--- a/Separation_Algebra/Separation_Algebra.thy~ Sat Sep 13 10:07:14 2014 +0800
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,815 +0,0 @@
-(* Authors: Gerwin Klein and Rafal Kolanski, 2012
- Maintainers: Gerwin Klein <kleing at cse.unsw.edu.au>
- Rafal Kolanski <rafal.kolanski at nicta.com.au>
-*)
-
-header "Abstract Separation Algebra"
-
-theory Separation_Algebra
-imports Main
-begin
-
-
-text {* This theory is the main abstract separation algebra development *}
-
-
-section {* Input syntax for lifting boolean predicates to separation predicates *}
-
-abbreviation (input)
- pred_and :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" (infixr "and" 35) where
- "a and b \<equiv> \<lambda>s. a s \<and> b s"
-
-abbreviation (input)
- pred_or :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" (infixr "or" 30) where
- "a or b \<equiv> \<lambda>s. a s \<or> b s"
-
-abbreviation (input)
- pred_not :: "('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" ("not _" [40] 40) where
- "not a \<equiv> \<lambda>s. \<not>a s"
-
-abbreviation (input)
- pred_imp :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" (infixr "imp" 25) where
- "a imp b \<equiv> \<lambda>s. a s \<longrightarrow> b s"
-
-abbreviation (input)
- pred_K :: "'b \<Rightarrow> 'a \<Rightarrow> 'b" ("\<langle>_\<rangle>") where
- "\<langle>f\<rangle> \<equiv> \<lambda>s. f"
-
-(* abbreviation *)
- definition pred_ex :: "('b \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" (binder "EXS " 10) where
- "EXS x. P x \<equiv> \<lambda>s. \<exists>x. P x s"
-
-abbreviation (input)
- pred_all :: "('b \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" (binder "ALLS " 10) where
- "ALLS x. P x \<equiv> \<lambda>s. \<forall>x. P x s"
-
-
-section {* Associative/Commutative Monoid Basis of Separation Algebras *}
-
-class pre_sep_algebra = zero + plus +
- fixes sep_disj :: "'a => 'a => bool" (infix "##" 60)
-
- assumes sep_disj_zero [simp]: "x ## 0"
- assumes sep_disj_commuteI: "x ## y \<Longrightarrow> y ## x"
-
- assumes sep_add_zero [simp]: "x + 0 = x"
- assumes sep_add_commute: "x ## y \<Longrightarrow> x + y = y + x"
-
- assumes sep_add_assoc:
- "\<lbrakk> x ## y; y ## z; x ## z \<rbrakk> \<Longrightarrow> (x + y) + z = x + (y + z)"
-begin
-
-lemma sep_disj_commute: "x ## y = y ## x"
- by (blast intro: sep_disj_commuteI)
-
-lemma sep_add_left_commute:
- assumes a: "a ## b" "b ## c" "a ## c"
- shows "b + (a + c) = a + (b + c)" (is "?lhs = ?rhs")
-proof -
- have "?lhs = b + a + c" using a
- by (simp add: sep_add_assoc[symmetric] sep_disj_commute)
- also have "... = a + b + c" using a
- by (simp add: sep_add_commute sep_disj_commute)
- also have "... = ?rhs" using a
- by (simp add: sep_add_assoc sep_disj_commute)
- finally show ?thesis .
-qed
-
-lemmas sep_add_ac = sep_add_assoc sep_add_commute sep_add_left_commute
- sep_disj_commute (* nearly always necessary *)
-
-end
-
-
-section {* Separation Algebra as Defined by Calcagno et al. *}
-
-class sep_algebra = pre_sep_algebra +
- assumes sep_disj_addD1: "\<lbrakk> x ## y + z; y ## z \<rbrakk> \<Longrightarrow> x ## y"
- assumes sep_disj_addI1: "\<lbrakk> x ## y + z; y ## z \<rbrakk> \<Longrightarrow> x + y ## z"
-begin
-
-subsection {* Basic Construct Definitions and Abbreviations *}
-
-definition
- sep_conj :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool)" (infixr "**" 35)
- where
- "P ** Q \<equiv> \<lambda>h. \<exists>x y. x ## y \<and> h = x + y \<and> P x \<and> Q y"
-
-notation
- sep_conj (infixr "\<and>*" 35)
-
-definition
- sep_empty :: "'a \<Rightarrow> bool" ("\<box>") where
