|
1 theory TM_Assemble |
|
2 imports Hoare_tm StateMonad AList |
|
3 "~~/src/HOL/Library/FinFun_Syntax" |
|
4 "~~/src/HOL/Library/Sublist" |
|
5 LetElim |
|
6 begin |
|
7 |
|
8 section {* The assembler based on Benton's x86 paper *} |
|
9 |
|
10 text {* |
|
11 The problem with the assembler is that it is too slow to be useful. |
|
12 *} |
|
13 |
|
14 primrec pass1 :: "tpg \<Rightarrow> (unit, (nat \<times> nat \<times> (nat \<rightharpoonup> nat))) SM" |
|
15 where |
|
16 "pass1 (TInstr ai) = sm_map (\<lambda> (pos, lno, lmap). (pos + 1, lno, lmap))" | |
|
17 "pass1 (TSeq p1 p2) = do {pass1 p1; pass1 p2 }" | |
|
18 "pass1 (TLocal fp) = do { lno \<leftarrow> tap (\<lambda> (pos, lno, lmap). lno); |
|
19 sm_map (\<lambda> (pos, lno, lmap). (pos, lno+1, lmap)); |
|
20 pass1 (fp lno) }" | |
|
21 "pass1 (TLabel l) = sm_map ((\<lambda> (pos, lno, lmap). (pos, lno, lmap(l \<mapsto> pos))))" |
|
22 |
|
23 declare pass1.simps[simp del] |
|
24 |
|
25 type_synonym ('a, 'b) alist = "('a \<times> 'b) list" |
|
26 |
|
27 primrec pass2 :: "tpg \<Rightarrow> (nat \<rightharpoonup> nat) \<Rightarrow> (unit, (nat \<times> nat \<times> (nat, tm_inst) alist)) SM" |
|
28 where |
|
29 "pass2 (TInstr ai) lmap = sm_map (\<lambda> (pos, lno, prog). (pos + 1, lno, (pos, ai)#prog))" | |
|
30 "pass2 (TSeq p1 p2) lmap = do {pass2 p1 lmap; pass2 p2 lmap}" | |
|
31 "pass2 (TLocal fp) lmap = do { lno \<leftarrow> tap (\<lambda> (pos, lno, prog). lno); |
|
32 sm_map (\<lambda> (pos, lno, prog). (pos, lno + 1, prog)); |
|
33 (case (lmap lno) of |
|
34 Some l => pass2 (fp l) lmap | |
|
35 None => (raise ''Undefined label''))} " | |
|
36 "pass2 (TLabel l) lmap = do { pos \<leftarrow> tap (\<lambda> (pos, lno, prog). pos); |
|
37 if (l = pos) then return () |
|
38 else (raise ''Label mismatch'') }" |
|
39 declare pass2.simps[simp del] |
|
40 |
|
41 definition "assembleM i tpg = |
|
42 do {(x, (pos, lno, lmap)) \<leftarrow> execute (pass1 tpg) (i, 0, empty); |
|
43 execute (pass2 tpg lmap) (i, 0, [])}" |
|
44 |
|
45 definition |
|
46 "assemble i tpg = Option.map (\<lambda> (x, (j, lno, prog)).(prog, j)) (assembleM i tpg)" |
|
47 |
|
48 |
|
49 lemma tprog_set_union: |
|
50 assumes "(fst ` set pg3) \<inter> (fst ` set pg2) = {}" |
|
51 shows "tprog_set (map_of pg3 ++ map_of pg2) = tprog_set (map_of pg3) \<union> tprog_set (map_of pg2)" |
|
52 proof - |
|
53 from assms have "dom (map_of pg3) \<inter> dom (map_of pg2) = {}" |
|
54 by (metis dom_map_of_conv_image_fst) |
|
55 hence map_comm: "map_of pg3 ++ map_of pg2 = map_of pg2 ++ map_of pg3" |
|
56 by (metis map_add_comm) |
|
57 show ?thesis |
|
58 proof |
|
59 show "tprog_set (map_of pg3 ++ map_of pg2) \<subseteq> tprog_set (map_of pg3) \<union> tprog_set (map_of pg2)" |
|
60 proof |
|
61 fix x |
|
62 assume " x \<in> tprog_set (map_of pg3 ++ map_of pg2)" |
|
63 then obtain i inst where h: |
|
64 "x = TC i inst" |
|
65 "(map_of pg3 ++ map_of pg2) i = Some inst" |
|
66 apply (unfold tprog_set_def) |
|
67 by (smt mem_Collect_eq) |
|
68 from map_add_SomeD[OF h(2)] h(1) |
|
69 show " x \<in> tprog_set (map_of pg3) \<union> tprog_set (map_of pg2)" |
|
70 apply (unfold tprog_set_def) |
|
71 by (smt mem_Collect_eq sup1CI sup_Un_eq) |
|
72 qed |
|
73 next |
|
74 show "tprog_set (map_of pg3) \<union> tprog_set (map_of pg2) \<subseteq> tprog_set (map_of pg3 ++ map_of pg2)" |
|
75 proof |
|
76 fix x |
|
77 assume " x \<in> tprog_set (map_of pg3) \<union> tprog_set (map_of pg2)" |
|
78 then obtain i inst |
|
79 where h: "x = TC i inst" "map_of pg3 i = Some inst \<or> map_of pg2 i = Some inst" |
|
80 apply (unfold tprog_set_def) |
|
81 by (smt Un_iff mem_Collect_eq) |
|
82 from h(2) |
|
83 show "x \<in> tprog_set (map_of pg3 ++ map_of pg2)" |
|
84 proof |
|
85 assume "map_of pg2 i = Some inst" |
|
86 hence "(map_of pg3 ++ map_of pg2) i = Some inst" |
|
87 by (metis map_add_find_right) |
|
88 with h(1) show ?thesis |
|
89 apply (unfold tprog_set_def) |
|
90 by (smt mem_Collect_eq) |
|
91 next |
|
92 assume "map_of pg3 i = Some inst" |
|
93 hence "(map_of pg2 ++ map_of pg3) i = Some inst" |
|
94 by (metis map_add_find_right) |
|
95 with h(1) show ?thesis |
|
96 apply (unfold map_comm) |
|
97 apply (unfold tprog_set_def) |
|
98 by (smt mem_Collect_eq) |
|
99 qed |
|
100 qed |
|
101 qed |
|
102 qed |
|
103 |
|
104 |
|
105 lemma assumes "assemble i c = Some (prog, j)" |
|
106 shows "(i:[c]:j) (tprog_set (map_of prog))" |
|
107 proof - |
|
108 from assms obtain x lno |
|
109 where "(assembleM i c) = Some (x, (j, lno, prog))" |
|
110 apply(unfold assemble_def) |
|
111 by (cases "(assembleM i c)", auto) |
|
112 then obtain y pos lno' lmap where |
|
113 "execute (pass1 c) (i, 0, empty) = Some (y, (pos, lno', lmap))" |
|
114 "execute (pass2 c lmap) (i, 0, []) = Some (x, (j, lno, prog))" |
|
115 apply (unfold assembleM_def) |
|
116 by (cases "execute (pass1 c) (i, 0, Map.empty)", auto simp:Option.bind.simps) |
|
117 hence mid: "effect (pass1 c) (i, 0, empty) (pos, lno', lmap) y" |
|
118 "effect (pass2 c lmap) (i, 0, []) (j, lno, prog) x" |
|
119 by (auto intro:effectI) |
|
120 { fix lnos lmap lmap' prog1 prog2 |
|
121 assume "effect (pass2 c lmap') (i, lnos, prog1) (j, lno, prog2) x" |
|
122 hence "\<exists> prog. (prog2 = prog@prog1 \<and> (i:[c]:j) (tprog_set (map_of prog)) \<and> |
|
123 (\<forall> k \<in> fst ` (set prog). i \<le> k \<and> k < j) \<and> i \<le> j)" |
|
124 proof(induct c arbitrary:lmap' i lnos prog1 j lno prog2 x) |
|
125 case (TInstr instr lmap' i lnos prog1 j lno prog2 x) |
|
126 thus ?case |
|
127 apply (auto simp: effect_def assemble_def assembleM_def execute.simps sm_map_def sm_def |
|
128 tprog_set_def tassemble_to.simps sg_def pass1.simps pass2.simps |
|
129 split:if_splits) |
|
130 by (cases instr, auto) |
|
131 next |
|
132 case (TLabel l lmap' i lnos prog1 j lno prog2 x) |
|
133 thus ?case |
|
134 apply (rule_tac x = "[]" in exI) |
|
135 apply (unfold tassemble_to.simps) |
|
136 by (auto simp: effect_def assemble_def assembleM_def execute.simps sm_map_def sm_def |
|
137 tprog_set_def tassemble_to.simps sg_def pass1.simps pass2.simps tap_def bind_def |
|
138 return_def raise_def sep_empty_def set_ins_def |
|
139 split:if_splits) |
|
140 next |
|
141 case (TSeq c1 c2 lmap' i lnos prog1 j lno prog2 x) |
|
142 from TSeq(3) |
|
143 obtain h' r where |
|
144 "effect (pass2 c1 lmap') (i, lnos, prog1) h' r" |
|
145 "effect (pass2 c2 lmap') h' (j, lno, prog2) x" |
|
146 apply (unfold pass2.simps) |
|
147 by (auto elim!:effect_elims) |
|
148 then obtain pos1 lno1 pg1 |
|
149 where h: |
|
150 "effect (pass2 c1 lmap') (i, lnos, prog1) (pos1, lno1, pg1) r" |
|
151 "effect (pass2 c2 lmap') (pos1, lno1, pg1) (j, lno, prog2) x" |
|
152 by (cases h', auto) |
|
153 from TSeq(1)[OF h(1)] TSeq(2)[OF h(2)] |
|
154 obtain pg2 pg3 |
|
155 where hh: "pg1 = pg2 @ prog1 \<and> (i :[ c1 ]: pos1) (tprog_set (map_of pg2))" |
|
156 "(\<forall>k\<in> fst ` (set pg2). i \<le> k \<and> k < pos1)" |
|
157 "i \<le> pos1" |
|
158 "prog2 = pg3 @ pg1 \<and> (pos1 :[ c2 ]: j) (tprog_set (map_of pg3))" |
|
159 "(\<forall>k\<in>fst ` (set pg3). pos1 \<le> k \<and> k < j)" |
|
160 "pos1 \<le> j" |
|
161 by auto |
|
162 thus ?case |
|
163 apply (rule_tac x = "pg3 @ pg2" in exI, auto) |
|
164 apply (unfold tassemble_to.simps) |
|
165 apply (rule_tac x = pos1 in EXS_intro) |
|
166 my_block have |
|
167 "(tprog_set (map_of pg2 ++ map_of pg3)) = tprog_set (map_of pg2) \<union> tprog_set (map_of pg3)" |
|
168 proof(rule tprog_set_union) |
|
169 from hh(2, 5) show "fst ` set pg2 \<inter> fst ` set pg3 = {}" |
|
170 by (smt disjoint_iff_not_equal) |
|
171 qed |
|
172 my_block_end |
|
173 apply (unfold this, insert this) |
|
174 my_block |
|
175 have "tprog_set (map_of pg2) \<inter> tprog_set (map_of pg3) = {}" |
|
176 proof - |
|
177 { fix x |
|
178 assume h: "x \<in> tprog_set (map_of pg2)" "x \<in> tprog_set (map_of pg3)" |
|
179 then obtain i inst where "x = TC i inst" |
|
180 "map_of pg2 i = Some inst" |
|
181 "map_of pg3 i = Some inst" |
|
182 apply (unfold tprog_set_def) |
|
183 by (smt mem_Collect_eq tresource.inject(2)) |
|
184 hence "(i, inst) \<in> set pg2" "(i, inst) \<in> set pg3" |
|
185 by (metis map_of_SomeD)+ |
|
186 with hh(2, 5) |
|
187 have "False" |
|
188 by (smt rev_image_eqI) |
|
189 } thus ?thesis by auto |
|
190 qed |
|
191 my_block_end |
|
192 apply (insert this) |
|
193 apply (fold set_ins_def) |
|
194 by (rule sep_conjI, assumption+, simp) |
|
195 next |
|
196 case (TLocal body lmap' i lnos prog1 j lno prog2 x) |
|
197 from TLocal(2) |
|
198 obtain l where h: |
|
199 "lmap' lnos = Some l" |
|
200 "effect (pass2 (body l) lmap') (i, Suc lnos, prog1) (j, lno, prog2) ()" |
|
201 apply (unfold pass2.simps) |
|
202 by (auto elim!:effect_elims split:option.splits simp:sm_map_def) |
|
203 from TLocal(1)[OF this(2)] |
|
204 obtain pg where hh: "prog2 = pg @ prog1 \<and> (i :[ body l ]: j) (tprog_set (map_of pg))" |
|
205 "(\<forall>k\<in> fst ` (set pg). i \<le> k \<and> k < j)" |
|
206 "i \<le> j" |
|
207 by auto |
|
208 thus ?case |
|
209 apply (rule_tac x = pg in exI, auto) |
|
210 apply (unfold tassemble_to.simps) |
|
211 by (rule_tac x = l in EXS_intro, auto) |
|
212 qed |
|
213 } from this[OF mid(2)] show ?thesis by auto |
|
214 qed |
|
215 |
|
216 definition "valid_tpg tpg = (\<forall> i. \<exists> j prog. assemble i tpg = Some (j, prog))" |
|
217 |
|
218 |
|
219 section {* A new method based on DB indexing *} |
|
220 |
|
221 text {* |
|
222 In this section, we introduced a new method based on DB-indexing to provide a quick check of |
|
