
  hence "(reps u ia ks \<and>* zero (ia + 1)) = reps' u (ia + 1) ks"
    by (simp add:reps'_def)
  also from eq_ks have "\<dots> = reps' u (ia + 1) (take a ks @ [ks!a] @ drop (Suc a) ks)" by simp
  also have "\<dots>  = (EXS m. reps' u (m - 1) (take a ks) \<and>* 
                     reps' m (ia + 1) (ks ! a # drop (Suc a) ks))"
    by (simp add:reps'_append)
  also have "\<dots> = (EXS m. reps' u (m - 1) (take a ks) \<and>* 
                     reps' m (ia + 1) ([ks ! a] @ drop (Suc a) ks))"
    by simp
  also have "\<dots> = (EXS m ma. reps' u (m - 1) (take a ks) \<and>*
                       reps' m (ma - 1) [ks ! a] \<and>* reps' ma (ia + 1) (drop (Suc a) ks))"
    by (simp only:reps'_append sep_conj_exists)
  finally have eq_s: "(reps u ia ks \<and>* zero (ia + 1)) = \<dots>" .
  { fix m ma
    have eq_u: "-1 + u = u - 1" by smt
    have " \<lbrace>st i \<and>*
            ps u \<and>*
            zero (u - 2) \<and>*
            zero (u - 1) \<and>*
            (reps' u (m - 1) (take a ks) \<and>*
             reps' m (ma - 1) [ks ! a] \<and>* reps' ma (ia + 1) (drop (Suc a) ks)) \<and>*
            fam_conj {ia + 1<..} zero\<rbrace> 
           i :[ Inc a ]: j
           \<lbrace>st j \<and>*
            ps u \<and>*
            zero (u - 2) \<and>*
            zero (u - 1) \<and>*
            reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1) (ks[a := Suc v]) \<and>*
            fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1<..} zero\<rbrace>"
    proof(cases "(drop (Suc a) ks) = []")
      case True
      { fix hc
        have eq_1: "(1 + (m + int (ks ! a))) = (m + int (ks ! a) + 1)" by simp
        have eq_2: "take a ks @ [Suc (ks ! a)] = ks[a := Suc v]"
          apply (subst (3) eq_ks, unfold True, simp)
          by (metis True append_Nil2 eq_ks h upd_conv_take_nth_drop)
        assume h: "(fam_conj {1 + (m + int (ks ! a))<..} zero \<and>* 
                      reps u (1 + (m + int (ks ! a))) (take a ks @ [Suc (ks ! a)])) hc"
        hence "(fam_conj {m + int (ks ! a) + 1<..} zero \<and>* reps u (m + int (ks ! a) + 1) (ks[a := Suc v])) hc"
          by (unfold eq_1 eq_2 , sep_cancel+)
      } note eq_fam = this
      show ?thesis
        apply (unfold Inc_def, subst (3) reps'_def, simp add:True sep_conj_cond)
        apply (intro tm.pre_condI, simp)
        apply (subst fam_conj_interv_simp, simp, subst (3) zero_def)
        apply hsteps
        apply (subst reps'_sg, simp add:sep_conj_cond del:ones_simps)
        apply (rule tm.pre_condI, simp del:ones_simps)
        apply hsteps
        apply (rule_tac p = "
          st j' \<and>* ps (1 + (m + int (ks ! a))) \<and>* zero (u - 1) \<and>* zero (u - 2) \<and>*
                   reps u (1 + (m + int (ks ! a))) (take a ks @ [Suc (ks!a)]) 
                            \<and>* fam_conj {1 + (m + int (ks ! a))<..} zero
          " in tm.pre_stren)
        apply (hsteps)
        apply (simp add:sep_conj_ac list_ext_lt[OF `a < length ks`], sep_cancel+)
        apply (fwd eq_fam, sep_cancel+)
        apply (simp del:ones_simps add:sep_conj_ac)
        apply (sep_cancel+, prune)
        apply ((fwd abs_reps')+, simp)
        apply (fwd reps_one_abs abs_reps')+
        apply (subst (asm) reps'_def, simp)
        by (subst fam_conj_interv_simp, simp add:sep_conj_ac)
    next 
      case False
      then obtain k' ks' where eq_drop: "drop (Suc a) ks = [k']@ks'"
        by (metis append_Cons append_Nil list.exhaust)
      from `a < length ks`
      have eq_ks: "ks[a := Suc v] = (take a ks @ [Suc (ks ! a)]) @ (drop (Suc a) ks)"
        apply (fold `ks!a = v`)
        by (metis append_Cons append_Nil append_assoc upd_conv_take_nth_drop)
      show ?thesis
        apply (unfold Inc_def)
        apply (unfold Inc_def eq_drop reps'_append, simp add:sep_conj_exists del:ones_simps)
        apply (rule tm.precond_exI, subst (2) reps'_sg)
        apply (subst sep_conj_cond)+
        apply (subst (1) ones_int_expand)
        apply (rule tm.pre_condI, simp del:ones_simps)
        apply hsteps
        (* apply (hsteps hoare_locate_skip_gen[OF `a < length ks`]) *)
        apply (subst reps'_sg, simp add:sep_conj_cond del:ones_simps)
        apply (rule tm.pre_condI, simp del:ones_simps)
        apply hsteps
        apply (rule_tac p = "st j' \<and>*
                ps (2 + (m + int (ks ! a))) \<and>*
                reps (2 + (m + int (ks ! a))) ia (drop (Suc a) ks) \<and>* zero (ia + 1) \<and>* zero (ia + 2) \<and>*
                reps u (m + int (ks ! a)) (take a ks @ [ks!a]) \<and>* zero (1 + (m + int (ks ! a))) \<and>*
                zero (u - 2) \<and>* zero (u - 1) \<and>* fam_conj {ia + 2<..} zero
          " in tm.pre_stren)
        apply (hsteps hoare_shift_right_cons_gen[OF False]
                hoare_left_until_double_zero_gen[OF False])
        apply (rule_tac p = 
          "st j' \<and>* ps (1 + (m + int (ks ! a))) \<and>*
          zero (u - 2) \<and>* zero (u - 1) \<and>* 
          reps u (1 + (m + int (ks ! a))) (take a ks @ [Suc (ks ! a)]) \<and>*
          zero (2 + (m + int (ks ! a))) \<and>*
          reps (3 + (m + int (ks ! a))) (ia + 1) (drop (Suc a) ks) \<and>* fam_conj {ia + 1<..} zero
          " in tm.pre_stren)
        apply (hsteps)
        apply (simp add:sep_conj_ac, sep_cancel+)
        apply (unfold list_ext_lt[OF `a < length ks`], simp)
        apply (fwd abs_reps')+ 
        apply(fwd reps'_reps_abs)
        apply (subst eq_ks, simp)
        apply (sep_cancel+) 
        apply (thin_tac "mb = 4 + (m + (int (ks ! a) + int k'))")
        apply (thin_tac "ma = 2 + (m + int (ks ! a))", prune)
        apply (simp add: int_add_ac sep_conj_ac, sep_cancel+)
        apply (fwd reps_one_abs1, subst fam_conj_interv_simp, simp, sep_cancel+, smt)
        apply (fwd abs_ones)+
        apply (fwd abs_reps')
        apply (fwd abs_reps')
        apply (fwd abs_reps')
        apply (fwd abs_reps')
        apply (unfold eq_drop, simp add:int_add_ac sep_conj_ac)
        apply (sep_cancel+)
        apply (fwd  reps'_abs[where xs = "take a ks"])
        apply (fwd reps'_abs[where xs = "[k']"])
        apply (unfold reps'_def, simp add:int_add_ac sep_conj_ac)
        apply (sep_cancel+)
        by (subst (asm) fam_conj_interv_simp, simp, smt)
      qed
  } note h = this
  show ?thesis
    apply (subst fam_conj_interv_simp)
    apply (rule_tac p = "st i \<and>*  ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* 
                              (reps u ia ks \<and>* zero (ia + 1)) \<and>* fam_conj {ia + 1<..} zero" 
      in tm.pre_stren)
    apply (unfold eq_s, simp only:sep_conj_exists)
    apply (intro tm.precond_exI h)
    by (sep_cancel+, unfold eq_s, simp)
qed