- "\<box> \<equiv> \<lambda>h. h = 0"
-
-definition
- sep_impl :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool)" (infixr "\<longrightarrow>*" 25)
- where
- "P \<longrightarrow>* Q \<equiv> \<lambda>h. \<forall>h'. h ## h' \<and> P h' \<longrightarrow> Q (h + h')"
-
-definition
- sep_substate :: "'a => 'a => bool" (infix "\<preceq>" 60) where
- "x \<preceq> y \<equiv> \<exists>z. x ## z \<and> x + z = y"
-
-(* We want these to be abbreviations not definitions, because basic True and
- False will occur by simplification in sep_conj terms *)
-abbreviation
- "sep_true \<equiv> \<langle>True\<rangle>"
-
-abbreviation
- "sep_false \<equiv> \<langle>False\<rangle>"
-
-definition
- sep_list_conj :: "('a \<Rightarrow> bool) list \<Rightarrow> ('a \<Rightarrow> bool)" ("\<And>* _" [60] 90) where
- "sep_list_conj Ps \<equiv> foldl (op **) \<box> Ps"
-
-
-subsection {* Disjunction/Addition Properties *}
-
-lemma disjoint_zero_sym [simp]: "0 ## x"
- by (simp add: sep_disj_commute)
-
-lemma sep_add_zero_sym [simp]: "0 + x = x"
- by (simp add: sep_add_commute)
-
-lemma sep_disj_addD2: "\<lbrakk> x ## y + z; y ## z \<rbrakk> \<Longrightarrow> x ## z"
- by (metis sep_disj_addD1 sep_add_ac)
-
-lemma sep_disj_addD: "\<lbrakk> x ## y + z; y ## z \<rbrakk> \<Longrightarrow> x ## y \<and> x ## z"
- by (metis sep_disj_addD1 sep_disj_addD2)
-
-lemma sep_add_disjD: "\<lbrakk> x + y ## z; x ## y \<rbrakk> \<Longrightarrow> x ## z \<and> y ## z"
- by (metis sep_disj_addD sep_disj_commuteI)
-
-lemma sep_disj_addI2:
- "\<lbrakk> x ## y + z; y ## z \<rbrakk> \<Longrightarrow> x + z ## y"
- by (metis sep_add_ac sep_disj_addI1)
-
-lemma sep_add_disjI1:
- "\<lbrakk> x + y ## z; x ## y \<rbrakk> \<Longrightarrow> x + z ## y"
- by (metis sep_add_ac sep_add_disjD sep_disj_addI2)
-
-lemma sep_add_disjI2:
- "\<lbrakk> x + y ## z; x ## y \<rbrakk> \<Longrightarrow> z + y ## x"
- by (metis sep_add_ac sep_add_disjD sep_disj_addI2)
-
-lemma sep_disj_addI3:
- "x + y ## z \<Longrightarrow> x ## y \<Longrightarrow> x ## y + z"
- by (metis sep_add_ac sep_add_disjD sep_add_disjI2)
-
-lemma sep_disj_add:
- "\<lbrakk> y ## z; x ## y \<rbrakk> \<Longrightarrow> x ## y + z = x + y ## z"
- by (metis sep_disj_addI1 sep_disj_addI3)
-
-
-subsection {* Substate Properties *}
-
-lemma sep_substate_disj_add:
- "x ## y \<Longrightarrow> x \<preceq> x + y"
- unfolding sep_substate_def by blast
-
-lemma sep_substate_disj_add':
- "x ## y \<Longrightarrow> x \<preceq> y + x"
- by (simp add: sep_add_ac sep_substate_disj_add)
-
-
-subsection {* Separating Conjunction Properties *}
-
-lemma sep_conjD:
- "(P \<and>* Q) h \<Longrightarrow> \<exists>x y. x ## y \<and> h = x + y \<and> P x \<and> Q y"
- by (simp add: sep_conj_def)
-
-lemma sep_conjE:
- "\<lbrakk> (P ** Q) h; \<And>x y. \<lbrakk> P x; Q y; x ## y; h = x + y \<rbrakk> \<Longrightarrow> X \<rbrakk> \<Longrightarrow> X"
- by (auto simp: sep_conj_def)
-
-lemma sep_conjI:
- "\<lbrakk> P x; Q y; x ## y; h = x + y \<rbrakk> \<Longrightarrow> (P ** Q) h"
- by (auto simp: sep_conj_def)
-
-lemma sep_conj_commuteI:
- "(P ** Q) h \<Longrightarrow> (Q ** P) h"
- by (auto intro!: sep_conjI elim!: sep_conjE simp: sep_add_ac)
-
-lemma sep_conj_commute:
- "(P ** Q) = (Q ** P)"
- by (rule ext) (auto intro: sep_conj_commuteI)
-
-lemma sep_conj_assoc:
- "((P ** Q) ** R) = (P ** Q ** R)" (is "?lhs = ?rhs")
-proof (rule ext, rule iffI)
- fix h
- assume a: "?lhs h"
- then obtain x y z where "P x" and "Q y" and "R z"
- and "x ## y" and "x ## z" and "y ## z" and "x + y ## z"
- and "h = x + y + z"
- by (auto dest!: sep_conjD dest: sep_add_disjD)