223 assemblebility of TM assmbly programs in the format of @{text "tpg"}. The |
|
224 lemma @{text "ct_left_until_zero"} at the end shows how the well-formedness of @{text "left_until_zero"} |
|
225 is proved in a modular way. |
|
226 *} |
|
227 |
|
228 datatype cpg = |
|
229 CInstr tm_inst |
|
230 | CLabel nat |
|
231 | CSeq cpg cpg |
|
232 | CLocal cpg |
|
233 |
|
234 datatype status = Free | Bound |
|
235 |
|
236 definition "lift_b t i j = (if (j \<ge> t) then (j + i) else j)" |
|
237 |
|
238 fun lift_t :: "nat \<Rightarrow> nat \<Rightarrow> cpg \<Rightarrow> cpg" |
|
239 where "lift_t t i (CInstr ((act0, l0), (act1, l1))) = |
|
240 (CInstr ((act0, lift_b t i l0), (act1, lift_b t i l1)))" | |
|
241 "lift_t t i (CLabel l) = CLabel (lift_b t i l)" | |
|
242 "lift_t t i (CSeq c1 c2) = CSeq (lift_t t i c1) (lift_t t i c2)" | |
|
243 "lift_t t i (CLocal c) = CLocal (lift_t (t + 1) i c)" |
|
244 |
|
245 definition "lift0 (i::nat) cpg = lift_t 0 i cpg" |
|
246 |
|
247 definition "perm_b t i j k = (if ((k::nat) = i \<and> i < t \<and> j < t) then j else |
|
248 if (k = j \<and> i < t \<and> j < t) then i else k)" |
|
249 |
|
250 lemma inj_perm_b: "inj (perm_b t i j)" |
|
251 proof(induct rule:injI) |
|
252 case (1 x y) |
|
253 thus ?case |
|
254 by (unfold perm_b_def, auto split:if_splits) |
|
255 qed |
|
256 |
|
257 fun perm :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> cpg \<Rightarrow> cpg" |
|
258 where "perm t i j (CInstr ((act0, l0), (act1, l1))) = |
|
259 (CInstr ((act0, perm_b t i j l0), (act1, perm_b t i j l1)))" | |
|
260 "perm t i j (CLabel l) = CLabel (perm_b t i j l)" | |
|
261 "perm t i j (CSeq c1 c2) = CSeq (perm t i j c1) (perm t i j c2)" | |
|
262 "perm t i j (CLocal c) = CLocal (perm (t + 1) (i + 1) (j + 1) c)" |
|
263 |
|
264 definition "map_idx f sts = map (\<lambda> k. sts!(f (nat k))) [0 .. int (length sts) - 1]" |
|
265 |
|
266 definition "perm_s i j sts = map_idx (perm_b (length sts) i j) sts" |
|
267 |
|
268 value "perm_s 2 5 [(0::int), 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]" |
|
269 |
|
270 lemma "perm_s 2 20 [(0::int), 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] = x" |
|
271 apply (unfold perm_s_def map_idx_def perm_b_def, simp add:upto.simps) |
|
272 oops |
|
273 |
|
274 lemma upto_len: "length [i .. j] = (if j < i then 0 else (nat (j - i + 1)))" |
|
275 proof(induct i j rule:upto.induct) |
|
276 case (1 i j) |
|
277 show ?case |
|
278 proof(cases "j < i") |
|
279 case True |
|
280 thus ?thesis by simp |
|
281 next |
|
282 case False |
|
283 hence eq_ij: "[i..j] = i # [i + 1..j]" by (simp add:upto.simps) |
|
284 from 1 False |
|
285 show ?thesis |
|
286 by (auto simp:eq_ij) |
|
287 qed |
|
288 qed |
|
289 |
|
290 lemma perm_s_len: "length (perm_s i j sts') = length sts'" |
|
291 apply (unfold perm_s_def map_idx_def) |
|
292 by (smt Nil_is_map_conv length_0_conv length_greater_0_conv length_map neq_if_length_neq upto_len) |
|
293 |
|
294 fun c2t :: "nat list \<Rightarrow> cpg \<Rightarrow> tpg" where |
|
295 "c2t env (CInstr ((act0, st0), (act1, st1))) = TInstr ((act0, env!st0), (act1, env!st1))" | |
|
296 "c2t env (CLabel l) = TLabel (env!l)" | |
|
297 "c2t env (CSeq cpg1 cpg2) = TSeq (c2t env cpg1) (c2t env cpg2)" | |
|
298 "c2t env (CLocal cpg) = TLocal (\<lambda> x. c2t (x#env) cpg)" |
|
299 |
|
300 instantiation status :: minus |
|
301 begin |
|
302 fun minus_status :: "status \<Rightarrow> status \<Rightarrow> status" where |
|
303 "minus_status Bound Bound = Free" | |
|
304 "minus_status Bound Free = Bound" | |
|
305 "minus_status Free x = Free " |
|
306 instance .. |
|
307 end |
|
308 |
|
309 instantiation status :: plus |
|
310 begin |
|
311 fun plus_status :: "status \<Rightarrow> status \<Rightarrow> status" where |
|
312 "plus_status Free x = x" | |
|
313 "plus_status Bound x = Bound" |
|
314 instance .. |
|
315 end |
|
316 |
|
317 instantiation list :: (plus)plus |
|
318 begin |
|
319 fun plus_list :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" where |
|
320 "plus_list [] ys = []" | |
|
321 "plus_list (x#xs) [] = []" | |
|
322 "plus_list (x#xs) (y#ys) = ((x + y)#plus_list xs ys)" |
|
323 instance .. |
|
324 end |
|
325 |
|
326 instantiation list :: (minus)minus |
|
327 begin |
|
328 fun minus_list :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" where |
|
329 "minus_list [] ys = []" | |
|
330 "minus_list (x#xs) [] = []" | |
|
331 "minus_list (x#xs) (y#ys) = ((x - y)#minus_list xs ys)" |
|
332 instance .. |
|
333 end |
|
334 |
|
335 (* consts castr :: "nat list \<Rightarrow> nat \<Rightarrow> cpg \<Rightarrow> nat \<Rightarrow> tassert" |
|
336 |
|
337 definition "castr env i cpg j = (i:[c2t env cpg]:j)" *) |
|
338 |
|
339 (* |
|
340 definition |
|
341 "c2p sts i cpg j = (\<forall> x. ((length x = length sts \<and> |
|
342 (\<forall> k < length sts. sts!k = Bound \<longrightarrow> (\<exists> f. x!k = f i))) |
|
343 \<longrightarrow> (\<exists> s. (i:[(c2t x cpg)]:j) s)))" |
|
344 *) |
|
345 |
|
346 definition |
|
347 "c2p sts i cpg j = |
|
348 (\<exists> f. \<forall> x. ((length x = length sts \<and> |
|
349 (\<forall> k < length sts. sts!k = Bound \<longrightarrow> (x!k = f i k))) |
|
350 \<longrightarrow> (\<exists> s. (i:[(c2t x cpg)]:j) s)))" |
|
351 |
|
352 fun wf_cpg_test :: "status list \<Rightarrow> cpg \<Rightarrow> (bool \<times> status list)" where |
|
353 "wf_cpg_test sts (CInstr ((a0, l0), (a1, l1))) = ((l0 < length sts \<and> l1 < length sts), sts)" | |
|
354 "wf_cpg_test sts (CLabel l) = ((l < length sts) \<and> sts!l = Free, sts[l:=Bound])" | |
|
355 "wf_cpg_test sts (CSeq c1 c2) = (let (b1, sts1) = wf_cpg_test sts c1; |
|
356 (b2, sts2) = wf_cpg_test sts1 c2 in |
|
357 (b1 \<and> b2, sts2))" | |
|
358 "wf_cpg_test sts (CLocal body) = (let (b, sts') = (wf_cpg_test (Free#sts) body) in |
|
359 (b, tl sts'))" |
|
360 |
|
361 instantiation status :: order |
|
362 begin |
|
363 definition less_eq_status_def: "((st1::status) \<le> st2) = (st1 = Free \<or> st2 = Bound)" |
|
364 definition less_status_def: "((st1::status) < st2) = (st1 \<le> st2 \<and> st1 \<noteq> st2)" |
|
365 instance |
|
366 proof |
|
367 fix x y |
|
368 show "(x < (y::status)) = (x \<le> y \<and> \<not> y \<le> x)" |
|
369 by (metis less_eq_status_def less_status_def status.distinct(1)) |
|
370 next |
|
371 fix x show "x \<le> (x::status)" |
|
372 by (metis (full_types) less_eq_status_def status.exhaust) |
|
373 next |
|
374 fix x y z |
|
375 assume "x \<le> y" "y \<le> (z::status)" show "x \<le> (z::status)" |
|
376 by (metis `x \<le> y` `y \<le> z` less_eq_status_def status.distinct(1)) |
|
377 next |
|
378 fix x y |
|
379 assume "x \<le> y" "y \<le> (x::status)" show "x = y" |
|
380 by (metis `x \<le> y` `y \<le> x` less_eq_status_def status.distinct(1)) |
|
381 qed |
|
382 end |
|
383 |
|
384 instantiation list :: (order)order |
|
385 begin |
|
386 definition "((sts::('a::order) list) \<le> sts') = |
|
387 ((length sts = length sts') \<and> (\<forall> i < length sts. sts!i \<le> sts'!i))" |
|
388 definition "((sts::('a::order) list) < sts') = ((sts \<le> sts') \<and> sts \<noteq> sts')" |
|
389 |
|
390 lemma anti_sym: assumes h: "x \<le> (y::'a list)" "y \<le> x" |
|
391 shows "x = y" |
|
392 proof - |
|
393 from h have "length x = length y" |
|
394 by (metis less_eq_list_def) |
|
395 moreover from h have " (\<forall> i < length x. x!i = y!i)" |
|
396 by (metis (full_types) antisym_conv less_eq_list_def) |
|
397 ultimately show ?thesis |
|
398 by (metis nth_equalityI) |
|
399 qed |
|
400 |
|
401 lemma refl: "x \<le> (x::('a::order) list)" |
|
402 apply (unfold less_eq_list_def) |
|
403 by (metis order_refl) |
|
404 |
|
405 instance |
|
406 proof |
|
407 fix x y |
|
408 show "((x::('a::order) list) < y) = (x \<le> y \<and> \<not> y \<le> x)" |
|
409 proof |
|
410 assume h: "x \<le> y \<and> \<not> y \<le> x" |
|
411 have "x \<noteq> y" |
|
412 proof |
|
413 assume "x = y" with h have "\<not> (x \<le> x)" by simp |
|
414 with refl show False by auto |
|
415 qed |
|
416 moreover from h have "x \<le> y" by blast |
|
417 ultimately show "x < y" by (auto simp:less_list_def) |
|
418 next |
|
419 assume h: "x < y" |
|
420 hence hh: "x \<le> y" |
|
421 by (metis TM_Assemble.less_list_def) |
|
422 moreover have "\<not> y \<le> x" |
|
423 proof |
|
424 assume "y \<le> x" |
|
425 from anti_sym[OF hh this] have "x = y" . |
|
426 with h show False |
|
427 by (metis less_list_def) |
|
428 qed |
|
429 ultimately show "x \<le> y \<and> \<not> y \<le> x" by auto |
|
430 qed |
|
431 next |
|
432 fix x from refl show "(x::'a list) \<le> x" . |
|
433 next |
|
434 fix x y assume "(x::'a list) \<le> y" "y \<le> x" |
|
435 from anti_sym[OF this] show "x = y" . |
|
436 next |
|
437 fix x y z |
|
438 assume h: "(x::'a list) \<le> y" "y \<le> z" |
|
439 show "x \<le> z" |
|
440 proof - |
|
441 from h have "length x = length z" by (metis TM_Assemble.less_eq_list_def) |
|
442 moreover from h have "\<forall> i < length x. x!i \<le> z!i" |
|
443 by (metis TM_Assemble.less_eq_list_def order_trans) |
|
444 ultimately show "x \<le> z" |
|
445 by (metis TM_Assemble.less_eq_list_def) |
|
446 qed |
|
447 qed |
|
448 end |
|
449 |
|
450 lemma sts_bound_le: "sts \<le> sts[l := Bound]" |
|
451 proof - |
|
452 have "length sts = length (sts[l := Bound])" |
|
453 by (metis length_list_update) |
|
454 moreover have "\<forall> i < length sts. sts!i \<le> (sts[l:=Bound])!i" |
|
455 proof - |
|
456 { fix i |
|
457 assume "i < length sts" |
|
458 have "sts ! i \<le> sts[l := Bound] ! i" |
|
459 proof(cases "l < length sts") |