declare ones_simps [simp del]

lemma tm_hoare_inc01:
  assumes "length ks \<le> a \<and> v = 0"
  shows 
   "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace> 
       i :[ Inc a ]: j
    \<lbrace>st j \<and>*
     ps u \<and>*
     zero (u - 2) \<and>*
     zero (u - 1) \<and>*
     reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1) ((list_ext a ks)[a := Suc v]) \<and>*
     fam_conj {(ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1)<..} zero\<rbrace>"
proof -
  from assms have "length ks \<le> a" "v = 0" by auto
  show ?thesis
    apply (rule_tac p = "
      st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* (reps u ia ks \<and>* <(ia = u + int (reps_len ks) - 1)>) \<and>* 
             fam_conj {ia<..} zero
      " in tm.pre_stren)
    apply (subst sep_conj_cond)+
    apply (rule tm.pre_condI, simp)
    apply (unfold Inc_def)
    apply hstep
    (* apply (hstep hoare_locate_set_gen[OF `length ks \<le> a`]) *)
    apply (simp only:sep_conj_exists)
    apply (intro tm.precond_exI)
    my_block
      fix m w
      have "reps m w [list_ext a ks ! a] =
            (ones m (m + int (list_ext a ks ! a)) \<and>* <(w = m + int (list_ext a ks ! a))>)"
        by (simp add:reps.simps)
    my_block_end
    apply (unfold this)
    apply (subst sep_conj_cond)+
    apply (rule tm.pre_condI, simp)
    apply (subst fam_conj_interv_simp)
    apply (hsteps)
    apply (subst fam_conj_interv_simp, simp)
    apply (hsteps)
    apply (rule_tac p = "st j' \<and>* ps (m + int (list_ext a ks ! a) + 1) \<and>*
                           zero (u - 2) \<and>* zero (u - 1) \<and>* 
                           reps u (m + int (list_ext a ks ! a) + 1) 
                                ((take a (list_ext a ks))@[Suc (list_ext a ks ! a)]) \<and>*
                           fam_conj {(m + int (list_ext a ks ! a) + 1)<..} zero
                         " in tm.pre_stren)
    apply (hsteps)
    apply (simp add:sep_conj_ac, sep_cancel+)
    apply (unfold `v = 0`, prune)
    my_block
      from `length ks \<le> a` have "list_ext a ks ! a = 0"
        by (metis le_refl list_ext_tail)
      from `length ks \<le> a` have "a < length (list_ext a ks)"
        by (metis list_ext_len)
      from reps_len_suc[OF this] 
      have eq_len: "int (reps_len (list_ext a ks)) = 
                        int (reps_len (list_ext a ks[a := Suc (list_ext a ks ! a)])) - 1" 
        by smt
      fix m w hc
      assume h: "(fam_conj {m + int (list_ext a ks ! a) + 1<..} zero \<and>*
                 reps u (m + int (list_ext a ks ! a) + 1) (take a (list_ext a ks) @ [Suc (list_ext a ks ! a)]))
                 hc"
      then obtain s where 
        "(reps u (m + int (list_ext a ks ! a) + 1) (take a (list_ext a ks) @ [Suc (list_ext a ks ! a)])) s"
        by (auto dest!:sep_conjD)
      from reps_len_correct[OF this]
      have "m  = u + int (reps_len (take a (list_ext a ks) @ [Suc (list_ext a ks ! a)])) 
                        - int (list_ext a ks ! a) - 2" by smt
      from h [unfolded this]
      have "(fam_conj {u + int (reps_len (list_ext a ks))<..} zero \<and>*
           reps u (u + int (reps_len (list_ext a ks))) (list_ext a ks[a := Suc 0]))
           hc"
        apply (unfold eq_len, simp)
        my_block
          from `a < length (list_ext a ks)`
          have "take a (list_ext a ks) @ [Suc (list_ext a ks ! a)] = 
                list_ext a ks[a := Suc (list_ext a ks ! a)]"
            by (smt `list_ext a ks ! a = 0` assms length_take list_ext_tail_expand list_update_length)
        my_block_end
        apply (unfold this)
        my_block
          have "-1 + (u + int (reps_len (list_ext a ks[a := Suc (list_ext a ks ! a)]))) = 
                u + (int (reps_len (list_ext a ks[a := Suc (list_ext a ks ! a)])) - 1)" by simp
        my_block_end
        apply (unfold this)
        apply (sep_cancel+)
        by (unfold `(list_ext a ks ! a) = 0`, simp)
    my_block_end
    apply (rule this, assumption)
    apply (simp only:sep_conj_ac, sep_cancel+)+
    apply (fwd abs_reps')+
    apply (fwd reps_one_abs) 
    apply (fwd reps'_reps_abs)
    apply (simp add:int_add_ac sep_conj_ac)
    apply (sep_cancel+)
    apply (subst fam_conj_interv_simp, simp add:sep_conj_ac, smt)
    apply (fwd reps_lenE, (subst (asm) sep_conj_cond)+, erule condE, simp)
    by (sep_cancel+)
qed

definition "Dec a e  = (TL continue. 
                          (locate a; 
                           if_reps_nz continue;
                           left_until_double_zero;
                           move_right;
                           move_right;
                           jmp e);
                          (TLabel continue;
                           right_until_zero; 
                           move_left;
                           write_zero;
                           move_right;
                           move_right;
                           shift_left;
                           move_left;
                           move_left;
                           move_left;
                           left_until_double_zero;
                           move_right;
                           move_right))"

lemma cond_eq: "((<b> \<and>* p) s) = (b \<and> (p s))"
proof
  assume "(<b> \<and>* p) s"
  from condD[OF this] show " b \<and> p s" .
next
  assume "b \<and> p s"
  hence b and "p s" by auto
  from `b` have "(<b>) 0" by (auto simp:pasrt_def)
  moreover have "s = 0 + s" by auto
  moreover have "0 ## s" by auto
  moreover note `p s`
  ultimately show "(<b> \<and>* p) s" by (auto intro!:sep_conjI)
qed

