thys/Recs.thy
changeset 15 e3ecf558aef2
child 20 e04123f4bacc
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/thys/Recs.thy	Thu Apr 03 12:55:43 2014 +0100
@@ -0,0 +1,860 @@
+theory Recs
+imports Main Fact 
+        "~~/src/HOL/Number_Theory/Primes" 
+        "~~/src/HOL/Library/Nat_Bijection"
+        "~~/src/HOL/Library/Discrete"
+begin
+
+declare One_nat_def[simp del]
+
+(*
+  some definitions from 
+
+    A Course in Formal Languages, Automata and Groups
+    I M Chiswell 
+
+  and
+
+    Lecture on undecidability
+    Michael M. Wolf 
+*)
+
+lemma if_zero_one [simp]:
+  "(if P then 1 else 0) = (0::nat) \<longleftrightarrow> \<not> P"
+  "(0::nat) < (if P then 1 else 0) = P"
+  "(if P then 0 else 1) = (if \<not>P then 1 else (0::nat))"
+by (simp_all)
+
+lemma nth:
+  "(x # xs) ! 0 = x"
+  "(x # y # xs) ! 1 = y"
+  "(x # y # z # xs) ! 2 = z"
+  "(x # y # z # u # xs) ! 3 = u"
+by (simp_all)
+
+
+section {* Some auxiliary lemmas about @{text "\<Sum>"} and @{text "\<Prod>"} *}
+
+lemma setprod_atMost_Suc[simp]: 
+  "(\<Prod>i \<le> Suc n. f i) = (\<Prod>i \<le> n. f i) * f(Suc n)"
+by(simp add:atMost_Suc mult_ac)
+
+lemma setprod_lessThan_Suc[simp]: 
+  "(\<Prod>i < Suc n. f i) = (\<Prod>i < n. f i) * f n"
+by (simp add:lessThan_Suc mult_ac)
+
+lemma setsum_add_nat_ivl2: "n \<le> p  \<Longrightarrow>
+  setsum f {..<n} + setsum f {n..p} = setsum f {..p::nat}"
+apply(subst setsum_Un_disjoint[symmetric])
+apply(auto simp add: ivl_disj_un_one)
+done
+
+lemma setsum_eq_zero [simp]:
+  fixes f::"nat \<Rightarrow> nat"
+  shows "(\<Sum>i < n. f i) = 0 \<longleftrightarrow> (\<forall>i < n. f i = 0)" 
+        "(\<Sum>i \<le> n. f i) = 0 \<longleftrightarrow> (\<forall>i \<le> n. f i = 0)" 
+by (auto)
+
+lemma setprod_eq_zero [simp]:
+  fixes f::"nat \<Rightarrow> nat"
+  shows "(\<Prod>i < n. f i) = 0 \<longleftrightarrow> (\<exists>i < n. f i = 0)" 
+        "(\<Prod>i \<le> n. f i) = 0 \<longleftrightarrow> (\<exists>i \<le> n. f i = 0)" 
+by (auto)
+
+lemma setsum_one_less:
+  fixes n::nat
+  assumes "\<forall>i < n. f i \<le> 1" 
+  shows "(\<Sum>i < n. f i) \<le> n"  
+using assms
+by (induct n) (auto)
+
+lemma setsum_one_le:
+  fixes n::nat
+  assumes "\<forall>i \<le> n. f i \<le> 1" 
+  shows "(\<Sum>i \<le> n. f i) \<le> Suc n"  
+using assms
+by (induct n) (auto)
+
+lemma setsum_eq_one_le:
+  fixes n::nat
+  assumes "\<forall>i \<le> n. f i = 1" 
+  shows "(\<Sum>i \<le> n. f i) = Suc n"  
+using assms
+by (induct n) (auto)
+
+lemma setsum_least_eq:
+  fixes f::"nat \<Rightarrow> nat"
+  assumes h0: "p \<le> n"
+  assumes h1: "\<forall>i \<in> {..<p}. f i = 1"
+  assumes h2: "\<forall>i \<in> {p..n}. f i = 0"
+  shows "(\<Sum>i \<le> n. f i) = p"  
+proof -
+  have eq_p: "(\<Sum>i \<in> {..<p}. f i) = p" 
+    using h1 by (induct p) (simp_all)
+  have eq_zero: "(\<Sum>i \<in> {p..n}. f i) = 0" 
+    using h2 by auto
+  have "(\<Sum>i \<le> n. f i) = (\<Sum>i \<in> {..<p}. f i) + (\<Sum>i \<in> {p..n}. f i)"
+    using h0 by (simp add: setsum_add_nat_ivl2) 
+  also have "... = (\<Sum>i \<in> {..<p}. f i)" using eq_zero by simp
+  finally show "(\<Sum>i \<le> n. f i) = p" using eq_p by simp
