theory Recs
imports Main Fact
"~~/src/HOL/Number_Theory/Primes"
"~~/src/HOL/Library/Nat_Bijection"
"~~/src/HOL/Library/Discrete"
begin
declare One_nat_def[simp del]
(*
some definitions from
A Course in Formal Languages, Automata and Groups
I M Chiswell
and
Lecture on undecidability
Michael M. Wolf
*)
lemma if_zero_one [simp]:
"(if P then 1 else 0) = (0::nat) \<longleftrightarrow> \<not> P"
"(0::nat) < (if P then 1 else 0) = P"
"(if P then 0 else 1) = (if \<not>P then 1 else (0::nat))"
by (simp_all)
lemma nth:
"(x # xs) ! 0 = x"
"(x # y # xs) ! 1 = y"
"(x # y # z # xs) ! 2 = z"
"(x # y # z # u # xs) ! 3 = u"
by (simp_all)
section {* Some auxiliary lemmas about @{text "\<Sum>"} and @{text "\<Prod>"} *}
lemma setprod_atMost_Suc[simp]:
"(\<Prod>i \<le> Suc n. f i) = (\<Prod>i \<le> n. f i) * f(Suc n)"
by(simp add:atMost_Suc mult_ac)
lemma setprod_lessThan_Suc[simp]:
"(\<Prod>i < Suc n. f i) = (\<Prod>i < n. f i) * f n"
by (simp add:lessThan_Suc mult_ac)
lemma setsum_add_nat_ivl2: "n \<le> p \<Longrightarrow>
setsum f {..<n} + setsum f {n..p} = setsum f {..p::nat}"
apply(subst setsum_Un_disjoint[symmetric])
apply(auto simp add: ivl_disj_un_one)
done
lemma setsum_eq_zero [simp]:
fixes f::"nat \<Rightarrow> nat"
shows "(\<Sum>i < n. f i) = 0 \<longleftrightarrow> (\<forall>i < n. f i = 0)"
"(\<Sum>i \<le> n. f i) = 0 \<longleftrightarrow> (\<forall>i \<le> n. f i = 0)"
by (auto)
lemma setprod_eq_zero [simp]:
fixes f::"nat \<Rightarrow> nat"
shows "(\<Prod>i < n. f i) = 0 \<longleftrightarrow> (\<exists>i < n. f i = 0)"
"(\<Prod>i \<le> n. f i) = 0 \<longleftrightarrow> (\<exists>i \<le> n. f i = 0)"
by (auto)
lemma setsum_one_less:
fixes n::nat
assumes "\<forall>i < n. f i \<le> 1"
shows "(\<Sum>i < n. f i) \<le> n"
using assms
by (induct n) (auto)
lemma setsum_one_le:
fixes n::nat
assumes "\<forall>i \<le> n. f i \<le> 1"
shows "(\<Sum>i \<le> n. f i) \<le> Suc n"
using assms
by (induct n) (auto)
lemma setsum_eq_one_le:
fixes n::nat
assumes "\<forall>i \<le> n. f i = 1"
shows "(\<Sum>i \<le> n. f i) = Suc n"
using assms
by (induct n) (auto)
lemma setsum_least_eq:
fixes f::"nat \<Rightarrow> nat"
assumes h0: "p \<le> n"
assumes h1: "\<forall>i \<in> {..<p}. f i = 1"
assumes h2: "\<forall>i \<in> {p..n}. f i = 0"
shows "(\<Sum>i \<le> n. f i) = p"
proof -
have eq_p: "(\<Sum>i \<in> {..<p}. f i) = p"
using h1 by (induct p) (simp_all)
have eq_zero: "(\<Sum>i \<in> {p..n}. f i) = 0"
using h2 by auto
have "(\<Sum>i \<le> n. f i) = (\<Sum>i \<in> {..<p}. f i) + (\<Sum>i \<in> {p..n}. f i)"
using h0 by (simp add: setsum_add_nat_ivl2)
also have "... = (\<Sum>i \<in> {..<p}. f i)" using eq_zero by simp
finally show "(\<Sum>i \<le> n. f i) = p" using eq_p by simp
qed
lemma nat_mult_le_one:
fixes m n::nat
assumes "m \<le> 1" "n \<le> 1"
shows "m * n \<le> 1"
using assms by (induct n) (auto)
lemma setprod_one_le:
fixes f::"nat \<Rightarrow> nat"
assumes "\<forall>i \<le> n. f i \<le> 1"