lemma tm_hoare_dec_fail00:
  assumes "a < length ks \<and> ks ! a = 0"
  shows "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace>  
             i :[ Dec a e ]: j
         \<lbrace>st e \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>*
          reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks)) (list_ext a ks[a := 0]) \<and>*
          fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks) <..} zero\<rbrace>"
proof -
  from assms have "a < length ks" "ks!a = 0" by auto
  from list_nth_expand[OF `a < length ks`]
  have eq_ks: "ks = take a ks @ [ks ! a] @ drop (Suc a) ks" .
  show ?thesis
  proof(cases " drop (Suc a) ks = []")
    case False
    then obtain k' ks' where eq_drop: "drop (Suc a) ks = [k']@ks'"
      by (metis append_Cons append_Nil list.exhaust)
    show ?thesis
      apply (unfold Dec_def, intro t_hoare_local)
      apply (subst tassemble_to.simps(2), rule tm.code_exI, rule tm.code_extension)
      apply (subst (1) eq_ks)
      my_block
        have "(reps u ia (take a ks @ [ks ! a] @ drop (Suc a) ks) \<and>* fam_conj {ia<..} zero) = 
              (reps' u (ia + 1) ((take a ks @ [ks ! a]) @ drop (Suc a) ks) \<and>* fam_conj {ia + 1<..} zero)"
          apply (subst fam_conj_interv_simp)
          by (unfold reps'_def, simp add:sep_conj_ac)
      my_block_end
      apply (unfold this)
      apply (subst reps'_append)
      apply (unfold eq_drop)
      apply (subst (2) reps'_append)
      apply (simp only:sep_conj_exists, intro tm.precond_exI)
      apply (subst (2) reps'_def, simp add:reps.simps ones_simps)
      apply (subst reps'_append, simp only:sep_conj_exists, intro tm.precond_exI)
      apply hstep
      (* apply (hstep hoare_locate_skip_gen[OF `a < length ks`]) *)
      my_block
        fix m mb
        have "(reps' mb (m - 1) [ks ! a]) = (reps mb (m - 2) [ks!a] \<and>* zero (m - 1))"
          by (simp add:reps'_def, smt)
      my_block_end
      apply (unfold this)
      apply hstep
      (* apply (hstep hoare_if_reps_nz_false_gen[OF `ks!a = 0`]) *)
      apply (simp only:reps.simps(2), simp add:`ks!a = 0`)
      apply (rule_tac p = "st j'b \<and>*
        ps mb \<and>*
        reps u mb ((take a ks)@[ks ! a]) \<and>* <(m - 2 = mb)> \<and>*
        zero (m - 1) \<and>*
        zero (u - 1) \<and>*
        one m \<and>*
        zero (u - 2) \<and>*
        ones (m + 1) (m + int k') \<and>*
        <(-2 + ma = m + int k')> \<and>* zero (ma - 1) \<and>* reps' ma (ia + 1) ks' \<and>* fam_conj {ia + 1<..} zero"
        in tm.pre_stren)
      apply hsteps
      apply (simp add:sep_conj_ac, sep_cancel+) 
      apply (subgoal_tac "m + int k' = ma - 2", simp)
      apply (fwd abs_ones)+
      apply (subst (asm) sep_conj_cond)+
      apply (erule condE, auto)
      apply (fwd abs_reps')+
      apply (subgoal_tac "ma = m + int k' + 2", simp)
      apply (fwd abs_reps')+
      my_block
        from `a < length ks`
        have "list_ext a ks = ks" by (auto simp:list_ext_def)
      my_block_end
      apply (simp add:this)
      apply (subst eq_ks, simp add:eq_drop `ks!a = 0`)
      apply (subst (asm) reps'_def, simp)
      apply (subst fam_conj_interv_simp, simp add:sep_conj_ac, sep_cancel+)
      apply (metis append_Cons assms eq_Nil_appendI eq_drop eq_ks list_update_id)
      apply (clarsimp)
      apply (subst (asm) sep_conj_cond)+
      apply (erule condE, clarsimp)
      apply (subst (asm) sep_conj_cond)+
      apply (erule condE, clarsimp)
      apply (simp add:sep_conj_ac, sep_cancel+)
      apply (fwd abs_reps')+
      by (fwd reps'_reps_abs, simp add:`ks!a = 0`)
  next 
    case True
    show ?thesis
      apply (unfold Dec_def, intro t_hoare_local)
      apply (subst tassemble_to.simps(2), rule tm.code_exI, rule tm.code_extension)
      apply (subst (1) eq_ks, unfold True, simp)
      my_block
        have "(reps u ia (take a ks @ [ks ! a]) \<and>* fam_conj {ia<..} zero) = 
              (reps' u (ia + 1) (take a ks @ [ks ! a]) \<and>* fam_conj {ia + 1<..} zero)"
          apply (unfold reps'_def, subst fam_conj_interv_simp)
          by (simp add:sep_conj_ac)
      my_block_end
      apply (subst (1) this)
      apply (subst reps'_append)
      apply (simp only:sep_conj_exists, intro tm.precond_exI)
      apply (subst fam_conj_interv_simp, simp) 
      my_block
        have "(zero (2 + ia)) = (tm (2 + ia) Bk)"
          by (simp add:zero_def)
      my_block_end my_note eq_z = this
      apply hstep
      (* apply (hstep hoare_locate_skip_gen[OF `a < length ks`]) *)
      my_block
        fix m 
        have "(reps' m (ia + 1) [ks ! a]) = (reps m ia [ks!a] \<and>* zero (ia + 1))"
          by (simp add:reps'_def)
      my_block_end
      apply (unfold this, prune)
      apply hstep
      (* apply (hstep hoare_if_reps_nz_false_gen[OF `ks!a = 0`]) *)
      apply (simp only:reps.simps(2), simp add:`ks!a = 0`)
      apply (rule_tac p = "st j'b \<and>* ps m \<and>* (reps u m ((take a ks)@[ks!a]) \<and>* <(ia = m)>) 
                              \<and>* zero (ia + 1) \<and>* zero (u - 1) \<and>*  
                              zero (2 + ia) \<and>* zero (u - 2) \<and>* fam_conj {2 + ia<..} zero"
        in tm.pre_stren)
      apply hsteps
      apply (simp add:sep_conj_ac)
      apply ((subst (asm) sep_conj_cond)+, erule condE, simp)
      my_block
        from `a < length ks`  have "list_ext a ks = ks" by (metis list_ext_lt) 
      my_block_end
      apply (unfold this, simp)
      apply (subst fam_conj_interv_simp)
      apply (subst fam_conj_interv_simp, simp)
      apply (simp only:sep_conj_ac, sep_cancel+)
      apply (subst eq_ks, unfold True `ks!a = 0`, simp)
      apply (metis True append_Nil2 assms eq_ks list_update_same_conv) 
      apply (simp add:sep_conj_ac)
      apply (subst (asm) sep_conj_cond)+
      apply (erule condE, simp, thin_tac "ia = m")
      apply (fwd abs_reps')+
      apply (simp add:sep_conj_ac int_add_ac, sep_cancel+)
      apply (unfold reps'_def, simp)
      by (metis sep.mult_commute)
  qed
qed