- moreover
- then have "x ## y + z"
- by (simp add: sep_disj_add)
- ultimately
- show "?rhs h"
- by (auto simp: sep_add_ac intro!: sep_conjI)
-next
- fix h
- assume a: "?rhs h"
- then obtain x y z where "P x" and "Q y" and "R z"
- and "x ## y" and "x ## z" and "y ## z" and "x ## y + z"
- and "h = x + y + z"
- by (fastforce elim!: sep_conjE simp: sep_add_ac dest: sep_disj_addD)
- thus "?lhs h"
- by (metis sep_conj_def sep_disj_addI1)
-qed
-
-lemma sep_conj_impl:
- "\<lbrakk> (P ** Q) h; \<And>h. P h \<Longrightarrow> P' h; \<And>h. Q h \<Longrightarrow> Q' h \<rbrakk> \<Longrightarrow> (P' ** Q') h"
- by (erule sep_conjE, auto intro!: sep_conjI)
-
-lemma sep_conj_impl1:
- assumes P: "\<And>h. P h \<Longrightarrow> I h"
- shows "(P ** R) h \<Longrightarrow> (I ** R) h"
- by (auto intro: sep_conj_impl P)
-
-lemma sep_globalise:
- "\<lbrakk> (P ** R) h; (\<And>h. P h \<Longrightarrow> Q h) \<rbrakk> \<Longrightarrow> (Q ** R) h"
- by (fast elim: sep_conj_impl)
-
-lemma sep_conj_trivial_strip2:
- "Q = R \<Longrightarrow> (Q ** P) = (R ** P)" by simp
-
-lemma disjoint_subheaps_exist:
- "\<exists>x y. x ## y \<and> h = x + y"
- by (rule_tac x=0 in exI, auto)
-
-lemma sep_conj_left_commute: (* for permutative rewriting *)
- "(P ** (Q ** R)) = (Q ** (P ** R))" (is "?x = ?y")
-proof -
- have "?x = ((Q ** R) ** P)" by (simp add: sep_conj_commute)
- also have "\<dots> = (Q ** (R ** P))" by (subst sep_conj_assoc, simp)
- finally show ?thesis by (simp add: sep_conj_commute)
-qed
-
-lemmas sep_conj_ac = sep_conj_commute sep_conj_assoc sep_conj_left_commute
-
-lemma ab_semigroup_mult_sep_conj: "class.ab_semigroup_mult op **"
- by (unfold_locales)
- (auto simp: sep_conj_ac)
-
-lemma sep_empty_zero [simp,intro!]: "\<box> 0"
- by (simp add: sep_empty_def)
-
-
-subsection {* Properties of @{text sep_true} and @{text sep_false} *}
-
-lemma sep_conj_sep_true:
- "P h \<Longrightarrow> (P ** sep_true) h"
- by (simp add: sep_conjI[where y=0])
-
-lemma sep_conj_sep_true':
- "P h \<Longrightarrow> (sep_true ** P) h"
- by (simp add: sep_conjI[where x=0])
-
-lemma sep_conj_true [simp]:
- "(sep_true ** sep_true) = sep_true"
- unfolding sep_conj_def
- by (auto intro!: ext intro: disjoint_subheaps_exist)
-
-lemma sep_conj_false_right [simp]:
- "(P ** sep_false) = sep_false"
- by (force elim: sep_conjE intro!: ext)
-
-lemma sep_conj_false_left [simp]:
- "(sep_false ** P) = sep_false"
- by (subst sep_conj_commute) (rule sep_conj_false_right)
-
-
-
-subsection {* Properties of zero (@{const sep_empty}) *}
-
-lemma sep_conj_empty [simp]:
- "(P ** \<box>) = P"
- by (simp add: sep_conj_def sep_empty_def)
-
-lemma sep_conj_empty'[simp]:
- "(\<box> ** P) = P"
- by (subst sep_conj_commute, rule sep_conj_empty)
-
-lemma sep_conj_sep_emptyI:
- "P h \<Longrightarrow> (P ** \<box>) h"
- by simp
-
-lemma sep_conj_sep_emptyE:
- "\<lbrakk> P s; (P ** \<box>) s \<Longrightarrow> (Q ** R) s \<rbrakk> \<Longrightarrow> (Q ** R) s"
- by simp
-
-lemma monoid_add: "class.monoid_add (op **) \<box>"
- by (unfold_locales) (auto simp: sep_conj_ac)
-
-lemma comm_monoid_add: "class.comm_monoid_add op ** \<box>"
- by (unfold_locales) (auto simp: sep_conj_ac)
-
-
-subsection {* Properties of top (@{text sep_true}) *}
-
-lemma sep_conj_true_P [simp]:
- "(sep_true ** (sep_true ** P)) = (sep_true ** P)"
- by (simp add: sep_conj_assoc[symmetric])
-
-lemma sep_conj_disj:
- "((P or Q) ** R) = ((P ** R) or (Q ** R))"
- by (auto simp: sep_conj_def intro!: ext)
-
-lemma sep_conj_sep_true_left:
- "(P ** Q) h \<Longrightarrow> (sep_true ** Q) h"
- by (erule sep_conj_impl, simp+)
-