shows "(\<Prod>i \<le> n. f i) \<le> 1"
using assms
by (induct n) (auto intro: nat_mult_le_one)
lemma setprod_greater_zero:
fixes f::"nat \<Rightarrow> nat"
assumes "\<forall>i \<le> n. f i \<ge> 0"
shows "(\<Prod>i \<le> n. f i) \<ge> 0"
using assms by (induct n) (auto)
lemma setprod_eq_one:
fixes f::"nat \<Rightarrow> nat"
assumes "\<forall>i \<le> n. f i = Suc 0"
shows "(\<Prod>i \<le> n. f i) = Suc 0"
using assms by (induct n) (auto)
lemma setsum_cut_off_less:
fixes f::"nat \<Rightarrow> nat"
assumes h1: "m \<le> n"
and h2: "\<forall>i \<in> {m..<n}. f i = 0"
shows "(\<Sum>i < n. f i) = (\<Sum>i < m. f i)"
proof -
have eq_zero: "(\<Sum>i \<in> {m..<n}. f i) = 0"
using h2 by auto
have "(\<Sum>i < n. f i) = (\<Sum>i \<in> {..<m}. f i) + (\<Sum>i \<in> {m..<n}. f i)"
using h1 by (metis atLeast0LessThan le0 setsum_add_nat_ivl)
also have "... = (\<Sum>i \<in> {..<m}. f i)" using eq_zero by simp
finally show "(\<Sum>i < n. f i) = (\<Sum>i < m. f i)" by simp
qed
lemma setsum_cut_off_le:
fixes f::"nat \<Rightarrow> nat"
assumes h1: "m \<le> n"
and h2: "\<forall>i \<in> {m..n}. f i = 0"
shows "(\<Sum>i \<le> n. f i) = (\<Sum>i < m. f i)"
proof -
have eq_zero: "(\<Sum>i \<in> {m..n}. f i) = 0"
using h2 by auto
have "(\<Sum>i \<le> n. f i) = (\<Sum>i \<in> {..<m}. f i) + (\<Sum>i \<in> {m..n}. f i)"
using h1 by (simp add: setsum_add_nat_ivl2)
also have "... = (\<Sum>i \<in> {..<m}. f i)" using eq_zero by simp
finally show "(\<Sum>i \<le> n. f i) = (\<Sum>i < m. f i)" by simp
qed
lemma setprod_one [simp]:
fixes n::nat
shows "(\<Prod>i < n. Suc 0) = Suc 0"
"(\<Prod>i \<le> n. Suc 0) = Suc 0"
by (induct n) (simp_all)
section {* Recursive Functions *}
datatype recf = Z
| S
| Id nat nat
| Cn nat recf "recf list"
| Pr nat recf recf
| Mn nat recf
fun arity :: "recf \<Rightarrow> nat"
where
"arity Z = 1"
| "arity S = 1"
| "arity (Id m n) = m"
| "arity (Cn n f gs) = n"
| "arity (Pr n f g) = Suc n"
| "arity (Mn n f) = n"
text {* Abbreviations for calculating the arity of the constructors *}
abbreviation
"CN f gs \<equiv> Cn (arity (hd gs)) f gs"
abbreviation
"PR f g \<equiv> Pr (arity f) f g"
abbreviation
"MN f \<equiv> Mn (arity f - 1) f"
text {* the evaluation function and termination relation *}
fun rec_eval :: "recf \<Rightarrow> nat list \<Rightarrow> nat"
where
"rec_eval Z xs = 0"
| "rec_eval S xs = Suc (xs ! 0)"
| "rec_eval (Id m n) xs = xs ! n"
| "rec_eval (Cn n f gs) xs = rec_eval f (map (\<lambda>x. rec_eval x xs) gs)"
| "rec_eval (Pr n f g) (0 # xs) = rec_eval f xs"
| "rec_eval (Pr n f g) (Suc x # xs) =
rec_eval g (x # (rec_eval (Pr n f g) (x # xs)) # xs)"
| "rec_eval (Mn n f) xs = (LEAST x. rec_eval f (x # xs) = 0)"
inductive
terminates :: "recf \<Rightarrow> nat list \<Rightarrow> bool"
where
termi_z: "terminates Z [n]"
| termi_s: "terminates S [n]"
| termi_id: "\<lbrakk>n < m; length xs = m\<rbrakk> \<Longrightarrow> terminates (Id m n) xs"