|
460 case True |
|
461 note le_l = this |
|
462 show ?thesis |
|
463 proof(cases "l = i") |
|
464 case True with le_l |
|
465 have "sts[l := Bound] ! i = Bound" by auto |
|
466 thus ?thesis by (metis less_eq_status_def) |
|
467 next |
|
468 case False |
|
469 with le_l have "sts[l := Bound] ! i = sts!i" by auto |
|
470 thus ?thesis by auto |
|
471 qed |
|
472 next |
|
473 case False |
|
474 hence "sts[l := Bound] = sts" by auto |
|
475 thus ?thesis by auto |
|
476 qed |
|
477 } thus ?thesis by auto |
|
478 qed |
|
479 ultimately show ?thesis by (metis less_eq_list_def) |
|
480 qed |
|
481 |
|
482 lemma sts_tl_le: |
|
483 assumes "sts \<le> sts'" |
|
484 shows "tl sts \<le> tl sts'" |
|
485 proof - |
|
486 from assms have "length (tl sts) = length (tl sts')" |
|
487 by (metis (hide_lams, no_types) length_tl less_eq_list_def) |
|
488 moreover from assms have "\<forall> i < length (tl sts). (tl sts)!i \<le> (tl sts')!i" |
|
489 by (smt calculation length_tl less_eq_list_def nth_tl) |
|
490 ultimately show ?thesis |
|
491 by (metis less_eq_list_def) |
|
492 qed |
|
493 |
|
494 lemma wf_cpg_test_le: |
|
495 assumes "wf_cpg_test sts cpg = (True, sts')" |
|
496 shows "sts \<le> sts'" using assms |
|
497 proof(induct cpg arbitrary:sts sts') |
|
498 case (CInstr instr sts sts') |
|
499 obtain a0 l0 a1 l1 where eq_instr: "instr = ((a0, l0), (a1, l1))" |
|
500 by (metis prod.exhaust) |
|
501 from CInstr[unfolded this] |
|
502 show ?case by simp |
|
503 next |
|
504 case (CLabel l sts sts') |
|
505 thus ?case by (auto simp:sts_bound_le) |
|
506 next |
|
507 case (CLocal body sts sts') |
|
508 from this(2) |
|
509 obtain sts1 where h: "wf_cpg_test (Free # sts) body = (True, sts1)" "sts' = tl sts1" |
|
510 by (auto split:prod.splits) |
|
511 from CLocal(1)[OF this(1)] have "Free # sts \<le> sts1" . |
|
512 from sts_tl_le[OF this] |
|
513 have "sts \<le> tl sts1" by simp |
|
514 from this[folded h(2)] |
|
515 show ?case . |
|
516 next |
|
517 case (CSeq cpg1 cpg2 sts sts') |
|
518 from this(3) |
|
519 show ?case |
|
520 by (auto split:prod.splits dest!:CSeq(1, 2)) |
|
521 qed |
|
522 |
|
523 lemma c2p_assert: |
|
524 assumes "(c2p [] i cpg j)" |
|
525 shows "\<exists> s. (i :[(c2t [] cpg)]: j) s" |
|
526 proof - |
|
527 from assms obtain f where |
|
528 h [rule_format]: |
|
529 "\<forall> x. length x = length [] \<and> (\<forall>k<length []. [] ! k = Bound \<longrightarrow> (x ! k = f i k)) \<longrightarrow> |
|
530 (\<exists> s. (i :[ c2t [] cpg ]: j) s)" |
|
531 by (unfold c2p_def, auto) |
|
532 have "length [] = length [] \<and> (\<forall>k<length []. [] ! k = Bound \<longrightarrow> ([] ! k = f i k))" |
|
533 by auto |
|
534 from h[OF this] obtain s where "(i :[ c2t [] cpg ]: j) s" by blast |
|
535 thus ?thesis by auto |
|
536 qed |
|
537 |
|
538 definition "sts_disj sts sts' = ((length sts = length sts') \<and> |
|
539 (\<forall> i < length sts. \<not>(sts!i = Bound \<and> sts'!i = Bound)))" |
|
540 |
|
541 lemma length_sts_plus: |
|
542 assumes "length (sts1 :: status list) = length sts2" |
|
543 shows "length (sts1 + sts2) = length sts1" |
|
544 using assms |
|
545 proof(induct sts1 arbitrary: sts2) |
|
546 case Nil |
|
547 thus ?case |
|
548 by (metis plus_list.simps(1)) |
|
549 next |
|
550 case (Cons s' sts' sts2) |
|
551 thus ?case |
|
552 proof(cases "sts2 = []") |
|
553 case True |
|
554 with Cons show ?thesis by auto |
|
555 next |
|
556 case False |
|
557 then obtain s'' sts'' where eq_sts2: "sts2 = s''#sts''" |
|
558 by (metis neq_Nil_conv) |
|
559 with Cons |
|
560 show ?thesis |
|
561 by (metis length_Suc_conv list.inject plus_list.simps(3)) |
|
562 qed |
|
563 qed |
|
564 |
|
565 |
|
566 lemma nth_sts_plus: |
|
567 assumes "i < length ((sts1::status list) + sts2)" |
|
568 shows "(sts1 + sts2)!i = sts1!i + sts2!i" |
|
569 using assms |
|
570 proof(induct sts1 arbitrary:i sts2) |
|
571 case (Nil i sts2) |
|
572 thus ?case by auto |
|
573 next |
|
574 case (Cons s' sts' i sts2) |
|
575 show ?case |
|
576 proof(cases "sts2 = []") |
|
577 case True |
|
578 with Cons show ?thesis by auto |
|
579 next |
|
580 case False |
|
581 then obtain s'' sts'' where eq_sts2: "sts2 = s''#sts''" |
|
582 by (metis neq_Nil_conv) |
|
583 with Cons |
|
584 show ?thesis |
|
585 by (smt list.size(4) nth_Cons' plus_list.simps(3)) |
|
586 qed |
|
587 qed |
|
588 |
|
589 lemma nth_sts_minus: |
|
590 assumes "i < length ((sts1::status list) - sts2)" |
|
591 shows "(sts1 - sts2)!i = sts1!i - sts2!i" |
|
592 using assms |
|
593 proof(induct arbitrary:i rule:minus_list.induct) |
|
594 case (3 x xs y ys i) |
|
595 show ?case |
|
596 proof(cases i) |
|
597 case 0 |
|
598 thus ?thesis by simp |
|
599 next |
|
600 case (Suc k) |
|
601 with 3(2) have "k < length (xs - ys)" by auto |
|
602 from 3(1)[OF this] and Suc |
|
603 show ?thesis |
|
604 by auto |
|
605 qed |
|
606 qed auto |
|
607 |
|
608 fun taddr :: "tresource \<Rightarrow> nat" where |
|
609 "taddr (TC i instr) = i" |
|
610 |
|
611 lemma tassemble_to_range: |
|
612 assumes "(i :[tpg]: j) s" |
|
613 shows "(i \<le> j) \<and> (\<forall> r \<in> s. i \<le> taddr r \<and> taddr r < j)" |
|
614 using assms |
|
615 proof(induct tpg arbitrary: i j s) |
|
616 case (TInstr instr i j s) |
|
617 obtain a0 l0 a1 l1 where "instr = ((a0, l0), (a1, l1))" |
|
618 by (metis pair_collapse) |
|
619 with TInstr |
|
620 show ?case |
|
621 apply (simp add:tassemble_to.simps sg_def) |
|
622 by (smt `instr = ((a0, l0), a1, l1)` cond_eq cond_true_eq1 |
|
623 empty_iff insert_iff le_refl lessI sep.mult_commute taddr.simps) |
|
624 next |
|
625 case (TLabel l i j s) |
|
626 thus ?case |
|
627 apply (simp add:tassemble_to.simps) |
|
628 by (smt equals0D pasrt_def set_zero_def) |
|
629 next |
|
630 case (TSeq c1 c2 i j s) |
|
631 from TSeq(3) obtain s1 s2 j' where |
|
632 h: "(i :[ c1 ]: j') s1" "(j' :[ c2 ]: j) s2" "s1 ## s2" "s = s1 + s2" |
|
633 by (auto simp:tassemble_to.simps elim!:EXS_elim sep_conjE) |
|
634 show ?case |
|
635 proof - |
|
636 { fix r |
|
637 assume "r \<in> s" |
|
638 with h (3, 4) have "r \<in> s1 \<or> r \<in> s2" |
|
639 by (auto simp:set_ins_def) |
|
640 hence "i \<le> j \<and> i \<le> taddr r \<and> taddr r < j" |
|
641 proof |
|
642 assume " r \<in> s1" |
|
643 from TSeq(1)[OF h(1)] |
|
644 have "i \<le> j'" "(\<forall>r\<in>s1. i \<le> taddr r \<and> taddr r < j')" by auto |
|
645 from this(2)[rule_format, OF `r \<in> s1`] |
|
646 have "i \<le> taddr r" "taddr r < j'" by auto |
|
647 with TSeq(2)[OF h(2)] |
|
648 show ?thesis by auto |
|
649 next |
|
650 assume "r \<in> s2" |
|
651 from TSeq(2)[OF h(2)] |
|
652 have "j' \<le> j" "(\<forall>r\<in>s2. j' \<le> taddr r \<and> taddr r < j)" by auto |
|
653 from this(2)[rule_format, OF `r \<in> s2`] |
|
654 have "j' \<le> taddr r" "taddr r < j" by auto |
|
655 with TSeq(1)[OF h(1)] |
|
656 show ?thesis by auto |
|
657 qed |
|
658 } thus ?thesis |
|
659 by (smt TSeq.hyps(1) TSeq.hyps(2) h(1) h(2)) |
|
660 qed |
|
661 next |
|
662 case (TLocal body i j s) |
|
663 from this(2) obtain l s' where "(i :[ body l ]: j) s" |
|
664 by (simp add:tassemble_to.simps, auto elim!:EXS_elim) |
|
665 from TLocal(1)[OF this] |
|
666 show ?case by auto |
|
667 qed |
|
668 |
|
669 lemma c2p_seq: |
|
670 assumes "c2p sts1 i cpg1 j'" |
|
671 "c2p sts2 j' cpg2 j" |
|
672 "sts_disj sts1 sts2" |
|
673 shows "(c2p (sts1 + sts2) i (CSeq cpg1 cpg2) j)" |
|
674 proof - |
|
675 from assms(1)[unfolded c2p_def] |
|
676 obtain f1 where |
|
677 h1[rule_format]: |
|
678 "\<forall>x. length x = length sts1 \<and> (\<forall>k<length sts1. sts1 ! k = Bound \<longrightarrow> (x ! k = f1 i k)) \<longrightarrow> |
|
679 Ex (i :[ c2t x cpg1 ]: j')" by blast |
|
680 from assms(2)[unfolded c2p_def] |
|
681 obtain f2 where h2[rule_format]: |
|
682 "\<forall>x. length x = length sts2 \<and> (\<forall>k<length sts2. sts2 ! k = Bound \<longrightarrow> (x ! k = f2 j' k)) \<longrightarrow> |
|
683 Ex (j' :[ c2t x cpg2 ]: j)" by blast |
|
684 from assms(3)[unfolded sts_disj_def] |
|
685 have h3: "length sts1 = length sts2" |
|
686 and h4[rule_format]: |
|
687 "(\<forall>i<length sts1. \<not> (sts1 ! i = Bound \<and> sts2 ! i = Bound))" by auto |
|
688 let ?f = "\<lambda> i k. if (sts1!k = Bound) then f1 i k else f2 j' k" |
|
689 { fix x |
|
690 assume h5: "length x = length (sts1 + sts2)" and |
|
691 h6[rule_format]: "(\<forall>k<length (sts1 + sts2). (sts1 + sts2) ! k = Bound \<longrightarrow> x ! k = ?f i k)" |
|
692 obtain s1 where h_s1: "(i :[ c2t x cpg1 ]: j') s1" |
|
693 proof(atomize_elim, rule h1) |
|
694 from h3 h5 have "length x = length sts1" |
|
695 by (metis length_sts_plus) |
|
696 moreover { |
|
697 fix k assume hh: "k<length sts1" "sts1 ! k = Bound" |
|
698 from hh(1) h3 h5 have p1: "k < length (sts1 + sts2)" |
|
699 by (metis calculation) |
|
700 from h3 hh(2) have p2: "(sts1 + sts2)!k = Bound" |
|
701 by (metis nth_sts_plus p1 plus_status.simps(2)) |
|
702 from h6[OF p1 p2] have "x ! k = (if sts1 ! k = Bound then f1 i k else f2 j' k)" . |
|
703 with hh(2) |
|
704 have "x ! k = f1 i k" by simp |
|
705 } ultimately show "length x = length sts1 \<and> |
|
706 (\<forall>k<length sts1. sts1 ! k = Bound \<longrightarrow> (x ! k = f1 i k))" |
|
707 by blast |
|
708 qed |
|
709 obtain s2 where h_s2: "(j' :[ c2t x cpg2 ]: j) s2" |
|
710 proof(atomize_elim, rule h2) |
|
711 from h3 h5 have "length x = length sts2" |
|
712 by (metis length_sts_plus) |
|
713 moreover { |
|
714 fix k |
|
715 assume hh: "k<length sts2" "sts2 ! k = Bound" |
|
716 from hh(1) h3 h5 have p1: "k < length (sts1 + sts2)" |