lemma tm_hoare_dec_fail01:
  assumes "length ks \<le> a"
  shows "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace>  
                       i :[ Dec a e ]: j
         \<lbrace>st e \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>*
          reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks)) (list_ext a ks[a := 0]) \<and>*
          fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks) <..} zero\<rbrace>"
  apply (unfold Dec_def, intro t_hoare_local)
  apply (subst tassemble_to.simps(2), rule tm.code_exI, rule tm.code_extension)
  apply (rule_tac p = "st i \<and>* ps u \<and>* zero (u - 2) \<and>*
                       zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero \<and>* 
                       <(ia = u + int (reps_len ks) - 1)>" in tm.pre_stren)
  apply hstep
  (* apply (hstep hoare_locate_set_gen[OF `length ks \<le> a`]) *)
  apply (simp only:sep_conj_exists, intro tm.precond_exI)
  my_block
    from assms
    have "list_ext a ks ! a = 0" by (metis le_refl list_ext_tail) 
  my_block_end my_note is_z = this
  apply (subst fam_conj_interv_simp)
  apply hstep
  (* apply (hstep hoare_if_reps_nz_false_gen[OF is_z]) *)
  apply (unfold is_z)
  apply (subst (1) reps.simps)
  apply (rule_tac p = "st j'b \<and>* ps m \<and>*  reps u m (take a (list_ext a ks) @ [0]) \<and>* zero (w + 1) \<and>*
                         <(w = m + int 0)> \<and>* zero (u - 1) \<and>* 
                         fam_conj {w + 1<..} zero \<and>* zero (u - 2) \<and>* 
                         <(ia = u + int (reps_len ks) - 1)>" in tm.pre_stren)
  my_block
    have "(take a (list_ext a ks)) @ [0] \<noteq> []" by simp
  my_block_end
  apply hsteps
  (* apply (hsteps hoare_left_until_double_zero_gen[OF this]) *)
  apply (simp add:sep_conj_ac)
  apply prune
  apply (subst (asm) sep_conj_cond)+
  apply (elim condE, simp add:sep_conj_ac, prune)
  my_block
    fix m w ha
    assume h1: "w = m \<and> ia = u + int (reps_len ks) - 1"
      and  h: "(ps u \<and>*
              st e \<and>*
              zero (u - 1) \<and>*
              zero (m + 1) \<and>*
              fam_conj {m + 1<..} zero \<and>* zero (u - 2) \<and>* reps u m (take a (list_ext a ks) @ [0])) ha"
    from h1 have eq_w: "w = m" and eq_ia: "ia = u + int (reps_len ks) - 1" by auto
    from h obtain s' where "reps u m (take a (list_ext a ks) @ [0]) s'"
      by (auto dest!:sep_conjD)
    from reps_len_correct[OF this] 
    have eq_m: "m = u + int (reps_len (take a (list_ext a ks) @ [0])) - 1" .
    from h[unfolded eq_m, simplified]
    have "(ps u \<and>*
                st e \<and>*
                zero (u - 1) \<and>*
                zero (u - 2) \<and>*
                fam_conj {u + (-1 + int (reps_len (list_ext a ks)))<..} zero \<and>*
                reps u (u + (-1 + int (reps_len (list_ext a ks)))) (list_ext a ks[a := 0])) ha"
      apply (sep_cancel+)
      apply (subst fam_conj_interv_simp, simp)
      my_block
        from `length ks \<le> a` have "list_ext a ks[a := 0] = list_ext a ks"
          by (metis is_z list_update_id)
      my_block_end
      apply (unfold this)
      my_block
        from `length ks \<le> a` is_z 
        have "take a (list_ext a ks) @ [0] = list_ext a ks"
          by (metis list_ext_tail_expand)
      my_block_end
      apply (unfold this)
      by (simp add:sep_conj_ac, sep_cancel+, smt)
  my_block_end
  apply (rule this, assumption)
  apply (sep_cancel+)[1]
  apply (subst (asm) sep_conj_cond)+
  apply (erule condE, prune, simp)
  my_block
    fix s m
    assume "(reps' u (m - 1) (take a (list_ext a ks)) \<and>* ones m m \<and>* zero (m + 1)) s"
    hence "reps' u (m + 1) (take a (list_ext a ks) @ [0]) s"
      apply (unfold reps'_append)
      apply (rule_tac x = m in EXS_intro)
      by (subst (2) reps'_def, simp add:reps.simps)
  my_block_end
  apply (rotate_tac 1, fwd this)
  apply (subst (asm) reps'_def, simp add:sep_conj_ac)
  my_block
    fix s
    assume h: "(st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* 
                   reps u ia ks \<and>* fam_conj {ia<..} zero) s"
    then obtain s' where "reps u ia ks s'" by (auto dest!:sep_conjD)
    from reps_len_correct[OF this] have eq_ia: "ia = u + int (reps_len ks) - 1" .
    from h
    have "(st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>*
           fam_conj {ia<..} zero \<and>* <(ia = u + int (reps_len ks) - 1)>) s"
      by (unfold eq_ia, simp)
  my_block_end
  by (rule this, assumption)

lemma t_hoare_label1: 
      "(\<And>l. l = i \<Longrightarrow> \<lbrace>st l \<and>* p\<rbrace>  l :[ c l ]: j \<lbrace>st k \<and>* q\<rbrace>) \<Longrightarrow>
             \<lbrace>st l \<and>* p \<rbrace> 
               i:[(TLabel l; c l)]:j
             \<lbrace>st k \<and>* q\<rbrace>"
by (unfold tassemble_to.simps, intro tm.code_exI tm.code_condI, clarify, auto)

lemma tm_hoare_dec_fail1:
  assumes "a < length ks \<and> ks ! a = 0 \<or> length ks \<le> a"
  shows "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace>  
                      i :[ Dec a e ]: j
         \<lbrace>st e \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>*
          reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks)) (list_ext a ks[a := 0]) \<and>*
         fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks) <..} zero\<rbrace>"
  using assms
proof
  assume "a < length ks \<and> ks ! a = 0"
  thus ?thesis
    by (rule tm_hoare_dec_fail00)
next
  assume "length ks \<le> a"
  thus ?thesis
    by (rule tm_hoare_dec_fail01)
qed

lemma shift_left_nil_gen[step]:
  assumes "u = v"
  shows "\<lbrace>st i \<and>* ps u \<and>* zero v\<rbrace> 
              i :[shift_left]:j
         \<lbrace>st j \<and>* ps u \<and>* zero v\<rbrace>"
 apply(unfold assms shift_left_def, intro t_hoare_local t_hoare_label, clarify, 
                 rule t_hoare_label_last, simp, clarify, prune, simp)
 by hstep