| termi_cn: "\<lbrakk>terminates f (map (\<lambda>g. rec_eval g xs) gs);
\<forall>g \<in> set gs. terminates g xs; length xs = n\<rbrakk> \<Longrightarrow> terminates (Cn n f gs) xs"
| termi_pr: "\<lbrakk>\<forall> y < x. terminates g (y # (rec_eval (Pr n f g) (y # xs) # xs));
terminates f xs;
length xs = n\<rbrakk>
\<Longrightarrow> terminates (Pr n f g) (x # xs)"
| termi_mn: "\<lbrakk>length xs = n; terminates f (r # xs);
rec_eval f (r # xs) = 0;
\<forall> i < r. terminates f (i # xs) \<and> rec_eval f (i # xs) > 0\<rbrakk> \<Longrightarrow> terminates (Mn n f) xs"
section {* Arithmetic Functions *}
text {*
@{text "constn n"} is the recursive function which generates
the natural number @{text "n"}. *}
fun constn :: "nat \<Rightarrow> recf"
where
"constn 0 = Z" |
"constn (Suc n) = CN S [constn n]"
definition
"rec_swap f = CN f [Id 2 1, Id 2 0]"
definition
"rec_add = PR (Id 1 0) (CN S [Id 3 1])"
definition
"rec_mult = PR Z (CN rec_add [Id 3 1, Id 3 2])"
definition
"rec_power = rec_swap (PR (constn 1) (CN rec_mult [Id 3 1, Id 3 2]))"
definition
"rec_fact_aux = PR (constn 1) (CN rec_mult [CN S [Id 3 0], Id 3 1])"
definition
"rec_fact = CN rec_fact_aux [Id 1 0, Id 1 0]"
definition
"rec_pred = CN (PR Z (Id 3 0)) [Id 1 0, Id 1 0]"
definition
"rec_minus = rec_swap (PR (Id 1 0) (CN rec_pred [Id 3 1]))"
lemma constn_lemma [simp]:
"rec_eval (constn n) xs = n"
by (induct n) (simp_all)
lemma swap_lemma [simp]:
"rec_eval (rec_swap f) [x, y] = rec_eval f [y, x]"
by (simp add: rec_swap_def)
lemma add_lemma [simp]:
"rec_eval rec_add [x, y] = x + y"
by (induct x) (simp_all add: rec_add_def)
lemma mult_lemma [simp]:
"rec_eval rec_mult [x, y] = x * y"
by (induct x) (simp_all add: rec_mult_def)
lemma power_lemma [simp]:
"rec_eval rec_power [x, y] = x ^ y"
by (induct y) (simp_all add: rec_power_def)
lemma fact_aux_lemma [simp]:
"rec_eval rec_fact_aux [x, y] = fact x"
by (induct x) (simp_all add: rec_fact_aux_def)
lemma fact_lemma [simp]:
"rec_eval rec_fact [x] = fact x"
by (simp add: rec_fact_def)
lemma pred_lemma [simp]:
"rec_eval rec_pred [x] = x - 1"
by (induct x) (simp_all add: rec_pred_def)
lemma minus_lemma [simp]:
"rec_eval rec_minus [x, y] = x - y"
by (induct y) (simp_all add: rec_minus_def)
section {* Logical Functions *}
text {*
The @{text "sign"} function returns 1 when the input argument
is greater than @{text "0"}. *}
definition
"rec_sign = CN rec_minus [constn 1, CN rec_minus [constn 1, Id 1 0]]"
definition
"rec_not = CN rec_minus [constn 1, Id 1 0]"
text {*
@{text "rec_eq"} compares two arguments: returns @{text "1"}
if they are equal; @{text "0"} otherwise. *}
definition
"rec_eq = CN rec_minus [CN (constn 1) [Id 2 0], CN rec_add [rec_minus, rec_swap rec_minus]]"
definition
"rec_noteq = CN rec_not [rec_eq]"
definition
"rec_conj = CN rec_sign [rec_mult]"
definition
"rec_disj = CN rec_sign [rec_add]"
definition
"rec_imp = CN rec_disj [CN rec_not [Id 2 0], Id 2 1]"
text {* @{term "rec_ifz [z, x, y]"} returns @{text x} if @{text z} is zero, and