|
717 by (metis calculation) |
|
718 from hh(1) h3 h5 hh(2) have p2: "(sts1 + sts2)!k = Bound" |
|
719 by (metis `length sts1 = length sts2 \<and> |
|
720 (\<forall>i<length sts1. \<not> (sts1 ! i = Bound \<and> sts2 ! i = Bound))` |
|
721 calculation nth_sts_plus plus_status.simps(1) status.distinct(1) status.exhaust) |
|
722 from h6[OF p1 p2] have "x ! k = (if sts1 ! k = Bound then f1 i k else f2 j' k)" . |
|
723 moreover from h4[OF hh(1)[folded h3]] hh(2) have "sts1!k \<noteq> Bound" by auto |
|
724 ultimately have "x!k = f2 j' k" by simp |
|
725 } ultimately show "length x = length sts2 \<and> |
|
726 (\<forall>k<length sts2. sts2 ! k = Bound \<longrightarrow> (x ! k = f2 j' k))" |
|
727 by blast |
|
728 qed |
|
729 have h_s12: "s1 ## s2" |
|
730 proof - |
|
731 { fix r assume h: "r \<in> s1" "r \<in> s2" |
|
732 with h_s1 h_s2 |
|
733 have "False"by (smt tassemble_to_range) |
|
734 } thus ?thesis by (auto simp:set_ins_def) |
|
735 qed |
|
736 have "(EXS j'. i :[ c2t x cpg1 ]: j' \<and>* j' :[ c2t x cpg2 ]: j) (s1 + s2)" |
|
737 proof(rule_tac x = j' in EXS_intro) |
|
738 from h_s1 h_s2 h_s12 |
|
739 show "(i :[ c2t x cpg1 ]: j' \<and>* j' :[ c2t x cpg2 ]: j) (s1 + s2)" |
|
740 by (metis sep_conjI) |
|
741 qed |
|
742 hence "\<exists> s. (i :[ c2t x (CSeq cpg1 cpg2) ]: j) s" |
|
743 by (auto simp:tassemble_to.simps) |
|
744 } |
|
745 hence "\<exists>f. \<forall>x. length x = length (sts1 + sts2) \<and> |
|
746 (\<forall>k<length (sts1 + sts2). (sts1 + sts2) ! k = Bound \<longrightarrow> x ! k = f i k) \<longrightarrow> |
|
747 Ex (i :[ c2t x (CSeq cpg1 cpg2) ]: j)" |
|
748 by (rule_tac x = ?f in exI, auto) |
|
749 thus ?thesis |
|
750 by(unfold c2p_def, auto) |
|
751 qed |
|
752 |
|
753 lemma plus_list_len: |
|
754 "length ((sts1::status list) + sts2) = min (length sts1) (length sts2)" |
|
755 by(induct rule:plus_list.induct, auto) |
|
756 |
|
757 lemma minus_list_len: |
|
758 "length ((sts1::status list) - sts2) = min (length sts1) (length sts2)" |
|
759 by(induct rule:minus_list.induct, auto) |
|
760 |
|
761 lemma sts_le_comb: |
|
762 assumes "sts1 \<le> sts2" |
|
763 and "sts2 \<le> sts3" |
|
764 shows "sts_disj (sts2 - sts1) (sts3 - sts2)" and |
|
765 "(sts3 - sts1) = (sts2 - sts1) + (sts3 - sts2)" |
|
766 proof - |
|
767 from assms |
|
768 have h1: "length sts1 = length sts2" "\<forall>i<length sts1. sts1 ! i \<le> sts2 ! i" |
|
769 and h2: "length sts2 = length sts3" "\<forall>i<length sts1. sts2 ! i \<le> sts3 ! i" |
|
770 by (unfold less_eq_list_def, auto) |
|
771 have "sts_disj (sts2 - sts1) (sts3 - sts2)" |
|
772 proof - |
|
773 from h1(1) h2(1) |
|
774 have "length (sts2 - sts1) = length (sts3 - sts2)" |
|
775 by (metis minus_list_len) |
|
776 moreover { |
|
777 fix i |
|
778 assume lt_i: "i<length (sts2 - sts1)" |
|
779 from lt_i h1(1) h2(1) have "i < length sts1" |
|
780 by (smt minus_list_len) |
|
781 from h1(2)[rule_format, of i, OF this] h2(2)[rule_format, of i, OF this] |
|
782 have "sts1 ! i \<le> sts2 ! i" "sts2 ! i \<le> sts3 ! i" . |
|
783 moreover have "(sts2 - sts1) ! i = sts2!i - sts1!i" |
|
784 by (metis lt_i nth_sts_minus) |
|
785 moreover have "(sts3 - sts2)!i = sts3!i - sts2!i" |
|
786 by (metis `length (sts2 - sts1) = length (sts3 - sts2)` lt_i nth_sts_minus) |
|
787 ultimately have " \<not> ((sts2 - sts1) ! i = Bound \<and> (sts3 - sts2) ! i = Bound)" |
|
788 apply (cases "sts2!i", cases "sts1!i", cases "sts3!i", simp, simp) |
|
789 apply (cases "sts3!i", simp, simp) |
|
790 apply (cases "sts1!i", cases "sts3!i", simp, simp) |
|
791 by (cases "sts3!i", simp, simp) |
|
792 } ultimately show ?thesis by (unfold sts_disj_def, auto) |
|
793 qed |
|
794 moreover have "(sts3 - sts1) = (sts2 - sts1) + (sts3 - sts2)" |
|
795 proof(induct rule:nth_equalityI) |
|
796 case 1 |
|
797 show ?case by (metis h1(1) h2(1) length_sts_plus minus_list_len) |
|
798 next |
|
799 case 2 |
|
800 { fix i |
|
801 assume lt_i: "i<length (sts3 - sts1)" |
|
802 have "(sts3 - sts1) ! i = (sts2 - sts1 + (sts3 - sts2)) ! i" (is "?L = ?R") |
|
803 proof - |
|
804 have "?R = sts2!i - sts1!i + (sts3!i - sts2!i)" |
|
805 by (smt `i < length (sts3 - sts1)` h2(1) minus_list_len nth_sts_minus |
|
806 nth_sts_plus plus_list_len) |
|
807 moreover have "?L = sts3!i - sts1!i" |
|
808 by (metis `i < length (sts3 - sts1)` nth_sts_minus) |
|
809 moreover |
|
810 have "sts2!i - sts1!i + (sts3!i - sts2!i) = sts3!i - sts1!i" |
|
811 proof - |
|
812 from lt_i h1(1) h2(1) have "i < length sts1" |
|
813 by (smt minus_list_len) |
|
814 from h1(2)[rule_format, of i, OF this] h2(2)[rule_format, of i, OF this] |
|
815 show ?thesis |
|
816 apply (cases "sts2!i", cases "sts1!i", cases "sts3!i", simp, simp) |
|
817 apply (cases "sts3!i", simp, simp) |
|
818 apply (cases "sts1!i", cases "sts3!i", simp, simp) |
|
819 by (cases "sts3!i", simp, simp) |
|
820 qed |
|
821 ultimately show ?thesis by simp |
|
822 qed |
|
823 } thus ?case by auto |
|
824 qed |
|
825 ultimately show "sts_disj (sts2 - sts1) (sts3 - sts2)" and |
|
826 "(sts3 - sts1) = (sts2 - sts1) + (sts3 - sts2)" by auto |
|
827 qed |
|
828 |
|
829 lemma wf_cpg_test_correct: |
|
830 assumes "wf_cpg_test sts cpg = (True, sts')" |
|
831 shows "(\<forall> i. \<exists> j. (c2p (sts' - sts) i cpg j))" |
|
832 using assms |
|
833 proof(induct cpg arbitrary:sts sts') |
|
834 case (CInstr instr sts sts') |
|
835 obtain a0 l0 a1 l1 where eq_instr: "instr = ((a0, l0), (a1, l1))" |
|
836 by (metis prod.exhaust) |
|
837 show ?case |
|
838 proof(unfold eq_instr c2p_def, clarsimp simp:tassemble_to.simps) |
|
839 fix i |
|
840 let ?a = "Suc i" and ?f = "\<lambda> i k. i" |
|
841 show "\<exists>a f. \<forall>x. length x = length (sts' - sts) \<and> |
|
842 (\<forall>k<length (sts' - sts). (sts' - sts) ! k = Bound \<longrightarrow> x ! k = f i k) \<longrightarrow> |
|
843 Ex (sg {TC i ((a0, x ! l0), a1, x ! l1)} \<and>* <(a = Suc i)>)" |
|
844 proof(rule_tac x = ?a in exI, rule_tac x = ?f in exI, default, clarsimp) |
|
845 fix x |
|
846 let ?j = "Suc i" |
|
847 let ?s = " {TC i ((a0, x ! l0), a1, x ! l1)}" |
|
848 have "(sg {TC i ((a0, x ! l0), a1, x ! l1)} \<and>* <(Suc i = Suc i)>) ?s" |
|
849 by (simp add:tassemble_to.simps sg_def) |
|
850 thus "Ex (sg {TC i ((a0, x ! l0), a1, x ! l1)})" by auto |
|
851 qed |
|
852 qed |
|
853 next |
|
854 case (CLabel l sts sts') |
|
855 show ?case |
|
856 proof |
|
857 fix i |
|
858 from CLabel |
|
859 have h1: "l < length sts" |
|
860 and h2: "sts ! l = Free" |
|
861 and h3: "sts[l := Bound] = sts'" by auto |
|
862 let ?f = "\<lambda> i k. i" |
|
863 have "\<exists>a f. \<forall>x. length x = length (sts' - sts) \<and> |
|
864 (\<forall>k<length (sts' - sts). (sts' - sts) ! k = Bound \<longrightarrow> x ! k = f (i::nat) k) \<longrightarrow> |
|
865 Ex (<(i = a \<and> a = x ! l)>)" |
|
866 proof(rule_tac x = i in exI, rule_tac x = ?f in exI, clarsimp) |
|
867 fix x |
|
868 assume h[rule_format]: |
|
869 "\<forall>k<length (sts' - sts). (sts' - sts) ! k = Bound \<longrightarrow> x ! k = i" |
|
870 from h1 h3 have p1: "l < length (sts' - sts)" |
|
871 by (metis length_list_update min_max.inf.idem minus_list_len) |
|
872 from p1 h2 h3 have p2: "(sts' - sts)!l = Bound" |
|
873 by (metis h1 minus_status.simps(2) nth_list_update_eq nth_sts_minus) |
|
874 from h[OF p1 p2] have "(<(i = x ! l)>) 0" |
|
875 by (simp add:set_ins_def) |
|
876 thus "\<exists> s. (<(i = x ! l)>) s" by auto |
|
877 qed |
|
878 thus "\<exists>a. c2p (sts' - sts) i (CLabel l) a" |
|
879 by (auto simp:c2p_def tassemble_to.simps) |
|
880 qed |
|
881 next |
|
882 case (CSeq cpg1 cpg2 sts sts') |
|
883 show ?case |
|
884 proof |
|
885 fix i |
|
886 from CSeq(3)[unfolded wf_cpg_test.simps] |
|
887 show "\<exists> j. c2p (sts' - sts) i (CSeq cpg1 cpg2) j" |
|
888 proof(let_elim) |
|
889 case (LetE b1 sts1) |
|
890 from this(1) |
|
891 obtain b2 where h: "(b2, sts') = wf_cpg_test sts1 cpg2" "b1=True" "b2=True" |
|
892 by (atomize_elim, unfold Let_def, auto split:prod.splits) |
|
893 from wf_cpg_test_le[OF LetE(2)[symmetric, unfolded h(2)]] |
|
894 have sts_le1: "sts \<le> sts1" . |
|
895 from CSeq(1)[OF LetE(2)[unfolded h(2), symmetric], rule_format, of i] |
|
896 obtain j1 where h1: "(c2p (sts1 - sts) i cpg1 j1)" by blast |
|
897 from wf_cpg_test_le[OF h(1)[symmetric, unfolded h(3)]] |
|
898 have sts_le2: "sts1 \<le> sts'" . |
|
899 from sts_le_comb[OF sts_le1 sts_le2] |
|
900 have hh: "sts_disj (sts1 - sts) (sts' - sts1)" |
|
901 "sts' - sts = (sts1 - sts) + (sts' - sts1)" . |
|
902 from CSeq(2)[OF h(1)[symmetric, unfolded h(3)], rule_format, of j1] |
|
903 obtain j2 where h2: "(c2p (sts' - sts1) j1 cpg2 j2)" by blast |
|
904 have "c2p (sts' - sts) i (CSeq cpg1 cpg2) j2" |
|
905 by(unfold hh(2), rule c2p_seq[OF h1 h2 hh(1)]) |
|
906 thus ?thesis by blast |
|
907 qed |
|
908 qed |
|
909 next |
|
910 case (CLocal body sts sts') |
|
911 from this(2) obtain b sts1 s where |
|
912 h: "wf_cpg_test (Free # sts) body = (True, sts1)" |
|
913 "sts' = tl sts1" |
|
914 by (unfold wf_cpg_test.simps, auto split:prod.splits) |
|
915 from wf_cpg_test_le[OF h(1), unfolded less_eq_list_def] h(2) |
|
916 obtain s where eq_sts1: "sts1 = s#sts'" |
|
917 by (metis Suc_length_conv list.size(4) tl.simps(2)) |
|
918 from CLocal(1)[OF h(1)] have p1: "\<forall>i. \<exists>a. c2p (sts1 - (Free # sts)) i body a" . |
|
919 show ?case |
|
920 proof |
|
921 fix i |
|
922 from p1[rule_format, of i] obtain j where "(c2p (sts1 - (Free # sts)) i body) j" by blast |
|
923 then obtain f where hh [rule_format]: |
|
