|
1 header {* |
|
2 Separation logic for TM |
|
3 *} |
|
4 |
|
5 theory Hoare_tm_basis |
|
6 imports Hoare_gen My_block Data_slot MLs Term_pat (* BaseSS *) Subgoal Sort_ops |
|
7 Thm_inst |
|
8 begin |
|
9 |
|
10 section {* Aux lemmas on seperation algebra *} |
|
11 |
|
12 lemma cond_eq: "((<b> \<and>* p) s) = (b \<and> (p s))" |
|
13 proof |
|
14 assume "(<b> \<and>* p) s" |
|
15 from condD[OF this] show " b \<and> p s" . |
|
16 next |
|
17 assume "b \<and> p s" |
|
18 hence b and "p s" by auto |
|
19 from `b` have "(<b>) 0" by (auto simp:pasrt_def) |
|
20 moreover have "s = 0 + s" by auto |
|
21 moreover have "0 ## s" by auto |
|
22 moreover note `p s` |
|
23 ultimately show "(<b> \<and>* p) s" by (auto intro!:sep_conjI) |
|
24 qed |
|
25 |
|
26 lemma cond_eqI: |
|
27 assumes h: "b \<Longrightarrow> r = s" |
|
28 shows "(<b> ** r) = (<b> ** s)" |
|
29 proof(cases b) |
|
30 case True |
|
31 from h[OF this] show ?thesis by simp |
|
32 next |
|
33 case False |
|
34 thus ?thesis |
|
35 by (unfold sep_conj_def set_ins_def pasrt_def, auto) |
|
36 qed |
|
37 |
|
38 lemma EXS_intro: |
|
39 assumes h: "(P x) s" |
|
40 shows "((EXS x. P(x))) s" |
|
41 by (smt h pred_ex_def sep_conj_impl) |
|
42 |
|
43 lemma EXS_elim: |
|
44 assumes "(EXS x. P x) s" |
|
45 obtains x where "P x s" |
|
46 by (metis assms pred_ex_def) |
|
47 |
|
48 lemma EXS_eq: |
|
49 fixes x |
|
50 assumes h: "Q (p x)" |
|
51 and h1: "\<And> y s. \<lbrakk>p y s\<rbrakk> \<Longrightarrow> y = x" |
|
52 shows "p x = (EXS x. p x)" |
|
53 proof |
|
54 fix s |
|
55 show "p x s = (EXS x. p x) s" |
|
56 proof |
|
57 assume "p x s" |
|
58 thus "(EXS x. p x) s" by (auto simp:pred_ex_def) |
|
59 next |
|
60 assume "(EXS x. p x) s" |
|
61 thus "p x s" |
|
62 proof(rule EXS_elim) |
|
63 fix y |
|
64 assume "p y s" |
|
65 from this[unfolded h1[OF this]] show "p x s" . |
|
66 qed |
|
67 qed |
|
68 qed |
|
69 |
|
70 section {* The TM assembly language *} |
|
71 |
|
72 subsection {* The TM assembly language *} |
|
73 |
|
74 datatype taction = W0 | W1 | L | R |
|
75 |
|
76 datatype tstate = St nat |
|
77 |
|
78 fun nat_of :: "tstate \<Rightarrow> nat" |
|
79 where "nat_of (St n) = n" |
|
80 |
|
81 declare [[coercion_enabled]] |
|
82 |
|
83 declare [[coercion "St :: nat \<Rightarrow> tstate"]] |
|
84 |
|
85 type_synonym tm_inst = "(taction \<times> tstate) \<times> (taction \<times> tstate)" |
|
86 |
|
87 datatype Block = Oc | Bk |
|
88 |
|
89 datatype tpg = |
|
90 TInstr tm_inst |
|
91 | TLabel tstate |
|
92 | TSeq tpg tpg |
|
93 | TLocal "(tstate \<Rightarrow> tpg)" |
|
94 |
|
95 notation TLocal (binder "TL " 10) |
|
96 |
|
97 abbreviation tprog_instr :: "tm_inst \<Rightarrow> tpg" ("\<guillemotright> _" [61] 61) |
|
98 where "\<guillemotright> i \<equiv> TInstr i" |
|
99 |
|
100 abbreviation tprog_seq :: "tpg \<Rightarrow> tpg \<Rightarrow> tpg" (infixr ";" 52) |
|
101 where "c1 ; c2 \<equiv> TSeq c1 c2" |
|
102 |
|
103 subsection {* The notion of assembling *} |
|
104 |
|
105 datatype tresource = |
|
106 TM int Block |
|
107 | TC nat tm_inst |
|
108 | TAt nat |
|
109 | TPos int |
|
110 | TFaults nat |
|
111 |
|
112 type_synonym tassert = "tresource set \<Rightarrow> bool" |
|
113 |
|
114 definition "sg e = (\<lambda> s. s = e)" |
|
115 |
|
116 primrec tassemble_to :: "tpg \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> tassert" |
|
117 where |
|
118 "tassemble_to (TInstr ai) i j = (sg ({TC i ai}) ** <(j = i + 1)>)" | |
|
119 "tassemble_to (TSeq p1 p2) i j = (EXS j'. (tassemble_to p1 i j') ** (tassemble_to p2 j' j))" | |