+qed
+
+lemma nat_mult_le_one:
+  fixes m n::nat
+  assumes "m \<le> 1" "n \<le> 1"
+  shows "m * n \<le> 1"
+using assms by (induct n) (auto)
+
+lemma setprod_one_le:
+  fixes f::"nat \<Rightarrow> nat"
+  assumes "\<forall>i \<le> n. f i \<le> 1" 
+  shows "(\<Prod>i \<le> n. f i) \<le> 1" 
+using assms 
+by (induct n) (auto intro: nat_mult_le_one)
+
+lemma setprod_greater_zero:
+  fixes f::"nat \<Rightarrow> nat"
+  assumes "\<forall>i \<le> n. f i \<ge> 0" 
+  shows "(\<Prod>i \<le> n. f i) \<ge> 0" 
+using assms by (induct n) (auto)
+
+lemma setprod_eq_one:
+  fixes f::"nat \<Rightarrow> nat"
+  assumes "\<forall>i \<le> n. f i = Suc 0" 
+  shows "(\<Prod>i \<le> n. f i) = Suc 0" 
+using assms by (induct n) (auto)
+
+lemma setsum_cut_off_less:
+  fixes f::"nat \<Rightarrow> nat"
+  assumes h1: "m \<le> n"
+  and     h2: "\<forall>i \<in> {m..<n}. f i = 0"
+  shows "(\<Sum>i < n. f i) = (\<Sum>i < m. f i)"
+proof -
+  have eq_zero: "(\<Sum>i \<in> {m..<n}. f i) = 0" 
+    using h2 by auto
+  have "(\<Sum>i < n. f i) = (\<Sum>i \<in> {..<m}. f i) + (\<Sum>i \<in> {m..<n}. f i)"
+    using h1 by (metis atLeast0LessThan le0 setsum_add_nat_ivl) 
+  also have "... = (\<Sum>i \<in> {..<m}. f i)" using eq_zero by simp
+  finally show "(\<Sum>i < n. f i) = (\<Sum>i < m. f i)" by simp
+qed
+
+lemma setsum_cut_off_le:
+  fixes f::"nat \<Rightarrow> nat"
+  assumes h1: "m \<le> n"
+  and     h2: "\<forall>i \<in> {m..n}. f i = 0"
+  shows "(\<Sum>i \<le> n. f i) = (\<Sum>i < m. f i)"
+proof -
+  have eq_zero: "(\<Sum>i \<in> {m..n}. f i) = 0" 
+    using h2 by auto
+  have "(\<Sum>i \<le> n. f i) = (\<Sum>i \<in> {..<m}. f i) + (\<Sum>i \<in> {m..n}. f i)"
+    using h1 by (simp add: setsum_add_nat_ivl2)
+  also have "... = (\<Sum>i \<in> {..<m}. f i)" using eq_zero by simp
+  finally show "(\<Sum>i \<le> n. f i) = (\<Sum>i < m. f i)" by simp
+qed
+
+lemma setprod_one [simp]:
+  fixes n::nat
+  shows "(\<Prod>i < n. Suc 0) = Suc 0"
+        "(\<Prod>i \<le> n. Suc 0) = Suc 0"
+by (induct n) (simp_all)
+
+
+
+section {* Recursive Functions *}
+
+datatype recf =  Z
+              |  S
+              |  Id nat nat
+              |  Cn nat recf "recf list"
+              |  Pr nat recf recf
+              |  Mn nat recf 
+
+fun arity :: "recf \<Rightarrow> nat"
+  where
+  "arity Z = 1" 
+| "arity S = 1"
+| "arity (Id m n) = m"
+| "arity (Cn n f gs) = n"
+| "arity (Pr n f g) = Suc n"
+| "arity (Mn n f) = n"
+
+text {* Abbreviations for calculating the arity of the constructors *}
+
+abbreviation
+  "CN f gs \<equiv> Cn (arity (hd gs)) f gs"
+
+abbreviation
+  "PR f g \<equiv> Pr (arity f) f g"
+
+abbreviation
+  "MN f \<equiv> Mn (arity f - 1) f"
+
+text {* the evaluation function and termination relation *}
+
+fun rec_eval :: "recf \<Rightarrow> nat list \<Rightarrow> nat"
+  where
+  "rec_eval Z xs = 0" 
+| "rec_eval S xs = Suc (xs ! 0)" 
+| "rec_eval (Id m n) xs = xs ! n" 
+| "rec_eval (Cn n f gs) xs = rec_eval f (map (\<lambda>x. rec_eval x xs) gs)" 
+| "rec_eval (Pr n f g) (0 # xs) = rec_eval f xs"
+| "rec_eval (Pr n f g) (Suc x # xs) = 
+     rec_eval g (x # (rec_eval (Pr n f g) (x # xs)) # xs)"