-lemma sep_conj_sep_true_right:
- "(P ** Q) h \<Longrightarrow> (P ** sep_true) h"
- by (subst (asm) sep_conj_commute, drule sep_conj_sep_true_left,
- simp add: sep_conj_ac)
-
-
-subsection {* Separating Conjunction with Quantifiers *}
-
-lemma sep_conj_conj:
- "((P and Q) ** R) h \<Longrightarrow> ((P ** R) and (Q ** R)) h"
- by (force intro: sep_conjI elim!: sep_conjE)
-
-lemma sep_conj_exists1:
- "((EXS x. P x) ** Q) = (EXS x. (P x ** Q))"
- by (unfold pred_ex_def, force intro!: ext intro: sep_conjI elim: sep_conjE)
-
-lemma sep_conj_exists2:
- "(P ** (EXS x. Q x)) = (EXS x. P ** Q x)"
- by (unfold pred_ex_def, force intro!: sep_conjI ext elim!: sep_conjE)
-
-lemmas sep_conj_exists = sep_conj_exists1 sep_conj_exists2
-
-lemma sep_conj_spec:
- "((ALLS x. P x) ** Q) h \<Longrightarrow> (P x ** Q) h"
- by (force intro: sep_conjI elim: sep_conjE)
-
-
-subsection {* Properties of Separating Implication *}
-
-lemma sep_implI:
- assumes a: "\<And>h'. \<lbrakk> h ## h'; P h' \<rbrakk> \<Longrightarrow> Q (h + h')"
- shows "(P \<longrightarrow>* Q) h"
- unfolding sep_impl_def by (auto elim: a)
-
-lemma sep_implD:
- "(x \<longrightarrow>* y) h \<Longrightarrow> \<forall>h'. h ## h' \<and> x h' \<longrightarrow> y (h + h')"
- by (force simp: sep_impl_def)
-
-lemma sep_implE:
- "(x \<longrightarrow>* y) h \<Longrightarrow> (\<forall>h'. h ## h' \<and> x h' \<longrightarrow> y (h + h') \<Longrightarrow> Q) \<Longrightarrow> Q"
- by (auto dest: sep_implD)
-
-lemma sep_impl_sep_true [simp]:
- "(P \<longrightarrow>* sep_true) = sep_true"
- by (force intro!: sep_implI ext)
-
-lemma sep_impl_sep_false [simp]:
- "(sep_false \<longrightarrow>* P) = sep_true"
- by (force intro!: sep_implI ext)
-
-lemma sep_impl_sep_true_P:
- "(sep_true \<longrightarrow>* P) h \<Longrightarrow> P h"
- by (clarsimp dest!: sep_implD elim!: allE[where x=0])
-
-lemma sep_impl_sep_true_false [simp]:
- "(sep_true \<longrightarrow>* sep_false) = sep_false"
- by (force intro!: ext dest: sep_impl_sep_true_P)
-
-lemma sep_conj_sep_impl:
- "\<lbrakk> P h; \<And>h. (P ** Q) h \<Longrightarrow> R h \<rbrakk> \<Longrightarrow> (Q \<longrightarrow>* R) h"
-proof (rule sep_implI)
- fix h' h
- assume "P h" and "h ## h'" and "Q h'"
- hence "(P ** Q) (h + h')" by (force intro: sep_conjI)
- moreover assume "\<And>h. (P ** Q) h \<Longrightarrow> R h"
- ultimately show "R (h + h')" by simp
-qed
-
-lemma sep_conj_sep_impl2:
- "\<lbrakk> (P ** Q) h; \<And>h. P h \<Longrightarrow> (Q \<longrightarrow>* R) h \<rbrakk> \<Longrightarrow> R h"
- by (force dest: sep_implD elim: sep_conjE)
-
-lemma sep_conj_sep_impl_sep_conj2:
- "(P ** R) h \<Longrightarrow> (P ** (Q \<longrightarrow>* (Q ** R))) h"
- by (erule (1) sep_conj_impl, erule sep_conj_sep_impl, simp add: sep_conj_ac)
-
-
-subsection {* Pure assertions *}
-
-definition
- pure :: "('a \<Rightarrow> bool) \<Rightarrow> bool" where
- "pure P \<equiv> \<forall>h h'. P h = P h'"
-
-lemma pure_sep_true:
- "pure sep_true"
- by (simp add: pure_def)
-
-lemma pure_sep_false:
- "pure sep_true"
- by (simp add: pure_def)
-
-lemma pure_split:
- "pure P = (P = sep_true \<or> P = sep_false)"
- by (force simp: pure_def intro!: ext)
-
-lemma pure_sep_conj:
- "\<lbrakk> pure P; pure Q \<rbrakk> \<Longrightarrow> pure (P \<and>* Q)"
- by (force simp: pure_split)
-
-lemma pure_sep_impl:
- "\<lbrakk> pure P; pure Q \<rbrakk> \<Longrightarrow> pure (P \<longrightarrow>* Q)"
- by (force simp: pure_split)
-
-lemma pure_conj_sep_conj:
- "\<lbrakk> (P and Q) h; pure P \<or> pure Q \<rbrakk> \<Longrightarrow> (P \<and>* Q) h"
- by (metis pure_def sep_add_zero sep_conjI sep_conj_commute sep_disj_zero)
