header {* {\em Abacus} defined as macros of TM *}theory Hoare_abcimports Hoare_tm Finite_Setbegintext {* {\em Abacus} instructions*}(*text {* The following Abacus instructions will be replaced by TM macros. *}datatype abc_inst = -- {* @{text "Inc n"} increments the memory cell (or register) with address @{text "n"} by one. *} Inc nat -- {* @{text "Dec n label"} decrements the memory cell with address @{text "n"} by one. If cell @{text "n"} is already zero, no decrements happens and the executio jumps to the instruction labeled by @{text "label"}. *} | Dec nat nat -- {* @{text "Goto label"} unconditionally jumps to the instruction labeled by @{text "label"}. *} | Goto nat*)datatype aresource = M nat nat (* | C nat abc_inst *) (* C resource is not needed because there is no Abacus code any more *) | At nat | Faults natsection {* An interpretation from Abacus to Turing Machine *}fun recse_map :: "nat list \<Rightarrow> aresource \<Rightarrow> tassert" where "recse_map ks (M a v) = <(a < length ks \<and> ks!a = v \<or> a \<ge> length ks \<and> v = 0)>" | "recse_map ks (At l) = st l" | "recse_map ks (Faults n) = sg {TFaults n}"definition "IA ars = (EXS ks i. ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* (reps 2 i ks) \<and>* fam_conj {i<..} zero \<and>* fam_conj ars (recse_map ks))"section {* A virtually defined Abacus *}text {* The following Abacus instructions are to be defined as TM macros *}definition "pc l = sg {At l}"definition "mm a v =sg ({M a v})"type_synonym assert = "aresource set \<Rightarrow> bool"lemma tm_hoare_inc1: assumes h: "a < length ks \<and> ks ! a = v \<or> length ks \<le> a \<and> v = 0" shows " \<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace> i :[Inc a ]: j \<lbrace>st j \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1) ((list_ext a ks)[a := Suc v]) \<and>* fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1<..} zero\<rbrace>" using hproof assume hh: "a < length ks \<and> ks ! a = v" hence "a < length ks" by simp from list_ext_lt [OF this] tm_hoare_inc00[OF hh] show ?thesis by simpnext assume "length ks \<le> a \<and> v = 0" from tm_hoare_inc01[OF this] show ?thesis by simpqedlemma tm_hoare_inc2: assumes "mm a v sr" shows " \<lbrace> (fam_conj sr (recse_map ks) \<and>* st i \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* reps 2 ia ks \<and>* fam_conj {ia<..} zero) \<rbrace> i:[ (Inc a) ]:j \<lbrace> (fam_conj {M a (Suc v)} (recse_map (list_ext a ks[a := Suc v])) \<and>* st j \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* reps 2 (ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1) ((list_ext a ks)[a := Suc v]) \<and>* fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1<..} zero)\<rbrace>"proof - from `mm a v sr` have eq_sr: "sr = {M a v}" by (auto simp:mm_def sg_def) from tm_hoare_inc1[where u = 2] have "a < length ks \<and> ks ! a = v \<or> length ks \<le> a \<and> v = 0 \<Longrightarrow> \<lbrace>st i \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* reps 2 ia ks \<and>* fam_conj {ia<..} zero\<rbrace> i :[Inc a ]: j \<lbrace>(st j \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* reps 2 (ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1) ((list_ext a ks)[a := Suc v]) \<and>* fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1<..} zero)\<rbrace>" by simp thus ?thesis apply (unfold eq_sr) apply (simp add:fam_conj_simps list_ext_get_upd list_ext_len) by (rule tm.pre_condI, blast)qedlocale IA_disjoint = fixes s s' s1 cnf assumes h_IA: "IA (s + s') s1" and h_disj: "s ## s'" and h_conf: "s1 \<subseteq> trset_of cnf"beginlemma at_disj1: assumes at_in: "At i \<in> s" shows "At j \<notin> s'"proof from h_IA[unfolded IA_def] obtain ks idx where "((ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* reps 2 idx ks \<and>* fam_conj {idx<..} zero) \<and>* fam_conj (s + s') (recse_map ks)) s1" (is "(?P \<and>* ?Q) s1") by (auto elim!:EXS_elim simp:sep_conj_ac) then obtain ss1 ss2 where "s1 = ss1 + ss2" "ss1 ## ss2" "?P ss1" "?Q ss2" by (auto elim:sep_conjE) from `?Q ss2`[unfolded fam_conj_disj_simp[OF h_disj]] obtain tt1 tt2 where "ss2 = tt1 + tt2" "tt1 ## tt2" "(fam_conj s (recse_map ks)) tt1" "(fam_conj s' (recse_map ks)) tt2" by (auto elim:sep_conjE) assume "At j \<in> s'" from `(fam_conj s' (recse_map ks)) tt2` [unfolded fam_conj_elm_simp[OF this]] `ss2 = tt1 + tt2` `s1 = ss1 + ss2` h_conf have "TAt j \<in> trset_of cnf" by (auto elim!:sep_conjE simp: st_def sg_def tpn_set_def set_ins_def) moreover from `(fam_conj s (recse_map ks)) tt1` [unfolded fam_conj_elm_simp[OF at_in]] `ss2 = tt1 + tt2` `s1 = ss1 + ss2` h_conf have "TAt i \<in> trset_of cnf" by (auto elim!:sep_conjE simp: st_def sg_def tpn_set_def set_ins_def) ultimately have "i = j" by (cases cnf, simp add:trset_of.simps tpn_set_def) from at_in `At j \<in> s'` h_disj show False by (unfold `i = j`, auto simp:set_ins_def)qedlemma at_disj2: "At i \<in> s' \<Longrightarrow> At j \<notin> s" by (metis at_disj1)lemma m_disj1: assumes m_in: "M a v \<in> s" shows "M a v' \<notin> s'"proof from h_IA[unfolded IA_def] obtain ks idx where "((ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* reps 2 idx ks \<and>* fam_conj {idx<..