@{text y} otherwise; @{term "rec_if [z, x, y]"} returns @{text x} if @{text z}
is *not* zero, and @{text y} otherwise. *}
definition
"rec_ifz = PR (Id 2 0) (Id 4 3)"
definition
"rec_if = CN rec_ifz [CN rec_not [Id 3 0], Id 3 1, Id 3 2]"
lemma sign_lemma [simp]:
"rec_eval rec_sign [x] = (if x = 0 then 0 else 1)"
by (simp add: rec_sign_def)
lemma not_lemma [simp]:
"rec_eval rec_not [x] = (if x = 0 then 1 else 0)"
by (simp add: rec_not_def)
lemma eq_lemma [simp]:
"rec_eval rec_eq [x, y] = (if x = y then 1 else 0)"
by (simp add: rec_eq_def)
lemma noteq_lemma [simp]:
"rec_eval rec_noteq [x, y] = (if x \<noteq> y then 1 else 0)"
by (simp add: rec_noteq_def)
lemma conj_lemma [simp]:
"rec_eval rec_conj [x, y] = (if x = 0 \<or> y = 0 then 0 else 1)"
by (simp add: rec_conj_def)
lemma disj_lemma [simp]:
"rec_eval rec_disj [x, y] = (if x = 0 \<and> y = 0 then 0 else 1)"
by (simp add: rec_disj_def)
lemma imp_lemma [simp]:
"rec_eval rec_imp [x, y] = (if 0 < x \<and> y = 0 then 0 else 1)"
by (simp add: rec_imp_def)
lemma ifz_lemma [simp]:
"rec_eval rec_ifz [z, x, y] = (if z = 0 then x else y)"
by (case_tac z) (simp_all add: rec_ifz_def)
lemma if_lemma [simp]:
"rec_eval rec_if [z, x, y] = (if 0 < z then x else y)"
by (simp add: rec_if_def)
section {* The Less and Less-Equal Relations *}
text {*
@{text "rec_less"} compares two arguments and returns @{text "1"} if
the first is less than the second; otherwise it returns @{text "0"}. *}
definition
"rec_less = CN rec_sign [rec_swap rec_minus]"
definition
"rec_le = CN rec_disj [rec_less, rec_eq]"
lemma less_lemma [simp]:
"rec_eval rec_less [x, y] = (if x < y then 1 else 0)"
by (simp add: rec_less_def)
lemma le_lemma [simp]:
"rec_eval rec_le [x, y] = (if x \<le> y then 1 else 0)"
by (simp add: rec_le_def)
section {* Summation and Product Functions *}
definition
"rec_sigma1 f = PR (CN f [CN Z [Id 1 0], Id 1 0])
(CN rec_add [Id 3 1, CN f [CN S [Id 3 0], Id 3 2]])"
definition
"rec_sigma2 f = PR (CN f [CN Z [Id 2 0], Id 2 0, Id 2 1])
(CN rec_add [Id 4 1, CN f [CN S [Id 4 0], Id 4 2, Id 4 3]])"
definition
"rec_accum1 f = PR (CN f [CN Z [Id 1 0], Id 1 0])
(CN rec_mult [Id 3 1, CN f [CN S [Id 3 0], Id 3 2]])"
definition
"rec_accum2 f = PR (CN f [CN Z [Id 2 0], Id 2 0, Id 2 1])
(CN rec_mult [Id 4 1, CN f [CN S [Id 4 0], Id 4 2, Id 4 3]])"
definition
"rec_accum3 f = PR (CN f [CN Z [Id 3 0], Id 3 0, Id 3 1, Id 3 2])
(CN rec_mult [Id 5 1, CN f [CN S [Id 5 0], Id 5 2, Id 5 3, Id 5 4]])"
lemma sigma1_lemma [simp]:
shows "rec_eval (rec_sigma1 f) [x, y] = (\<Sum> z \<le> x. rec_eval f [z, y])"
by (induct x) (simp_all add: rec_sigma1_def)
lemma sigma2_lemma [simp]:
shows "rec_eval (rec_sigma2 f) [x, y1, y2] = (\<Sum> z \<le> x. rec_eval f [z, y1, y2])"
by (induct x) (simp_all add: rec_sigma2_def)
lemma accum1_lemma [simp]:
shows "rec_eval (rec_accum1 f) [x, y] = (\<Prod> z \<le> x. rec_eval f [z, y])"
by (induct x) (simp_all add: rec_accum1_def)