-
-lemma pure_sep_conj_conj:
- "\<lbrakk> (P \<and>* Q) h; pure P; pure Q \<rbrakk> \<Longrightarrow> (P and Q) h"
- by (force simp: pure_split)
-
-lemma pure_conj_sep_conj_assoc:
- "pure P \<Longrightarrow> ((P and Q) \<and>* R) = (P and (Q \<and>* R))"
- by (auto simp: pure_split)
-
-lemma pure_sep_impl_impl:
- "\<lbrakk> (P \<longrightarrow>* Q) h; pure P \<rbrakk> \<Longrightarrow> P h \<longrightarrow> Q h"
- by (force simp: pure_split dest: sep_impl_sep_true_P)
-
-lemma pure_impl_sep_impl:
- "\<lbrakk> P h \<longrightarrow> Q h; pure P; pure Q \<rbrakk> \<Longrightarrow> (P \<longrightarrow>* Q) h"
- by (force simp: pure_split)
-
-lemma pure_conj_right: "(Q \<and>* (\<langle>P'\<rangle> and Q')) = (\<langle>P'\<rangle> and (Q \<and>* Q'))"
- by (rule ext, rule, rule, clarsimp elim!: sep_conjE)
- (erule sep_conj_impl, auto)
-
-lemma pure_conj_right': "(Q \<and>* (P' and \<langle>Q'\<rangle>)) = (\<langle>Q'\<rangle> and (Q \<and>* P'))"
- by (simp add: conj_comms pure_conj_right)
-
-lemma pure_conj_left: "((\<langle>P'\<rangle> and Q') \<and>* Q) = (\<langle>P'\<rangle> and (Q' \<and>* Q))"
- by (simp add: pure_conj_right sep_conj_ac)
-
-lemma pure_conj_left': "((P' and \<langle>Q'\<rangle>) \<and>* Q) = (\<langle>Q'\<rangle> and (P' \<and>* Q))"
- by (subst conj_comms, subst pure_conj_left, simp)
-
-lemmas pure_conj = pure_conj_right pure_conj_right' pure_conj_left
- pure_conj_left'
-
-declare pure_conj[simp add]
-
-
-subsection {* Intuitionistic assertions *}
-
-definition intuitionistic :: "('a \<Rightarrow> bool) \<Rightarrow> bool" where
- "intuitionistic P \<equiv> \<forall>h h'. P h \<and> h \<preceq> h' \<longrightarrow> P h'"
-
-lemma intuitionisticI:
- "(\<And>h h'. \<lbrakk> P h; h \<preceq> h' \<rbrakk> \<Longrightarrow> P h') \<Longrightarrow> intuitionistic P"
- by (unfold intuitionistic_def, fast)
-
-lemma intuitionisticD:
- "\<lbrakk> intuitionistic P; P h; h \<preceq> h' \<rbrakk> \<Longrightarrow> P h'"
- by (unfold intuitionistic_def, fast)
-
-lemma pure_intuitionistic:
- "pure P \<Longrightarrow> intuitionistic P"
- by (clarsimp simp: intuitionistic_def pure_def, fast)
-
-lemma intuitionistic_conj:
- "\<lbrakk> intuitionistic P; intuitionistic Q \<rbrakk> \<Longrightarrow> intuitionistic (P and Q)"
- by (force intro: intuitionisticI dest: intuitionisticD)
-
-lemma intuitionistic_disj:
- "\<lbrakk> intuitionistic P; intuitionistic Q \<rbrakk> \<Longrightarrow> intuitionistic (P or Q)"
- by (force intro: intuitionisticI dest: intuitionisticD)
-
-lemma intuitionistic_forall:
- "(\<And>x. intuitionistic (P x)) \<Longrightarrow> intuitionistic (ALLS x. P x)"
- by (force intro: intuitionisticI dest: intuitionisticD)
-
-lemma intuitionistic_exists:
- "(\<And>x. intuitionistic (P x)) \<Longrightarrow> intuitionistic (EXS x. P x)"
- by (unfold pred_ex_def, force intro: intuitionisticI dest: intuitionisticD)
-
-lemma intuitionistic_sep_conj_sep_true:
- "intuitionistic (sep_true \<and>* P)"
-proof (rule intuitionisticI)
- fix h h' r
- assume a: "(sep_true \<and>* P) h"
- then obtain x y where P: "P y" and h: "h = x + y" and xyd: "x ## y"
- by - (drule sep_conjD, clarsimp)
- moreover assume a2: "h \<preceq> h'"
- then obtain z where h': "h' = h + z" and hzd: "h ## z"
- by (clarsimp simp: sep_substate_def)
-
- moreover have "(P \<and>* sep_true) (y + (x + z))"
- using P h hzd xyd
- by (metis sep_add_disjI1 sep_disj_commute sep_conjI)
- ultimately show "(sep_true \<and>* P) h'" using hzd
- by (auto simp: sep_conj_commute sep_add_ac dest!: sep_disj_addD)
-qed
-