+| "rec_eval (Mn n f) xs = (LEAST x. rec_eval f (x # xs) = 0)"
+
+inductive 
+  terminates :: "recf \<Rightarrow> nat list \<Rightarrow> bool"
+where
+  termi_z: "terminates Z [n]"
+| termi_s: "terminates S [n]"
+| termi_id: "\<lbrakk>n < m; length xs = m\<rbrakk> \<Longrightarrow> terminates (Id m n) xs"
+| termi_cn: "\<lbrakk>terminates f (map (\<lambda>g. rec_eval g xs) gs); 
+              \<forall>g \<in> set gs. terminates g xs; length xs = n\<rbrakk> \<Longrightarrow> terminates (Cn n f gs) xs"
+| termi_pr: "\<lbrakk>\<forall> y < x. terminates g (y # (rec_eval (Pr n f g) (y # xs) # xs));
+              terminates f xs;
+              length xs = n\<rbrakk> 
+              \<Longrightarrow> terminates (Pr n f g) (x # xs)"
+| termi_mn: "\<lbrakk>length xs = n; terminates f (r # xs); 
+              rec_eval f (r # xs) = 0;
+              \<forall> i < r. terminates f (i # xs) \<and> rec_eval f (i # xs) > 0\<rbrakk> \<Longrightarrow> terminates (Mn n f) xs"
+
+
+section {* Arithmetic Functions *}
+
+text {*
+  @{text "constn n"} is the recursive function which computes 
+  natural number @{text "n"}.
+*}
+fun constn :: "nat \<Rightarrow> recf"
+  where
+  "constn 0 = Z"  |
+  "constn (Suc n) = CN S [constn n]"
+
+definition
+  "rec_swap f = CN f [Id 2 1, Id 2 0]"
+
+definition
+  "rec_add = PR (Id 1 0) (CN S [Id 3 1])"
+
+definition 
+  "rec_mult = PR Z (CN rec_add [Id 3 1, Id 3 2])"
+
+definition 
+  "rec_power = rec_swap (PR (constn 1) (CN rec_mult [Id 3 1, Id 3 2]))"
+
+definition 
+  "rec_fact_aux = PR (constn 1) (CN rec_mult [CN S [Id 3 0], Id 3 1])"
+
+definition
+  "rec_fact = CN rec_fact_aux [Id 1 0, Id 1 0]"
+
+definition 
+  "rec_pred = CN (PR Z (Id 3 0)) [Id 1 0, Id 1 0]"
+
+definition 
+  "rec_minus = rec_swap (PR (Id 1 0) (CN rec_pred [Id 3 1]))"
+
+lemma constn_lemma [simp]: 
+  "rec_eval (constn n) xs = n"
+by (induct n) (simp_all)
+
+lemma swap_lemma [simp]:
+  "rec_eval (rec_swap f) [x, y] = rec_eval f [y, x]"
+by (simp add: rec_swap_def)
+
+lemma add_lemma [simp]: 
+  "rec_eval rec_add [x, y] =  x + y"
+by (induct x) (simp_all add: rec_add_def)
+
+lemma mult_lemma [simp]: 
+  "rec_eval rec_mult [x, y] = x * y"
+by (induct x) (simp_all add: rec_mult_def)
+
+lemma power_lemma [simp]: 
+  "rec_eval rec_power [x, y] = x ^ y"
+by (induct y) (simp_all add: rec_power_def)
+
+lemma fact_aux_lemma [simp]: 
+  "rec_eval rec_fact_aux [x, y] = fact x"
+by (induct x) (simp_all add: rec_fact_aux_def)
+
+lemma fact_lemma [simp]: 
+  "rec_eval rec_fact [x] = fact x"
+by (simp add: rec_fact_def)
+
+lemma pred_lemma [simp]: 
+  "rec_eval rec_pred [x] =  x - 1"
+by (induct x) (simp_all add: rec_pred_def)
+
+lemma minus_lemma [simp]: 
+  "rec_eval rec_minus [x, y] = x - y"
+by (induct y) (simp_all add: rec_minus_def)
+
+
+section {* Logical functions *}
+
+text {* 
+  The @{text "sign"} function returns 1 when the input argument 
+  is greater than @{text "0"}. *}
+
+definition 
+  "rec_sign = CN rec_minus [constn 1, CN rec_minus [constn 1, Id 1 0]]"
+
+definition 
+  "rec_not = CN rec_minus [constn 1, Id 1 0]"
+
+text {*
+  @{text "rec_eq"} compares two arguments: returns @{text "1"}