lemma accum2_lemma [simp]:
shows "rec_eval (rec_accum2 f) [x, y1, y2] = (\<Prod> z \<le> x. rec_eval f [z, y1, y2])"
by (induct x) (simp_all add: rec_accum2_def)
lemma accum3_lemma [simp]:
shows "rec_eval (rec_accum3 f) [x, y1, y2, y3] = (\<Prod> z \<le> x. (rec_eval f) [z, y1, y2, y3])"
by (induct x) (simp_all add: rec_accum3_def)
section {* Bounded Quantifiers *}
text {* Instead of defining quantifiers taking an aritrary
list of arguments, we define the simpler quantifiers taking
one, two and three extra arguments besides the argument
that is quantified over. *}
definition
"rec_all1 f = CN rec_sign [rec_accum1 f]"
definition
"rec_all2 f = CN rec_sign [rec_accum2 f]"
definition
"rec_all3 f = CN rec_sign [rec_accum3 f]"
definition
"rec_all1_less f = (let cond1 = CN rec_eq [Id 3 0, Id 3 1] in
let cond2 = CN f [Id 3 0, Id 3 2]
in CN (rec_all2 (CN rec_disj [cond1, cond2])) [Id 2 0, Id 2 0, Id 2 1])"
definition
"rec_all2_less f = (let cond1 = CN rec_eq [Id 4 0, Id 4 1] in
let cond2 = CN f [Id 4 0, Id 4 2, Id 4 3] in
CN (rec_all3 (CN rec_disj [cond1, cond2])) [Id 3 0, Id 3 0, Id 3 1, Id 3 2])"
definition
"rec_ex1 f = CN rec_sign [rec_sigma1 f]"
definition
"rec_ex2 f = CN rec_sign [rec_sigma2 f]"
lemma ex1_lemma [simp]:
"rec_eval (rec_ex1 f) [x, y] = (if (\<exists>z \<le> x. 0 < rec_eval f [z, y]) then 1 else 0)"
by (simp add: rec_ex1_def)
lemma ex2_lemma [simp]:
"rec_eval (rec_ex2 f) [x, y1, y2] = (if (\<exists>z \<le> x. 0 < rec_eval f [z, y1, y2]) then 1 else 0)"
by (simp add: rec_ex2_def)
lemma all1_lemma [simp]:
"rec_eval (rec_all1 f) [x, y] = (if (\<forall>z \<le> x. 0 < rec_eval f [z, y]) then 1 else 0)"
by (simp add: rec_all1_def)
lemma all2_lemma [simp]:
"rec_eval (rec_all2 f) [x, y1, y2] = (if (\<forall>z \<le> x. 0 < rec_eval f [z, y1, y2]) then 1 else 0)"
by (simp add: rec_all2_def)
lemma all3_lemma [simp]:
"rec_eval (rec_all3 f) [x, y1, y2, y3] = (if (\<forall>z \<le> x. 0 < rec_eval f [z, y1, y2, y3]) then 1 else 0)"
by (simp add: rec_all3_def)
lemma all1_less_lemma [simp]:
"rec_eval (rec_all1_less f) [x, y] = (if (\<forall>z < x. 0 < rec_eval f [z, y]) then 1 else 0)"
apply(auto simp add: Let_def rec_all1_less_def)
apply(metis nat_less_le)+
done
lemma all2_less_lemma [simp]:
"rec_eval (rec_all2_less f) [x, y1, y2] = (if (\<forall>z < x. 0 < rec_eval f [z, y1, y2]) then 1 else 0)"
apply(auto simp add: Let_def rec_all2_less_def)
apply(metis nat_less_le)+
done
section {* Natural Number Division *}
definition
"rec_div = (let lhs = CN S [Id 3 0] in
let rhs = CN rec_mult [Id 3 2, CN S [Id 3 1]] in
let cond = CN rec_eq [lhs, rhs] in
let if_stmt = CN rec_if [cond, CN S [Id 3 1], Id 3 1]
in PR Z if_stmt)"
fun Div where
"Div x 0 = 0"
| "Div x (Suc y) = (if (Suc y = x * (Suc (Div x y))) then Suc (Div x y) else Div x y)"
lemma Div0:
shows "Div 0 y = 0"
by (induct y) (auto)
lemma Div1:
"x * (Div x y) \<le> y"
by (induct y) (simp_all)
lemma Div2:
"x * (Div x y) + y mod x = y"
by (induct y) (auto simp add: mod_Suc)
lemma Div3:
"x * (Div x y) = y - y mod x"
using Div2[of x y] by (auto)
lemma Div4:
assumes h: "0 < x"
shows "y < x + x * Div x y"
proof -
have "x - (y mod x) > 0" using mod_less_divisor assms by auto
then have "y < y + (x - (y mod x))" by simp
then have "y < x + (y - (y mod x))" by simp
then show "y < x + x * (Div x y)" by (simp add: Div3)
qed
lemma Div_div:
shows "Div x y = y div x"
apply(case_tac "x = 0")
apply(simp add: Div0)
apply(subst split_div_lemma[symmetric])
apply(auto intro: Div1 Div4)
done
lemma Div_rec_div:
shows "rec_eval rec_div [y, x] = Div x y"
by (induct y) (simp_all add: rec_div_def)
lemma div_lemma [simp]:
shows "rec_eval rec_div [y, x] = y div x"
by (simp add: Div_div Div_rec_div)
section {* Iteration *}
definition
"rec_iter f = PR (Id 1 0) (CN f [Id 3 1])"
fun Iter where
"Iter f 0 = id"
| "Iter f (Suc n) = f \<circ> (Iter f n)"
lemma Iter_comm:
"(Iter f n) (f x) = f ((Iter f n) x)"
by (induct n) (simp_all)
lemma iter_lemma [simp]:
"rec_eval (rec_iter f) [n, x] = Iter (\<lambda>x. rec_eval f [x]) n x"
by (induct n) (simp_all add: rec_iter_def)
section {* Bounded Maximisation *}
text {* Computes the greatest number below a bound @{text n}
such that a predicate holds. If such a maximum does not exist,
then @{text 0} is returned. *}
fun BMax_rec where
"BMax_rec R 0 = 0"
| "BMax_rec R (Suc n) = (if R (Suc n) then (Suc n) else BMax_rec R n)"
definition
BMax_set :: "(nat \<Rightarrow> bool) \<Rightarrow> nat \<Rightarrow> nat"
where
"BMax_set R x = Max ({z. z \<le> x \<and> R z} \<union> {0})"
lemma BMax_rec_eq1:
"BMax_rec R x = (GREATEST z. (R z \<and> z \<le> x) \<or> z = 0)"
apply(induct x)
apply(auto intro: Greatest_equality Greatest_equality[symmetric])
apply(simp add: le_Suc_eq)
by metis
lemma BMax_rec_eq2:
"BMax_rec R x = Max ({z. z \<le> x \<and> R z} \<union> {0})"
apply(induct x)
apply(auto intro: Max_eqI Max_eqI[symmetric])
apply(simp add: le_Suc_eq)
by metis
lemma BMax_rec_eq3:
"BMax_rec R x = Max (Set.filter R {..x} \<union> {0})"
by (simp add: BMax_rec_eq2 Set.filter_def)
definition
"rec_max1 f = PR Z (CN rec_ifz [CN f [CN S [Id 3 0], Id 3 2], CN S [Id 3 0], Id 3 1])"
lemma max1_lemma [simp]:
"rec_eval (rec_max1 f) [x, y] = BMax_rec (\<lambda>u. rec_eval f [u, y] = 0) x"
by (induct x) (simp_all add: rec_max1_def)
definition
"rec_max2 f = PR Z (CN rec_ifz [CN f [CN S [Id 4 0], Id 4 2, Id 4 3], CN S [Id 4 0], Id 4 1])"
lemma max2_lemma [simp]:
"rec_eval (rec_max2 f) [x, y1, y2] = BMax_rec (\<lambda>u. rec_eval f [u, y1, y2] = 0) x"
by (induct x) (simp_all add: rec_max2_def)
section {* Encodings using Cantor's Pairing Function *}
text {* We use Cantor's pairing function from the theory
Nat_Bijection. However, we need to prove that the formulation
of the decoding function there is recursive. For this we first
prove that we can extract the maximal triangle number
using @{term prod_decode}.