-lemma intuitionistic_sep_impl_sep_true:
- "intuitionistic (sep_true \<longrightarrow>* P)"
-proof (rule intuitionisticI)
- fix h h'
- assume imp: "(sep_true \<longrightarrow>* P) h" and hh': "h \<preceq> h'"
-
- from hh' obtain z where h': "h' = h + z" and hzd: "h ## z"
- by (clarsimp simp: sep_substate_def)
- show "(sep_true \<longrightarrow>* P) h'" using imp h' hzd
- apply (clarsimp dest!: sep_implD)
- apply (metis sep_add_assoc sep_add_disjD sep_disj_addI3 sep_implI)
- done
-qed
-
-lemma intuitionistic_sep_conj:
- assumes ip: "intuitionistic (P::('a \<Rightarrow> bool))"
- shows "intuitionistic (P \<and>* Q)"
-proof (rule intuitionisticI)
- fix h h'
- assume sc: "(P \<and>* Q) h" and hh': "h \<preceq> h'"
-
- from hh' obtain z where h': "h' = h + z" and hzd: "h ## z"
- by (clarsimp simp: sep_substate_def)
-
- from sc obtain x y where px: "P x" and qy: "Q y"
- and h: "h = x + y" and xyd: "x ## y"
- by (clarsimp simp: sep_conj_def)
-
- have "x ## z" using hzd h xyd
- by (metis sep_add_disjD)
-
- with ip px have "P (x + z)"
- by (fastforce elim: intuitionisticD sep_substate_disj_add)
-
- thus "(P \<and>* Q) h'" using h' h hzd qy xyd
- by (metis (full_types) sep_add_commute sep_add_disjD sep_add_disjI2
- sep_add_left_commute sep_conjI)
-qed
-
-lemma intuitionistic_sep_impl:
- assumes iq: "intuitionistic Q"
- shows "intuitionistic (P \<longrightarrow>* Q)"
-proof (rule intuitionisticI)
- fix h h'
- assume imp: "(P \<longrightarrow>* Q) h" and hh': "h \<preceq> h'"
-
- from hh' obtain z where h': "h' = h + z" and hzd: "h ## z"
- by (clarsimp simp: sep_substate_def)
-
- {
- fix x
- assume px: "P x" and hzx: "h + z ## x"
-
- have "h + x \<preceq> h + x + z" using hzx hzd
- by (metis sep_add_disjI1 sep_substate_def)
-
- with imp hzd iq px hzx
- have "Q (h + z + x)"
- by (metis intuitionisticD sep_add_assoc sep_add_ac sep_add_disjD sep_implE)
- }
-
- with imp h' hzd iq show "(P \<longrightarrow>* Q) h'"
- by (fastforce intro: sep_implI)
-qed
-
-lemma strongest_intuitionistic:
- "\<not> (\<exists>Q. (\<forall>h. (Q h \<longrightarrow> (P \<and>* sep_true) h)) \<and> intuitionistic Q \<and>
- Q \<noteq> (P \<and>* sep_true) \<and> (\<forall>h. P h \<longrightarrow> Q h))"
- by (fastforce intro!: ext sep_substate_disj_add
- dest!: sep_conjD intuitionisticD)
-
-lemma weakest_intuitionistic:
- "\<not> (\<exists>Q. (\<forall>h. ((sep_true \<longrightarrow>* P) h \<longrightarrow> Q h)) \<and> intuitionistic Q \<and>
- Q \<noteq> (sep_true \<longrightarrow>* P) \<and> (\<forall>h. Q h \<longrightarrow> P h))"
- apply (clarsimp intro!: ext)
- apply (rule iffI)
- apply (rule sep_implI)
- apply (drule_tac h="x" and h'="x + h'" in intuitionisticD)
- apply (clarsimp simp: sep_add_ac sep_substate_disj_add)+
- done
-
-lemma intuitionistic_sep_conj_sep_true_P:
- "\<lbrakk> (P \<and>* sep_true) s; intuitionistic P \<rbrakk> \<Longrightarrow> P s"
- by (force dest: intuitionisticD elim: sep_conjE sep_substate_disj_add)
-
-lemma intuitionistic_sep_conj_sep_true_simp:
- "intuitionistic P \<Longrightarrow> (P \<and>* sep_true) = P"
- by (fast intro!: sep_conj_sep_true ext
- elim: intuitionistic_sep_conj_sep_true_P)
-
-lemma intuitionistic_sep_impl_sep_true_P:
- "\<lbrakk> P h; intuitionistic P \<rbrakk> \<Longrightarrow> (sep_true \<longrightarrow>* P) h"
- by (force intro!: sep_implI dest: intuitionisticD
- intro: sep_substate_disj_add)
-
-lemma intuitionistic_sep_impl_sep_true_simp:
- "intuitionistic P \<Longrightarrow> (sep_true \<longrightarrow>* P) = P"
- by (fast intro!: ext
- elim: sep_impl_sep_true_P intuitionistic_sep_impl_sep_true_P)
-
-