+  if they are equal; @{text "0"} otherwise. *}
+definition 
+  "rec_eq = CN rec_minus [CN (constn 1) [Id 2 0], CN rec_add [rec_minus, rec_swap rec_minus]]"
+
+definition 
+  "rec_noteq = CN rec_not [rec_eq]"
+
+definition 
+  "rec_conj = CN rec_sign [rec_mult]"
+
+definition 
+  "rec_disj = CN rec_sign [rec_add]"
+
+definition 
+  "rec_imp = CN rec_disj [CN rec_not [Id 2 0], Id 2 1]"
+
+text {* @{term "rec_ifz [z, x, y]"} returns x if z is zero,
+  y otherwise;  @{term "rec_if [z, x, y]"} returns x if z is *not*
+  zero, y otherwise *}
+
+definition 
+  "rec_ifz = PR (Id 2 0) (Id 4 3)"
+
+definition 
+  "rec_if = CN rec_ifz [CN rec_not [Id 3 0], Id 3 1, Id 3 2]"
+
+
+lemma sign_lemma [simp]: 
+  "rec_eval rec_sign [x] = (if x = 0 then 0 else 1)"
+by (simp add: rec_sign_def)
+
+lemma not_lemma [simp]: 
+  "rec_eval rec_not [x] = (if x = 0 then 1 else 0)"
+by (simp add: rec_not_def)
+
+lemma eq_lemma [simp]: 
+  "rec_eval rec_eq [x, y] = (if x = y then 1 else 0)"
+by (simp add: rec_eq_def)
+
+lemma noteq_lemma [simp]: 
+  "rec_eval rec_noteq [x, y] = (if x \<noteq> y then 1 else 0)"
+by (simp add: rec_noteq_def)
+
+lemma conj_lemma [simp]: 
+  "rec_eval rec_conj [x, y] = (if x = 0 \<or> y = 0 then 0 else 1)"
+by (simp add: rec_conj_def)
+
+lemma disj_lemma [simp]: 
+  "rec_eval rec_disj [x, y] = (if x = 0 \<and> y = 0 then 0 else 1)"
+by (simp add: rec_disj_def)
+
+lemma imp_lemma [simp]: 
+  "rec_eval rec_imp [x, y] = (if 0 < x \<and> y = 0 then 0 else 1)"
+by (simp add: rec_imp_def)
+
+lemma ifz_lemma [simp]:
+  "rec_eval rec_ifz [z, x, y] = (if z = 0 then x else y)" 
+by (case_tac z) (simp_all add: rec_ifz_def)
+
+lemma if_lemma [simp]:
+  "rec_eval rec_if [z, x, y] = (if 0 < z then x else y)" 
+by (simp add: rec_if_def)
+
+section {* Less and Le Relations *}
+
+text {*
+  @{text "rec_less"} compares two arguments and returns @{text "1"} if
+  the first is less than the second; otherwise returns @{text "0"}. *}
+
+definition 
+  "rec_less = CN rec_sign [rec_swap rec_minus]"
+
+definition 
+  "rec_le = CN rec_disj [rec_less, rec_eq]"
+
+lemma less_lemma [simp]: 
+  "rec_eval rec_less [x, y] = (if x < y then 1 else 0)"
+by (simp add: rec_less_def)
+
+lemma le_lemma [simp]: 
+  "rec_eval rec_le [x, y] = (if (x \<le> y) then 1 else 0)"
+by(simp add: rec_le_def)
+
+
+section {* Summation and Product Functions *}
+
+definition 
+  "rec_sigma1 f = PR (CN f [CN Z [Id 1 0], Id 1 0]) 
+                     (CN rec_add [Id 3 1, CN f [CN S [Id 3 0], Id 3 2]])"
+
+definition 
+  "rec_sigma2 f = PR (CN f [CN Z [Id 2 0], Id 2 0, Id 2 1]) 
+                     (CN rec_add [Id 4 1, CN f [CN S [Id 4 0], Id 4 2, Id 4 3]])"
+
+definition 
+  "rec_accum1 f = PR (CN f [CN Z [Id 1 0], Id 1 0]) 
+                     (CN rec_mult [Id 3 1, CN f [CN S [Id 3 0], Id 3 2]])"
+
+definition 
+  "rec_accum2 f = PR (CN f [CN Z [Id 2 0], Id 2 0, Id 2 1]) 
+                     (CN rec_mult [Id 4 1, CN f [CN S [Id 4 0], Id 4 2, Id 4 3]])"
+
+definition 
+  "rec_accum3 f = PR (CN f [CN Z [Id 3 0], Id 3 0, Id 3 1, Id 3 2]) 
+                     (CN rec_mult [Id 5 1, CN f [CN S [Id 5 0], Id 5 2, Id 5 3, Id 5 4]])"
