(* Title: Adaptation of example from HOL/Hoare/Separation
Author: Rafal Kolanski, 2012
Maintainers: Gerwin Klein <kleing at cse.unsw.edu.au>
Rafal Kolanski <rafal.kolanski at nicta.com.au>
*)
header "Separation Algebra for Virtual Memory"
theory VM_Example
imports "../Sep_Tactics" "../Map_Extra"
begin
text {*
Example instantiation of the abstract separation algebra to the sliced-memory
model used for building a separation logic in ``Verification of Programs in
Virtual Memory Using Separation Logic'' (PhD Thesis) by Rafal Kolanski.
We wrap up the concept of physical and virtual pointers as well as value
(usually a byte), and the page table root, into a datatype for instantiation.
This avoids having to produce a hierarchy of type classes.
The result is more general than the original. It does not mention the types
of pointers or virtual memory addresses. Instead of supporting only
singleton page table roots, we now support sets so we can identify a single
0 for the monoid.
This models multiple page tables in memory, whereas the original logic was
only capable of one at a time.
*}
datatype ('p,'v,'value,'r) vm_sep_state
= VMSepState "((('p \<times> 'v) \<rightharpoonup> 'value) \<times> 'r set)"
instantiation vm_sep_state :: (type, type, type, type) sep_algebra
begin
fun
vm_heap :: "('a,'b,'c,'d) vm_sep_state \<Rightarrow> (('a \<times> 'b) \<rightharpoonup> 'c)" where
"vm_heap (VMSepState (h,r)) = h"
fun
vm_root :: "('a,'b,'c,'d) vm_sep_state \<Rightarrow> 'd set" where
"vm_root (VMSepState (h,r)) = r"
definition
sep_disj_vm_sep_state :: "('a, 'b, 'c, 'd) vm_sep_state
\<Rightarrow> ('a, 'b, 'c, 'd) vm_sep_state \<Rightarrow> bool" where
"sep_disj_vm_sep_state x y = vm_heap x \<bottom> vm_heap y"
definition
zero_vm_sep_state :: "('a, 'b, 'c, 'd) vm_sep_state" where
"zero_vm_sep_state \<equiv> VMSepState (empty, {})"
fun
plus_vm_sep_state :: "('a, 'b, 'c, 'd) vm_sep_state
\<Rightarrow> ('a, 'b, 'c, 'd) vm_sep_state
\<Rightarrow> ('a, 'b, 'c, 'd) vm_sep_state" where
"plus_vm_sep_state (VMSepState (x,r)) (VMSepState (y,r'))
= VMSepState (x ++ y, r \<union> r')"
instance
apply default
apply (simp add: zero_vm_sep_state_def sep_disj_vm_sep_state_def)
apply (fastforce simp: sep_disj_vm_sep_state_def map_disj_def)
apply (case_tac x, clarsimp simp: zero_vm_sep_state_def)
apply (case_tac x, case_tac y)
apply (fastforce simp: sep_disj_vm_sep_state_def map_add_ac)
apply (case_tac x, case_tac y, case_tac z)
apply (fastforce simp: sep_disj_vm_sep_state_def)
apply (case_tac x, case_tac y, case_tac z)
apply (fastforce simp: sep_disj_vm_sep_state_def map_add_disj)
apply (case_tac x, case_tac y, case_tac z)
apply (fastforce simp: sep_disj_vm_sep_state_def map_add_disj map_disj_com)
done
end
end