lemma tm_hoare_dec_suc1: 
  assumes "a < length ks \<and> ks ! a = Suc v"
  shows "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace> 
                    i :[ Dec a e ]: j
         \<lbrace>st j \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>*
             reps u (ia - 1) (list_ext a ks[a := v]) \<and>*
             fam_conj {ia - 1<..} zero\<rbrace>"
proof -
  from assms have "a < length ks" " ks ! a = Suc v" by auto
  from list_nth_expand[OF `a < length ks`]
  have eq_ks: "ks = take a ks @ [ks ! a] @ drop (Suc a) ks" .
  show ?thesis
  proof(cases " drop (Suc a) ks = []")
    case False
    then obtain k' ks' where eq_drop: "drop (Suc a) ks = [k']@ks'"
      by (metis append_Cons append_Nil list.exhaust)
    show ?thesis
      apply (unfold Dec_def, intro t_hoare_local)
      apply (subst tassemble_to.simps(2), rule tm.code_exI)
      apply (subst (1) eq_ks)
      my_block
        have "(reps u ia (take a ks @ [ks ! a] @ drop (Suc a) ks) \<and>* fam_conj {ia<..} zero) = 
              (reps' u (ia + 1) ((take a ks @ [ks ! a]) @ drop (Suc a) ks) \<and>* fam_conj {ia + 1<..} zero)"
          apply (subst fam_conj_interv_simp)
          by (unfold reps'_def, simp add:sep_conj_ac)
      my_block_end
      apply (unfold this)
      apply (subst reps'_append)
      apply (unfold eq_drop)
      apply (subst (2) reps'_append)
      apply (simp only:sep_conj_exists, intro tm.precond_exI)
      apply (subst (2) reps'_def, simp add:reps.simps ones_simps)
      apply (subst reps'_append, simp only:sep_conj_exists, intro tm.precond_exI)
      apply (rule_tac q =
       "st l \<and>*
        ps mb \<and>*
        zero (u - 1) \<and>*
        reps' u (mb - 1) (take a ks) \<and>*
        reps' mb (m - 1) [ks ! a] \<and>*
        one m \<and>*
        zero (u - 2) \<and>*
        ones (m + 1) (m + int k') \<and>*
        <(-2 + ma = m + int k')> \<and>* zero (ma - 1) \<and>* reps' ma (ia + 1) ks' \<and>* fam_conj {ia + 1<..} zero"
      in tm.sequencing)
      apply (rule tm.code_extension)
      apply hstep
      (* apply (hstep hoare_locate_skip_gen[OF `a < length ks`]) *)
      apply (subst (2) reps'_def, simp)
      my_block
        fix i j l m mb
        from `ks!a = (Suc v)` have "ks!a \<noteq> 0" by simp
        from hoare_if_reps_nz_true[OF this, where u = mb and v = "m - 2"]
        have "\<lbrace>st i \<and>* ps mb \<and>* reps mb (-2 + m) [ks ! a]\<rbrace>  
                        i :[ if_reps_nz l ]: j
              \<lbrace>st l \<and>* ps mb \<and>* reps mb (-2 + m) [ks ! a]\<rbrace>"
          by smt
      my_block_end
      apply (hgoto this)
      apply (simp add:sep_conj_ac, sep_cancel+)
      apply (subst reps'_def, simp add:sep_conj_ac)
      apply (rule tm.code_extension1)
      apply (rule t_hoare_label1, simp, prune)
      apply (subst (2) reps'_def, simp add:reps.simps)
      apply (rule_tac p = "st j' \<and>* ps mb \<and>* zero (u - 1) \<and>* reps' u (mb - 1) (take a ks) \<and>*
        ((ones mb (mb + int (ks ! a)) \<and>* <(-2 + m = mb + int (ks ! a))>) \<and>* zero (mb + int (ks ! a) + 1)) \<and>*
          one (mb + int (ks ! a) + 2) \<and>* zero (u - 2) \<and>* 
          ones (mb + int (ks ! a) + 3) (mb + int (ks ! a) + int k' + 2) \<and>*
        <(-2 + ma = m + int k')> \<and>* zero (ma - 1) \<and>* reps' ma (ia + 1) ks' \<and>* fam_conj {ia + 1<..} zero
        " in tm.pre_stren)
      apply hsteps 
      (* apply (simp add:sep_conj_ac) *)
      apply (unfold `ks!a = Suc v`)
      my_block
        fix mb
        have "(ones mb (mb + int (Suc v))) = (ones mb (mb + int v) \<and>* one (mb + int (Suc v)))"
          by (simp add:ones_rev)
      my_block_end
      apply (unfold this, prune)
      apply hsteps
      apply (rule_tac p = "st j'a \<and>* 
               ps (mb + int (Suc v) + 2) \<and>* zero (mb + int (Suc v) + 1) \<and>*
               reps (mb + int (Suc v) + 2) ia (drop (Suc a) ks) \<and>* zero (ia + 1) \<and>* zero (ia + 2) \<and>*
        zero (mb + int (Suc v)) \<and>*
        ones mb (mb + int v) \<and>*
        zero (u - 1) \<and>*
        reps' u (mb - 1) (take a ks) \<and>*
        zero (u - 2) \<and>* fam_conj {ia + 2<..} zero
        " in tm.pre_stren) 
      apply hsteps
      (* apply (hsteps hoare_shift_left_cons_gen[OF False]) *)
      apply (rule_tac p = "st j'a \<and>* ps (ia - 1) \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* 
                           reps u (ia - 1) (take a ks @ [v] @ drop (Suc a) ks) \<and>*
                           zero ia \<and>* zero (ia + 1) \<and>* zero (ia + 2) \<and>*
                           fam_conj {ia + 2<..} zero
        " in tm.pre_stren)
      apply hsteps
      apply (simp add:sep_conj_ac)
      apply (subst fam_conj_interv_simp)
      apply (subst fam_conj_interv_simp)
      apply (subst fam_conj_interv_simp)
      apply (simp add:sep_conj_ac)
      apply (sep_cancel+)
      my_block
        have "take a ks @ v # drop (Suc a) ks = list_ext a ks[a := v]"
        proof -
          from `a < length ks` have "list_ext a ks = ks" by (metis list_ext_lt)
          hence "list_ext a ks[a:=v] = ks[a:=v]" by simp
          moreover from `a < length ks` have "ks[a:=v] = take a ks @ v # drop (Suc a) ks"
            by (metis upd_conv_take_nth_drop)
          ultimately show ?thesis by metis
        qed
      my_block_end
      apply (unfold this, sep_cancel+, smt)
      apply (simp add:sep_conj_ac)
      apply (fwd abs_reps')+
      apply (simp add:sep_conj_ac int_add_ac)
      apply (sep_cancel+)
      apply (subst (asm) reps'_def, simp add:sep_conj_ac)
      apply (subst (asm) sep_conj_cond)+
      apply (erule condE, clarsimp)
      apply (simp add:sep_conj_ac, sep_cancel+)
      apply (fwd abs_ones)+
      apply (fwd abs_reps')+
      apply (subst (asm) reps'_def, simp)
      apply (subst (asm) fam_conj_interv_simp)
      apply (simp add:sep_conj_ac int_add_ac eq_drop reps'_def)
      apply (subst (asm) sep_conj_cond)+
      apply (erule condE, clarsimp)
      by (simp add:sep_conj_ac int_add_ac)
  next
    case True
    show ?thesis
      apply (unfold Dec_def, intro t_hoare_local)
      apply (subst tassemble_to.simps(2), rule tm.code_exI)
      apply (subst (1) eq_ks, simp add:True)
      my_block
        have "(reps u ia (take a ks @ [ks ! a]) \<and>* fam_conj {ia<..} zero) = 
              (reps' u (ia + 1) (take a ks @ [ks ! a]) \<and>* fam_conj {ia + 1<..} zero)"
          apply (subst fam_conj_interv_simp)
          by (unfold reps'_def, simp add:sep_conj_ac)
      my_block_end
      apply (unfold this)
      apply (subst reps'_append)
      apply (simp only:sep_conj_exists, intro tm.precond_exI)
      apply (rule_tac q = "st l \<and>* ps m \<and>* zero (u - 1) \<and>* reps' u (m - 1) (take a ks) \<and>*
            reps' m (ia + 1) [ks ! a] \<and>* zero (2 + ia) \<and>* zero (u - 2) \<and>* fam_conj {2 + ia<..} zero"
             in tm.sequencing)
      apply (rule tm.code_extension)
      apply (subst fam_conj_interv_simp, simp)
      apply hsteps
      (* apply (hstep hoare_locate_skip_gen[OF `a < length ks`]) *)
      my_block
        fix m
        have "(reps' m (ia + 1) [ks ! a]) = 
              (reps m ia [ks!a] \<and>* zero (ia + 1))"
          by (unfold reps'_def, simp)
      my_block_end
      apply (unfold this)
      my_block
        fix i j l m
        from `ks!a = (Suc v)` have "ks!a \<noteq> 0" by simp
      my_block_end
      apply (hgoto hoare_if_reps_nz_true_gen)
      apply (rule tm.code_extension1)
      apply (rule t_hoare_label1, simp)
      apply (thin_tac "la = j'", prune)
      apply (subst (1) reps.simps)
      apply (subst sep_conj_cond)+
      apply (rule tm.pre_condI, simp)
      apply hsteps
      apply (unfold `ks!a = Suc v`)
      my_block
        fix m
        have "(ones m (m + int (Suc v))) = (ones m (m + int v) \<and>* one (m + int (Suc v)))"
          by (simp add:ones_rev)
      my_block_end
      apply (unfold this)
      apply hsteps 
      apply (rule_tac p = "st j'a \<and>* ps (m + int v) \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* 
                           reps u (m + int v) (take a ks @ [v]) \<and>* zero (m + (1 + int v)) \<and>*
                           zero (2 + (m + int v)) \<and>* zero (3 + (m + int v)) \<and>*
                           fam_conj {3 + (m + int v)<..} zero
        " in tm.pre_stren)
      apply hsteps
      apply (simp add:sep_conj_ac, sep_cancel+)
      my_block
        have "take a ks @ [v] = list_ext a ks[a := v]"
        proof -
          from True `a < length ks` have "ks = take a ks @ [ks!a]"
            by (metis append_Nil2 eq_ks)
          hence "ks[a:=v] = take a ks @ [v]"
            by (metis True `a < length ks` upd_conv_take_nth_drop)
          moreover from `a < length ks` have "list_ext a ks = ks"
            by (metis list_ext_lt)
          ultimately show ?thesis by simp
        qed
      my_block_end my_note eq_l = this
      apply (unfold this)
      apply (subst fam_conj_interv_simp)
      apply (subst fam_conj_interv_simp)
      apply (subst fam_conj_interv_simp)
      apply (simp add:sep_conj_ac, sep_cancel, smt)
      apply (simp add:sep_conj_ac int_add_ac)+
      apply (sep_cancel+)
      apply (fwd abs_reps')+
      apply (fwd reps'_reps_abs)
      by (simp add:eq_l)
  qed
qed