} zero) \<and>* fam_conj (s + s') (recse_map ks)) s1" (is "(?P \<and>* ?Q) s1") by (auto elim!:EXS_elim simp:sep_conj_ac) then obtain ss1 ss2 where "s1 = ss1 + ss2" "ss1 ## ss2" "?P ss1" "?Q ss2" by (auto elim:sep_conjE) from `?Q ss2`[unfolded fam_conj_disj_simp[OF h_disj]] obtain tt1 tt2 where "ss2 = tt1 + tt2" "tt1 ## tt2" "(fam_conj s (recse_map ks)) tt1" "(fam_conj s' (recse_map ks)) tt2" by (auto elim:sep_conjE) assume "M a v' \<in> s'" from `(fam_conj s' (recse_map ks)) tt2` [unfolded fam_conj_elm_simp[OF this] recse_map.simps] have "(a < length ks \<and> ks ! a = v' \<or> length ks \<le> a \<and> v' = 0)" by (auto simp:pasrt_def) moreover from `(fam_conj s (recse_map ks)) tt1` [unfolded fam_conj_elm_simp[OF m_in] recse_map.simps] have "a < length ks \<and> ks ! a = v \<or> length ks \<le> a \<and> v = 0" by (auto simp:pasrt_def) moreover note m_in `M a v' \<in> s'` h_disj ultimately show False by (auto simp:set_ins_def)qedlemma m_disj2: "M a v \<in> s' \<Longrightarrow> M a v' \<notin> s" by (metis m_disj1)endlemma EXS_elim1: assumes "((EXS x. P(x)) \<and>* r) s" obtains x where "(P(x) \<and>* r) s" by (metis EXS_elim assms sep_conj_exists1)lemma hoare_inc[step]: "IA. \<lbrace> pc i ** mm a v \<rbrace> i:[ (Inc a) ]:j \<lbrace> pc j ** mm a (Suc v)\<rbrace>" (is "IA. \<lbrace> pc i ** ?P \<rbrace> i:[ ?code ?e ]:j \<lbrace> pc ?e ** ?Q\<rbrace>")proof(induct rule:tm.IHoareI) case (IPre s' s r cnf) let ?cnf = "(trset_of cnf)" from IPre have h: "(pc i \<and>* ?P) s" "(s ## s')" "(IA (s + s') \<and>* i :[ ?code(?e) ]: j \<and>* r) ?cnf" by (metis condD)+ from h(1) obtain sr where eq_s: "s = {At i} \<union> sr" "{At i} ## sr" "?P sr" by (auto dest!:sep_conjD simp:set_ins_def pc_def sg_def) hence "At i \<in> s" by auto from h(3) obtain s1 s2 s3 where hh: "?cnf = s1 + s2 + s3" "s1 ## s2 \<and> s2 ## s3 \<and> s1 ## s3" "IA (s + s') s1" "(i :[ ?code ?e ]: j) s2" "r s3" apply (auto elim!:sep_conjE intro!:sep_conjI simp:sep_conj_ac) by (metis sep_add_commute sep_disj_addD1 sep_disj_addD2 sep_disj_commuteI) interpret ia_disj: IA_disjoint s s' s1 cnf proof from `IA (s + s') s1` show "IA (s + s') s1" . next from `s ## s'` show "s ## s'" . next from hh(1) show "s1 \<subseteq> ?cnf" by (auto simp:set_ins_def) qed from hh(1) have s1_belong: "s1 \<subseteq> ?cnf" by (auto simp:set_ins_def) from hh(3) have "(EXS ks ia. ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* reps 2 ia ks \<and>* fam_conj {ia<..} zero \<and>* (st i \<and>* fam_conj sr (recse_map ks)) \<and>* fam_conj s' (recse_map ks)) s1" apply (unfold IA_def fam_conj_disj_simp[OF h(2)]) apply (unfold eq_s) by (insert eq_s(2), simp add: fam_conj_disj_simp[OF eq_s(2)] fam_conj_simps set_ins_def) then obtain ks ia where "((fam_conj sr (recse_map ks) \<and>* st i \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* reps 2 ia ks \<and>* fam_conj {ia<..} zero) \<and>* fam_conj s' (recse_map ks)) s1" (is "(?PP \<and>* ?QQ) s1") by (unfold pred_ex_def, auto simp:sep_conj_ac) then obtain ss1 ss2 where pres: "s1 = ss1 + ss2" "ss1 ## ss2" "?PP ss1" "?QQ ss2" by (auto elim!:sep_conjE intro!:sep_conjI) from ia_disj.at_disj1 [OF `At i \<in> s`] have at_fresh_s': "At ?e \<notin> s'" . have at_fresh_sr: "At ?e \<notin> sr" proof assume at_in: "At ?e \<in> sr" from h(3)[unfolded IA_def fam_conj_disj_simp[OF h(2)]] have "TAt ?e \<in> trset_of cnf" apply (elim EXS_elim1) apply (unfold eq_s fam_conj_disj_simp[OF eq_s(2), unfolded set_ins_def] fam_conj_elm_simp[OF at_in]) apply (erule_tac sep_conjE, unfold set_ins_def)+ by (auto simp:sep_conj_ac fam_conj_simps st_def sg_def tpn_set_def) moreover from pres(1, 3) hh(1) have "TAt i \<in> trset_of cnf" apply(erule_tac sep_conjE) apply(erule_tac sep_conjE) by (auto simp:st_def tpc_set_def sg_def set_ins_def) ultimately have "i = ?e" by (cases cnf, auto simp:tpn_set_def trset_of.simps) from eq_s[unfolded this] at_in show "False" by (auto simp:set_ins_def) qed from pres(3) and hh(2, 4, 5) pres(2, 4) have pres1: "(?PP \<and>* i :[ ?code(?e)]: j \<and>* (r \<and>* (fam_conj s' (recse_map ks)))) (trset_of cnf)" apply (unfold hh(1) pres(1)) apply (rule sep_conjI[where x=ss1 and y = "ss2 + s2 + s3"], assumption+) apply (rule sep_conjI[where x="s2" and y = "ss2 + s3"], assumption+) apply (rule sep_conjI[where x="s3" and y = ss2], assumption+) by (auto simp:set_ins_def) (*****************************************************************************) let ?ks_f = "\<lambda> sr ks. list_ext a ks[a := Suc v]" let ?elm_f = "\<lambda> sr. {M a (Suc v)}" let ?idx_f = "\<lambda> sr ks ia. (ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1)" (*----------------------------------------------------------------------------*) (******************************************************************************) from tm_hoare_inc2 [OF eq_s(3), unfolded tm.Hoare_gen_def, rule_format, OF pres1] obtain k where "((fam_conj (?elm_f sr) (recse_map (?ks_f sr ks)) \<and>* st ?e \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* reps 2 (?idx_f sr ks ia) (?ks_f sr ks) \<and>* fam_conj {?idx_f sr ks ia<..} zero) \<and>* i :[ ?code ?e ]: j \<and>* r \<and>* fam_conj s' (recse_map ks)) (trset_of (sep_exec.run tstep (Suc k) cnf))" by blast (*----------------------------------------------------------------------------*) moreover have "(pc ?e \<and>* ?Q) ({At ?e} \<union> ?elm_f sr)" proof - have "pc ?e {At ?e}" by (simp add:pc_def sg_def) (******************************************************************************) moreover have "?Q (?elm_f sr)" by (simp add:mm_def sg_def) (*----------------------------------------------------------------------------*) moreover (******************************************************************************) have "{At ?e} ## ?elm_f sr" by (simp add:set_ins_def) (*----------------------------------------------------------------------------*) ultimately show ?thesis by (auto intro!:sep_conjI simp:set_ins_def) qed moreover (******************************************************************************) from ia_disj.m_disj1 `?P sr` `s = {At i} \<union> sr` have "?elm_f sr ## s'" by (auto simp:set_ins_def mm_def sg_def) (*----------------------------------------------------------------------------*) with at_fresh_s' have fresh_atm: "{At ?e} \<union> ?elm_f sr ## s'" by (auto simp:set_ins_def) moreover have eq_map: "\<And> elm. elm \<in> s' \<Longrightarrow> (recse_map ks elm) = (recse_map (?ks_f sr ks) elm)" proof - fix elm assume elm_in: "elm \<in> s'" show "(recse_map ks elm) = (recse_map (?ks_f sr ks) elm)" proof(cases elm) (*******************************************************************) case (M a' v') from eq_s have "M a v \<in> s" by (auto simp:set_ins_def mm_def sg_def) with elm_in ia_disj.m_disj1[OF this] M have "a \<noteq> a'" by auto thus ?thesis apply (auto simp:M recse_map.simps pasrt_def list_ext_len) apply (case_tac "a < length ks", auto simp:list_ext_len_eq list_ext_lt) apply (case_tac "a' < Suc a", auto simp:list_ext_len_eq list_ext_lt) by (metis (full_types) bot_nat_def leI le_trans less_Suc_eq_le list_ext_lt_get list_ext_tail set_zero_def) (*-----------------------------------------------------------------*) qed auto qed ultimately show ?case apply (rule_tac x = k in exI, rule_tac x = "{At ?e} \<union> ?elm_f sr" in exI) apply (unfold IA_def, intro condI, assumption+) apply (rule_tac x = "?ks_f sr ks" in pred_exI) apply (rule_tac x = "?idx_f sr ks ia" in pred_exI) apply (unfold fam_conj_disj_simp[OF fresh_atm]) apply (auto simp:sep_conj_ac fam_conj_simps) (***************************************************************************) (* apply (unfold fam_conj_insert_simp [OF h_fresh1[OF at_fresh_sr]], simp) *) (*-------------------------------------------------------------------------*) apply (sep_cancel)+ by (simp add: fam_conj_ext_eq[where I = "s'", OF eq_map])qedlemma tm_hoare_dec_fail: assumes "mm a 0 sr" shows "\<lbrace> fam_conj sr (recse_map ks) \<and>* st i \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* reps 2 ia ks \<and>* fam_conj {ia<..} zero \<rbrace> i:[ (Dec a e) ]:j \<lbrace> fam_conj {M a 0} (recse_map (list_ext a ks[a := 0])) \<and>* st e \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* reps 2 (ia + int (reps_len (list_ext a ks)) - int (reps_len ks)) (list_ext a ks[a := 0]) \<and>* fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks) <..} zero\<rbrace>"proof - from `mm a 0 sr` have eq_sr: "sr = {M a 0}" by (auto simp:mm_def sg_def) { assume h: "a < length ks \<and> ks ! a = 0 \<or> length ks \<le> a" from tm_hoare_dec_fail1[where u = 2, OF this] have "\<lbrace>st i \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* reps 2 ia ks \<and>* fam_conj {ia<..} zero\<rbrace> i :[ Dec a e ]: j \<lbrace>st e \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* reps 2 (ia + int (reps_len (list_ext a ks)) - int (reps_len ks)) (list_ext a ks[a := 0]) \<and>* fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks)<..} zero\<rbrace>" by (simp) } thus ?thesis apply (unfold eq_sr) apply (simp add:fam_conj_simps list_ext_get_upd list_ext_len) by (rule tm.pre_condI, blast)qedlemma hoare_dec_fail: "IA. \<lbrace> pc i ** mm a 0 \<rbrace> i:[ (Dec a e) ]:j \<lbrace> pc e ** mm a 0 \<rbrace>" (is "IA. \<lbrace> pc i ** ?P \<rbrace> i:[ ?code ?e]:j \<lbrace> pc ?e ** ?Q\<rbrace>")proof(induct rule:tm.IHoareI) case (IPre s' s r cnf) let ?cnf = "(trset_of cnf)" from IPre have h: "(pc i \<and>* ?P) s" "(s ## s')" "(IA (s + s') \<and>* i :[ ?code(?e) ]: j \<and>* r) ?cnf" by (metis condD)+ from h(1) obtain sr where eq_s: "s = {At i} \<union> sr" "{At i} ## sr" "?P sr" by (auto dest!:sep_conjD simp:set_ins_def pc_def sg_def) hence "At i \<in> s" by auto from h(3) obtain s1 s2 s3 where hh: "?cnf = s1 + s2 + s3" "s1 ## s2 \<and> s2 ## s3 \<and> s1 ## s3" "IA (s + s') s1" "(i :[ ?code ?e ]: j) s2" "r s3" apply (auto elim!:sep_conjE intro!:sep_conjI simp:sep_conj_ac) by (metis sep_add_commute sep_disj_addD1 sep_disj_addD2 sep_disj_commuteI) interpret ia_disj: IA_disjoint s s' s1 cnf proof from `IA (s + s') s1` show "IA (s + s') s1" . next from `s ## s'` show "s ## s'" . next from hh(1) show "s1 \<subseteq> ?cnf" by (auto simp:set_ins_def) qed from hh(1) have s1_belong: "s1 \<subseteq> ?cnf" by (auto simp:set_ins_def) from hh(3) have "(EXS ks ia. ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* reps 2 ia ks \<and>* fam_conj {ia<..} zero \<and>* (st i \<and>* fam_conj sr (recse_map ks)) \<and>* fam_conj s' (recse_map ks)) s1" apply (unfold IA_def fam_conj_disj_simp[OF h(2)]) apply (unfold eq_s) by (insert eq_s(2), simp add: fam_conj_disj_simp[OF eq_s(2)] fam_conj_simps set_ins_def) then obtain ks ia where "((fam_conj sr (recse_map ks) \<and>* st i \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* reps 2 ia ks \<and>* fam_conj {ia<..} zero) \<and>* fam_conj s' (recse_map ks)) s1" (is "(?PP \<and>* ?QQ) s1") by (unfold pred_ex_def, auto simp:sep_conj_ac) then obtain ss1 ss2 where pres: "s1 = ss1 + ss2" "ss1 ## ss2" "?PP ss1" "?QQ ss2" by (auto elim!:sep_conjE intro!:sep_conjI) from ia_disj.at_disj1 [OF `At i \<in> s`] have at_fresh_s': "At ?e \<notin> s'" . have at_fresh_sr: "At ?e \<notin> sr" proof assume at_in: "At ?e \<in> sr" from h(3)[unfolded IA_def fam_conj_disj_simp[OF h(2)]] have "TAt ?e \<in> trset_of cnf" apply (elim EXS_elim1) apply (unfold eq_s fam_conj_disj_simp[OF eq_s(2), unfolded set_ins_def] fam_conj_elm_simp[OF at_in]) apply (erule_tac sep_conjE, unfold set_ins_def)+ by (auto simp:sep_conj_ac fam_conj_simps st_def sg_def tpn_set_def) moreover from pres(1, 3) hh(1) have "TAt i \<in> trset_of cnf" apply(erule_tac sep_conjE) apply(erule_tac sep_conjE) by (auto simp:st_def tpc_set_def sg_def set_ins_def) ultimately have "i = ?e" by (cases cnf, auto simp:tpn_set_def trset_of.simps) from eq_s[unfolded this] at_in show "False" by (auto simp:set_ins_def) qed from pres(3) and hh(2, 4, 5) pres(2, 4) have pres1: "(?PP \<and>* i :[ ?code(?e)]: j \<and>* (r \<and>* (fam_conj s' (recse_map ks)))) (trset_of cnf)" apply (unfold hh(1) pres(1)) apply (rule sep_conjI[where x=ss1 and y = "ss2 + s2 + s3"], assumption+) apply (rule sep_conjI[where x="s2" and y = "ss2 + s3"], assumption+) apply (rule sep_conjI[where x="s3" and y = ss2], assumption+) by (auto simp:set_ins_def) (*****************************************************************************) let ?ks_f = "\<lambda> sr ks. list_ext a ks[a:=0]" let ?elm_f = "\<lambda> sr. {M a 0}" let ?idx_f = "\<lambda> sr ks ia. (ia + int (reps_len (list_ext a ks)) - int (reps_len ks))" (*----------------------------------------------------------------------------*) (******************************************************************************) from tm_hoare_dec_fail[OF `?P sr`, unfolded tm.Hoare_gen_def, rule_format, OF pres1] obtain k where "((fam_conj (?elm_f sr) (recse_map (?ks_f sr ks)) \<and>* st ?e \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* reps 2 (?idx_f sr ks ia) (?ks_f sr ks) \<and>* fam_conj {?idx_f sr ks ia<..