+
+
+lemma sigma1_lemma [simp]: 
+  shows "rec_eval (rec_sigma1 f) [x, y] = (\<Sum> z \<le> x. rec_eval f [z, y])"
+by (induct x) (simp_all add: rec_sigma1_def)
+
+lemma sigma2_lemma [simp]: 
+  shows "rec_eval (rec_sigma2 f) [x, y1, y2] = (\<Sum> z \<le> x. rec_eval f  [z, y1, y2])"
+by (induct x) (simp_all add: rec_sigma2_def)
+
+lemma accum1_lemma [simp]: 
+  shows "rec_eval (rec_accum1 f) [x, y] = (\<Prod> z \<le> x. rec_eval f  [z, y])"
+by (induct x) (simp_all add: rec_accum1_def)
+
+lemma accum2_lemma [simp]: 
+  shows "rec_eval (rec_accum2 f) [x, y1, y2] = (\<Prod> z \<le> x. rec_eval f  [z, y1, y2])"
+by (induct x) (simp_all add: rec_accum2_def)
+
+lemma accum3_lemma [simp]: 
+  shows "rec_eval (rec_accum3 f) [x, y1, y2, y3] = (\<Prod> z \<le> x. (rec_eval f)  [z, y1, y2, y3])"
+by (induct x) (simp_all add: rec_accum3_def)
+
+
+section {* Bounded Quantifiers *}
+
+definition
+  "rec_all1 f = CN rec_sign [rec_accum1 f]"
+
+definition
+  "rec_all2 f = CN rec_sign [rec_accum2 f]"
+
+definition
+  "rec_all3 f = CN rec_sign [rec_accum3 f]"
+
+definition
+  "rec_all1_less f = (let cond1 = CN rec_eq [Id 3 0, Id 3 1] in
+                      let cond2 = CN f [Id 3 0, Id 3 2] 
+                      in CN (rec_all2 (CN rec_disj [cond1, cond2])) [Id 2 0, Id 2 0, Id 2 1])"
+
+definition
+  "rec_all2_less f = (let cond1 = CN rec_eq [Id 4 0, Id 4 1] in 
+                      let cond2 = CN f [Id 4 0, Id 4 2, Id 4 3] in 
+                      CN (rec_all3 (CN rec_disj [cond1, cond2])) [Id 3 0, Id 3 0, Id 3 1, Id 3 2])"
+
+definition
+  "rec_ex1 f = CN rec_sign [rec_sigma1 f]"
+
+definition
+  "rec_ex2 f = CN rec_sign [rec_sigma2 f]"
+
+
+lemma ex1_lemma [simp]:
+ "rec_eval (rec_ex1 f) [x, y] = (if (\<exists>z \<le> x. 0 < rec_eval f [z, y]) then 1 else 0)"
+by (simp add: rec_ex1_def)
+
+lemma ex2_lemma [simp]:
+ "rec_eval (rec_ex2 f) [x, y1, y2] = (if (\<exists>z \<le> x. 0 < rec_eval f [z, y1, y2]) then 1 else 0)"
+by (simp add: rec_ex2_def)
+
+lemma all1_lemma [simp]:
+ "rec_eval (rec_all1 f) [x, y] = (if (\<forall>z \<le> x. 0 < rec_eval f [z, y]) then 1 else 0)"
+by (simp add: rec_all1_def)
+
+lemma all2_lemma [simp]:
+ "rec_eval (rec_all2 f) [x, y1, y2] = (if (\<forall>z \<le> x. 0 < rec_eval f [z, y1, y2]) then 1 else 0)"
+by (simp add: rec_all2_def)
+
+lemma all3_lemma [simp]:
+ "rec_eval (rec_all3 f) [x, y1, y2, y3] = (if (\<forall>z \<le> x. 0 < rec_eval f [z, y1, y2, y3]) then 1 else 0)"
+by (simp add: rec_all3_def)
+
+lemma all1_less_lemma [simp]:
+  "rec_eval (rec_all1_less f) [x, y] = (if (\<forall>z < x. 0 < rec_eval f [z, y]) then 1 else 0)"
+apply(auto simp add: Let_def rec_all1_less_def)
+apply (metis nat_less_le)+
+done
+
+lemma all2_less_lemma [simp]:
+  "rec_eval (rec_all2_less f) [x, y1, y2] = (if (\<forall>z < x. 0 < rec_eval f [z, y1, y2]) then 1 else 0)"
+apply(auto simp add: Let_def rec_all2_less_def)
+apply(metis nat_less_le)+
+done
+
+section {* Quotients *}
+
+definition
+  "rec_quo = (let lhs = CN S [Id 3 0] in
+              let rhs = CN rec_mult [Id 3 2, CN S [Id 3 1]] in
+              let cond = CN rec_eq [lhs, rhs] in