|
120 "tassemble_to (TLocal fp) i j = (EXS l. (tassemble_to (fp l) i j))" | |
|
121 "tassemble_to (TLabel l) i j = <(i = j \<and> j = nat_of l)>" |
|
122 |
|
123 declare tassemble_to.simps [simp del] |
|
124 |
|
125 lemmas tasmp = tassemble_to.simps (2, 3, 4) |
|
126 |
|
127 abbreviation tasmb_to :: "nat \<Rightarrow> tpg \<Rightarrow> nat \<Rightarrow> tassert" ("_ :[ _ ]: _" [60, 60, 60] 60) |
|
128 where "i :[ tpg ]: j \<equiv> tassemble_to tpg i j" |
|
129 |
|
130 section {* Automatic checking of assemblility *} |
|
131 |
|
132 subsection {* Basic theories *} |
|
133 |
|
134 text {* @{text cpg} is the type for skeleton assembly language. Every constructor |
|
135 corresponds to one in the definition of @{text tpg} *} |
|
136 |
|
137 datatype cpg = |
|
138 CInstr tm_inst |
|
139 | CLabel nat |
|
140 | CSeq cpg cpg |
|
141 | CLocal cpg |
|
142 |
|
143 text {* Conversion from @{text cpg} to @{text tpg}*} |
|
144 |
|
145 fun c2t :: "tstate list \<Rightarrow> cpg \<Rightarrow> tpg" where |
|
146 "c2t env (CInstr ((act0, St st0), (act1, St st1))) = |
|
147 TInstr ((act0, env!st0), (act1, env!st1))" | |
|
148 "c2t env (CLabel l) = TLabel (env!l)" | |
|
149 "c2t env (CSeq cpg1 cpg2) = TSeq (c2t env cpg1) (c2t env cpg2)" | |
|
150 "c2t env (CLocal cpg) = TLocal (\<lambda> x. c2t (x#env) cpg)" |
|
151 |
|
152 text {* Well formedness checking of @{text cpg} *} |
|
153 |
|
154 datatype status = Free | Bound |
|
155 |
|
156 text {* @{text wf_cpg_test} is the checking function *} |
|
157 |
|
158 fun wf_cpg_test :: "status list \<Rightarrow> cpg \<Rightarrow> (bool \<times> status list)" where |
|
159 "wf_cpg_test sts (CInstr ((a0, l0), (a1, l1))) = ((l0 < length sts \<and> l1 < length sts), sts)" | |
|
160 "wf_cpg_test sts (CLabel l) = ((l < length sts) \<and> sts!l = Free, sts[l:=Bound])" | |
|
161 "wf_cpg_test sts (CSeq c1 c2) = (let (b1, sts1) = wf_cpg_test sts c1; |
|
162 (b2, sts2) = wf_cpg_test sts1 c2 in |
|
163 (b1 \<and> b2, sts2))" | |
|
164 "wf_cpg_test sts (CLocal body) = (let (b, sts') = (wf_cpg_test (Free#sts) body) in |
|
165 (b, tl sts'))" |
|
166 |
|
167 text {* |
|
168 The meaning the following @{text "c2p"} has to be understood together with |
|
169 the following lemma @{text "wf_cpg_test_correct"}. The intended use of @{text "c2p"} |
|
170 is when the elements of @{text "sts"} are all @{text "Free"}, in which case, |
|
171 the precondition on @{text "f"}, i.e. |
|
172 @{text "\<forall> x. ((length x = length sts \<and> |
|
173 (\<forall> k < length sts. sts!k = Bound \<longrightarrow> (x!k = f i k))"} |
|
174 is trivially true. |
|
175 *} |
|
176 definition |
|
177 "c2p sts i cpg j = |
|
178 (\<exists> f. \<forall> x. ((length x = length sts \<and> |
|
179 (\<forall> k < length sts. sts!k = Bound \<longrightarrow> (x!k = f i k))) |
|
180 \<longrightarrow> (\<exists> s. (i:[(c2t x cpg)]:j) s)))" |
|
181 |
|
182 instantiation status :: order |
|
183 begin |
|
184 definition less_eq_status_def: "((st1::status) \<le> st2) = (st1 = Free \<or> st2 = Bound)" |
|
185 definition less_status_def: "((st1::status) < st2) = (st1 \<le> st2 \<and> st1 \<noteq> st2)" |
|
186 instance |
|
187 proof |
|
188 fix x y |
|
189 show "(x < (y::status)) = (x \<le> y \<and> \<not> y \<le> x)" |
|
190 by (metis less_eq_status_def less_status_def status.distinct(1)) |
|
191 next |
|
192 fix x show "x \<le> (x::status)" |
|
193 by (metis (full_types) less_eq_status_def status.exhaust) |
|
194 next |
|
195 fix x y z |
|
196 assume "x \<le> y" "y \<le> (z::status)" show "x \<le> (z::status)" |