} zero) \<and>* i :[ ?code ?e ]: j \<and>* r \<and>* fam_conj s' (recse_map ks)) (trset_of (sep_exec.run tstep (Suc k) cnf))" by blast (*----------------------------------------------------------------------------*) moreover have "(pc ?e \<and>* ?Q) ({At ?e} \<union> ?elm_f sr)" proof - have "pc ?e {At ?e}" by (simp add:pc_def sg_def) (******************************************************************************) moreover have "?Q (?elm_f sr)" by (simp add:mm_def sg_def) (*----------------------------------------------------------------------------*) moreover (******************************************************************************) have "{At ?e} ## ?elm_f sr" by (simp add:set_ins_def) (*----------------------------------------------------------------------------*) ultimately show ?thesis by (auto intro!:sep_conjI simp:set_ins_def) qed moreover (******************************************************************************) from ia_disj.m_disj1 `?P sr` `s = {At i} \<union> sr` have "?elm_f sr ## s'" by (auto simp:set_ins_def mm_def sg_def) (*----------------------------------------------------------------------------*) with at_fresh_s' have fresh_atm: "{At ?e} \<union> ?elm_f sr ## s'" by (auto simp:set_ins_def) moreover have eq_map: "\<And> elm. elm \<in> s' \<Longrightarrow> (recse_map ks elm) = (recse_map (?ks_f sr ks) elm)" proof - fix elm assume elm_in: "elm \<in> s'" show "(recse_map ks elm) = (recse_map (?ks_f sr ks) elm)" proof(cases elm) (*******************************************************************) case (M a' v') from eq_s have "M a 0 \<in> s" by (auto simp:set_ins_def mm_def sg_def) with elm_in ia_disj.m_disj1[OF this] M have "a \<noteq> a'" by auto thus ?thesis apply (auto simp:M recse_map.simps pasrt_def list_ext_len) apply (case_tac "a < length ks", auto simp:list_ext_len_eq list_ext_lt) apply (case_tac "a' < Suc a", auto simp:list_ext_len_eq list_ext_lt) by (metis (full_types) bot_nat_def leI le_trans less_Suc_eq_le list_ext_lt_get list_ext_tail set_zero_def) (*-----------------------------------------------------------------*) qed auto qed ultimately show ?case apply (rule_tac x = k in exI, rule_tac x = "{At ?e} \<union> ?elm_f sr" in exI) apply (unfold IA_def, intro condI, assumption+) apply (rule_tac x = "?ks_f sr ks" in pred_exI) apply (rule_tac x = "?idx_f sr ks ia" in pred_exI) apply (unfold fam_conj_disj_simp[OF fresh_atm]) apply (auto simp:sep_conj_ac fam_conj_simps) (***************************************************************************) (* apply (unfold fam_conj_insert_simp [OF h_fresh1[OF at_fresh_sr]], simp) *) (*-------------------------------------------------------------------------*) apply (sep_cancel)+ by (simp add: fam_conj_ext_eq[where I = "s'", OF eq_map])qedlemma hoare_dec_fail_gen[step]: assumes "v = 0" shows "IA. \<lbrace> pc i ** mm a v \<rbrace> i:[ (Dec a e) ]:j \<lbrace> pc e ** mm a v \<rbrace>" by (unfold assms, rule hoare_dec_fail)lemma tm_hoare_dec_suc2: assumes "mm a (Suc v) sr" shows "\<lbrace> fam_conj sr (recse_map ks) \<and>* st i \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* reps 2 ia ks \<and>* fam_conj {ia<..} zero \<rbrace> i:[(Dec a e)]:j \<lbrace> fam_conj {M a v} (recse_map (list_ext a ks[a := v])) \<and>* st j \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* reps 2 (ia - 1) (list_ext a ks[a := v]) \<and>* fam_conj {ia - 1<..} zero\<rbrace>"proof - from `mm a (Suc v) sr` have eq_sr: "sr = {M a (Suc v)}" by (auto simp:mm_def sg_def) thus ?thesis apply (unfold eq_sr) apply (simp add:fam_conj_simps list_ext_get_upd list_ext_len) apply (rule tm.pre_condI) by (drule tm_hoare_dec_suc1[where u = "2"], simp)qedlemma hoare_dec_suc2: "IA. \<lbrace>(pc i \<and>* mm a (Suc v))\<rbrace> i :[ Dec a e ]: j \<lbrace>pc j \<and>* mm a v\<rbrace>" (is "IA. \<lbrace> pc i ** ?P \<rbrace> i:[ ?code ?e]:j \<lbrace> pc ?e ** ?Q\<rbrace>")proof(induct rule:tm.IHoareI) case (IPre s' s r cnf) let ?cnf = "(trset_of cnf)" from IPre have h: "(pc i \<and>* ?P) s" "(s ## s')" "(IA (s + s') \<and>* i :[ ?code(?e) ]: j \<and>* r) ?cnf" by (metis condD)+ from h(1) obtain sr where eq_s: "s = {At i} \<union> sr" "{At i} ## sr" "?P sr" by (auto dest!:sep_conjD simp:set_ins_def pc_def sg_def) hence "At i \<in> s" by auto from h(3) obtain s1 s2 s3 where hh: "?cnf = s1 + s2 + s3" "s1 ## s2 \<and> s2 ## s3 \<and> s1 ## s3" "IA (s + s') s1" "(i :[ ?code ?e ]: j) s2" "r s3" apply (auto elim!:sep_conjE intro!:sep_conjI simp:sep_conj_ac) by (metis sep_add_commute sep_disj_addD1 sep_disj_addD2 sep_disj_commuteI) interpret ia_disj: IA_disjoint s s' s1 cnf proof from `IA (s + s') s1` show "IA (s + s') s1" . next from `s ## s'` show "s ## s'" . next from hh(1) show "s1 \<subseteq> ?cnf" by (auto simp:set_ins_def) qed from hh(1) have s1_belong: "s1 \<subseteq> ?cnf" by (auto simp:set_ins_def) from hh(3) have "(EXS ks ia. ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* reps 2 ia ks \<and>* fam_conj {ia<..