924 "\<forall>x. length x = length (sts1 - (Free # sts)) \<and> |
|
925 (\<forall>k<length (sts1 - (Free # sts)). (sts1 - (Free # sts)) ! k = Bound \<longrightarrow> x ! k = f i k) \<longrightarrow> |
|
926 (\<exists>s. (i :[ c2t x body ]: j) s)" |
|
927 by (auto simp:c2p_def) |
|
928 let ?f = "\<lambda> i k. f i (Suc k)" |
|
929 have "\<exists>j f. \<forall>x. length x = length (sts' - sts) \<and> |
|
930 (\<forall>k<length (sts' - sts). (sts' - sts) ! k = Bound \<longrightarrow> x ! k = f i k) \<longrightarrow> |
|
931 (\<exists>s. (i :[ (TL xa. c2t (xa # x) body) ]: j) s)" |
|
932 proof(rule_tac x = j in exI, rule_tac x = ?f in exI, default, clarsimp) |
|
933 fix x |
|
934 assume h1: "length x = length (sts' - sts)" |
|
935 and h2: "\<forall>k<length (sts' - sts). (sts' - sts) ! k = Bound \<longrightarrow> x ! k = f i (Suc k)" |
|
936 let ?l = "f i 0" let ?x = " ?l#x" |
|
937 from wf_cpg_test_le[OF h(1)] have "length (Free#sts) = length sts1" |
|
938 by (unfold less_eq_list_def, simp) |
|
939 with h1 h(2) have q1: "length (?l # x) = length (sts1 - (Free # sts))" |
|
940 by (smt Suc_length_conv length_Suc_conv list.inject list.size(4) |
|
941 minus_list.simps(3) minus_list_len tl.simps(2)) |
|
942 have q2: "(\<forall>k<length (sts1 - (Free # sts)). |
|
943 (sts1 - (Free # sts)) ! k = Bound \<longrightarrow> (f i 0 # x) ! k = f i k)" |
|
944 proof - |
|
945 { fix k |
|
946 assume lt_k: "k<length (sts1 - (Free # sts))" |
|
947 and bd_k: "(sts1 - (Free # sts)) ! k = Bound" |
|
948 have "(f i 0 # x) ! k = f i k" |
|
949 proof(cases "k") |
|
950 case (Suc k') |
|
951 moreover have "x ! k' = f i (Suc k')" |
|
952 proof(rule h2[rule_format]) |
|
953 from bd_k Suc eq_sts1 show "(sts' - sts) ! k' = Bound" by simp |
|
954 next |
|
955 from Suc lt_k eq_sts1 show "k' < length (sts' - sts)" by simp |
|
956 qed |
|
957 ultimately show ?thesis by simp |
|
958 qed simp |
|
959 } thus ?thesis by auto |
|
960 qed |
|
961 from conjI[THEN hh[of ?x], OF q1 q2] obtain s |
|
962 where h_s: "(i :[ c2t (f i 0 # x) body ]: j) s" by blast |
|
963 thus "\<exists>s. (i :[ (TL xa. c2t (xa # x) body) ]: j) s" |
|
964 apply (simp add:tassemble_to.simps) |
|
965 by (rule_tac x = s in exI, rule_tac x = ?l in EXS_intro, simp) |
|
966 qed |
|
967 thus "\<exists>j. c2p (sts' - sts) i (CLocal body) j" |
|
968 by (auto simp:c2p_def) |
|
969 qed |
|
970 qed |
|
971 |
|
972 lemma |
|
973 assumes "wf_cpg_test [] cpg = (True, sts')" |
|
974 and "tpg = c2t [] cpg" |
|
975 shows "\<forall> i. \<exists> j s. ((i:[tpg]:j) s)" |
|
976 proof |
|
977 fix i |
|
978 have eq_sts_minus: "(sts' - []) = []" |
|
979 by (metis list.exhaust minus_list.simps(1) minus_list.simps(2)) |
|
980 from wf_cpg_test_correct[OF assms(1), rule_format, of i] |
|
981 obtain j where "c2p (sts' - []) i cpg j" by auto |
|
982 from c2p_assert [OF this[unfolded eq_sts_minus]] |
|
983 obtain s where "(i :[ c2t [] cpg ]: j) s" by blast |
|
984 from this[folded assms(2)] |
|
985 show " \<exists> j s. ((i:[tpg]:j) s)" by blast |
|
986 qed |
|
987 |
|
988 lemma replicate_nth: "(replicate n x @ sts) ! (l + n) = sts!l" |
|
989 by (smt length_replicate nth_append) |
|
990 |
|
991 lemma replicate_update: |
|
992 "(replicate n x @ sts)[l + n := v] = replicate n x @ sts[l := v]" |
|
993 by (smt length_replicate list_update_append) |
|
994 |
|
995 lemma l_n_v_orig: |
|
996 assumes "l0 < length env" |
|
997 and "t \<le> l0" |
|
998 shows "(take t env @ es @ drop t env) ! (l0 + length es) = env ! l0" |
|
999 proof - |
|
1000 from assms(1, 2) have "t < length env" by auto |
|
1001 hence h: "env = take t env @ drop t env" |
|
1002 "length (take t env) = t" |
|
1003 apply (metis append_take_drop_id) |
|
1004 by (smt `t < length env` length_take) |
|
1005 with assms(2) have eq_sts_l: "env!l0 = (drop t env)!(l0 - t)" |
|
1006 by (metis nth_app) |
|
1007 from h(2) have "length (take t env @ es) = t + length es" |
|
1008 by (metis length_append length_replicate nat_add_commute) |
|
1009 moreover from assms(2) have "t + (length es) \<le> l0 + (length es)" by auto |
|
1010 ultimately have "((take t env @ es) @ drop t env)!(l0 + length es) = |
|
1011 (drop t env)!(l0+ length es - (t + length es))" |
|
1012 by (smt length_replicate length_splice nth_append) |
|
1013 with eq_sts_l[symmetric, unfolded assms] |
|
1014 show ?thesis by auto |
|
1015 qed |
|
1016 |
|
1017 lemma l_n_v: |
|
1018 assumes "l < length sts" |
|
1019 and "sts!l = v" |
|
1020 and "t \<le> l" |
|
1021 shows "(take t sts @ replicate n x @ drop t sts) ! (l + n) = v" |
|
1022 proof - |
|
1023 from l_n_v_orig[OF assms(1) assms(3), of "replicate n x"] |
|
1024 and assms(2) |
|
1025 show ?thesis by auto |
|
1026 qed |
|
1027 |
|
1028 lemma l_n_v_s: |
|
1029 assumes "l < length sts" |
|
1030 and "t \<le> l" |
|
1031 shows "(take t sts @ sts0 @ drop t sts)[l + length sts0 := v] = |
|
1032 take t (sts[l:=v])@ sts0 @ drop t (sts[l:=v])" |
|
1033 proof - |
|
1034 let ?n = "length sts0" |
|
1035 from assms(1, 2) have "t < length sts" by auto |
|
1036 hence h: "sts = take t sts @ drop t sts" |
|
1037 "length (take t sts) = t" |
|
1038 apply (metis append_take_drop_id) |
|
1039 by (smt `t < length sts` length_take) |
|
1040 with assms(2) have eq_sts_l: "sts[l:=v] = take t sts @ drop t sts [(l - t) := v]" |
|
1041 by (smt list_update_append) |
|
1042 with h(2) have eq_take_drop_t: "take t (sts[l:=v]) = take t sts" |
|
1043 "drop t (sts[l:=v]) = (drop t sts)[l - t:=v]" |
|
1044 apply (metis append_eq_conv_conj) |
|
1045 by (metis append_eq_conv_conj eq_sts_l h(2)) |
|
1046 from h(2) have "length (take t sts @ sts0) = t + ?n" |
|
1047 by (metis length_append length_replicate nat_add_commute) |
|
1048 moreover from assms(2) have "t + ?n \<le> l + ?n" by auto |
|
1049 ultimately have "((take t sts @ sts0) @ drop t sts)[l + ?n := v] = |
|
1050 (take t sts @ sts0) @ (drop t sts)[(l + ?n - (t + ?n)) := v]" |
|
1051 by (smt list_update_append replicate_nth) |
|
1052 with eq_take_drop_t |
|
1053 show ?thesis by auto |
|
1054 qed |
|
1055 |
|
1056 lemma l_n_v_s1: |
|
1057 assumes "l < length sts" |
|
1058 and "\<not> t \<le> l" |
|
1059 shows "(take t sts @ sts0 @ drop t sts)[l := v] = |
|
1060 take t (sts[l := v]) @ sts0 @ drop t (sts[l := v])" |
|
1061 proof(cases "t < length sts") |
|
1062 case False |
|
1063 hence h: "take t sts = sts" "drop t sts = []" |
|
1064 "take t (sts[l:=v]) = sts [l:=v]" |
|
1065 "drop t (sts[l:=v]) = []" |
|
1066 by auto |
|
1067 with assms(1) |
|
1068 show ?thesis |
|
1069 by (metis list_update_append) |
|
1070 next |
|
1071 case True |
|
1072 with assms(2) |
|
1073 have h: "(take t sts)[l:=v] = take t (sts[l:=v])" |
|
1074 "(sts[l:=v]) = (take t sts)[l:=v]@drop t sts" |
|
1075 "length (take t sts) = t" |
|
1076 apply (smt length_list_update length_take nth_equalityI nth_list_update nth_take) |
|
1077 apply (smt True append_take_drop_id assms(2) length_take list_update_append1) |
|
1078 by (smt True length_take) |
|
1079 from h(2,3) have "drop t (sts[l := v]) = drop t sts" |
|
1080 by (metis append_eq_conv_conj length_list_update) |
|
1081 with h(1) |
|
1082 show ?thesis |
|
1083 apply simp |
|
1084 by (metis assms(2) h(3) list_update_append1 not_leE) |
|
1085 qed |
|
1086 |
|
1087 lemma l_n_v_s2: |
|
1088 assumes "l0 < length env" |
|
1089 and "t \<le> l0" |
|
1090 and "\<not> t \<le> l1" |
|
1091 shows "(take t env @ es @ drop t env) ! l1 = env ! l1" |
|
1092 proof - |
|
1093 from assms(1, 2) have "t < length env" by auto |
|
1094 hence h: "env = take t env @ drop t env" |
|
1095 "length (take t env) = t" |
|
1096 apply (metis append_take_drop_id) |
|
1097 by (smt `t < length env` length_take) |
|
1098 with assms(3) show ?thesis |
|
1099 by (smt nth_append) |
|
1100 qed |
|
1101 |
|
1102 lemma l_n_v_s3: |
|
1103 assumes "l0 < length env" |
|
1104 and "\<not> t \<le> l0" |
|
1105 shows "(take t env @ es @ drop t env) ! l0 = env ! l0" |
|
1106 proof(cases "t < length env") |
|
1107 case True |
|
1108 hence h: "env = take t env @ drop t env" |
|
1109 "length (take t env) = t" |
|
1110 apply (metis append_take_drop_id) |
|
1111 by (smt `t < length env` length_take) |
|
1112 with assms(2) show ?thesis |
|
1113 by (smt nth_append) |
|
1114 next |
|
1115 case False |
|
1116 hence "take t env = env" by auto |
|
1117 with assms(1) show ?thesis |
|
1118 by (metis nth_append) |
|
1119 qed |
|
1120 |
|
1121 lemma lift_wf_cpg_test: |
|
1122 assumes "wf_cpg_test sts cpg = (True, sts')" |
|
1123 shows "wf_cpg_test (take t sts @ sts0 @ drop t sts) (lift_t t (length sts0) cpg) = |
|
1124 (True, take t sts' @ sts0 @ drop t sts')" |
|
1125 using assms |
|
1126 proof(induct cpg arbitrary:t sts0 sts sts') |
|
1127 case (CInstr instr t sts0 sts sts') |
|
1128 obtain a0 l0 a1 l1 where eq_instr: "instr = ((a0, l0), (a1, l1))" |
|
1129 by (metis prod.exhaust) |
|
1130 from CInstr |
|
1131 show ?case |
|
1132 by (auto simp:eq_instr lift_b_def) |
|
1133 next |
|
1134 case (CLabel l t sts0 sts sts') |
|
1135 thus ?case |
|
1136 apply (auto simp:lift_b_def |
|
1137 replicate_nth replicate_update l_n_v_orig l_n_v_s) |
|
1138 apply (metis (mono_tags) diff_diff_cancel length_drop length_rev |
|
1139 linear not_less nth_append nth_take rev_take take_all) |
|
1140 by (simp add:l_n_v_s1) |
|
1141 next |
|
1142 case (CSeq c1 c2 sts0 sts sts') |
|
1143 thus ?case |
|
1144 by (auto simp: lift0_def lift_b_def split:prod.splits) |
|
1145 next |
|
1146 case (CLocal body t sts0 sts sts') |
|
1147 from this(2) obtain sts1 where h: "wf_cpg_test (Free # sts) body = (True, sts1)" "tl sts1 = sts'" |
|