|
197 by (metis `x \<le> y` `y \<le> z` less_eq_status_def status.distinct(1)) |
|
198 next |
|
199 fix x y |
|
200 assume "x \<le> y" "y \<le> (x::status)" show "x = y" |
|
201 by (metis `x \<le> y` `y \<le> x` less_eq_status_def status.distinct(1)) |
|
202 qed |
|
203 end |
|
204 |
|
205 instantiation list :: (order)order |
|
206 begin |
|
207 definition "((sts::('a::order) list) \<le> sts') = |
|
208 ((length sts = length sts') \<and> (\<forall> i < length sts. sts!i \<le> sts'!i))" |
|
209 definition "((sts::('a::order) list) < sts') = ((sts \<le> sts') \<and> sts \<noteq> sts')" |
|
210 |
|
211 lemma anti_sym: assumes h: "x \<le> (y::'a list)" "y \<le> x" |
|
212 shows "x = y" |
|
213 proof - |
|
214 from h have "length x = length y" |
|
215 by (metis less_eq_list_def) |
|
216 moreover from h have " (\<forall> i < length x. x!i = y!i)" |
|
217 by (metis (full_types) antisym_conv less_eq_list_def) |
|
218 ultimately show ?thesis |
|
219 by (metis nth_equalityI) |
|
220 qed |
|
221 |
|
222 lemma refl: "x \<le> (x::('a::order) list)" |
|
223 apply (unfold less_eq_list_def) |
|
224 by (metis order_refl) |
|
225 |
|
226 instance |
|
227 proof |
|
228 fix x y |
|
229 show "((x::('a::order) list) < y) = (x \<le> y \<and> \<not> y \<le> x)" |
|
230 proof |
|
231 assume h: "x \<le> y \<and> \<not> y \<le> x" |
|
232 have "x \<noteq> y" |
|
233 proof |
|
234 assume "x = y" with h have "\<not> (x \<le> x)" by simp |
|
235 with refl show False by auto |
|
236 qed |
|
237 moreover from h have "x \<le> y" by blast |
|
238 ultimately show "x < y" by (auto simp:less_list_def) |
|
239 next |
|
240 assume h: "x < y" |
|
241 hence hh: "x \<le> y" |
|
242 by (metis less_list_def) |
|
243 moreover have "\<not> y \<le> x" |
|
244 proof |
|
245 assume "y \<le> x" |
|
246 from anti_sym[OF hh this] have "x = y" . |
|
247 with h show False |
|
248 by (metis less_list_def) |
|
249 qed |
|
250 ultimately show "x \<le> y \<and> \<not> y \<le> x" by auto |
|
251 qed |
|
252 next |
|
253 fix x from refl show "(x::'a list) \<le> x" . |
|
254 next |
|
255 fix x y assume "(x::'a list) \<le> y" "y \<le> x" |
|
256 from anti_sym[OF this] show "x = y" . |
|
257 next |
|
258 fix x y z |
|
259 assume h: "(x::'a list) \<le> y" "y \<le> z" |
|
260 show "x \<le> z" |
|
261 proof - |
|
262 from h have "length x = length z" by (metis less_eq_list_def) |
|
263 moreover from h have "\<forall> i < length x. x!i \<le> z!i" |
|
264 by (metis less_eq_list_def order_trans) |
|
265 ultimately show "x \<le> z" |
|
266 by (metis less_eq_list_def) |
|
267 qed |
|
268 qed |
|
269 end |
|
270 |
|
271 lemma sts_bound_le: "sts \<le> sts[l := Bound]" |
|
272 proof - |
|
273 have "length sts = length (sts[l := Bound])" |
|
274 by (metis length_list_update) |
|
275 moreover have "\<forall> i < length sts. sts!i \<le> (sts[l:=Bound])!i" |
|
276 proof - |
|
277 { fix i |
|
278 assume "i < length sts" |
|
279 have "sts ! i \<le> sts[l := Bound] ! i" |
|
280 proof(cases "l < length sts") |
|
281 case True |
|
282 note le_l = this |
|
283 show ?thesis |
|
284 proof(cases "l = i") |
|
285 case True with le_l |
|
286 have "sts[l := Bound] ! i = Bound" by auto |
|
287 thus ?thesis by (metis less_eq_status_def) |
|
288 next |
|
289 case False |
|
290 with le_l have "sts[l := Bound] ! i = sts!i" by auto |
|
291 thus ?thesis by auto |
|
292 qed |
|
293 next |
|
294 case False |
|
295 hence "sts[l := Bound] = sts" by auto |
|
296 thus ?thesis by auto |
|
297 qed |
|
298 } thus ?thesis by auto |
|
299 qed |
|