} zero \<and>* (st i \<and>* fam_conj sr (recse_map ks)) \<and>* fam_conj s' (recse_map ks)) s1" apply (unfold IA_def fam_conj_disj_simp[OF h(2)]) apply (unfold eq_s) by (insert eq_s(2), simp add: fam_conj_disj_simp[OF eq_s(2)] fam_conj_simps set_ins_def) then obtain ks ia where "((fam_conj sr (recse_map ks) \<and>* st i \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* reps 2 ia ks \<and>* fam_conj {ia<..} zero) \<and>* fam_conj s' (recse_map ks)) s1" (is "(?PP \<and>* ?QQ) s1") by (unfold pred_ex_def, auto simp:sep_conj_ac) then obtain ss1 ss2 where pres: "s1 = ss1 + ss2" "ss1 ## ss2" "?PP ss1" "?QQ ss2" by (auto elim!:sep_conjE intro!:sep_conjI) from ia_disj.at_disj1 [OF `At i \<in> s`] have at_fresh_s': "At ?e \<notin> s'" . have at_fresh_sr: "At ?e \<notin> sr" proof assume at_in: "At ?e \<in> sr" from h(3)[unfolded IA_def fam_conj_disj_simp[OF h(2)]] have "TAt ?e \<in> trset_of cnf" apply (elim EXS_elim1) apply (unfold eq_s fam_conj_disj_simp[OF eq_s(2), unfolded set_ins_def] fam_conj_elm_simp[OF at_in]) apply (erule_tac sep_conjE, unfold set_ins_def)+ by (auto simp:sep_conj_ac fam_conj_simps st_def sg_def tpn_set_def) moreover from pres(1, 3) hh(1) have "TAt i \<in> trset_of cnf" apply(erule_tac sep_conjE) apply(erule_tac sep_conjE) by (auto simp:st_def tpc_set_def sg_def set_ins_def) ultimately have "i = ?e" by (cases cnf, auto simp:tpn_set_def trset_of.simps) from eq_s[unfolded this] at_in show "False" by (auto simp:set_ins_def) qed from pres(3) and hh(2, 4, 5) pres(2, 4) have pres1: "(?PP \<and>* i :[ ?code(?e)]: j \<and>* (r \<and>* (fam_conj s' (recse_map ks)))) (trset_of cnf)" apply (unfold hh(1) pres(1)) apply (rule sep_conjI[where x=ss1 and y = "ss2 + s2 + s3"], assumption+) apply (rule sep_conjI[where x="s2" and y = "ss2 + s3"], assumption+) apply (rule sep_conjI[where x="s3" and y = ss2], assumption+) by (auto simp:set_ins_def) (*****************************************************************************) let ?ks_f = "\<lambda> sr ks. list_ext a ks[a:=v]" let ?elm_f = "\<lambda> sr. {M a v}" let ?idx_f = "\<lambda> sr ks ia. ia - 1" (*----------------------------------------------------------------------------*) (******************************************************************************) from tm_hoare_dec_suc2[OF `?P sr`, unfolded tm.Hoare_gen_def, rule_format, OF pres1] obtain k where "((fam_conj (?elm_f sr) (recse_map (?ks_f sr ks)) \<and>* st ?e \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* reps 2 (?idx_f sr ks ia) (?ks_f sr ks) \<and>* fam_conj {?idx_f sr ks ia<..} zero) \<and>* i :[ ?code ?e ]: j \<and>* r \<and>* fam_conj s' (recse_map ks)) (trset_of (sep_exec.run tstep (Suc k) cnf))" by blast (*----------------------------------------------------------------------------*) moreover have "(pc ?e \<and>* ?Q) ({At ?e} \<union> ?elm_f sr)" proof - have "pc ?e {At ?e}" by (simp add:pc_def sg_def) (******************************************************************************) moreover have "?Q (?elm_f sr)" by (simp add:mm_def sg_def) (*----------------------------------------------------------------------------*) moreover (******************************************************************************) have "{At ?e} ## ?elm_f sr" by (simp add:set_ins_def) (*----------------------------------------------------------------------------*) ultimately show ?thesis by (auto intro!:sep_conjI simp:set_ins_def) qed moreover (******************************************************************************) from ia_disj.m_disj1 `?P sr` `s = {At i} \<union> sr` have "?elm_f sr ## s'" by (auto simp:set_ins_def mm_def sg_def) (*----------------------------------------------------------------------------*) with at_fresh_s' have fresh_atm: "{At ?e} \<union> ?elm_f sr ## s'" by (auto simp:set_ins_def) moreover have eq_map: "\<And> elm. elm \<in> s' \<Longrightarrow> (recse_map ks elm) = (recse_map (?ks_f sr ks) elm)" proof - fix elm assume elm_in: "elm \<in> s'" show "(recse_map ks elm) = (recse_map (?ks_f sr ks) elm)" proof(cases elm) (*******************************************************************) case (M a' v') from eq_s have "M a (Suc v) \<in> s" by (auto simp:set_ins_def mm_def sg_def) with elm_in ia_disj.m_disj1[OF this] M have "a \<noteq> a'" by auto thus ?thesis apply (auto simp:M recse_map.simps pasrt_def list_ext_len) apply (case_tac "a < length ks", auto simp:list_ext_len_eq list_ext_lt) apply (case_tac "a' < Suc a", auto simp:list_ext_len_eq list_ext_lt) by (metis (full_types) bot_nat_def leI le_trans less_Suc_eq_le list_ext_lt_get list_ext_tail set_zero_def) (*-----------------------------------------------------------------*) qed auto qed ultimately show ?case apply (rule_tac x = k in exI, rule_tac x = "{At ?e} \<union> ?elm_f sr" in exI) apply (unfold IA_def, intro condI, assumption+) apply (rule_tac x = "?ks_f sr ks" in pred_exI) apply (rule_tac x = "?idx_f sr ks ia" in pred_exI) apply (unfold fam_conj_disj_simp[OF fresh_atm]) apply (auto simp:sep_conj_ac fam_conj_simps) (***************************************************************************) (* apply (unfold fam_conj_insert_simp [OF h_fresh1[OF at_fresh_sr]], simp) *) (*-------------------------------------------------------------------------*) apply (sep_cancel)+ by (simp add: fam_conj_ext_eq[where I = "s'", OF eq_map])qedlemma hoare_dec_suc2_gen[step]: assumes "v > 0" shows "IA. \<lbrace>pc i \<and>* mm a v\<rbrace> i :[ Dec a e ]: j \<lbrace>pc j \<and>* mm a (v - 1)\<rbrace>"proof - from assms obtain v' where "v = Suc v'" by (metis gr_implies_not0 nat.exhaust) show ?thesis apply (unfold `v = Suc v'`, simp) by (rule hoare_dec_suc2)qeddefinition "Goto e = jmp e"lemma hoare_jmp_reps2: "\<lbrace> st i \<and>* ps u \<and>* reps u v ks \<and>* tm (v + 1) x \<rbrace> i:[(jmp e)]:j \<lbrace> st e \<and>* ps u \<and>* reps u v ks \<and>* tm (v + 1) x \<rbrace>"proof(cases "ks") case Nil thus ?thesis by (simp add:sep_conj_cond reps.simps, intro tm.pre_condI, simp, hsteps)next case (Cons k ks') thus ?thesis proof(cases "ks' = []") case True with Cons show ?thesis apply(simp add:sep_conj_cond reps.simps, intro tm.pre_condI, simp add:ones_simps) by (hgoto hoare_jmp[where p = u]) next case False show ?thesis apply (unfold `ks = k#ks'` reps_simp3[OF False], simp add:ones_simps) by (hgoto hoare_jmp[where p = u]) qedqedlemma tm_hoare_goto_pre: (* ccc *) assumes "(<True>) sr" shows "\<lbrace> fam_conj sr (recse_map ks) \<and>* st i \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* reps 2 ia ks \<and>* fam_conj {ia<..