*}
abbreviation Max_triangle_aux where
"Max_triangle_aux k z \<equiv> fst (prod_decode_aux k z) + snd (prod_decode_aux k z)"
abbreviation Max_triangle where
"Max_triangle z \<equiv> Max_triangle_aux 0 z"
abbreviation
"pdec1 z \<equiv> fst (prod_decode z)"
abbreviation
"pdec2 z \<equiv> snd (prod_decode z)"
abbreviation
"penc m n \<equiv> prod_encode (m, n)"
lemma fst_prod_decode:
"pdec1 z = z - triangle (Max_triangle z)"
by (subst (3) prod_decode_inverse[symmetric])
(simp add: prod_encode_def prod_decode_def split: prod.split)
lemma snd_prod_decode:
"pdec2 z = Max_triangle z - pdec1 z"
by (simp only: prod_decode_def)
lemma le_triangle:
"m \<le> triangle (n + m)"
by (induct_tac m) (simp_all)
lemma Max_triangle_triangle_le:
"triangle (Max_triangle z) \<le> z"
by (subst (9) prod_decode_inverse[symmetric])
(simp add: prod_decode_def prod_encode_def split: prod.split)
lemma Max_triangle_le:
"Max_triangle z \<le> z"
proof -
have "Max_triangle z \<le> triangle (Max_triangle z)"
using le_triangle[of _ 0, simplified] by simp
also have "... \<le> z" by (rule Max_triangle_triangle_le)
finally show "Max_triangle z \<le> z" .
qed
lemma w_aux:
"Max_triangle (triangle k + m) = Max_triangle_aux k m"
by (simp add: prod_decode_def[symmetric] prod_decode_triangle_add)
lemma y_aux: "y \<le> Max_triangle_aux y k"
apply(induct k arbitrary: y rule: nat_less_induct)
apply(subst (1 2) prod_decode_aux.simps)
apply(simp)
apply(rule impI)
apply(drule_tac x="n - Suc y" in spec)
apply(drule mp)
apply(auto)[1]
apply(drule_tac x="Suc y" in spec)
apply(erule Suc_leD)
done
lemma Max_triangle_greatest:
"Max_triangle z = (GREATEST k. (triangle k \<le> z \<and> k \<le> z) \<or> k = 0)"
apply(rule Greatest_equality[symmetric])
apply(rule disjI1)
apply(rule conjI)
apply(rule Max_triangle_triangle_le)
apply(rule Max_triangle_le)
apply(erule disjE)
apply(erule conjE)
apply(subst (asm) (1) le_iff_add)
apply(erule exE)
apply(clarify)
apply(simp only: w_aux)
apply(rule y_aux)
apply(simp)
done
definition
"rec_triangle = CN rec_div [CN rec_mult [Id 1 0, S], constn 2]"
definition
"rec_max_triangle =
(let cond = CN rec_not [CN rec_le [CN rec_triangle [Id 2 0], Id 2 1]] in
CN (rec_max1 cond) [Id 1 0, Id 1 0])"
lemma triangle_lemma [simp]:
"rec_eval rec_triangle [x] = triangle x"
by (simp add: rec_triangle_def triangle_def)
lemma max_triangle_lemma [simp]:
"rec_eval rec_max_triangle [x] = Max_triangle x"
by (simp add: Max_triangle_greatest rec_max_triangle_def Let_def BMax_rec_eq1)
text {* Encodings for Pairs of Natural Numbers *}
definition
"rec_penc = CN rec_add [CN rec_triangle [CN rec_add [Id 2 0, Id 2 1]], Id 2 0]"
definition
"rec_pdec1 = CN rec_minus [Id 1 0, CN rec_triangle [CN rec_max_triangle [Id 1 0]]]"
definition
"rec_pdec2 = CN rec_minus [CN rec_max_triangle [Id 1 0], CN rec_pdec1 [Id 1 0]]"
lemma pdec1_lemma [simp]:
"rec_eval rec_pdec1 [z] = pdec1 z"
by (simp add: rec_pdec1_def fst_prod_decode)
lemma pdec2_lemma [simp]:
"rec_eval rec_pdec2 [z] = pdec2 z"
by (simp add: rec_pdec2_def snd_prod_decode)