300 ultimately show ?thesis by (metis less_eq_list_def) |
|
301 qed |
|
302 |
|
303 lemma sts_tl_le: |
|
304 assumes "sts \<le> sts'" |
|
305 shows "tl sts \<le> tl sts'" |
|
306 proof - |
|
307 from assms have "length (tl sts) = length (tl sts')" |
|
308 by (metis (hide_lams, no_types) length_tl less_eq_list_def) |
|
309 moreover from assms have "\<forall> i < length (tl sts). (tl sts)!i \<le> (tl sts')!i" |
|
310 by (smt calculation length_tl less_eq_list_def nth_tl) |
|
311 ultimately show ?thesis |
|
312 by (metis less_eq_list_def) |
|
313 qed |
|
314 |
|
315 lemma wf_cpg_test_le: |
|
316 assumes "wf_cpg_test sts cpg = (True, sts')" |
|
317 shows "sts \<le> sts'" using assms |
|
318 proof(induct cpg arbitrary:sts sts') |
|
319 case (CInstr instr sts sts') |
|
320 obtain a0 l0 a1 l1 where eq_instr: "instr = ((a0, St l0), (a1, St l1))" |
|
321 by (metis surj_pair tstate.exhaust) |
|
322 from CInstr[unfolded this] |
|
323 show ?case by simp |
|
324 next |
|
325 case (CLabel l sts sts') |
|
326 thus ?case by (auto simp:sts_bound_le) |
|
327 next |
|
328 case (CLocal body sts sts') |
|
329 from this(2) |
|
330 obtain sts1 where h: "wf_cpg_test (Free # sts) body = (True, sts1)" "sts' = tl sts1" |
|
331 by (auto split:prod.splits) |
|
332 from CLocal(1)[OF this(1)] have "Free # sts \<le> sts1" . |
|
333 from sts_tl_le[OF this] |
|
334 have "sts \<le> tl sts1" by simp |
|
335 from this[folded h(2)] |
|
336 show ?case . |
|
337 next |
|
338 case (CSeq cpg1 cpg2 sts sts') |
|
339 from this(3) |
|
340 show ?case |
|
341 by (auto split:prod.splits dest!:CSeq(1, 2)) |
|
342 qed |
|
343 |
|
344 lemma c2p_assert: |
|
345 assumes "(c2p [] i cpg j)" |
|
346 shows "\<exists> s. (i :[(c2t [] cpg)]: j) s" |
|
347 proof - |
|
348 from assms obtain f where |
|
349 h [rule_format]: |
|
350 "\<forall> x. length x = length [] \<and> (\<forall>k<length []. [] ! k = Bound \<longrightarrow> (x ! k = f i k)) \<longrightarrow> |
|
351 (\<exists> s. (i :[ c2t [] cpg ]: j) s)" |
|
352 by (unfold c2p_def, auto) |
|
353 have "length [] = length [] \<and> (\<forall>k<length []. [] ! k = Bound \<longrightarrow> ([] ! k = f i k))" |
|
354 by auto |
|
355 from h[OF this] obtain s where "(i :[ c2t [] cpg ]: j) s" by blast |
|
356 thus ?thesis by auto |
|
357 qed |
|
358 |
|
359 definition "sts_disj sts sts' = ((length sts = length sts') \<and> |
|
360 (\<forall> i < length sts. \<not>(sts!i = Bound \<and> sts'!i = Bound)))" |
|
361 |
|
362 instantiation list :: (plus)plus |
|
363 begin |
|
364 fun plus_list :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" where |
|
365 "plus_list [] ys = []" | |
|
366 "plus_list (x#xs) [] = []" | |
|
367 "plus_list (x#xs) (y#ys) = ((x + y)#plus_list xs ys)" |
|
368 instance .. |
|
369 end |
|
370 |
|
371 instantiation list :: (minus)minus |
|
372 begin |
|
373 fun minus_list :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" where |
|
374 "minus_list [] ys = []" | |
|
375 "minus_list (x#xs) [] = []" | |
|
376 "minus_list (x#xs) (y#ys) = ((x - y)#minus_list xs ys)" |
|
377 instance .. |
|
378 end |
|
379 |
|
380 instantiation status :: minus |
|
381 begin |
|
382 fun minus_status :: "status \<Rightarrow> status \<Rightarrow> status" where |
|
383 "minus_status Bound Bound = Free" | |
|
384 "minus_status Bound Free = Bound" | |
|
385 "minus_status Free x = Free " |
|
386 instance .. |
|
387 end |
|
388 |
|
389 instantiation status :: plus |
|
390 begin |
|
391 fun plus_status :: "status \<Rightarrow> status \<Rightarrow> status" where |
|
