--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Separation_Algebra/ex/VM_Example.thy Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,78 @@
+(* Title: Adaptation of example from HOL/Hoare/Separation
+ Author: Rafal Kolanski, 2012
+ Maintainers: Gerwin Klein <kleing at cse.unsw.edu.au>
+ Rafal Kolanski <rafal.kolanski at nicta.com.au>
+*)
+
+header "Separation Algebra for Virtual Memory"
+
+theory VM_Example
+imports "../Sep_Tactics" "../Map_Extra"
+begin
+
+text {*
+ Example instantiation of the abstract separation algebra to the sliced-memory
+ model used for building a separation logic in ``Verification of Programs in
+ Virtual Memory Using Separation Logic'' (PhD Thesis) by Rafal Kolanski.
+
+ We wrap up the concept of physical and virtual pointers as well as value
+ (usually a byte), and the page table root, into a datatype for instantiation.
+ This avoids having to produce a hierarchy of type classes.
+
+ The result is more general than the original. It does not mention the types
+ of pointers or virtual memory addresses. Instead of supporting only
+ singleton page table roots, we now support sets so we can identify a single
+ 0 for the monoid.
+ This models multiple page tables in memory, whereas the original logic was
+ only capable of one at a time.
+*}
+
+datatype ('p,'v,'value,'r) vm_sep_state
+ = VMSepState "((('p \<times> 'v) \<rightharpoonup> 'value) \<times> 'r set)"
+
+instantiation vm_sep_state :: (type, type, type, type) sep_algebra
+begin
+
+fun
+ vm_heap :: "('a,'b,'c,'d) vm_sep_state \<Rightarrow> (('a \<times> 'b) \<rightharpoonup> 'c)" where
+ "vm_heap (VMSepState (h,r)) = h"
+
+fun
+ vm_root :: "('a,'b,'c,'d) vm_sep_state \<Rightarrow> 'd set" where
+ "vm_root (VMSepState (h,r)) = r"
+
+definition
+ sep_disj_vm_sep_state :: "('a, 'b, 'c, 'd) vm_sep_state
+ \<Rightarrow> ('a, 'b, 'c, 'd) vm_sep_state \<Rightarrow> bool" where
+ "sep_disj_vm_sep_state x y = vm_heap x \<bottom> vm_heap y"
+
+definition
+ zero_vm_sep_state :: "('a, 'b, 'c, 'd) vm_sep_state" where
+ "zero_vm_sep_state \<equiv> VMSepState (empty, {})"
+
+fun
+ plus_vm_sep_state :: "('a, 'b, 'c, 'd) vm_sep_state
+ \<Rightarrow> ('a, 'b, 'c, 'd) vm_sep_state
+ \<Rightarrow> ('a, 'b, 'c, 'd) vm_sep_state" where
+ "plus_vm_sep_state (VMSepState (x,r)) (VMSepState (y,r'))
+ = VMSepState (x ++ y, r \<union> r')"
+
+instance
+ apply default
+ apply (simp add: zero_vm_sep_state_def sep_disj_vm_sep_state_def)
+ apply (fastforce simp: sep_disj_vm_sep_state_def map_disj_def)
+ apply (case_tac x, clarsimp simp: zero_vm_sep_state_def)
+ apply (case_tac x, case_tac y)
+ apply (fastforce simp: sep_disj_vm_sep_state_def map_add_ac)
+ apply (case_tac x, case_tac y, case_tac z)
+ apply (fastforce simp: sep_disj_vm_sep_state_def)
+ apply (case_tac x, case_tac y, case_tac z)
+ apply (fastforce simp: sep_disj_vm_sep_state_def map_add_disj)
+ apply (case_tac x, case_tac y, case_tac z)
+ apply (fastforce simp: sep_disj_vm_sep_state_def map_add_disj map_disj_com)
+ done
+
+end
+
+end
+