-subsection {* Strictly exact assertions *}
-
-definition strictly_exact :: "('a \<Rightarrow> bool) \<Rightarrow> bool" where
- "strictly_exact P \<equiv> \<forall>h h'. P h \<and> P h' \<longrightarrow> h = h'"
-
-lemma strictly_exactD:
- "\<lbrakk> strictly_exact P; P h; P h' \<rbrakk> \<Longrightarrow> h = h'"
- by (unfold strictly_exact_def, fast)
-
-lemma strictly_exactI:
- "(\<And>h h'. \<lbrakk> P h; P h' \<rbrakk> \<Longrightarrow> h = h') \<Longrightarrow> strictly_exact P"
- by (unfold strictly_exact_def, fast)
-
-lemma strictly_exact_sep_conj:
- "\<lbrakk> strictly_exact P; strictly_exact Q \<rbrakk> \<Longrightarrow> strictly_exact (P \<and>* Q)"
- apply (rule strictly_exactI)
- apply (erule sep_conjE)+
- apply (drule_tac h="x" and h'="xa" in strictly_exactD, assumption+)
- apply (drule_tac h="y" and h'="ya" in strictly_exactD, assumption+)
- apply clarsimp
- done
-
-lemma strictly_exact_conj_impl:
- "\<lbrakk> (Q \<and>* sep_true) h; P h; strictly_exact Q \<rbrakk> \<Longrightarrow> (Q \<and>* (Q \<longrightarrow>* P)) h"
- by (force intro: sep_conjI sep_implI dest: strictly_exactD elim!: sep_conjE
- simp: sep_add_commute sep_add_assoc)
-
-end
-
-interpretation sep: ab_semigroup_mult "op **"
- by (rule ab_semigroup_mult_sep_conj)
-
-interpretation sep: comm_monoid_add "op **" \<box>
- by (rule comm_monoid_add)
-
-
-section {* Separation Algebra with Stronger, but More Intuitive Disjunction Axiom *}
-
-class stronger_sep_algebra = pre_sep_algebra +
- assumes sep_add_disj_eq [simp]: "y ## z \<Longrightarrow> x ## y + z = (x ## y \<and> x ## z)"
-begin
-
-lemma sep_disj_add_eq [simp]: "x ## y \<Longrightarrow> x + y ## z = (x ## z \<and> y ## z)"
- by (metis sep_add_disj_eq sep_disj_commute)
-
-subclass sep_algebra by default auto
-
-end
-
-
-section {* Folding separating conjunction over lists of predicates *}
-
-lemma sep_list_conj_Nil [simp]: "\<And>* [] = \<box>"
- by (simp add: sep_list_conj_def)
-
-(* apparently these two are rarely used and had to be removed from List.thy *)
-lemma (in semigroup_add) foldl_assoc:
-shows "foldl op+ (x+y) zs = x + (foldl op+ y zs)"
-by (induct zs arbitrary: y) (simp_all add:add_assoc)
-
-lemma (in monoid_add) foldl_absorb0:
-shows "x + (foldl op+ 0 zs) = foldl op+ x zs"
-by (induct zs) (simp_all add:foldl_assoc)
-
-lemma sep_list_conj_Cons [simp]: "\<And>* (x#xs) = (x ** \<And>* xs)"
- by (simp add: sep_list_conj_def sep.foldl_absorb0)
-
-lemma sep_list_conj_append [simp]: "\<And>* (xs @ ys) = (\<And>* xs ** \<And>* ys)"
- by (simp add: sep_list_conj_def sep.foldl_absorb0)
-
-lemma (in comm_monoid_add) foldl_map_filter:
- "foldl op + 0 (map f (filter P xs)) +
- foldl op + 0 (map f (filter (not P) xs))
- = foldl op + 0 (map f xs)"
-proof (induct xs)
- case Nil thus ?case by clarsimp
-next
- case (Cons x xs)
- hence IH: "foldl op + 0 (map f xs) =
- foldl op + 0 (map f (filter P xs)) +
- foldl op + 0 (map f [x\<leftarrow>xs . \<not> P x])"
- by (simp only: eq_commute)
-
- have foldl_Cons':
- "\<And>x xs. foldl op + 0 (x # xs) = x + (foldl op + 0 xs)"
- by (simp, subst foldl_absorb0[symmetric], rule refl)
-
- { assume "P x"
- hence ?case by (auto simp del: foldl_Cons simp add: foldl_Cons' IH add_ac)
- } moreover {
- assume "\<not> P x"
- hence ?case by (auto simp del: foldl_Cons simp add: foldl_Cons' IH add_ac)
- }
- ultimately show ?case by blast
-qed
-
-
-section {* Separation Algebra with a Cancellative Monoid (for completeness) *}
-
-text {*
- Separation algebra with a cancellative monoid. The results of being a precise
- assertion (distributivity over separating conjunction) require this.