1148 by (auto simp:lift0_def lift_b_def split:prod.splits) |
|
1149 let ?lift_s = "\<lambda> t sts. take t sts @ sts0 @ drop t sts" |
|
1150 have eq_lift_1: "(?lift_s (Suc t) (Free # sts)) = Free#?lift_s t sts" |
|
1151 by (simp) |
|
1152 from wf_cpg_test_le[OF h(1)] have "length (Free#sts) = length sts1" |
|
1153 by (unfold less_eq_list_def, simp) |
|
1154 hence eq_sts1: "sts1 = hd sts1 # tl sts1" |
|
1155 by (metis append_Nil append_eq_conv_conj hd.simps list.exhaust tl.simps(2)) |
|
1156 from CLocal(1)[OF h(1), of "Suc t", of "sts0", unfolded eq_lift_1] |
|
1157 show ?case |
|
1158 apply (simp, subst eq_sts1, simp) |
|
1159 apply (simp add:h(2)) |
|
1160 by (subst eq_sts1, simp add:h(2)) |
|
1161 qed |
|
1162 |
|
1163 lemma lift_c2t: |
|
1164 assumes "wf_cpg_test sts cpg = (True, sts')" |
|
1165 and "length env = length sts" |
|
1166 shows "c2t (take t env @ es @ drop t env) (lift_t t (length es) cpg) = |
|
1167 c2t env cpg" |
|
1168 using assms |
|
1169 proof(induct cpg arbitrary: t env es sts sts') |
|
1170 case (CInstr instr t env es sts sts') |
|
1171 obtain a0 l0 a1 l1 where eq_instr: "instr = ((a0, l0), (a1, l1))" |
|
1172 by (metis prod.exhaust) |
|
1173 from CInstr have h: "l0 < length env" "l1 < length env" |
|
1174 by (auto simp:eq_instr) |
|
1175 with CInstr(2) |
|
1176 show ?case |
|
1177 by (auto simp:eq_instr lift_b_def l_n_v_orig l_n_v_s2 l_n_v_s3) |
|
1178 next |
|
1179 case (CLabel l t env es sts sts') |
|
1180 thus ?case |
|
1181 by (auto simp:lift_b_def |
|
1182 replicate_nth replicate_update l_n_v_orig l_n_v_s3) |
|
1183 next |
|
1184 case (CSeq c1 c2 t env es sts sts') |
|
1185 from CSeq(3) obtain sts1 |
|
1186 where h: "wf_cpg_test sts c1 = (True, sts1)" "wf_cpg_test sts1 c2 = (True, sts')" |
|
1187 by (auto split:prod.splits) |
|
1188 from wf_cpg_test_le[OF h(1)] have "length sts = length sts1" |
|
1189 by (auto simp:less_eq_list_def) |
|
1190 from CSeq(4)[unfolded this] have eq_len_env: "length env = length sts1" . |
|
1191 from CSeq(1)[OF h(1) CSeq(4)] |
|
1192 CSeq(2)[OF h(2) eq_len_env] |
|
1193 show ?case |
|
1194 by (auto simp: lift0_def lift_b_def split:prod.splits) |
|
1195 next |
|
1196 case (CLocal body t env es sts sts') |
|
1197 { fix x |
|
1198 from CLocal(2) |
|
1199 obtain sts1 where h1: "wf_cpg_test (Free # sts) body = (True, sts1)" |
|
1200 by (auto split:prod.splits) |
|
1201 from CLocal(3) have "length (x#env) = length (Free # sts)" by simp |
|
1202 from CLocal(1)[OF h1 this, of "Suc t"] |
|
1203 have "c2t (x # take t env @ es @ drop t env) (lift_t (Suc t) (length es) body) = |
|
1204 c2t (x # env) body" |
|
1205 by simp |
|
1206 } thus ?case by simp |
|
1207 qed |
|
1208 |
|
1209 pr 20 |
|
1210 |
|
1211 lemma upto_append: |
|
1212 assumes "x \<le> y + 1" |
|
1213 shows "[x .. y + 1] = [x .. y]@[y + 1]" |
|
1214 using assms |
|
1215 by (induct x y rule:upto.induct, auto simp:upto.simps) |
|
1216 |
|
1217 lemma nth_upto: |
|
1218 assumes "l < length sts" |
|
1219 shows "[0..(int (length sts)) - 1]!l = int l" |
|
1220 using assms |
|
1221 proof(induct sts arbitrary:l) |
|
1222 case Nil |
|
1223 thus ?case by simp |
|
1224 next |
|
1225 case (Cons s sts l) |
|
1226 from Cons(2) |
|
1227 have "0 \<le> (int (length sts) - 1) + 1" by auto |
|
1228 from upto_append[OF this] |
|
1229 have eq_upto: "[0..int (length sts)] = [0..int (length sts) - 1] @ [int (length sts)]" |
|
1230 by simp |
|
1231 show ?case |
|
1232 proof(cases "l < length sts") |
|
1233 case True |
|
1234 with Cons(1)[OF True] eq_upto |
|
1235 show ?thesis |
|
1236 apply simp |
|
1237 by (smt nth_append take_eq_Nil upto_len) |
|
1238 next |
|
1239 case False |
|
1240 with Cons(2) have eq_l: "l = length sts" by simp |
|
1241 show ?thesis |
|
1242 proof(cases sts) |
|
1243 case (Cons x xs) |
|
1244 have "[0..1 + int (length xs)] = [0 .. int (length xs)]@[1 + int (length xs)]" |
|
1245 by (smt upto_append) |
|
1246 moreover have "length [0 .. int (length xs)] = Suc (length xs)" |
|
1247 by (smt upto_len) |
|
1248 moreover note Cons |
|
1249 ultimately show ?thesis |
|
1250 apply (simp add:eq_l) |
|
1251 by (smt nth_Cons' nth_append) |
|
1252 qed (simp add:upto_len upto.simps eq_l) |
|
1253 qed |
|
1254 qed |
|
1255 |
|
1256 lemma map_idx_idx: |
|
1257 assumes "l < length sts" |
|
1258 shows "(map_idx f sts)!l = sts!(f l)" |
|
1259 proof - |
|
1260 from assms have lt_l: "l < length [0..int (length sts) - 1]" |
|
1261 by (smt upto_len) |
|
1262 show ?thesis |
|
1263 apply (unfold map_idx_def nth_map[OF lt_l]) |
|
1264 by (metis assms nat_int nth_upto) |
|
1265 qed |
|
1266 |
|
1267 lemma map_idx_len: "length (map_idx f sts) = length sts" |
|
1268 apply (unfold map_idx_def) |
|
1269 by (smt length_map upto_len) |
|
1270 |
|
1271 lemma map_idx_eq: |
|
1272 assumes "\<forall> l < length sts. f l = g l" |
|
1273 shows "map_idx f sts = map_idx g sts" |
|
1274 proof(induct rule: nth_equalityI) |
|
1275 case 1 |
|
1276 show "length (map_idx f sts) = length (map_idx g sts)" |
|
1277 by (metis map_idx_len) |
|
1278 next |
|
1279 case 2 |
|
1280 { fix l |
|
1281 assume "l < length (map_idx f sts)" |
|
1282 hence "l < length sts" |
|
1283 by (metis map_idx_len) |
|
1284 from map_idx_idx[OF this] and assms and this |
|
1285 have "map_idx f sts ! l = map_idx g sts ! l" |
|
1286 by (smt list_eq_iff_nth_eq map_idx_idx map_idx_len) |
|
1287 } thus ?case by auto |
|
1288 qed |
|
1289 |
|
1290 lemma perm_s_commut: "perm_s i j sts = perm_s j i sts" |
|
1291 apply (unfold perm_s_def, rule map_idx_eq, unfold perm_b_def) |
|
1292 by smt |
|
1293 |
|
1294 lemma map_idx_id: "map_idx id sts = sts" |
|
1295 proof(induct rule:nth_equalityI) |
|
1296 case 1 |
|
1297 from map_idx_len show "length (map_idx id sts) = length sts" . |
|
1298 next |
|
1299 case 2 |
|
1300 { fix l |
|
1301 assume "l < length (map_idx id sts)" |
|
1302 from map_idx_idx[OF this[unfolded map_idx_len]] |
|
1303 have "map_idx id sts ! l = sts ! l" by simp |
|
1304 } thus ?case by auto |
|
1305 qed |
|
1306 |
|
1307 lemma perm_s_lt_i: |
|
1308 assumes "\<not> i < length sts" |
|
1309 shows "perm_s i j sts = sts" |
|
1310 proof - |
|
1311 have "map_idx (perm_b (length sts) i j) sts = map_idx id sts" |
|
1312 proof(rule map_idx_eq, default, clarsimp) |
|
1313 fix l |
|
1314 assume "l < length sts" |
|
1315 with assms |
|
1316 show "perm_b (length sts) i j l = l" |
|
1317 by (unfold perm_b_def, auto) |
|
1318 qed |
|
1319 with map_idx_id |
|
1320 have "map_idx (perm_b (length sts) i j) sts = sts" by simp |
|
1321 thus ?thesis by (simp add:perm_s_def) |
|
1322 qed |
|
1323 |
|
1324 lemma perm_s_lt: |
|
1325 assumes "\<not> i < length sts \<or> \<not> j < length sts" |
|
1326 shows "perm_s i j sts = sts" |
|
1327 using assms |
|
1328 proof |
|
1329 assume "\<not> i < length sts" |
|
1330 from perm_s_lt_i[OF this] show ?thesis . |
|
1331 next |
|
1332 assume "\<not> j < length sts" |
|
1333 from perm_s_lt_i[OF this, of i, unfolded perm_s_commut] |
|
1334 show ?thesis . |
|
1335 qed |
|
1336 |
|
1337 lemma perm_s_update_i: |
|
1338 assumes "i < length sts" |
|
1339 and "j < length sts" |
|
1340 shows "sts ! i = perm_s i j sts ! j" |
|
1341 proof - |
|
1342 from map_idx_idx[OF assms(2)] |
|
1343 have "map_idx (perm_b (length sts) i j) sts ! j = sts!(perm_b (length sts) i j j)" . |
|
1344 with assms |
|
1345 show ?thesis |
|
1346 by (auto simp:perm_s_def perm_b_def) |
|
1347 qed |
|
1348 |
|
1349 lemma nth_perm_s_neq: |
|
1350 assumes "l \<noteq> j" |
|
1351 and "l \<noteq> i" |
|
1352 and "l < length sts" |
|
1353 shows "sts ! l = perm_s i j sts ! l" |
|
1354 proof - |
|
1355 have "map_idx (perm_b (length sts) i j) sts ! l = sts!(perm_b (length sts) i j l)" |
|
1356 by (metis assms(3) map_idx_def map_idx_idx) |
|
1357 with assms |
|
1358 show ?thesis |
|
1359 by (unfold perm_s_def perm_b_def, auto) |
|
1360 qed |
|
1361 |
|
1362 lemma map_idx_update: |
|
1363 assumes "f j = i" |
|
1364 and "inj f" |
|
1365 and "i < length sts" |
|
1366 and "j < length sts" |
|
1367 shows "map_idx f (sts[i:=v]) = map_idx f sts[j := v]" |
|
1368 proof(induct rule:nth_equalityI) |
|
1369 case 1 |
|
1370 show "length (map_idx f (sts[i := v])) = length (map_idx f sts[j := v])" |
|
1371 by (metis length_list_update map_idx_len) |
|
1372 next |
|
1373 case 2 |
|
1374 { fix l |
|
1375 assume lt_l: "l < length (map_idx f (sts[i := v]))" |
|
1376 have eq_nth: "sts[i := v] ! f l = map_idx f sts[j := v] ! l" |
|
1377 proof(cases "f l = i") |
|
1378 case False |
|
1379 from lt_l have "l < length sts" |
|
1380 by (metis length_list_update map_idx_len) |
|
1381 from map_idx_idx[OF this, of f] have " map_idx f sts ! l = sts ! f l" . |
|
1382 moreover from False assms have "l \<noteq> j" by auto |
|
1383 moreover note False |
|
1384 ultimately show ?thesis by simp |
|
1385 next |
|
1386 case True |
|
1387 with assms have eq_l: "l = j" |
|
1388 by (metis inj_eq) |
|
1389 moreover from lt_l eq_l |
|
1390 have "j < length (map_idx f sts[j := v])" |
|
1391 by (metis length_list_update map_idx_len) |
|
1392 moreover note True assms |
|
1393 ultimately show ?thesis by simp |
|
1394 qed |
|
1395 from lt_l have "l < length (sts[i := v])" |
|
1396 by (metis map_idx_len) |
|
1397 from map_idx_idx[OF this] eq_nth |
|
1398 have "map_idx f (sts[i := v]) ! l = map_idx f sts[j := v] ! l" by simp |
|
1399 } thus ?case by auto |
|
1400 qed |
|
1401 |
|
1402 lemma perm_s_update: |
|
1403 assumes "i < length sts" |
|
1404 and "j < length sts" |
|
1405 shows "(perm_s i j sts)[i := v] = perm_s i j (sts[j := v])" |
|
1406 proof - |
|
1407 have "map_idx (perm_b (length (sts[j := v])) i j) (sts[j := v]) = |