} zero \<rbrace> i:[(Goto e)]:j \<lbrace> fam_conj {} (recse_map ks) \<and>* st e \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* reps 2 ia ks \<and>* fam_conj {ia<..} zero \<rbrace>" apply (unfold Goto_def) apply (subst (1 2) fam_conj_interv_simp) apply (unfold zero_def) apply (hstep hoare_jmp_reps2) apply (simp add:sep_conj_ac) my_block from assms have "sr = {}" by (simp add:pasrt_def set_ins_def) my_block_end by (unfold this, sep_cancel+)lemma hoare_goto_pre: "IA. \<lbrace> pc i \<and>* <True> \<rbrace> i:[ (Goto e) ]:j \<lbrace> pc e \<and>* <True> \<rbrace>" (is "IA. \<lbrace> pc i ** ?P \<rbrace> i:[ ?code ?e]:j \<lbrace> pc ?e ** ?Q\<rbrace>")proof(induct rule:tm.IHoareI) case (IPre s' s r cnf) let ?cnf = "(trset_of cnf)" from IPre have h: "(pc i \<and>* ?P) s" "(s ## s')" "(IA (s + s') \<and>* i :[ ?code(?e) ]: j \<and>* r) ?cnf" by (metis condD)+ from h(1) obtain sr where eq_s: "s = {At i} \<union> sr" "{At i} ## sr" "?P sr" by (auto dest!:sep_conjD simp:set_ins_def pc_def sg_def pasrt_def) hence "At i \<in> s" by auto from h(3) obtain s1 s2 s3 where hh: "?cnf = s1 + s2 + s3" "s1 ## s2 \<and> s2 ## s3 \<and> s1 ## s3" "IA (s + s') s1" "(i :[ ?code ?e ]: j) s2" "r s3" apply (auto elim!:sep_conjE intro!:sep_conjI simp:sep_conj_ac) by (metis sep_add_commute sep_disj_addD1 sep_disj_addD2 sep_disj_commuteI) interpret ia_disj: IA_disjoint s s' s1 cnf proof from `IA (s + s') s1` show "IA (s + s') s1" . next from `s ## s'` show "s ## s'" . next from hh(1) show "s1 \<subseteq> ?cnf" by (auto simp:set_ins_def) qed from hh(1) have s1_belong: "s1 \<subseteq> ?cnf" by (auto simp:set_ins_def) from hh(3) have "(EXS ks ia. ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* reps 2 ia ks \<and>* fam_conj {ia<..} zero \<and>* (st i \<and>* fam_conj sr (recse_map ks)) \<and>* fam_conj s' (recse_map ks)) s1" apply (unfold IA_def fam_conj_disj_simp[OF h(2)]) apply (unfold eq_s) by (insert eq_s(2), simp add: fam_conj_disj_simp[OF eq_s(2)] fam_conj_simps set_ins_def) then obtain ks ia where "((fam_conj sr (recse_map ks) \<and>* st i \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* reps 2 ia ks \<and>* fam_conj {ia<..} zero) \<and>* fam_conj s' (recse_map ks)) s1" (is "(?PP \<and>* ?QQ) s1") by (unfold pred_ex_def, auto simp:sep_conj_ac) then obtain ss1 ss2 where pres: "s1 = ss1 + ss2" "ss1 ## ss2" "?PP ss1" "?QQ ss2" by (auto elim!:sep_conjE intro!:sep_conjI) from ia_disj.at_disj1 [OF `At i \<in> s`] have at_fresh_s': "At ?e \<notin> s'" . have at_fresh_sr: "At ?e \<notin> sr" proof assume at_in: "At ?e \<in> sr" from h(3)[unfolded IA_def fam_conj_disj_simp[OF h(2)]] have "TAt ?e \<in> trset_of cnf" apply (elim EXS_elim1) apply (unfold eq_s fam_conj_disj_simp[OF eq_s(2), unfolded set_ins_def] fam_conj_elm_simp[OF at_in]) apply (erule_tac sep_conjE, unfold set_ins_def)+ by (auto simp:sep_conj_ac fam_conj_simps st_def sg_def tpn_set_def) moreover from pres(1, 3) hh(1) have "TAt i \<in> trset_of cnf" apply(erule_tac sep_conjE) apply(erule_tac sep_conjE) by (auto simp:st_def tpc_set_def sg_def set_ins_def) ultimately have "i = ?e" by (cases cnf, auto simp:tpn_set_def trset_of.simps) from eq_s[unfolded this] at_in show "False" by (auto simp:set_ins_def) qed from pres(3) and hh(2, 4, 5) pres(2, 4) have pres1: "(?PP \<and>* i :[ ?code(?e)]: j \<and>* (r \<and>* (fam_conj s' (recse_map ks)))) (trset_of cnf)" apply (unfold hh(1) pres(1)) apply (rule sep_conjI[where x=ss1 and y = "ss2 + s2 + s3"], assumption+) apply (rule sep_conjI[where x="s2" and y = "ss2 + s3"], assumption+) apply (rule sep_conjI[where x="s3" and y = ss2], assumption+) by (auto simp:set_ins_def) (*****************************************************************************) let ?ks_f = "\<lambda> sr ks. ks" let ?elm_f = "\<lambda> sr. {}" let ?idx_f = "\<lambda> sr ks ia. ia" (*----------------------------------------------------------------------------*) (******************************************************************************) from tm_hoare_goto_pre[OF `?P sr`, unfolded tm.Hoare_gen_def, rule_format, OF pres1] obtain k where "((fam_conj (?elm_f sr) (recse_map (?ks_f sr ks)) \<and>* st ?e \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* reps 2 (?idx_f sr ks ia) (?ks_f sr ks) \<and>* fam_conj {?idx_f sr ks ia<..} zero) \<and>* i :[ ?code ?e ]: j \<and>* r \<and>* fam_conj s' (recse_map ks)) (trset_of (sep_exec.run tstep (Suc k) cnf))" by blast (*----------------------------------------------------------------------------*) moreover have "(pc ?e \<and>* ?Q) ({At ?e} \<union> ?elm_f sr)" proof - have "pc ?e {At ?e}" by (simp add:pc_def sg_def) (******************************************************************************) moreover have "?Q (?elm_f sr)" by (simp add:pasrt_def set_ins_def) (*----------------------------------------------------------------------------*) moreover (******************************************************************************) have "{At ?e} ## ?elm_f sr" by (simp add:set_ins_def) (*----------------------------------------------------------------------------*) ultimately show ?thesis by (auto intro!:sep_conjI simp:set_ins_def) qed moreover (******************************************************************************) from ia_disj.m_disj1 `?P sr` `s = {At i} \<union> sr` have "?elm_f sr ## s'" by (auto simp:set_ins_def mm_def sg_def) (*----------------------------------------------------------------------------*) with at_fresh_s' have fresh_atm: "{At ?e} \<union> ?elm_f sr ## s'" by (auto simp:set_ins_def) moreover have eq_map: "\<And> elm. elm \<in> s' \<Longrightarrow> (recse_map ks elm) = (recse_map (?ks_f sr ks) elm)" proof - fix elm assume elm_in: "elm \<in> s'" show "(recse_map ks elm) = (recse_map (?ks_f sr ks) elm)" by simp qed ultimately show ?case apply (rule_tac x = k in exI, rule_tac x = "{At ?e} \<union> ?elm_f sr" in exI) apply (unfold IA_def, intro condI, assumption+) apply (rule_tac x = "?ks_f sr ks" in pred_exI) apply (rule_tac x = "?idx_f sr ks ia" in pred_exI) apply (unfold fam_conj_disj_simp[OF fresh_atm]) by (auto simp:sep_conj_ac fam_conj_simps)qedlemma hoare_goto[step]: "IA. \<lbrace> pc i \<rbrace> i:[ (Goto e) ]:j \<lbrace> pc e \<rbrace>"proof(rule tm.I_hoare_adjust [OF hoare_goto_pre]) fix s assume "pc i s" thus "(pc i \<and>* <True>) s" by (metis cond_true_eq2)next fix s assume "(pc e \<and>* <True>) s" thus "pc e s" by (metis cond_true_eq2)qedlemma I_hoare_sequence: assumes h1: "\<And> i j. I. \<lbrace>pc i ** p\<rbrace> i:[c1]:j \<lbrace>pc j ** q\<rbrace>" and h2: "\<And> j k. I. \<lbrace>pc j ** q\<rbrace> j:[c2]:k \<lbrace>pc k ** r\<rbrace>" shows "I. \<lbrace>pc i ** p\<rbrace> i:[(c1 ; c2)]:k \<lbrace>pc k ** r\<rbrace>"proof(unfold tassemble_to.simps, intro tm.I_code_exI) fix j' show "I.\<lbrace>pc i \<and>* p\<rbrace> i :[ c1 ]: j' \<and>* j' :[ c2 ]: k \<lbrace>pc k \<and>* r\<rbrace>" proof(rule tm.I_sequencing) from tm.I_code_extension[OF h1 [of i j'], of" j' :[ c2 ]: k"] show "I.\<lbrace>pc i \<and>* p\<rbrace> i :[ c1 ]: j' \<and>* j' :[ c2 ]: k \<lbrace>pc j' \<and>* q\<rbrace>" . next from tm.I_code_extension[OF h2 [of j' k], of" i :[ c1 ]: j'"] show "I.\<lbrace>pc j' \<and>* q\<rbrace> i :[ c1 ]: j' \<and>* j' :[ c2 ]: k \<lbrace>pc k \<and>* r\<rbrace>" by (auto simp:sep_conj_ac) qedqedlemma I_hoare_seq1: assumes h1: "\<And>j'. I. \<lbrace>pc i ** p\<rbrace> i:[c1]:j' \<lbrace>pc j' ** q\<rbrace>" and h2: "\<And>j' . I. \<lbrace>pc j' ** q\<rbrace> j':[c2]:k \<lbrace>pc k' ** r\<rbrace>" shows "I. \<lbrace>pc i ** p\<rbrace> i:[(c1 ; c2)]:k \<lbrace>pc k' ** r\<rbrace>"proof(unfold tassemble_to.simps, intro tm.I_code_exI) fix j' show "I.\<lbrace>pc i \<and>* p\<rbrace> i :[ c1 ]: j' \<and>* j' :[ c2 ]: k \<lbrace>pc k' \<and>* r\<rbrace>" proof(rule tm.I_sequencing) from tm.I_code_extension[OF h1 [of j'], of "j' :[ c2 ]: k "] show "I.\<lbrace>pc i \<and>* p\<rbrace> i :[ c1 ]: j' \<and>* j' :[ c2 ]: k \<lbrace>pc j' \<and>* q\<rbrace>" . next from tm.I_code_extension[OF h2 [of j'], of" i :[ c1 ]: j'"] show "I.\<lbrace>pc j' \<and>* q\<rbrace> i :[ c1 ]: j' \<and>* j' :[ c2 ]: k \<lbrace>pc k' \<and>* r\<rbrace>" by (auto simp:sep_conj_ac) qedqedlemma t_hoare_local1: "(\<And>l. \<lbrace>p\<rbrace> i :[ c l ]: j \<lbrace>q\<rbrace>) \<Longrightarrow> \<lbrace>p\<rbrace> i:[TLocal c]:j \<lbrace>q\<rbrace>"by (unfold tassemble_to.simps, rule tm.code_exI, auto)lemma I_hoare_local: assumes h: "(\<And>l. I.\<lbrace>pc i \<and>* p\<rbrace> i :[ c l ]: j \<lbrace>pc k \<and>* q\<rbrace>)" shows "I. \<lbrace>pc i ** p\<rbrace> i:[TLocal c]:j \<lbrace>pc k ** q\<rbrace>"proof(unfold tassemble_to.simps, rule tm.I_code_exI) fix l from h[of l] show " I.\<lbrace>pc i \<and>* p\<rbrace> i :[ c l ]: j \<lbrace>pc k \<and>* q\<rbrace>" .qedlemma t_hoare_label1: "(\<And>l. l = i \<Longrightarrow> \<lbrace>p\<rbrace> l :[ c l ]: j \<lbrace>q\<rbrace>) \<Longrightarrow> \<lbrace>p \<rbrace> i:[(TLabel l; c l)]:j \<lbrace>q\<rbrace>"by (unfold tassemble_to.simps, intro tm.code_exI tm.code_condI, clarify, auto)lemma I_hoare_label: assumes h:"\<And>l. l = i \<Longrightarrow> I. \<lbrace>pc l \<and>* p\<rbrace> l :[ c l ]: j \<lbrace>pc k \<and>* q\<rbrace>" shows "I. \<lbrace>pc i \<and>* p \<rbrace> i:[(TLabel l; c l)]:j \<lbrace>pc k \<and>* q\<rbrace>"proof(unfold tm.IHoare_def, default) fix s' show " \<lbrace>EXS s. <(pc i \<and>* p) s> \<and>* <(s ## s')> \<and>* I (s + s')\<rbrace> i :[ (TLabel l ; c l) ]: j \<lbrace>EXS s. <(pc k \<and>* q) s> \<and>* <(s ## s')> \<and>* I (s + s')\<rbrace>" proof(rule t_hoare_label1) fix l assume "l = i" from h[OF this, unfolded tm.IHoare_def] show "\<lbrace>EXS s. <(pc i \<and>* p) s> \<and>* <(s ## s')> \<and>* I (s + s')\<rbrace> l :[ c l ]: j \<lbrace>EXS s. <(pc k \<and>* q) s> \<and>* <(s ## s')> \<and>* I (s + s')\<rbrace>" by (simp add:`l = i`) qedqedlemma I_hoare_label_last: assumes h1: "t_last_cmd c = Some (TLabel l)" and h2: "l = j \<Longrightarrow> I. \<lbrace>p\<rbrace> i:[t_blast_cmd c]:j \<lbrace>q\<rbrace>" shows "I. \<lbrace>p\<rbrace> i:[c]:j \<lbrace>q\<rbrace>"proof(unfold tm.IHoare_def, default) fix s' show "\<lbrace>EXS s. <p s> \<and>* <(s ## s')> \<and>* I (s + s')\<rbrace> i :[ c ]: j \<lbrace>EXS s. <q s> \<and>* <(s ## s')> \<and>* I (s + s')\<rbrace>" proof(rule t_hoare_label_last[OF h1]) assume "l = j" from h2[OF this, unfolded tm.IHoare_def] show "\<lbrace>EXS s. <p s> \<and>* <(s ## s')> \<and>* I (s + s')\<rbrace> i :[ t_blast_cmd c ]: j \<lbrace>EXS s. <q s> \<and>* <(s ## s')> \<and>* I (s + s')\<rbrace>" by fast qedqedlemma I_hoare_seq2: assumes h: "\<And>j'. I. \<lbrace>pc i ** p\<rbrace> i:[c1]:j' \<lbrace>pc k' \<and>* r\<rbrace>" shows "I. \<lbrace>pc i ** p\<rbrace> i:[(c1 ; c2)]:j \<lbrace>pc k' ** r\<rbrace>" apply (unfold tassemble_to.simps, intro tm.I_code_exI) apply (unfold tm.IHoare_def, default) apply (rule tm.code_extension) by (rule h[unfolded tm.IHoare_def, rule_format])lemma IA_pre_stren: assumes h1: "IA. \<lbrace>p\<rbrace> c \<lbrace>q\<rbrace>" and h2: "\<And>s. r s \<Longrightarrow> p s" shows "IA. \<lbrace>r\<rbrace> c \<lbrace>q\<rbrace>" by (rule tm.I_pre_stren[OF assms], simp)lemma IA_post_weaken: assumes h1: "IA. \<lbrace>p\<rbrace> c \<lbrace>q\<rbrace>" and h2: "\<And> s. q s \<Longrightarrow> r s" shows "IA. \<lbrace>p\<rbrace> c \<lbrace>r\<rbrace>" by (rule tm.I_post_weaken[OF assms], simp)section {* Making triple processor for IA *}ML {* (* Functions specific to Hoare triple: IA {P} c {Q} *) fun get_pre ctxt t = let val pat = term_of @{cpat "IA. \<lbrace>?P\<rbrace> ?c \<lbrace>?Q\<rbrace>"} val env = match ctxt pat t in inst env (term_of @{cpat "?P::aresource set \<Rightarrow> bool"}) end fun can_process ctxt t = ((get_pre ctxt t; true) handle _ => false) fun get_post ctxt t = let val pat = term_of @{cpat "IA. \<lbrace>?P\<rbrace> ?c \<lbrace>?Q\<rbrace>"} val env = match ctxt pat t in inst env (term_of @{cpat "?Q::aresource set \<Rightarrow> bool"}) end; fun get_mid ctxt t = let val pat = term_of @{cpat "IA. \<lbrace>?P\<rbrace> ?c \<lbrace>?Q\<rbrace>"} val env = match ctxt pat t in inst env (term_of @{cpat "?c::tresource set \<Rightarrow> bool"}) end; fun is_pc_term (Const (@{const_name pc}, _) $ _) = true | is_pc_term _ = false fun mk_pc_term x = Const (@{const_name pc}, @{typ "nat \<Rightarrow> aresource set \<Rightarrow> bool"}) $ Free (x, @{typ "nat"}) val sconj_term = term_of @{cterm "sep_conj::assert \<Rightarrow> assert \<Rightarrow> assert"} val abc_triple = {binding = @{binding "abc_triple"}, can_process = can_process, get_pre = get_pre, get_mid = get_mid, get_post = get_post, is_pc_term = is_pc_term, mk_pc_term = mk_pc_term, sconj_term = sconj_term, sep_conj_ac_tac = sep_conj_ac_tac, hoare_seq1 = @{thm I_hoare_seq1}, hoare_seq2 = @{thm I_hoare_seq2}, pre_stren = @{thm IA_pre_stren}, post_weaken = @{thm IA_post_weaken}, frame_rule = @{thm tm.I_frame_rule} }:HoareTriple val _ = (HoareTriples_get ()) |> (fn orig => HoareTriples_store (abc_triple::orig))*}section {* Example proofs *}definition "clear a = (TL start exit. TLabel start; Dec a exit; Goto start; TLabel exit)"lemma hoare_clear[step]: "IA. \<lbrace>pc i ** mm a v\<rbrace> i:[clear a]:j \<lbrace>pc j ** mm a 0\<rbrace>"proof(unfold clear_def, intro I_hoare_local I_hoare_label, simp, rule I_hoare_label_last, simp+, prune) show "IA.\<lbrace>pc i \<and>* mm a v\<rbrace> i :[ (Dec a j ; Goto i) ]: j \<lbrace>pc j \<and>* mm a 0\<rbrace>" proof(induct v) case 0 show ?case by hgoto next case (Suc v) show ?case apply (rule_tac Q = "pc i \<and>* mm a v" in tm.I_sequencing) by hsteps qedqeddefinition "dup a b c = (TL start exit. TLabel start; Dec a exit; Inc b; Inc c; Goto start; TLabel exit)"lemma hoare_dup[step]: "IA. \<lbrace>pc i ** mm a va ** mm b vb ** mm c vc \<rbrace> i:[dup a b c]:j \<lbrace>pc j ** mm a 0 ** mm b (va + vb) ** mm c (va + vc)\<rbrace>"proof(unfold dup_def, intro I_hoare_local I_hoare_label, clarsimp, rule I_hoare_label_last, simp+, prune) show "IA. \<lbrace>pc i \<and>* mm a va \<and>* mm b vb \<and>* mm c vc\<rbrace> i :[ (Dec a j ; Inc b ; Inc c ; Goto i) ]: j \<lbrace>pc j \<and>* mm a 0 \<and>* mm b (va + vb) \<and>* mm c (va + vc)\<rbrace>" proof(induct va arbitrary: vb vc) case (0 vb vc) show ?case by hgoto next case (Suc va vb vc) show ?case apply (rule_tac Q = "pc i \<and>* mm a va \<and>* mm b (Suc vb) \<and>* mm c (Suc vc)" in tm.I_sequencing) by (hsteps Suc) qedqeddefinition "clear_add a b = (TL start exit. TLabel start; Dec a exit; Inc b; Goto start; TLabel exit)"lemma hoare_clear_add[step]: "IA. \<lbrace>pc i ** mm a va ** mm b vb \<rbrace> i:[clear_add a b]:j \<lbrace>pc j ** mm a 0 ** mm b (va + vb)\<rbrace>"proof(unfold clear_add_def, intro I_hoare_local I_hoare_label, clarsimp, rule I_hoare_label_last, simp+, prune) show "IA. \<lbrace>pc i \<and>* mm a va \<and>* mm b vb\<rbrace> i :[ (Dec a j ; Inc b ; Goto i) ]: j \<lbrace>pc j \<and>* mm a 0 \<and>* mm b (va + vb)\<rbrace>" proof(induct va arbitrary: vb) case 0 show ?case by hgoto next case (Suc va vb) show ?case apply (rule_tac Q = "pc i \<and>* mm a va \<and>* mm b (Suc vb)" in tm.I_sequencing) by (hsteps Suc) qedqeddefinition "copy_to a b c = clear b; clear c; dup a b c; clear_add c a"lemma hoare_copy_to[step]: "IA. \<lbrace>pc i ** mm a va ** mm b vb ** mm c vc \<rbrace> i:[copy_to a b c]:j \<lbrace>pc j ** mm a va ** mm b va ** mm c 0\<rbrace>" by (unfold copy_to_def, hsteps)definition "preserve_add a b c = clear c; dup a b c; clear_add c a"lemma hoare_preserve_add[step]: "IA. \<lbrace>pc i ** mm a va ** mm b vb ** mm c vc \<rbrace> i:[preserve_add a b c]:j \<lbrace>pc j ** mm a va ** mm b (va + vb) ** mm c 0\<rbrace>" by (unfold preserve_add_def, hsteps)definition "mult a b c t1 t2 = clear c; copy_to a t2 t1; (TL start exit. TLabel start; Dec a exit; preserve_add b c t1; Goto start; TLabel exit ); clear_add t2 a"lemma hoare_mult[step]: "IA. \<lbrace>pc i ** mm a va ** mm b vb ** mm c vc ** mm t1 vt1 ** mm t2 vt2 \<rbrace> i:[mult a b c t1 t2]:j \<lbrace>pc j ** mm a va ** mm b vb ** mm c (va * vb) ** mm t1 0 ** mm t2 0 \<rbrace>" apply (unfold mult_def, hsteps) apply (rule_tac q = "mm a 0 \<and>* mm b vb \<and>* mm c (va * vb) \<and>* mm t1 0 \<and>* mm t2 va" in I_hoare_seq1) apply (intro I_hoare_local I_hoare_label, clarify, rule I_hoare_label_last, simp+, clarify, prune) my_block fix i j vc have "IA. \<lbrace>pc i \<and>* mm a va \<and>* mm t1 0 \<and>* mm c vc \<and>* mm b vb\<rbrace> i :[ (Dec a j ; preserve_add b c t1 ; Goto i) ]: j \<lbrace>pc j \<and>* mm a 0 \<and>* mm b vb \<and>* mm c (va * vb + vc) \<and>* mm t1 0 \<rbrace>" proof(induct va arbitrary:vc) case (0 vc) show ?case by hgoto next case (Suc va vc) show ?case apply (rule_tac Q = "pc i \<and>* mm a va \<and>* mm t1 0 \<and>* mm c (vb + vc) \<and>* mm b vb" in tm.I_sequencing) apply (hsteps Suc) by (sep_cancel+, simp, smt) qed my_block_end by (hsteps this)end