+              let if_stmt = CN rec_if [cond, CN S [Id 3 1], Id 3 1]
+              in PR Z if_stmt)"
+
+fun Quo where
+  "Quo x 0 = 0"
+| "Quo x (Suc y) = (if (Suc y = x * (Suc (Quo x y))) then Suc (Quo x y) else Quo x y)"
+
+lemma Quo0:
+  shows "Quo 0 y = 0"
+by (induct y) (auto)
+
+lemma Quo1:
+  "x * (Quo x y) \<le> y"
+by (induct y) (simp_all)
+
+lemma Quo2: 
+  "b * (Quo b a) + a mod b = a"
+by (induct a) (auto simp add: mod_Suc)
+
+lemma Quo3:
+  "n * (Quo n m) = m - m mod n"
+using Quo2[of n m] by (auto)
+
+lemma Quo4:
+  assumes h: "0 < x"
+  shows "y < x + x * Quo x y"
+proof -
+  have "x - (y mod x) > 0" using mod_less_divisor assms by auto
+  then have "y < y + (x - (y mod x))" by simp
+  then have "y < x + (y - (y mod x))" by simp
+  then show "y < x + x * (Quo x y)" by (simp add: Quo3) 
+qed
+
+lemma Quo_div: 
+  shows "Quo x y = y div x"
+apply(case_tac "x = 0")
+apply(simp add: Quo0)
+apply(subst split_div_lemma[symmetric])
+apply(auto intro: Quo1 Quo4)
+done
+
+lemma Quo_rec_quo:
+  shows "rec_eval rec_quo [y, x] = Quo x y"
+by (induct y) (simp_all add: rec_quo_def)
+
+lemma quo_lemma [simp]:
+  shows "rec_eval rec_quo [y, x] = y div x"
+by (simp add: Quo_div Quo_rec_quo)
+
+
+section {* Iteration *}
+
+definition
+   "rec_iter f = PR (Id 1 0) (CN f [Id 3 1])"
+
+fun Iter where
+  "Iter f 0 = id"
+| "Iter f (Suc n) = f \<circ> (Iter f n)"
+
+lemma Iter_comm:
+  "(Iter f n) (f x) = f ((Iter f n) x)"
+by (induct n) (simp_all)
+
+lemma iter_lemma [simp]:
+  "rec_eval (rec_iter f) [n, x] =  Iter (\<lambda>x. rec_eval f [x]) n x"
+by (induct n) (simp_all add: rec_iter_def)
+
+
+section {* Bounded Maximisation *}
+
+
+fun BMax_rec where
+  "BMax_rec R 0 = 0"
+| "BMax_rec R (Suc n) = (if R (Suc n) then (Suc n) else BMax_rec R n)"
+
+definition 
+  BMax_set :: "(nat \<Rightarrow> bool) \<Rightarrow> nat \<Rightarrow> nat"
+where 
+  "BMax_set R x = Max ({z. z \<le> x \<and> R z} \<union> {0})"
+
+lemma BMax_rec_eq1:
+ "BMax_rec R x = (GREATEST z. (R z \<and> z \<le> x) \<or> z = 0)"
+apply(induct x)
+apply(auto intro: Greatest_equality Greatest_equality[symmetric])
+apply(simp add: le_Suc_eq)
+by metis
+
+lemma BMax_rec_eq2:
+  "BMax_rec R x = Max ({z. z \<le> x \<and> R z} \<union> {0})"
+apply(induct x)
+apply(auto intro: Max_eqI Max_eqI[symmetric])
+apply(simp add: le_Suc_eq)
+by metis
+
+lemma BMax_rec_eq3:
+  "BMax_rec R x = Max (Set.filter (\<lambda>z. R z) {..x} \<union> {0})"
+by (simp add: BMax_rec_eq2 Set.filter_def)
+
+definition 
+  "rec_max1 f = PR Z (CN rec_ifz [CN f [CN S [Id 3 0], Id 3 2], CN S [Id 3 0], Id 3 1])"
+ 
+lemma max1_lemma [simp]:
+  "rec_eval (rec_max1 f) [x, y] = BMax_rec (\<lambda>u. rec_eval f [u, y] = 0) x"
+by (induct x) (simp_all add: rec_max1_def)
+
+definition 
+  "rec_max2 f = PR Z (CN rec_ifz [CN f [CN S [Id 4 0], Id 4 2, Id 4 3], CN S [Id 4 0], Id 4 1])"
+ 
+lemma max2_lemma [simp]:
+  "rec_eval (rec_max2 f) [x, y1, y2] = BMax_rec (\<lambda>u. rec_eval f [u, y1, y2] = 0) x"
+by (induct x) (simp_all add: rec_max2_def)
+
+
+section {* Encodings using Cantor's pairing function *}
+
+text {*
+  We use Cantor's pairing function from Nat_Bijection.