392 "plus_status Free x = x" | |
|
393 "plus_status Bound x = Bound" |
|
394 instance .. |
|
395 end |
|
396 |
|
397 lemma length_sts_plus: |
|
398 assumes "length (sts1 :: status list) = length sts2" |
|
399 shows "length (sts1 + sts2) = length sts1" |
|
400 using assms |
|
401 proof(induct sts1 arbitrary: sts2) |
|
402 case Nil |
|
403 thus ?case |
|
404 by (metis plus_list.simps(1)) |
|
405 next |
|
406 case (Cons s' sts' sts2) |
|
407 thus ?case |
|
408 proof(cases "sts2 = []") |
|
409 case True |
|
410 with Cons show ?thesis by auto |
|
411 next |
|
412 case False |
|
413 then obtain s'' sts'' where eq_sts2: "sts2 = s''#sts''" |
|
414 by (metis neq_Nil_conv) |
|
415 with Cons |
|
416 show ?thesis |
|
417 by (metis length_Suc_conv list.inject plus_list.simps(3)) |
|
418 qed |
|
419 qed |
|
420 |
|
421 lemma nth_sts_plus: |
|
422 assumes "i < length ((sts1::status list) + sts2)" |
|
423 shows "(sts1 + sts2)!i = sts1!i + sts2!i" |
|
424 using assms |
|
425 proof(induct sts1 arbitrary:i sts2) |
|
426 case (Nil i sts2) |
|
427 thus ?case by auto |
|
428 next |
|
429 case (Cons s' sts' i sts2) |
|
430 show ?case |
|
431 proof(cases "sts2 = []") |
|
432 case True |
|
433 with Cons show ?thesis by auto |
|
434 next |
|
435 case False |
|
436 then obtain s'' sts'' where eq_sts2: "sts2 = s''#sts''" |
|
437 by (metis neq_Nil_conv) |
|
438 with Cons |
|
439 show ?thesis |
|
440 by (smt list.size(4) nth_Cons' plus_list.simps(3)) |
|
441 qed |
|
442 qed |
|
443 |
|
444 lemma nth_sts_minus: |
|
445 assumes "i < length ((sts1::status list) - sts2)" |
|
446 shows "(sts1 - sts2)!i = sts1!i - sts2!i" |
|
447 using assms |
|
448 proof(induct arbitrary:i rule:minus_list.induct) |
|
449 case (3 x xs y ys i) |
|
450 show ?case |
|
451 proof(cases i) |
|
452 case 0 |
|
453 thus ?thesis by simp |
|
454 next |
|
455 case (Suc k) |
|
456 with 3(2) have "k < length (xs - ys)" by auto |
|
457 from 3(1)[OF this] and Suc |
|
458 show ?thesis |
|
459 by auto |
|
460 qed |
|
461 qed auto |
|
462 |
|
463 fun taddr :: "tresource \<Rightarrow> nat" where |
|
464 "taddr (TC i instr) = i" |
|
465 |
|
466 lemma tassemble_to_range: |
|
467 assumes "(i :[tpg]: j) s" |
|
468 shows "(i \<le> j) \<and> (\<forall> r \<in> s. i \<le> taddr r \<and> taddr r < j)" |
|
469 using assms |
|
470 proof(induct tpg arbitrary: i j s) |
|
471 case (TInstr instr i j s) |
|
472 obtain a0 l0 a1 l1 where "instr = ((a0, l0), (a1, l1))" |
|
473 by (metis pair_collapse) |
|
474 with TInstr |
|
475 show ?case |
|
476 apply (simp add:tassemble_to.simps sg_def) |
|
477 by (smt `instr = ((a0, l0), a1, l1)` cond_eq cond_true_eq1 |
|
478 empty_iff insert_iff le_refl lessI sep.mult_commute taddr.simps) |
|
479 next |
|
480 case (TLabel l i j s) |
|
481 thus ?case |
|
482 apply (simp add:tassemble_to.simps) |
|
483 by (smt equals0D pasrt_def set_zero_def) |
|
484 next |
|
485 case (TSeq c1 c2 i j s) |
|
486 from TSeq(3) obtain s1 s2 j' where |
|
487 h: "(i :[ c1 ]: j') s1" "(j' :[ c2 ]: j) s2" "s1 ## s2" "s = s1 + s2" |
|
488 by (auto simp:tassemble_to.simps elim!:EXS_elim sep_conjE) |
|
489 show ?case |
|
490 proof - |
|
491 { fix r |
|
492 assume "r \<in> s" |
|
493 with h (3, 4) have "r \<in> s1 \<or> r \<in> s2" |
|
494 by (auto simp:set_ins_def) |
|
495 hence "i \<le> j \<and> i \<le> taddr r \<and> taddr r < j" |
|
496 proof |
|
497 assume " r \<in> s1" |
|
498 from TSeq(1)[OF h(1)] |
|
499 have "i \<le> j'" "(\<forall>r\<in>s1. i \<le> taddr r \<and> taddr r < j')" by auto |
|
500 from this(2)[rule_format, OF `r \<in> s1`] |
|
