Separation_Algebra/ex/Sep_Tactics_Test.thy~
changeset 26 1cde7bf45858
parent 25 a5f5b9336007
--- a/Separation_Algebra/ex/Sep_Tactics_Test.thy~	Sat Sep 13 10:07:14 2014 +0800
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,122 +0,0 @@
-(* Authors: Gerwin Klein and Rafal Kolanski, 2012
-   Maintainers: Gerwin Klein <kleing at cse.unsw.edu.au>
-                Rafal Kolanski <rafal.kolanski at nicta.com.au>
-*)
-
-theory Sep_Tactics_Test
-imports "../Sep_Tactics"
-begin
-
-text {* Substitution and forward/backward reasoning *}
-
-typedecl p
-typedecl val
-typedecl heap
-
-arities heap :: sep_algebra
-
-axiomatization
-  points_to :: "p \<Rightarrow> val \<Rightarrow> heap \<Rightarrow> bool" and
-  val :: "heap \<Rightarrow> p \<Rightarrow> val"
-where
-  points_to: "(points_to p v ** P) h \<Longrightarrow> val h p = v"
-
-
-lemma
-  "\<lbrakk> Q2 (val h p); (K ** T ** blub ** P ** points_to p v ** P ** J) h \<rbrakk>
-   \<Longrightarrow> Q (val h p) (val h p)"
-  apply (sep_subst (2) points_to)
-  apply (sep_subst (asm) points_to)
-  apply (sep_subst points_to)
-  oops
-
-lemma
-  "\<lbrakk> Q2 (val h p); (K ** T ** blub ** P ** points_to p v ** P ** J) h \<rbrakk>
-   \<Longrightarrow> Q (val h p) (val h p)"
-  apply (sep_drule points_to)
-  apply simp
-  oops
-
-lemma
-  "\<lbrakk> Q2 (val h p); (K ** T ** blub ** P ** points_to p v ** P ** J) h \<rbrakk>
-   \<Longrightarrow> Q (val h p) (val h p)"
-  apply (sep_frule points_to)
-  apply simp
-  oops
-
-consts
-  update :: "p \<Rightarrow> val \<Rightarrow> heap \<Rightarrow> heap"
-
-schematic_lemma
-  assumes a: "\<And>P. (stuff p ** P) H \<Longrightarrow> (other_stuff p v ** P) (update p v H)"
-  shows "(X ** Y ** other_stuff p ?v) (update p v H)"
-  apply (sep_rule a)
-  oops
-
-
-text {* Example of low-level rewrites *}
-
-lemma "\<lbrakk> unrelated s ; (P ** Q ** R) s \<rbrakk> \<Longrightarrow> (A ** B ** Q ** P) s"
-  apply (tactic {* dtac (mk_sep_select_rule @{context} true (3,1)) 1 *})
-  apply (tactic {* rtac (mk_sep_select_rule @{context} false (4,2)) 1 *})
-  (* now sep_conj_impl1 can be used *)
-  apply (erule (1) sep_conj_impl)
-  oops
-
-
-text {* Conjunct selection *}
-
-lemma "(A ** B ** Q ** P) s"
-  apply (sep_select 1)
-  apply (sep_select 3)
-  apply (sep_select 4)
-  oops
-
-lemma "\<lbrakk> also unrelated; (A ** B ** Q ** P) s \<rbrakk> \<Longrightarrow> unrelated"
-  apply (sep_select_asm 2)
-  oops
-
-
-section {* Test cases for @{text sep_cancel}. *}
-
-lemma
-  assumes forward: "\<And>s g p v. A g p v s \<Longrightarrow> AA g p s "
-  shows "\<And>xv yv P s y x s. (A g x yv ** A g y yv ** P) s \<Longrightarrow> (AA g y ** sep_true) s"
-  by (sep_cancel add: forward)
-
-lemma
-  assumes forward: "\<And>s. generic s \<Longrightarrow> instance s"
-  shows "(A ** generic ** B) s \<Longrightarrow> (instance ** sep_true) s"
-  by (sep_cancel add: forward)
-
-lemma "\<lbrakk> (A ** B) sa ; (A ** Y) s \<rbrakk> \<Longrightarrow> (A ** X) s"
-  apply (sep_cancel)
-  oops
-
-lemma "\<lbrakk> (A ** B) sa ; (A ** Y) s \<rbrakk> \<Longrightarrow> (\<lambda>s. (A ** X) s) s"
-  apply (sep_cancel)
-  oops
-
-schematic_lemma "\<lbrakk> (B ** A ** C) s \<rbrakk> \<Longrightarrow> (\<lambda>s. (A ** ?X) s) s"
-  by (sep_cancel)
-
-(* test backtracking on premises with same state *)
-lemma
-  assumes forward: "\<And>s. generic s \<Longrightarrow> instance s"
-  shows "\<lbrakk> (A ** B) s ; (generic ** Y) s \<rbrakk> \<Longrightarrow> (X ** instance) s"
-  apply (sep_cancel add: forward)
-  oops
-
-lemma
-  assumes forward: "\<And>s. generic s \<Longrightarrow> instance s"
-  shows "generic s \<Longrightarrow> instance s"
-  by (sep_cancel add: forward)
-
-lemma
-  assumes forward: "\<And>s. generic s \<Longrightarrow> instance s"
-  assumes forward2: "\<And>s. instance s \<Longrightarrow> instance2 s"
-  shows "generic s \<Longrightarrow> (instance2 ** sep_true) s"
-  by (sep_cancel_blast add: forward forward2)
-
-end
-