+  However, we need to prove that the formulation of the
+  decoding function there is recursive. For this we first 
+  prove that we can extract the maximal triangle number 
+  using @{term prod_decode}.
+*}
+
+abbreviation Max_triangle_aux where
+  "Max_triangle_aux k z \<equiv> fst (prod_decode_aux k z) + snd (prod_decode_aux k z)"
+
+abbreviation Max_triangle where
+  "Max_triangle z \<equiv> Max_triangle_aux 0 z"
+
+abbreviation
+  "pdec1 z \<equiv> fst (prod_decode z)"
+
+abbreviation
+  "pdec2 z \<equiv> snd (prod_decode z)"
+
+abbreviation 
+  "penc m n \<equiv> prod_encode (m, n)"
+
+lemma fst_prod_decode: 
+  "pdec1 z = z - triangle (Max_triangle z)"
+by (subst (3) prod_decode_inverse[symmetric]) 
+   (simp add: prod_encode_def prod_decode_def split: prod.split)
+
+lemma snd_prod_decode: 
+  "pdec2 z = Max_triangle z - pdec1 z"
+by (simp only: prod_decode_def)
+
+lemma le_triangle:
+  "m \<le> triangle (n + m)"
+by (induct_tac m) (simp_all)
+
+lemma Max_triangle_triangle_le:
+  "triangle (Max_triangle z) \<le> z"
+by (subst (9) prod_decode_inverse[symmetric])
+   (simp add: prod_decode_def prod_encode_def split: prod.split)
+
+lemma Max_triangle_le: 
+  "Max_triangle z \<le> z"
+proof -
+  have "Max_triangle z \<le> triangle (Max_triangle z)"
+    using le_triangle[of _ 0, simplified] by simp
+  also have "... \<le> z" by (rule Max_triangle_triangle_le)
+  finally show "Max_triangle z \<le> z" .
+qed
+
+lemma w_aux: 
+  "Max_triangle (triangle k + m) = Max_triangle_aux k m"
+by (simp add: prod_decode_def[symmetric] prod_decode_triangle_add)
+
+lemma y_aux: "y \<le> Max_triangle_aux y k"
+apply(induct k arbitrary: y rule: nat_less_induct)
+apply(subst (1 2) prod_decode_aux.simps)
+apply(simp)
+apply(rule impI)
+apply(drule_tac x="n - Suc y" in spec)
+apply(drule mp)
+apply(auto)[1]
+apply(drule_tac x="Suc y" in spec)
+apply(erule Suc_leD)
+done
+
+lemma Max_triangle_greatest: 
+  "Max_triangle z = (GREATEST k. (triangle k \<le> z \<and> k \<le> z) \<or> k = 0)"
+apply(rule Greatest_equality[symmetric])
+apply(rule disjI1)
+apply(rule conjI)
+apply(rule Max_triangle_triangle_le)
+apply(rule Max_triangle_le)
+apply(erule disjE)
+apply(erule conjE)
+apply(subst (asm) (1) le_iff_add)
+apply(erule exE)
+apply(clarify)
+apply(simp only: w_aux)
+apply(rule y_aux)
+apply(simp)
+done
+
+
+definition 
+  "rec_triangle = CN rec_quo [CN rec_mult [Id 1 0, S], constn 2]"
+
+definition
+  "rec_max_triangle = 
+       (let cond = CN rec_not [CN rec_le [CN rec_triangle [Id 2 0], Id 2 1]] in
+        CN (rec_max1 cond) [Id 1 0, Id 1 0])"
+
+
+lemma triangle_lemma [simp]:
+  "rec_eval rec_triangle [x] = triangle x"
+by (simp add: rec_triangle_def triangle_def)
+ 
+lemma max_triangle_lemma [simp]:
+  "rec_eval rec_max_triangle [x] = Max_triangle x"
+by (simp add: Max_triangle_greatest rec_max_triangle_def Let_def BMax_rec_eq1) 
+
+
+text {* Encodings for Products *}
+
+definition
+  "rec_penc = CN rec_add [CN rec_triangle [CN rec_add [Id 2 0, Id 2 1]], Id 2 0]"
+
+definition 
+  "rec_pdec1 = CN rec_minus [Id 1 0, CN rec_triangle [CN rec_max_triangle [Id 1 0]]]" 
+
+definition 
+  "rec_pdec2 = CN rec_minus [CN rec_max_triangle [Id 1 0], CN rec_pdec1 [Id 1 0]]" 
+
+lemma pdec1_lemma [simp]:
+  "rec_eval rec_pdec1 [z] = pdec1 z"
+by (simp add: rec_pdec1_def fst_prod_decode)