lemma penc_lemma [simp]:
"rec_eval rec_penc [m, n] = penc m n"
by (simp add: rec_penc_def prod_encode_def)
text {* Encodings of Lists of Natural Numbers *}
fun
lenc :: "nat list \<Rightarrow> nat"
where
"lenc [] = 0"
| "lenc (x # xs) = penc (Suc x) (lenc xs)"
fun
ldec :: "nat \<Rightarrow> nat \<Rightarrow> nat"
where
"ldec z 0 = (pdec1 z) - 1"
| "ldec z (Suc n) = ldec (pdec2 z) n"
lemma pdec_zero_simps [simp]:
"pdec1 0 = 0"
"pdec2 0 = 0"
by (simp_all add: prod_decode_def prod_decode_aux.simps)
lemma ldec_zero:
"ldec 0 n = 0"
by (induct n) (simp_all add: prod_decode_def prod_decode_aux.simps)
lemma list_encode_inverse:
"ldec (lenc xs) n = (if n < length xs then xs ! n else 0)"
by (induct xs arbitrary: n rule: lenc.induct)
(auto simp add: ldec_zero nth_Cons split: nat.splits)
lemma lenc_length_le:
"length xs \<le> lenc xs"
by (induct xs) (simp_all add: prod_encode_def)
text {* The membership predicate for an encoded list. *}
fun within :: "nat \<Rightarrow> nat \<Rightarrow> bool" where
"within z 0 = (0 < z)"
| "within z (Suc n) = within (pdec2 z) n"
definition enclen :: "nat \<Rightarrow> nat" where
"enclen z = BMax_rec (\<lambda>x. within z (x - 1)) z"
lemma within_False [simp]:
"within 0 n = False"
by (induct n) (simp_all)
lemma within_length [simp]:
"within (lenc xs) s = (s < length xs)"
apply(induct s arbitrary: xs)
apply(case_tac xs)
apply(simp_all add: prod_encode_def)
apply(case_tac xs)
apply(simp_all)
done
text {* The length of an encoded list. *}
lemma enclen_length [simp]:
"enclen (lenc xs) = length xs"
unfolding enclen_def
apply(simp add: BMax_rec_eq1)
apply(rule Greatest_equality)
apply(auto simp add: lenc_length_le)
done
lemma enclen_penc [simp]:
"enclen (penc (Suc x) (lenc xs)) = Suc (enclen (lenc xs))"
by (simp only: lenc.simps[symmetric] enclen_length) (simp)
lemma enclen_zero [simp]:
"enclen 0 = 0"
by (simp add: enclen_def)
text {* Recursive Definitions for List Encodings *}
fun
rec_lenc :: "recf list \<Rightarrow> recf"
where
"rec_lenc [] = Z"
| "rec_lenc (f # fs) = CN rec_penc [CN S [f], rec_lenc fs]"
definition
"rec_ldec = CN rec_pred [CN rec_pdec1 [rec_swap (rec_iter rec_pdec2)]]"
definition
"rec_within = CN rec_less [Z, rec_swap (rec_iter rec_pdec2)]"
definition
"rec_enclen = CN (rec_max1 (CN rec_not [CN rec_within [Id 2 1, CN rec_pred [Id 2 0]]])) [Id 1 0, Id 1 0]"
lemma ldec_iter:
"ldec z n = pdec1 (Iter pdec2 n z) - 1"
by (induct n arbitrary: z) (simp | subst Iter_comm)+
lemma within_iter:
"within z n = (0 < Iter pdec2 n z)"
by (induct n arbitrary: z) (simp | subst Iter_comm)+
lemma lenc_lemma [simp]:
"rec_eval (rec_lenc fs) xs = lenc (map (\<lambda>f. rec_eval f xs) fs)"
by (induct fs) (simp_all)
lemma ldec_lemma [simp]:
"rec_eval rec_ldec [z, n] = ldec z n"
by (simp add: ldec_iter rec_ldec_def)
lemma within_lemma [simp]:
"rec_eval rec_within [z, n] = (if within z n then 1 else 0)"
by (simp add: within_iter rec_within_def)
lemma enclen_lemma [simp]:
"rec_eval rec_enclen [z] = enclen z"
by (simp add: rec_enclen_def enclen_def)
end