definition "cfill_until_one = (TL start exit.
                                TLabel start;
                                  if_one exit;
                                  write_one;
                                  move_left;
                                  jmp start;
                                TLabel exit
                               )"

lemma hoare_cfill_until_one:
   "\<lbrace>st i \<and>* ps v \<and>* one (u - 1) \<and>* zeros u v\<rbrace> 
              i :[ cfill_until_one ]: j
    \<lbrace>st j \<and>* ps (u - 1) \<and>* ones (u - 1) v \<rbrace>"
proof(induct u v rule:zeros_rev_induct)
  case (Base x y)
  thus ?case
    apply (subst sep_conj_cond)+
    apply (rule tm.pre_condI, simp add:ones_simps)
    apply (unfold cfill_until_one_def, intro t_hoare_local t_hoare_label, rule t_hoare_label_last, simp+)
    by hstep
next
  case (Step x y)
  show ?case
    apply (rule_tac q = "st i \<and>* ps (y - 1) \<and>* one (x - 1) \<and>* zeros x (y - 1) \<and>* one y" in tm.sequencing)
    apply (subst cfill_until_one_def, intro t_hoare_local t_hoare_label, rule t_hoare_label_last, simp+)
    apply hsteps
    my_block
      fix i j l
      have "\<lbrace>st i \<and>* ps (y - 1) \<and>* one (x - 1) \<and>* zeros x (y - 1)\<rbrace>  
              i :[ jmp l ]: j
            \<lbrace>st l \<and>* ps (y - 1) \<and>* one (x - 1) \<and>* zeros x (y - 1)\<rbrace>"
        apply (case_tac "(y - 1) < x", simp add:zeros_simps)
        apply (subst sep_conj_cond)+
        apply (rule tm.pre_condI, simp)
        apply hstep
        apply (drule_tac zeros_rev, simp)
        by hstep
    my_block_end
    apply (hstep this)
    (* The next half *)
    apply (hstep Step(2), simp add:sep_conj_ac, sep_cancel+)
    by (insert Step(1), simp add:ones_rev sep_conj_ac)
qed

definition "cmove = (TL start exit.
                       TLabel start;
                         left_until_zero;
                         left_until_one;
                         move_left;
                         if_zero exit;
                         move_right;
                         write_zero;
                         right_until_one;
                         right_until_zero;
                         write_one;
                         jmp start;
                     TLabel exit
                    )"

declare zeros.simps [simp del] zeros_simps[simp del]