|
1408 map_idx (perm_b (length (sts[j := v])) i j) sts[i := v]" |
|
1409 proof(rule map_idx_update[OF _ _ assms(2, 1)]) |
|
1410 from inj_perm_b show "inj (perm_b (length (sts[j := v])) i j)" . |
|
1411 next |
|
1412 from assms show "perm_b (length (sts[j := v])) i j i = j" |
|
1413 by (auto simp:perm_b_def) |
|
1414 qed |
|
1415 hence "map_idx (perm_b (length sts) i j) sts[i := v] = |
|
1416 map_idx (perm_b (length (sts[j := v])) i j) (sts[j := v])" |
|
1417 by simp |
|
1418 thus ?thesis by (simp add:perm_s_def) |
|
1419 qed |
|
1420 |
|
1421 lemma perm_s_update_neq: |
|
1422 assumes "l \<noteq> i" |
|
1423 and "l \<noteq> j" |
|
1424 shows "perm_s i j sts[l := v] = perm_s i j (sts[l := v])" |
|
1425 proof(cases "i < length sts \<and> j < length sts") |
|
1426 case False |
|
1427 with perm_s_lt have "perm_s i j sts = sts" by auto |
|
1428 moreover have "perm_s i j (sts[l:=v]) = sts[l:=v]" |
|
1429 proof - |
|
1430 have "length (sts[l:=v]) = length sts" by auto |
|
1431 from False[folded this] perm_s_lt |
|
1432 show ?thesis by metis |
|
1433 qed |
|
1434 ultimately show ?thesis by simp |
|
1435 next |
|
1436 case True |
|
1437 note lt_ij = this |
|
1438 show ?thesis |
|
1439 proof(cases "l < length sts") |
|
1440 case False |
|
1441 hence "sts[l:=v] = sts" by auto |
|
1442 moreover have "perm_s i j sts[l := v] = perm_s i j sts" |
|
1443 proof - |
|
1444 from False and perm_s_len |
|
1445 have "\<not> l < length (perm_s i j sts)" by metis |
|
1446 thus ?thesis by auto |
|
1447 qed |
|
1448 ultimately show ?thesis by simp |
|
1449 next |
|
1450 case True |
|
1451 show ?thesis |
|
1452 proof - |
|
1453 have "map_idx (perm_b (length (sts[l := v])) i j) (sts[l := v]) = |
|
1454 map_idx (perm_b (length (sts[l := v])) i j) sts[l := v]" |
|
1455 proof(induct rule:map_idx_update [OF _ inj_perm_b True True]) |
|
1456 case 1 |
|
1457 from assms lt_ij |
|
1458 show ?case |
|
1459 by (unfold perm_b_def, auto) |
|
1460 qed |
|
1461 thus ?thesis |
|
1462 by (unfold perm_s_def, simp) |
|
1463 qed |
|
1464 qed |
|
1465 qed |
|
1466 |
|
1467 lemma perm_sb: "(perm_s i j sts)[perm_b (length sts) i j l := v] = perm_s i j (sts[l := v])" |
|
1468 apply(subst perm_b_def, auto simp:perm_s_len perm_s_lt perm_s_update) |
|
1469 apply (subst perm_s_commut, subst (2) perm_s_commut, rule_tac perm_s_update, auto) |
|
1470 by (rule_tac perm_s_update_neq, auto) |
|
1471 |
|
1472 lemma perm_s_id: "perm_s i i sts = sts" (is "?L = ?R") |
|
1473 proof - |
|
1474 from map_idx_id have "?R = map_idx id sts" by metis |
|
1475 also have "\<dots> = ?L" |
|
1476 by (unfold perm_s_def, rule map_idx_eq, unfold perm_b_def, auto) |
|
1477 finally show ?thesis by simp |
|
1478 qed |
|
1479 |
|
1480 lemma upto_map: |
|
1481 assumes "i \<le> j" |
|
1482 shows "[i .. j] = i # map (\<lambda> x. x + 1) [i .. (j - 1)]" |
|
1483 using assms |
|
1484 proof(induct i j rule:upto.induct) |
|
1485 case (1 i j) |
|
1486 show ?case (is "?L = ?R") |
|
1487 proof - |
|
1488 from 1(2) |
|
1489 have eq_l: "?L = i # [i+1 .. j]" by (simp add:upto.simps) |
|
1490 show ?thesis |
|
1491 proof(cases "i + 1 \<le> j") |
|
1492 case False |
|
1493 with eq_l show ?thesis by (auto simp:upto.simps) |
|
1494 next |
|
1495 case True |
|
1496 have "[i + 1..j] = map (\<lambda>x. x + 1) [i..j - 1]" |
|
1497 by (smt "1.hyps" Cons_eq_map_conv True upto.simps) |
|
1498 with eq_l |
|
1499 show ?thesis by simp |
|
1500 qed |
|
1501 qed |
|
1502 qed |
|
1503 |
|
1504 lemma perm_s_cons: "(perm_s (Suc i) (Suc j) (s # sts)) = s#perm_s i j sts" |
|
1505 proof - |
|
1506 have le_0: "0 \<le> int (length (s # sts)) - 1" by simp |
|
1507 have "map (\<lambda>k. (s # sts) ! perm_b (length (s # sts)) (Suc i) (Suc j) (nat k)) |
|
1508 [0..int (length (s # sts)) - 1] = |
|
1509 s # map (\<lambda>k. sts ! perm_b (length sts) i j (nat k)) [0..int (length sts) - 1]" |
|
1510 by (unfold upto_map[OF le_0], auto simp:perm_b_def, smt+) |
|
1511 thus ?thesis by (unfold perm_s_def map_idx_def, simp) |
|
1512 qed |
|
1513 |
|
1514 lemma perm_wf_cpg_test: |
|
1515 assumes "wf_cpg_test sts cpg = (True, sts')" |
|
1516 shows "wf_cpg_test (perm_s i j sts) (perm (length sts) i j cpg) = |
|
1517 (True, perm_s i j sts')" |
|
1518 using assms |
|
1519 proof(induct cpg arbitrary:t i j sts sts') |
|
1520 case (CInstr instr i j sts sts') |
|
1521 obtain a0 l0 a1 l1 where eq_instr: "instr = ((a0, l0), (a1, l1))" |
|
1522 by (metis prod.exhaust) |
|
1523 from CInstr |
|
1524 show ?case |
|
1525 apply (unfold eq_instr, clarsimp) |
|
1526 by (unfold perm_s_len perm_b_def, clarsimp) |
|
1527 next |
|
1528 case (CLabel l i j sts sts') |
|
1529 have "(perm_s i j sts)[perm_b (length sts) i j l := Bound] = perm_s i j (sts[l := Bound])" |
|
1530 by (metis perm_sb) |
|
1531 with CLabel |
|
1532 show ?case |
|
1533 apply (auto simp:perm_s_len perm_sb) |
|
1534 apply (subst perm_b_def, auto simp:perm_sb) |
|
1535 apply (subst perm_b_def, auto simp:perm_s_lt perm_s_update_i) |
|
1536 apply (unfold perm_s_id, subst perm_s_commut, simp add: perm_s_update_i[symmetric]) |
|
1537 apply (simp add:perm_s_update_i[symmetric]) |
|
1538 by (simp add: nth_perm_s_neq[symmetric]) |
|
1539 next |
|
1540 case (CSeq c1 c2 i j sts sts') |
|
1541 thus ?case |
|
1542 apply (auto split:prod.splits) |
|
1543 apply (metis (hide_lams, no_types) less_eq_list_def prod.inject wf_cpg_test_le) |
|
1544 by (metis (hide_lams, no_types) less_eq_list_def prod.inject wf_cpg_test_le) |
|
1545 next |
|
1546 case (CLocal body i j sts sts') |
|
1547 from this(2) obtain sts1 where h: "wf_cpg_test (Free # sts) body = (True, sts1)" "tl sts1 = sts'" |
|
1548 by (auto simp:lift0_def lift_b_def split:prod.splits) |
|
1549 from wf_cpg_test_le[OF h(1)] have "length (Free#sts) = length sts1" |
|
1550 by (unfold less_eq_list_def, simp) |
|
1551 hence eq_sts1: "sts1 = hd sts1 # tl sts1" |
|
1552 by (metis append_Nil append_eq_conv_conj hd.simps list.exhaust tl.simps(2)) |
|
1553 from CLocal(1)[OF h(1), of "Suc i" "Suc j"] h(2) eq_sts1 |
|
1554 show ?case |
|
1555 apply (auto split:prod.splits simp:perm_s_cons) |
|
1556 by (metis perm_s_cons tl.simps(2)) |
|
1557 qed |
|
1558 |
|
1559 lemma nth_perm_sb: |
|
1560 assumes "l0 < length env" |
|
1561 shows "perm_s i j env ! perm_b (length env) i j l0 = env ! l0" |
|
1562 by (metis assms nth_perm_s_neq perm_b_def perm_s_commut perm_s_lt perm_s_update_i) |
|
1563 |
|
1564 |
|
1565 lemma perm_c2t: |
|
1566 assumes "wf_cpg_test sts cpg = (True, sts')" |
|
1567 and "length env = length sts" |
|
1568 shows "c2t (perm_s i j env) (perm (length env) i j cpg) = |
|
1569 c2t env cpg" |
|
1570 using assms |
|
1571 proof(induct cpg arbitrary:i j env sts sts') |
|
1572 case (CInstr instr i j env sts sts') |
|
1573 obtain a0 l0 a1 l1 where eq_instr: "instr = ((a0, l0), (a1, l1))" |
|
1574 by (metis prod.exhaust) |
|
1575 from CInstr have h: "l0 < length env" "l1 < length env" |
|
1576 by (auto simp:eq_instr) |
|
1577 with CInstr(2) |
|
1578 show ?case |
|
1579 apply (auto simp:eq_instr) |
|
1580 by (metis nth_perm_sb)+ |
|
1581 next |
|
1582 case (CLabel l t env es sts sts') |
|
1583 thus ?case |
|
1584 apply (auto) |
|
1585 by (metis nth_perm_sb) |
|
1586 next |
|
1587 case (CSeq c1 c2 i j env sts sts') |
|
1588 from CSeq(3) obtain sts1 |
|
1589 where h: "wf_cpg_test sts c1 = (True, sts1)" "wf_cpg_test sts1 c2 = (True, sts')" |
|
1590 by (auto split:prod.splits) |
|
1591 from wf_cpg_test_le[OF h(1)] have "length sts = length sts1" |
|
1592 by (auto simp:less_eq_list_def) |
|
1593 from CSeq(4)[unfolded this] have eq_len_env: "length env = length sts1" . |
|
1594 from CSeq(1)[OF h(1) CSeq(4)] |
|
1595 CSeq(2)[OF h(2) eq_len_env] |
|
1596 show ?case by auto |
|
1597 next |
|
1598 case (CLocal body i j env sts sts') |
|
1599 { fix x |
|
1600 from CLocal(2, 3) |
|
1601 obtain sts1 where "wf_cpg_test (Free # sts) body = (True, sts1)" |
|
1602 "length (x#env) = length (Free # sts)" |
|
1603 by (auto split:prod.splits) |
|
1604 from CLocal(1)[OF this] |
|
1605 have "(c2t (x # perm_s i j env) (perm (Suc (length env)) (Suc i) (Suc j) body)) = |
|
1606 (c2t (x # env) body)" |
|
1607 by (metis Suc_length_conv perm_s_cons) |
|
1608 } thus ?case by simp |
|
1609 qed |
|
1610 |
|
1611 lemma wf_cpg_test_disj_aux1: |
|
1612 assumes "sts_disj sts1 (sts[l := Bound] - sts)" |
|
1613 "l < length sts" |
|
1614 "sts ! l = Free" |
|
1615 shows "(sts1 + sts) ! l = Free" |
|
1616 proof - |
|
1617 from assms(1)[unfolded sts_disj_def] |
|
1618 have h: "length sts1 = length (sts[l := Bound] - sts)" |
|
1619 "(\<forall>i<length sts1. \<not> (sts1 ! i = Bound \<and> (sts[l := Bound] - sts) ! i = Bound))" |
|
1620 by auto |
|
1621 from h(1) assms(2) |
|
1622 have lt_l: "l < length sts1" |
|
1623 "l < length (sts[l := Bound] - sts)" |
|
1624 "l < length (sts1 + sts)" |
|
1625 apply (smt length_list_update minus_list_len) |
|
1626 apply (smt assms(2) length_list_update minus_list_len) |
|
1627 by (smt assms(2) h(1) length_list_update length_sts_plus minus_list_len) |
|
1628 from h(2)[rule_format, of l, OF this(1)] |
|
1629 have " \<not> (sts1 ! l = Bound \<and> (sts[l := Bound] - sts) ! l = Bound)" . |
|
1630 with assms(3) nth_sts_minus[OF lt_l(2)] nth_sts_plus[OF lt_l(3)] assms(2) |
|
1631 show ?thesis |
|
1632 by (cases "sts1!l", auto) |
|
1633 qed |
|
1634 |
|
1635 lemma wf_cpg_test_disj_aux2: |
|
1636 assumes "sts_disj sts1 (sts[l := Bound] - sts)" |
|
1637 " l < length sts" |
|
1638 shows "(sts1 + sts)[l := Bound] = sts1 + sts[l := Bound]" |
|
1639 proof - |
|