501 have "i \<le> taddr r" "taddr r < j'" by auto |
|
502 with TSeq(2)[OF h(2)] |
|
503 show ?thesis by auto |
|
504 next |
|
505 assume "r \<in> s2" |
|
506 from TSeq(2)[OF h(2)] |
|
507 have "j' \<le> j" "(\<forall>r\<in>s2. j' \<le> taddr r \<and> taddr r < j)" by auto |
|
508 from this(2)[rule_format, OF `r \<in> s2`] |
|
509 have "j' \<le> taddr r" "taddr r < j" by auto |
|
510 with TSeq(1)[OF h(1)] |
|
511 show ?thesis by auto |
|
512 qed |
|
513 } thus ?thesis |
|
514 by (smt TSeq.hyps(1) TSeq.hyps(2) h(1) h(2)) |
|
515 qed |
|
516 next |
|
517 case (TLocal body i j s) |
|
518 from this(2) obtain l s' where "(i :[ body l ]: j) s" |
|
519 by (simp add:tassemble_to.simps, auto elim!:EXS_elim) |
|
520 from TLocal(1)[OF this] |
|
521 show ?case by auto |
|
522 qed |
|
523 |
|
524 lemma c2p_seq: |
|
525 assumes "c2p sts1 i cpg1 j'" |
|
526 "c2p sts2 j' cpg2 j" |
|
527 "sts_disj sts1 sts2" |
|
528 shows "(c2p (sts1 + sts2) i (CSeq cpg1 cpg2) j)" |
|
529 proof - |
|
530 from assms(1)[unfolded c2p_def] |
|
531 obtain f1 where |
|
532 h1[rule_format]: |
|
533 "\<forall>x. length x = length sts1 \<and> (\<forall>k<length sts1. sts1 ! k = Bound \<longrightarrow> (x ! k = f1 i k)) \<longrightarrow> |
|
534 Ex (i :[ c2t x cpg1 ]: j')" by blast |
|
535 from assms(2)[unfolded c2p_def] |
|
536 obtain f2 where h2[rule_format]: |
|
537 "\<forall>x. length x = length sts2 \<and> (\<forall>k<length sts2. sts2 ! k = Bound \<longrightarrow> (x ! k = f2 j' k)) \<longrightarrow> |
|
538 Ex (j' :[ c2t x cpg2 ]: j)" by blast |
|
539 from assms(3)[unfolded sts_disj_def] |
|
540 have h3: "length sts1 = length sts2" |
|
541 and h4[rule_format]: |
|
542 "(\<forall>i<length sts1. \<not> (sts1 ! i = Bound \<and> sts2 ! i = Bound))" by auto |
|
543 let ?f = "\<lambda> i k. if (sts1!k = Bound) then f1 i k else f2 j' k" |
|
544 { fix x |
|
545 assume h5: "length x = length (sts1 + sts2)" and |
|
546 h6[rule_format]: "(\<forall>k<length (sts1 + sts2). (sts1 + sts2) ! k = Bound \<longrightarrow> x ! k = ?f i k)" |
|
547 obtain s1 where h_s1: "(i :[ c2t x cpg1 ]: j') s1" |
|
548 proof(atomize_elim, rule h1) |
|
549 from h3 h5 have "length x = length sts1" |
|
550 by (metis length_sts_plus) |
|
551 moreover { |
|
552 fix k assume hh: "k<length sts1" "sts1 ! k = Bound" |
|
553 from hh(1) h3 h5 have p1: "k < length (sts1 + sts2)" |
|
554 by (metis calculation) |
|
555 from h3 hh(2) have p2: "(sts1 + sts2)!k = Bound" |
|
556 by (metis nth_sts_plus p1 plus_status.simps(2)) |
|
557 from h6[OF p1 p2] have "x ! k = (if sts1 ! k = Bound then f1 i k else f2 j' k)" . |
|
558 with hh(2) |
|
559 have "x ! k = f1 i k" by simp |
|
560 } ultimately show "length x = length sts1 \<and> |
|
561 (\<forall>k<length sts1. sts1 ! k = Bound \<longrightarrow> (x ! k = f1 i k))" |
|
562 by blast |
|
563 qed |
|
564 obtain s2 where h_s2: "(j' :[ c2t x cpg2 ]: j) s2" |
|
565 proof(atomize_elim, rule h2) |
|
566 from h3 h5 have "length x = length sts2" |
|
567 by (metis length_sts_plus) |
|
568 moreover { |
|
569 fix k |
|
570 assume hh: "k<length sts2" "sts2 ! k = Bound" |
|
571 from hh(1) h3 h5 have p1: "k < length (sts1 + sts2)" |
|
572 by (metis calculation) |
|
573 from hh(1) h3 h5 hh(2) have p2: "(sts1 + sts2)!k = Bound" |
|
574 by (metis `length sts1 = length sts2 \<and> |
|
575 (\<forall>i<length sts1. \<not> (sts1 ! i = Bound \<and> sts2 ! i = Bound))` |
|
576 calculation nth_sts_plus plus_status.simps(1) status.distinct(1) status.exhaust) |
|
577 from h6[OF p1 p2] have "x ! k = (if sts1 ! k = Bound then f1 i k else f2 j' k)" . |