- although we never actually use this property in our developments, we keep
- it here for completeness.
- *}
-class cancellative_sep_algebra = sep_algebra +
- assumes sep_add_cancelD: "\<lbrakk> x + z = y + z ; x ## z ; y ## z \<rbrakk> \<Longrightarrow> x = y"
-begin
-
-definition
- (* In any heap, there exists at most one subheap for which P holds *)
- precise :: "('a \<Rightarrow> bool) \<Rightarrow> bool" where
- "precise P = (\<forall>h hp hp'. hp \<preceq> h \<and> P hp \<and> hp' \<preceq> h \<and> P hp' \<longrightarrow> hp = hp')"
-
-lemma "precise (op = s)"
- by (metis (full_types) precise_def)
-
-lemma sep_add_cancel:
- "x ## z \<Longrightarrow> y ## z \<Longrightarrow> (x + z = y + z) = (x = y)"
- by (metis sep_add_cancelD)
-
-lemma precise_distribute:
- "precise P = (\<forall>Q R. ((Q and R) \<and>* P) = ((Q \<and>* P) and (R \<and>* P)))"
-proof (rule iffI)
- assume pp: "precise P"
- {
- fix Q R
- fix h hp hp' s
-
- { assume a: "((Q and R) \<and>* P) s"
- hence "((Q \<and>* P) and (R \<and>* P)) s"
- by (fastforce dest!: sep_conjD elim: sep_conjI)
- }
- moreover
- { assume qs: "(Q \<and>* P) s" and qr: "(R \<and>* P) s"
-
- from qs obtain x y where sxy: "s = x + y" and xy: "x ## y"
- and x: "Q x" and y: "P y"
- by (fastforce dest!: sep_conjD)
- from qr obtain x' y' where sxy': "s = x' + y'" and xy': "x' ## y'"
- and x': "R x'" and y': "P y'"
- by (fastforce dest!: sep_conjD)
-
- from sxy have ys: "y \<preceq> x + y" using xy
- by (fastforce simp: sep_substate_disj_add' sep_disj_commute)
- from sxy' have ys': "y' \<preceq> x' + y'" using xy'
- by (fastforce simp: sep_substate_disj_add' sep_disj_commute)
-
- from pp have yy: "y = y'" using sxy sxy' xy xy' y y' ys ys'
- by (fastforce simp: precise_def)
-
- hence "x = x'" using sxy sxy' xy xy'
- by (fastforce dest!: sep_add_cancelD)
-
- hence "((Q and R) \<and>* P) s" using sxy x x' yy y' xy'
- by (fastforce intro: sep_conjI)
- }
- ultimately
- have "((Q and R) \<and>* P) s = ((Q \<and>* P) and (R \<and>* P)) s" using pp by blast
- }
- thus "\<forall>Q R. ((Q and R) \<and>* P) = ((Q \<and>* P) and (R \<and>* P))" by (blast intro!: ext)
-
-next
- assume a: "\<forall>Q R. ((Q and R) \<and>* P) = ((Q \<and>* P) and (R \<and>* P))"
- thus "precise P"
- proof (clarsimp simp: precise_def)
- fix h hp hp' Q R
- assume hp: "hp \<preceq> h" and hp': "hp' \<preceq> h" and php: "P hp" and php': "P hp'"
-
- obtain z where hhp: "h = hp + z" and hpz: "hp ## z" using hp
- by (clarsimp simp: sep_substate_def)
- obtain z' where hhp': "h = hp' + z'" and hpz': "hp' ## z'" using hp'
- by (clarsimp simp: sep_substate_def)
-
- have h_eq: "z' + hp' = z + hp" using hhp hhp' hpz hpz'
- by (fastforce simp: sep_add_ac)
-
- from hhp hhp' a hpz hpz' h_eq
- have "\<forall>Q R. ((Q and R) \<and>* P) (z + hp) = ((Q \<and>* P) and (R \<and>* P)) (z' + hp')"
- by (fastforce simp: h_eq sep_add_ac sep_conj_commute)
-
- hence "((op = z and op = z') \<and>* P) (z + hp) =
- ((op = z \<and>* P) and (op = z' \<and>* P)) (z' + hp')" by blast
-
- thus "hp = hp'" using php php' hpz hpz' h_eq
- by (fastforce dest!: iffD2 cong: conj_cong
- simp: sep_add_ac sep_add_cancel sep_conj_def)
- qed
-qed
-
-lemma strictly_precise: "strictly_exact P \<Longrightarrow> precise P"
- by (metis precise_def strictly_exactD)
-
-end
-
-end