1640 from assms have lt_l: "l < length (sts1 + sts[l:=Bound])" |
|
1641 "l < length (sts1 + sts)" |
|
1642 apply (smt length_list_update length_sts_plus minus_list_len sts_disj_def) |
|
1643 by (smt assms(1) assms(2) length_list_update length_sts_plus minus_list_len sts_disj_def) |
|
1644 show ?thesis |
|
1645 proof(induct rule:nth_equalityI) |
|
1646 case 1 |
|
1647 show ?case |
|
1648 by (smt assms(1) length_list_update length_sts_plus minus_list_len sts_disj_def) |
|
1649 next |
|
1650 case 2 |
|
1651 { fix i |
|
1652 assume lt_i: "i < length ((sts1 + sts)[l := Bound])" |
|
1653 have " (sts1 + sts)[l := Bound] ! i = (sts1 + sts[l := Bound]) ! i" |
|
1654 proof(cases "i = l") |
|
1655 case True |
|
1656 with nth_sts_plus[OF lt_l(1)] assms(2) nth_sts_plus[OF lt_l(2)] lt_l |
|
1657 show ?thesis |
|
1658 by (cases "sts1 ! l", auto) |
|
1659 next |
|
1660 case False |
|
1661 from lt_i have "i < length (sts1 + sts)" "i < length (sts1 + sts[l := Bound])" |
|
1662 apply auto |
|
1663 by (metis length_list_update plus_list_len) |
|
1664 from nth_sts_plus[OF this(1)] nth_sts_plus[OF this(2)] lt_i lt_l False |
|
1665 show ?thesis |
|
1666 by simp |
|
1667 qed |
|
1668 } thus ?case by auto |
|
1669 qed |
|
1670 qed |
|
1671 |
|
1672 lemma sts_list_plus_commut: |
|
1673 shows "sts1 + sts2 = sts2 + (sts1:: status list)" |
|
1674 proof(induct rule:nth_equalityI) |
|
1675 case 1 |
|
1676 show ?case |
|
1677 by (metis min_max.inf.commute plus_list_len) |
|
1678 next |
|
1679 case 2 |
|
1680 { fix i |
|
1681 assume lt_i1: "i<length (sts1 + sts2)" |
|
1682 hence lt_i2: "i < length (sts2 + sts1)" |
|
1683 by (smt plus_list_len) |
|
1684 from nth_sts_plus[OF this] nth_sts_plus[OF lt_i1] |
|
1685 have "(sts1 + sts2) ! i = (sts2 + sts1) ! i" |
|
1686 apply simp |
|
1687 apply (cases "sts1!i", cases "sts2!i", auto) |
|
1688 by (cases "sts2!i", auto) |
|
1689 } thus ?case by auto |
|
1690 qed |
|
1691 |
|
1692 lemma sts_disj_cons: |
|
1693 assumes "sts_disj sts1 sts2" |
|
1694 shows "sts_disj (Free # sts1) (s # sts2)" |
|
1695 using assms |
|
1696 proof - |
|
1697 from assms |
|
1698 have h: "length sts1 = length sts2" |
|
1699 "(\<forall>i<length sts1. \<not> (sts1 ! i = Bound \<and> sts2 ! i = Bound))" |
|
1700 by (unfold sts_disj_def, auto) |
|
1701 from h(1) have "length (Free # sts1) = length (s # sts2)" by simp |
|
1702 moreover { |
|
1703 fix i |
|
1704 assume lt_i: "i<length (Free # sts1)" |
|
1705 have "\<not> ((Free # sts1) ! i = Bound \<and> (s # sts2) ! i = Bound)" |
|
1706 proof(cases "i") |
|
1707 case 0 |
|
1708 thus ?thesis by simp |
|
1709 next |
|
1710 case (Suc k) |
|
1711 from h(2)[rule_format, of k] lt_i[unfolded Suc] Suc |
|
1712 show ?thesis by auto |
|
1713 qed |
|
1714 } |
|
1715 ultimately show ?thesis by (auto simp:sts_disj_def) |
|
1716 qed |
|
1717 |
|
1718 lemma sts_disj_uncomb: |
|
1719 assumes "sts_disj sts (sts1 + sts2)" |
|
1720 and "sts_disj sts1 sts2" |
|
1721 shows "sts_disj sts sts1" "sts_disj sts sts2" |
|
1722 using assms |
|
1723 apply (smt assms(1) assms(2) length_sts_plus nth_sts_plus plus_status.simps(2) sts_disj_def) |
|
1724 by (smt assms(1) assms(2) length_sts_plus nth_sts_plus |
|
1725 plus_status.simps(2) sts_disj_def sts_list_plus_commut) |
|
1726 |
|
1727 lemma wf_cpg_test_disj: |
|
1728 assumes "wf_cpg_test sts cpg = (True, sts')" |
|
1729 and "sts_disj sts1 (sts' - sts)" |
|
1730 shows "wf_cpg_test (sts1 + sts) cpg = (True, sts1 + sts')" |
|
1731 using assms |
|
1732 proof(induct cpg arbitrary:sts sts1 sts') |
|
1733 case (CInstr instr sts sts1 sts') |
|
1734 obtain a0 l0 a1 l1 where eq_instr: "instr = ((a0, l0), (a1, l1))" |
|
1735 by (metis pair_collapse) |
|
1736 with CInstr(1) have h: "l0 < length sts" "l1 < length sts" "sts = sts'" by auto |
|
1737 with CInstr eq_instr |
|
1738 show ?case |
|
1739 apply (auto) |
|
1740 by (smt length_sts_plus minus_list_len sts_disj_def)+ |
|
1741 next |
|
1742 case (CLabel l sts sts1 sts') |
|
1743 thus ?case |
|
1744 apply auto |
|
1745 apply (smt length_list_update length_sts_plus minus_list_len sts_disj_def) |
|
1746 by (auto simp: wf_cpg_test_disj_aux1 wf_cpg_test_disj_aux2) |
|
1747 next |
|
1748 case (CSeq c1 c2 sts sts1 sts') |
|
1749 from CSeq(3) obtain sts'' |
|
1750 where h: "wf_cpg_test sts c1 = (True, sts'')" "wf_cpg_test sts'' c2 = (True, sts')" |
|
1751 by (auto split:prod.splits) |
|
1752 from wf_cpg_test_le[OF h(1)] have "length sts = length sts''" |
|
1753 by (auto simp:less_eq_list_def) |
|
1754 from sts_le_comb[OF wf_cpg_test_le[OF h(1)] wf_cpg_test_le[OF h(2)]] |
|
1755 have " sts' - sts = (sts'' - sts) + (sts' - sts'')" "sts_disj (sts'' - sts) (sts' - sts'')" |
|
1756 by auto |
|
1757 from sts_disj_uncomb[OF CSeq(4)[unfolded this(1)] this(2)] |
|
1758 have "sts_disj sts1 (sts'' - sts)" "sts_disj sts1 (sts' - sts'')" . |
|
1759 from CSeq(1)[OF h(1) this(1)] CSeq(2)[OF h(2) this(2)] |
|
1760 have "wf_cpg_test (sts1 + sts) c1 = (True, sts1 + sts'')" |
|
1761 "wf_cpg_test (sts1 + sts'') c2 = (True, sts1 + sts')" . |
|
1762 thus ?case |
|
1763 by simp |
|
1764 next |
|
1765 case (CLocal body sts sts1 sts') |
|
1766 from this(2) |
|
1767 obtain sts'' where h: "wf_cpg_test (Free # sts) body = (True, sts'')" "sts' = tl sts''" |
|
1768 by (auto split:prod.splits) |
|
1769 from wf_cpg_test_le[OF h(1), unfolded less_eq_list_def] h(2) |
|
1770 obtain s where eq_sts'': "sts'' = s#sts'" |
|
1771 by (metis Suc_length_conv list.size(4) tl.simps(2)) |
|
1772 let ?sts = "Free#sts1" |
|
1773 from CLocal(3) have "sts_disj ?sts (sts'' - (Free # sts))" |
|
1774 apply (unfold eq_sts'', simp) |
|
1775 by (metis sts_disj_cons) |
|
1776 from CLocal(1)[OF h(1) this] eq_sts'' |
|
1777 show ?case |
|
1778 by (auto split:prod.splits) |
|
1779 qed |
|
1780 |
|
1781 section {* Application of the theory above *} |
|
1782 |
|
1783 definition "move_left_skel = CLocal (CSeq (CInstr ((L, 0), (L, 0))) (CLabel 0))" |
|
1784 |
|
1785 lemma wt_move_left: "wf_cpg_test [] move_left_skel = (True, [])" |
|
1786 by (unfold move_left_skel_def, simp) |
|
1787 |
|
1788 lemma ct_move_left: "c2t [] move_left_skel = move_left" |
|
1789 by (unfold move_left_skel_def move_left_def, simp) |
|
1790 |
|
1791 lemma wf_move_left: "\<forall> i. \<exists> s j. (i:[move_left]:j ) s" |
|
1792 proof - |
|
1793 from wf_cpg_test_correct[OF wt_move_left] ct_move_left |
|
1794 show ?thesis |
|
1795 by (unfold c2p_def, simp, metis) |
|
1796 qed |
|
1797 |
|
1798 definition "jmp_skel = CInstr ((W0, 0), (W1, 0))" |
|
1799 |
|
1800 lemma wt_jmp: "wf_cpg_test [Free] jmp_skel = (True, [Free])" |
|
1801 by (unfold jmp_skel_def, simp) |
|
1802 |
|
1803 lemma ct_jmp: "c2t [l] jmp_skel = (jmp l)" |
|
1804 by (unfold jmp_skel_def jmp_def, simp) |
|
1805 |
|
1806 lemma wf_jmp: "\<forall> i. \<exists> s j. (i:[jmp l]:j ) s" |
|
1807 proof - |
|
1808 from wf_cpg_test_correct[OF wt_jmp] ct_jmp |
|
1809 show ?thesis |
|
1810 apply (unfold c2p_def, simp) |
|
1811 by (metis One_nat_def Suc_eq_plus1 list.size(3) list.size(4)) |
|
1812 qed |
|
1813 |
|
1814 definition "label_skel = CLabel 0" |
|
1815 |
|
1816 lemma wt_label: "wf_cpg_test [Free] label_skel = (True, [Bound])" |
|
1817 by (simp add:label_skel_def) |
|
1818 |
|
1819 lemma ct_label: "c2t [l] label_skel = (TLabel l)" |
|
1820 by (simp add:label_skel_def) |
|
1821 |
|
1822 thm if_zero_def |
|
1823 |
|
1824 definition "if_zero_skel = CLocal (CSeq (CInstr ((W0, 1), (W1, 0))) ( |
|
1825 CLabel 0 |
|
1826 ) |
|
1827 )" |
|
1828 |
|
1829 lemma wt_if_zero: "wf_cpg_test [Free] if_zero_skel = (True, [Free])" |
|
1830 by (simp add:if_zero_skel_def) |
|
1831 |
|
1832 definition "left_until_zero_skel = CLocal (CLocal ( |
|
1833 CSeq (CLabel 1) ( |
|
1834 CSeq if_zero_skel ( |
|
1835 CSeq move_left_skel ( |
|
1836 CSeq (lift_t 0 1 jmp_skel) ( |
|
1837 label_skel |
|
1838 )))) |
|
1839 ))" |
|
1840 |
|
1841 lemma w1: "wf_cpg_test [Free, Bound] if_zero_skel = (True, [Free, Bound])" |
|
1842 by (simp add:if_zero_skel_def) |
|
1843 |
|
1844 lemma w2: "wf_cpg_test [Free, Bound] move_left_skel = (True, [Free, Bound])" |
|
1845 by (simp add:move_left_skel_def) |
|
1846 |
|
1847 lemma w3: "wf_cpg_test [Free, Bound] (lift_t 0 (Suc 0) jmp_skel) = |
|
1848 (True, [Free, Bound])" |
|
1849 by (simp add:jmp_skel_def lift_b_def) |
|
1850 |
|
1851 lemma w4: "wf_cpg_test [Free, Bound] label_skel = (True, [Bound, Bound])" |
|
1852 by (unfold label_skel_def, simp) |
|
1853 |
|
1854 lemma wt_left_until_zero: |
|
1855 "wf_cpg_test [] left_until_zero_skel = (True, [])" |
|
1856 by (unfold left_until_zero_skel_def, simp add:w1 w2 w3 w4) |
|
1857 |
|
1858 lemma c1: "c2t [xa, x] if_zero_skel = if_zero xa" |
|
1859 by (simp add:if_zero_skel_def if_zero_def) |
|
1860 |
|
1861 lemma c2: "c2t [xa, x] move_left_skel = move_left" |
|
1862 by (simp add:move_left_skel_def move_left_def) |
|
1863 |
|
1864 lemma c3: "c2t [xa, x] (lift_t 0 (Suc 0) jmp_skel) = |
|
1865 jmp x" |
|
1866 by (simp add:jmp_skel_def jmp_def lift_b_def) |
|
1867 |
|
1868 lemma c4: "c2t [xa, x] label_skel = TLabel xa" |
|
1869 by (simp add:label_skel_def) |
|
1870 |
|
1871 lemma ct_left_until_zero: |
|
1872 "c2t [] left_until_zero_skel = left_until_zero" |
|
1873 apply (unfold left_until_zero_def left_until_zero_skel_def) |
|
1874 by (simp add:c1 c2 c3 c4) |
|
1875 |
|
1876 lemma wf_left_until_zero: |
|
1877 "\<forall> i. \<exists> s j. (i:[left_until_zero]:j) s" |
|
1878 proof - |
|
1879 from wf_cpg_test_correct[OF wt_left_until_zero] ct_left_until_zero |
|
1880 show ?thesis |
|
1881 apply (unfold c2p_def, simp) |
|
1882 by metis |
|
1883 qed |
|
1884 |
|
1885 end |