|
578 moreover from h4[OF hh(1)[folded h3]] hh(2) have "sts1!k \<noteq> Bound" by auto |
|
579 ultimately have "x!k = f2 j' k" by simp |
|
580 } ultimately show "length x = length sts2 \<and> |
|
581 (\<forall>k<length sts2. sts2 ! k = Bound \<longrightarrow> (x ! k = f2 j' k))" |
|
582 by blast |
|
583 qed |
|
584 have h_s12: "s1 ## s2" |
|
585 proof - |
|
586 { fix r assume h: "r \<in> s1" "r \<in> s2" |
|
587 with h_s1 h_s2 |
|
588 have "False"by (smt tassemble_to_range) |
|
589 } thus ?thesis by (auto simp:set_ins_def) |
|
590 qed |
|
591 have "(EXS j'. i :[ c2t x cpg1 ]: j' \<and>* j' :[ c2t x cpg2 ]: j) (s1 + s2)" |
|
592 proof(rule_tac x = j' in EXS_intro) |
|
593 from h_s1 h_s2 h_s12 |
|
594 show "(i :[ c2t x cpg1 ]: j' \<and>* j' :[ c2t x cpg2 ]: j) (s1 + s2)" |
|
595 by (metis sep_conjI) |
|
596 qed |
|
597 hence "\<exists> s. (i :[ c2t x (CSeq cpg1 cpg2) ]: j) s" |
|
598 by (auto simp:tassemble_to.simps) |
|
599 } |
|
600 hence "\<exists>f. \<forall>x. length x = length (sts1 + sts2) \<and> |
|
601 (\<forall>k<length (sts1 + sts2). (sts1 + sts2) ! k = Bound \<longrightarrow> x ! k = f i k) \<longrightarrow> |
|
602 Ex (i :[ c2t x (CSeq cpg1 cpg2) ]: j)" |
|
603 by (rule_tac x = ?f in exI, auto) |
|
604 thus ?thesis |
|
605 by(unfold c2p_def, auto) |
|
606 qed |
|
607 |
|
608 lemma plus_list_len: |
|
609 "length ((sts1::status list) + sts2) = min (length sts1) (length sts2)" |
|
610 by(induct rule:plus_list.induct, auto) |
|
611 |
|
612 lemma minus_list_len: |
|
613 "length ((sts1::status list) - sts2) = min (length sts1) (length sts2)" |
|
614 by(induct rule:minus_list.induct, auto) |
|
615 |
|
616 lemma sts_le_comb: |
|
617 assumes "sts1 \<le> sts2" |
|
618 and "sts2 \<le> sts3" |
|
619 shows "sts_disj (sts2 - sts1) (sts3 - sts2)" and |
|
620 "(sts3 - sts1) = (sts2 - sts1) + (sts3 - sts2)" |
|
621 proof - |
|
622 from assms |
|
623 have h1: "length sts1 = length sts2" "\<forall>i<length sts1. sts1 ! i \<le> sts2 ! i" |
|
624 and h2: "length sts2 = length sts3" "\<forall>i<length sts1. sts2 ! i \<le> sts3 ! i" |
|
625 by (unfold less_eq_list_def, auto) |
|
626 have "sts_disj (sts2 - sts1) (sts3 - sts2)" |
|
627 proof - |
|
628 from h1(1) h2(1) |
|
629 have "length (sts2 - sts1) = length (sts3 - sts2)" |
|
630 by (metis minus_list_len) |
|
631 moreover { |
|
632 fix i |
|
633 assume lt_i: "i<length (sts2 - sts1)" |
|
634 from lt_i h1(1) h2(1) have "i < length sts1" |
|
635 by (smt minus_list_len) |
|
636 from h1(2)[rule_format, of i, OF this] h2(2)[rule_format, of i, OF this] |
|
637 have "sts1 ! i \<le> sts2 ! i" "sts2 ! i \<le> sts3 ! i" . |
|
638 moreover have "(sts2 - sts1) ! i = sts2!i - sts1!i" |
|
639 by (metis lt_i nth_sts_minus) |
|
640 moreover have "(sts3 - sts2)!i = sts3!i - sts2!i" |
|
641 by (metis `length (sts2 - sts1) = length (sts3 - sts2)` lt_i nth_sts_minus) |
|
642 ultimately have " \<not> ((sts2 - sts1) ! i = Bound \<and> (sts3 - sts2) ! i = Bound)" |
|
643 apply (cases "sts2!i", cases "sts1!i", cases "sts3!i", simp, simp) |
|
644 apply (cases "sts3!i", simp, simp) |
|
645 apply (cases "sts1!i", cases "sts3!i", simp, simp) |
|
646 by (cases "sts3!i", simp, simp) |
|
647 } ultimately show ?thesis by (unfold sts_disj_def, auto) |
|
648 qed |
|
649 moreover have "(sts3 - sts1) = (sts2 - sts1) + (sts3 - sts2)" |
|
650 proof(induct rule:nth_equalityI) |
|
651 case 1 |
|
652 show ?case by (metis h1(1) h2(1) length_sts_plus minus_list_len) |
|
653 next |
|
654 case 2 |
|
655 { fix i |
|
656 assume lt_i: "i<length (sts3 - sts1)" |