+
+lemma pdec2_lemma [simp]:
+  "rec_eval rec_pdec2 [z] = pdec2 z"
+by (simp add: rec_pdec2_def snd_prod_decode)
+
+lemma penc_lemma [simp]:
+  "rec_eval rec_penc [m, n] = penc m n"
+by (simp add: rec_penc_def prod_encode_def)
+
+
+text {* Encodings of Lists *}
+
+fun 
+  lenc :: "nat list \<Rightarrow> nat" 
+where
+  "lenc [] = 0"
+| "lenc (x # xs) = penc (Suc x) (lenc xs)"
+
+fun
+  ldec :: "nat \<Rightarrow> nat \<Rightarrow> nat"
+where
+  "ldec z 0 = (pdec1 z) - 1"
+| "ldec z (Suc n) = ldec (pdec2 z) n"
+
+lemma pdec_zero_simps [simp]:
+  "pdec1 0 = 0" 
+  "pdec2 0 = 0"
+by (simp_all add: prod_decode_def prod_decode_aux.simps)
+
+lemma ldec_zero:
+  "ldec 0 n = 0"
+by (induct n) (simp_all add: prod_decode_def prod_decode_aux.simps)
+
+lemma list_encode_inverse: 
+  "ldec (lenc xs) n = (if n < length xs then xs ! n else 0)"
+by (induct xs arbitrary: n rule: lenc.induct) 
+   (auto simp add: ldec_zero nth_Cons split: nat.splits)
+
+lemma lenc_length_le:
+  "length xs \<le> lenc xs"  
+by (induct xs) (simp_all add: prod_encode_def)
+
+
+text {* Membership for the List Encoding *}
+
+fun within :: "nat \<Rightarrow> nat \<Rightarrow> bool" where
+  "within z 0 = (0 < z)"
+| "within z (Suc n) = within (pdec2 z) n"
+    
+definition enclen :: "nat \<Rightarrow> nat" where
+  "enclen z = BMax_rec (\<lambda>x. within z (x - 1)) z"
+
+lemma within_False [simp]:
+  "within 0 n = False"
+by (induct n) (simp_all)
+
+lemma within_length [simp]:
+  "within (lenc xs) s = (s < length xs)"
+apply(induct s arbitrary: xs)
+apply(case_tac xs)
+apply(simp_all add: prod_encode_def)
+apply(case_tac xs)
+apply(simp_all)
+done
+
+text {* Length of Encoded Lists *}
+
+lemma enclen_length [simp]:
+  "enclen (lenc xs) = length xs"
+unfolding enclen_def
+apply(simp add: BMax_rec_eq1)
+apply(rule Greatest_equality)
+apply(auto simp add: lenc_length_le)
+done
+
+lemma enclen_penc [simp]:
+  "enclen (penc (Suc x) (lenc xs)) = Suc (enclen (lenc xs))"
+by (simp only: lenc.simps[symmetric] enclen_length) (simp)
+
+lemma enclen_zero [simp]:
+  "enclen 0 = 0"
+by (simp add: enclen_def)
+
+
+text {* Recursive Definitions for List Encodings *}
+
+fun 
+  rec_lenc :: "recf list \<Rightarrow> recf" 
+where
+  "rec_lenc [] = Z"
+| "rec_lenc (f # fs) = CN rec_penc [CN S [f], rec_lenc fs]"
+
+definition 
+  "rec_ldec = CN rec_pred [CN rec_pdec1 [rec_swap (rec_iter rec_pdec2)]]"
+
+definition 
+  "rec_within = CN rec_less [Z, rec_swap (rec_iter rec_pdec2)]"
+
+definition
+  "rec_enclen = CN (rec_max1 (CN rec_not [CN rec_within [Id 2 1, CN rec_pred [Id 2 0]]])) [Id 1 0, Id 1 0]"
+
+lemma ldec_iter:
+  "ldec z n = pdec1 (Iter pdec2 n z) - 1"
+by (induct n arbitrary: z) (simp | subst Iter_comm)+
+
+lemma within_iter:
+  "within z n = (0 < Iter pdec2 n z)"
+by (induct n arbitrary: z) (simp | subst Iter_comm)+
+
+lemma lenc_lemma [simp]:
+  "rec_eval (rec_lenc fs) xs = lenc (map (\<lambda>f. rec_eval f xs) fs)"
+by (induct fs) (simp_all)
+
+lemma ldec_lemma [simp]:
+  "rec_eval rec_ldec [z, n] = ldec z n"
+by (simp add: ldec_iter rec_ldec_def)
+
+lemma within_lemma [simp]:
+  "rec_eval rec_within [z, n] = (if within z n then 1 else 0)"
+by (simp add: within_iter rec_within_def)
+
+lemma enclen_lemma [simp]:
+  "rec_eval rec_enclen [z] = enclen z"
+by (simp add: rec_enclen_def enclen_def)
+
+
+end
+