lemma hoare_cmove:
  assumes "w \<le> k"
  shows "\<lbrace>st i \<and>* ps (v + 2 + int w) \<and>* zero (u - 1) \<and>* 
              reps u (v - int w) [k - w] \<and>* zeros (v - int w + 1) (v + 1) \<and>*
              one (v + 2) \<and>* ones (v + 3) (v + 2 + int w) \<and>* zeros (v + 3 + int w)  (v + int(reps_len [k]) + 1)\<rbrace>
                                 i :[cmove]: j
          \<lbrace>st j \<and>* ps (u - 1) \<and>* zero (u - 1) \<and>* reps u u [0] \<and>* zeros (u + 1) (v + 1) \<and>*
                                                                  reps (v + 2) (v + int (reps_len [k]) + 1) [k]\<rbrace>"
  using assms
proof(induct "k - w" arbitrary: w)
  case (0 w)
  hence "w = k" by auto
  show ?case
    apply (simp add: `w = k` del:zeros.simps zeros_simps)
    apply (unfold cmove_def, intro t_hoare_local t_hoare_label, rule t_hoare_label_last, simp+)
    apply (simp add:reps_len_def reps_sep_len_def reps_ctnt_len_def del:zeros_simps zeros.simps)
    apply (rule_tac p = "st i \<and>* ps (v + 2 + int k) \<and>* zero (u - 1) \<and>*
                         reps u u [0] \<and>* zeros (u + 1) (v + 1) \<and>*
                         ones (v + 2) (v + 2 + int k) \<and>* zeros (v + 3 + int k) (2 + (v + int k)) \<and>*
                         <(u = v - int k)>" 
      in tm.pre_stren)
    my_block
      fix i j
      have "\<lbrace>st i \<and>* ps (v + 2 + int k) \<and>* zeros (u + 1) (v + 1) \<and>* ones (v + 2) (v + 2 + int k) 
                                                             \<and>* <(u = v - int k)>\<rbrace>
                  i :[ left_until_zero ]: j
            \<lbrace>st j \<and>* ps (v + 1) \<and>* zeros (u + 1) (v + 1) \<and>* ones (v + 2) (v + 2 + int k)
                                                             \<and>* <(u = v - int k)>\<rbrace>"
        apply (subst sep_conj_cond)+
        apply (rule tm.pre_condI, simp)
        my_block
          have "(zeros (v - int k + 1) (v + 1)) = (zeros (v - int k + 1) v \<and>* zero (v + 1))"
            by (simp only:zeros_rev, smt)
        my_block_end
        apply (unfold this)
        by hsteps
    my_block_end
    apply (hstep this)
    my_block
      fix i j 
      have "\<lbrace>st i \<and>* ps (v + 1) \<and>* reps u u [0] \<and>* zeros (u + 1) (v + 1)\<rbrace> 
                i :[left_until_one]:j 
            \<lbrace>st j \<and>* ps u \<and>* reps u u [0] \<and>* zeros (u + 1) (v + 1)\<rbrace>"
        apply (simp add:reps.simps ones_simps)
        by hsteps
    my_block_end
    apply (hsteps this)
    apply ((subst (asm) sep_conj_cond)+, erule condE, clarsimp)
    apply (fwd abs_reps')+
    apply (simp only:sep_conj_ac int_add_ac, sep_cancel+)
    apply (simp add:int_add_ac sep_conj_ac zeros_simps)
    apply (simp add:sep_conj_ac int_add_ac, sep_cancel+)
    apply (fwd reps_lenE)
    apply (subst (asm) sep_conj_cond)+
    apply (erule condE, clarsimp)
    apply (subgoal_tac "v  = u + int k + int (reps_len [0]) - 1", clarsimp)
    apply (simp add:reps_len_sg)
    apply (fwd abs_ones)+
    apply (fwd abs_reps')+
    apply (simp add:sep_conj_ac int_add_ac)
    apply (sep_cancel+)
    apply (simp add:reps.simps, smt)
    by (clarsimp)
next
  case (Suc k' w)
  from `Suc k' = k - w` `w \<le> k` 
  have h: "k' = k - (Suc w)" "Suc w \<le> k" by auto
  show ?case
    apply (rule tm.sequencing[OF _ Suc(1)[OF h(1, 2)]])
    apply (unfold cmove_def, intro t_hoare_local t_hoare_label, rule t_hoare_label_last, simp+)
    apply (simp add:reps_len_def reps_sep_len_def reps_ctnt_len_def del:zeros_simps zeros.simps)
    my_block
      fix i j
      have "\<lbrace>st i \<and>* ps (v + 2 + int w) \<and>* zeros (v - int w + 1) (v + 1) \<and>*
                               one (v + 2) \<and>* ones (v + 3) (v + 2 + int w) \<rbrace> 
                    i :[left_until_zero]: j
            \<lbrace>st j \<and>* ps (v + 1) \<and>* zeros (v - int w + 1) (v + 1) \<and>*
                               one (v + 2) \<and>* ones (v + 3) (v + 2 + int w) \<rbrace>"
        my_block
          have "(one (v + 2) \<and>* ones (v + 3) (v + 2 + int w)) = 
                 ones (v + 2) (v + 2 + int w)"
            by (simp only:ones_simps, smt)
        my_block_end
        apply (unfold this)
        my_block
          have "(zeros (v - int w + 1) (v + 1)) = (zeros (v - int w + 1) v \<and>*  zero (v + 1))"
            by (simp only:zeros_rev, simp)
        my_block_end
        apply (unfold this)
        by hsteps
    my_block_end
    apply (hstep this)
    my_block
      fix i j
      have "\<lbrace>st i \<and>* ps (v + 1) \<and>* reps u (v - int w) [k - w] \<and>* zeros (v - int w + 1) (v + 1)\<rbrace> 
                 i :[left_until_one]: j 
            \<lbrace>st j \<and>* ps (v - int w) \<and>* reps u (v - int w) [k - w] \<and>* zeros (v - int w + 1) (v + 1)\<rbrace>"
        apply (simp add:reps.simps ones_rev)
        apply (subst sep_conj_cond)+
        apply (rule tm.pre_condI, clarsimp)
        apply (subgoal_tac "u + int (k - w) = v - int w", simp)
        defer
        apply simp
        by hsteps
    my_block_end
    apply (hstep this)
    my_block
      have "(reps u (v - int w) [k - w]) = (reps u (v - (1 + int w)) [k - Suc w] \<and>* one (v - int w))"
        apply (subst (1 2) reps.simps)
        apply (subst sep_conj_cond)+
        my_block
          have "((v - int w = u + int (k - w))) =
                (v - (1 + int w) = u + int (k - Suc w))"
            apply auto
            apply (smt Suc.prems h(2))
            by (smt Suc.prems h(2))
        my_block_end
        apply (simp add:this)
        my_block
          fix b p q
          assume "(b \<Longrightarrow> (p::tassert) = q)"
          have "(<b> \<and>* p) = (<b> \<and>* q)"
            by (metis `b \<Longrightarrow> p = q` cond_eqI)
        my_block_end
        apply (rule this)
        my_block
          assume "v - (1 + int w) = u + int (k - Suc w)"
          hence "v = 1 + int w +  u + int (k - Suc w)" by auto
        my_block_end
        apply (simp add:this)
        my_block
          have "\<not> (u + int (k - w)) < u" by auto
        my_block_end
        apply (unfold ones_rev[OF this])
        my_block
          from Suc (2, 3) have "(u + int (k - w) - 1) = (u + int (k - Suc w))"
            by auto
        my_block_end
        apply (unfold this)
        my_block
          from Suc (2, 3) have "(u + int (k - w)) =  (1 + (u + int (k - Suc w)))"
            by auto
        my_block_end
        by (unfold this, simp)
    my_block_end
    apply (unfold this)
    my_block
      fix i j
      have "\<lbrace>st i \<and>* ps (v - int w) \<and>*
                        (reps u (v - (1 + int w)) [k - Suc w] \<and>* one (v - int w))\<rbrace> 
                 i :[ move_left]: j
            \<lbrace>st j \<and>* ps (v - (1 + int w)) \<and>*
                        (reps u (v - (1 + int w)) [k - Suc w] \<and>* one (v - int w))\<rbrace>"
        apply (simp add:reps.simps ones_rev)
        apply (subst sep_conj_cond)+
        apply (rule tm.pre_condI, clarsimp)
        apply (subgoal_tac " u + int (k - Suc w) = v - (1 + int w)", simp)
        defer
        apply simp
        apply hsteps
        by (simp add:sep_conj_ac, sep_cancel+, smt)
    my_block_end
    apply (hstep this)
    my_block
      fix i' j'
      have "\<lbrace>st i' \<and>* ps (v - (1 + int w)) \<and>* reps u (v - (1 + int w)) [k - Suc w]\<rbrace> 
               i' :[ if_zero j ]: j'
            \<lbrace>st j' \<and>* ps (v - (1 + int w)) \<and>* reps u (v - (1 + int w)) [k - Suc w]\<rbrace>"
        apply (simp add:reps.simps ones_rev)
        apply (subst sep_conj_cond)+
        apply (rule tm.pre_condI, clarsimp)
        apply (subgoal_tac " u + int (k - Suc w) = v - (1 + int w)", simp)
        defer
        apply simp
        by hstep
    my_block_end
    apply (hstep this)
    my_block
      fix i j
      have "\<lbrace>st i \<and>* ps (v - (1 + int w)) \<and>*  reps u (v - (1 + int w)) [k - Suc w]\<rbrace> 
                i :[ move_right ]: j 
            \<lbrace>st j \<and>* ps (v - int w) \<and>*  reps u (v - (1 + int w)) [k - Suc w] \<rbrace>"
        apply (simp add:reps.simps ones_rev)
        apply (subst sep_conj_cond)+
        apply (rule tm.pre_condI, clarsimp)
        apply (subgoal_tac " u + int (k - Suc w) =  v - (1 + int w)", simp)
        defer
        apply simp
        by hstep
    my_block_end
    apply (hsteps this)
    my_block
      fix i j
      have "\<lbrace>st i \<and>* ps (v - int w) \<and>*  one (v + 2) \<and>* 
                         zero (v - int w) \<and>* zeros (v - int w + 1) (v + 1)\<rbrace> 
                 i :[right_until_one]: j
            \<lbrace>st j \<and>* ps (v + 2) \<and>*  one (v + 2) \<and>*  zero (v - int w) \<and>* zeros (v - int w + 1) (v + 1)\<rbrace>"
        my_block
          have "(zero (v - int w) \<and>* zeros (v - int w + 1) (v + 1)) = 
                    (zeros (v - int w) (v + 1))"
            by (simp add:zeros_simps)
        my_block_end
        apply (unfold this)
        by hsteps
    my_block_end
    apply (hstep this)
    my_block
      from Suc(2, 3) have "w < k" by auto
      hence "(zeros (v + 3 + int w) (2 + (v + int k))) = 
                  (zero (v + 3 + int w) \<and>* zeros (4 + (v + int w)) (2 + (v + int k)))"
        by (simp add:zeros_simps)
    my_block_end
    apply (unfold this)
    my_block
      fix i j
      have "\<lbrace>st i \<and>* ps (v + 2) \<and>* zero (v + 3 + int w) \<and>* zeros (4 + (v + int w)) (2 + (v + int k)) \<and>* 
                                                        one (v + 2) \<and>* ones (v + 3) (v + 2 + int w)\<rbrace>
                i :[right_until_zero]: j
            \<lbrace>st j \<and>* ps (v + 3 + int w) \<and>* zero (v + 3 + int w) \<and>* zeros (4 + (v + int w)) (2 + (v + int k)) \<and>* 
                                                        one (v + 2) \<and>* ones (v + 3) (v + 2 + int w)\<rbrace>"
        my_block
          have "(one (v + 2) \<and>* ones (v + 3) (v + 2 + int w)) =
                (ones (v + 2) (v + 2 + int w))"
            by (simp add:ones_simps, smt)
        my_block_end
        apply (unfold this)
        by hsteps
    my_block_end
    apply (hsteps this, simp only:sep_conj_ac)
    apply (sep_cancel+, simp add:sep_conj_ac)
    my_block
      fix s
      assume "(zero (v - int w) \<and>* zeros (v - int w + 1) (v + 1)) s"
      hence "zeros (v - int w) (v + 1) s"
        by (simp add:zeros_simps)
    my_block_end
    apply (fwd this)
    my_block
      fix s
      assume "(one (v + 3 + int w) \<and>* ones (v + 3) (v + 2 + int w)) s"
      hence "ones (v + 3) (3 + (v + int w)) s"
        by (simp add:ones_rev sep_conj_ac, smt)
    my_block_end
    apply (fwd this)
    by (simp add:sep_conj_ac, smt)
qed

