(* Authors: Gerwin Klein and Rafal Kolanski, 2012
Maintainers: Gerwin Klein <kleing at cse.unsw.edu.au>
Rafal Kolanski <rafal.kolanski at nicta.com.au>
*)
header "Separation Logic Tactics"
theory Sep_Tactics
imports Separation_Algebra
begin
ML_file "sep_tactics.ML"
text {* A number of proof methods to assist with reasoning about separation logic. *}
section {* Selection (move-to-front) tactics *}
method_setup sep_select = {*
Scan.lift Parse.int >> (fn n => fn ctxt => SIMPLE_METHOD' (sep_select_tac ctxt n))
*} "Select nth separation conjunct in conclusion"
method_setup sep_select_asm = {*
Scan.lift Parse.int >> (fn n => fn ctxt => SIMPLE_METHOD' (sep_select_asm_tac ctxt n))
*} "Select nth separation conjunct in assumptions"
section {* Substitution *}
method_setup "sep_subst" = {*
Scan.lift (Args.mode "asm" -- Scan.optional (Args.parens (Scan.repeat Parse.nat)) [0]) --
Attrib.thms >> (fn ((asm, occs), thms) => fn ctxt =>
SIMPLE_METHOD' ((if asm then sep_subst_asm_tac else sep_subst_tac) ctxt occs thms))
*}
"single-step substitution after solving one separation logic assumption"
section {* Forward Reasoning *}
method_setup "sep_drule" = {*
Attrib.thms >> (fn thms => fn ctxt => SIMPLE_METHOD' (sep_dtac ctxt thms))
*} "drule after separating conjunction reordering"
method_setup "sep_frule" = {*
Attrib.thms >> (fn thms => fn ctxt => SIMPLE_METHOD' (sep_ftac ctxt thms))
*} "frule after separating conjunction reordering"
section {* Backward Reasoning *}
method_setup "sep_rule" = {*
Attrib.thms >> (fn thms => fn ctxt => SIMPLE_METHOD' (sep_rtac ctxt thms))
*} "applies rule after separating conjunction reordering"
section {* Cancellation of Common Conjuncts via Elimination Rules *}
ML {*
structure SepCancel_Rules = Named_Thms (
val name = @{binding "sep_cancel"};
val description = "sep_cancel rules";
);
*}
setup SepCancel_Rules.setup
text {*
The basic @{text sep_cancel_tac} is minimal. It only eliminates
erule-derivable conjuncts between an assumption and the conclusion.
To have a more useful tactic, we augment it with more logic, to proceed as
follows:
\begin{itemize}
\item try discharge the goal first using @{text tac}
\item if that fails, invoke @{text sep_cancel_tac}
\item if @{text sep_cancel_tac} succeeds
\begin{itemize}
\item try to finish off with tac (but ok if that fails)
\item try to finish off with @{term sep_true} (but ok if that fails)
\end{itemize}
\end{itemize}
*}
ML {*
fun sep_cancel_smart_tac ctxt tac =
let fun TRY' tac = tac ORELSE' (K all_tac)
in
tac
ORELSE' (sep_cancel_tac ctxt tac
THEN' TRY' tac
THEN' TRY' (rtac @{thm TrueI}))
ORELSE' (etac @{thm sep_conj_sep_emptyE}
THEN' sep_cancel_tac ctxt tac
THEN' TRY' tac
THEN' TRY' (rtac @{thm TrueI}))
end;
fun sep_cancel_smart_tac_rules ctxt etacs =
sep_cancel_smart_tac ctxt (FIRST' ([atac] @ etacs));
val sep_cancel_syntax = Method.sections [
Args.add -- Args.colon >> K (I, SepCancel_Rules.add)] >> K ();
*}
method_setup sep_cancel = {*
sep_cancel_syntax >> (fn _ => fn ctxt =>
let
val etacs = map etac (SepCancel_Rules.get ctxt);
in
SIMPLE_METHOD' (sep_cancel_smart_tac_rules ctxt etacs)
end)
*} "Separating conjunction conjunct cancellation"
text {*
As above, but use blast with a depth limit to figure out where cancellation
can be done. *}
method_setup sep_cancel_blast = {*
sep_cancel_syntax >> (fn _ => fn ctxt =>
let
val rules = SepCancel_Rules.get ctxt;
val tac = Blast.depth_tac (ctxt addIs rules) 10;
in
SIMPLE_METHOD' (sep_cancel_smart_tac ctxt tac)
end)
*} "Separating conjunction conjunct cancellation using blast"
end