definition "cinit = (right_until_zero; move_right; write_one)"

definition "copy = (cinit; cmove; move_right; move_right; right_until_one; move_left; move_left; cfill_until_one)"

lemma hoare_copy:
  shows
   "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u v [k] \<and>* zero (v + 1) \<and>*
                                                     zeros (v + 2) (v + int(reps_len [k]) + 1)\<rbrace>
                                  i :[copy]: j
    \<lbrace>st j \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u v [k] \<and>* zero (v + 1) \<and>* 
                                                      reps (v + 2) (v + int (reps_len [k]) + 1) [k]\<rbrace>"
  apply (unfold copy_def)
  my_block
    fix i j
    have 
       "\<lbrace>st i \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1) \<and>* zeros (v + 2) (v + int(reps_len [k]) + 1)\<rbrace>
                      i :[cinit]: j
        \<lbrace>st j \<and>* ps (v + 2) \<and>* reps u v [k] \<and>* zero (v + 1) \<and>*
                                           one (v + 2) \<and>* zeros (v + 3) (v + int(reps_len [k]) + 1)\<rbrace>"
      apply (unfold cinit_def)
      apply (simp add:reps.simps)
      apply (subst sep_conj_cond)+
      apply (rule tm.pre_condI, simp)
      apply hsteps
      apply (simp add:sep_conj_ac)
      my_block
        have "(zeros (u + int k + 2) (u + int k + int (reps_len [k]) + 1)) = 
              (zero (u + int k + 2) \<and>*  zeros (u + int k + 3) (u + int k + int (reps_len [k]) + 1))"
          by (smt reps_len_sg zeros_step_simp)
      my_block_end
      apply (unfold this)
      apply hstep
      by (simp add:sep_conj_ac, sep_cancel+, smt)
  my_block_end
  apply (hstep this)
  apply (rule_tac p = "st j' \<and>* ps (v + 2) \<and>* reps u v [k] \<and>* zero (v + 1) \<and>*
          one (v + 2) \<and>* zeros (v + 3) (v + int (reps_len [k]) + 1) \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>*
            <(v = u + int (reps_len [k]) - 1)>
    " in tm.pre_stren)
  my_block
    fix i j
    from hoare_cmove[where w = 0 and k = k and i = i and j = j and v = v and u = u]
    have "\<lbrace>st i \<and>* ps (v + 2) \<and>* zero (u - 1) \<and>* reps u v [k] \<and>* zero (v + 1) \<and>*
                                            one (v + 2) \<and>* zeros (v + 3) (v + int(reps_len [k]) + 1)\<rbrace>
                      i :[cmove]: j
          \<lbrace>st j \<and>* ps (u - 1) \<and>* zero (u - 1) \<and>* reps u u [0] \<and>* zeros (u + 1) (v + 1) \<and>*
                                                       reps (v + 2) (v + int (reps_len [k]) + 1) [k]\<rbrace>"
      by (auto simp:ones_simps zeros_simps)
  my_block_end
  apply (hstep this)
  apply (hstep, simp)
  my_block
    have "reps u u [0] = one u" by (simp add:reps.simps ones_simps)
  my_block_end my_note eq_repsz = this
  apply (unfold this)
  apply (hstep)
  apply (subst reps.simps, simp add: ones_simps)
  apply hsteps
  apply (subst sep_conj_cond)+
  apply (rule tm.pre_condI, simp del:zeros.simps zeros_simps)
  apply (thin_tac "int (reps_len [k]) = 1 + int k \<and> v = u + int (reps_len [k]) - 1")
  my_block
    have "(zeros (u + 1) (u + int k + 1)) = (zeros (u + 1) (u + int k) \<and>* zero (u + int k + 1))"
      by (simp only:zeros_rev, smt)
  my_block_end
  apply (unfold this)
  apply (hstep, simp)
  my_block
    fix i j
    from hoare_cfill_until_one[where v = "u + int k" and u = "u + 1"]
    have "\<lbrace>st i \<and>* ps (u + int k) \<and>* one u \<and>* zeros (u + 1) (u + int k)\<rbrace> 
              i :[ cfill_until_one ]: j
          \<lbrace>st j \<and>* ps u \<and>* ones u (u + int k) \<rbrace>"
      by simp
  my_block_end
  apply (hstep this, simp add:sep_conj_ac reps.simps ones_simps)
  apply (simp add:sep_conj_ac reps.simps ones_simps)
  apply (subst sep_conj_cond)+
  apply (subst (asm) sep_conj_cond)+
  apply (rule condI)
  apply (erule condE, simp)
  apply (simp add: reps_len_def reps_sep_len_def reps_ctnt_len_def)
  apply (sep_cancel+)
  by (erule condE, simp)

end