|
657 have "(sts3 - sts1) ! i = (sts2 - sts1 + (sts3 - sts2)) ! i" (is "?L = ?R") |
|
658 proof - |
|
659 have "?R = sts2!i - sts1!i + (sts3!i - sts2!i)" |
|
660 by (smt `i < length (sts3 - sts1)` h2(1) minus_list_len nth_sts_minus |
|
661 nth_sts_plus plus_list_len) |
|
662 moreover have "?L = sts3!i - sts1!i" |
|
663 by (metis `i < length (sts3 - sts1)` nth_sts_minus) |
|
664 moreover |
|
665 have "sts2!i - sts1!i + (sts3!i - sts2!i) = sts3!i - sts1!i" |
|
666 proof - |
|
667 from lt_i h1(1) h2(1) have "i < length sts1" |
|
668 by (smt minus_list_len) |
|
669 from h1(2)[rule_format, of i, OF this] h2(2)[rule_format, of i, OF this] |
|
670 show ?thesis |
|
671 apply (cases "sts2!i", cases "sts1!i", cases "sts3!i", simp, simp) |
|
672 apply (cases "sts3!i", simp, simp) |
|
673 apply (cases "sts1!i", cases "sts3!i", simp, simp) |
|
674 by (cases "sts3!i", simp, simp) |
|
675 qed |
|
676 ultimately show ?thesis by simp |
|
677 qed |
|
678 } thus ?case by auto |
|
679 qed |
|
680 ultimately show "sts_disj (sts2 - sts1) (sts3 - sts2)" and |
|
681 "(sts3 - sts1) = (sts2 - sts1) + (sts3 - sts2)" by auto |
|
682 qed |
|
683 |
|
684 lemma wf_cpg_test_correct: |
|
685 assumes "wf_cpg_test sts cpg = (True, sts')" |
|
686 shows "(\<forall> i. \<exists> j. (c2p (sts' - sts) i cpg j))" |
|
687 using assms |
|
688 proof(induct cpg arbitrary:sts sts') |
|
689 case (CInstr instr sts sts') |
|
690 obtain a0 l0 a1 l1 where eq_instr: "instr = ((a0, St l0), (a1, St l1))" |
|
691 by (metis surj_pair tstate.exhaust) |
|
692 show ?case |
|
693 proof(unfold eq_instr c2p_def, clarsimp simp:tassemble_to.simps) |
|
694 fix i |
|
695 let ?a = "(Suc i)" and ?f = "\<lambda> i k. St i" |
|
696 show "\<exists>a f. \<forall>x. length x = length (sts' - sts) \<and> |
|
697 (\<forall>k<length (sts' - sts). (sts' - sts) ! k = Bound \<longrightarrow> x ! k = f i k) \<longrightarrow> |
|
698 Ex (sg {TC i ((a0, (x ! l0)), a1, (x ! l1))} \<and>* <(a = (Suc i))>)" |
|
699 proof(rule_tac x = ?a in exI, rule_tac x = ?f in exI, default, clarsimp) |
|
700 fix x |
|
701 let ?j = "Suc i" |
|
702 let ?s = " {TC i ((a0, x ! l0), a1, x ! l1)}" |
|
703 have "(sg {TC i ((a0, x ! l0), a1, x ! l1)} \<and>* <(Suc i = Suc i)>) ?s" |
|
704 by (simp add:tassemble_to.simps sg_def) |
|
705 thus "Ex (sg {TC i ((a0, (x ! l0)), a1, (x ! l1))})" |
|
706 by auto |
|
707 qed |
|
708 qed |
|
709 next |
|
710 case (CLabel l sts sts') |
|
711 show ?case |
|
712 proof |
|
713 fix i |
|
714 from CLabel |
|
715 have h1: "l < length sts" |
|
716 and h2: "sts ! l = Free" |
|
717 and h3: "sts[l := Bound] = sts'" by auto |
|
718 let ?f = "\<lambda> i k. St i" |
|
719 have "\<exists>a f. \<forall>x. length x = length (sts' - sts) \<and> |
|
720 (\<forall>k<length (sts' - sts). (sts' - sts) ! k = Bound \<longrightarrow> x ! k = f (i::nat) k) \<longrightarrow> |
|
721 Ex (<(i = a \<and> a = nat_of (x ! l))>)" |
|
722 proof(rule_tac x = i in exI, rule_tac x = ?f in exI, clarsimp) |
|
723 fix x |
|
724 assume h[rule_format]: |
|
725 "\<forall>k<length (sts' - sts). (sts' - sts) ! k = Bound \<longrightarrow> x ! k = St i" |
|
726 from h1 h3 have p1: "l < length (sts' - sts)" |
|
727 by (metis length_list_update min_max.inf.idem minus_list_len) |
|
728 from p1 h2 h3 have p2: "(sts' - sts)!l = Bound" |
|
729 by (metis h1 minus_status.simps(2) nth_list_update_eq nth_sts_minus) |
|
730 from h[OF p1 p2] have "(<(i = nat_of (x ! l))>) 0" |
|
731 by (simp add:set_ins_def) |
|
732 thus "\<exists> s. (<(i = nat_of (x ! l))>) s" by auto |
|
733 qed |
|
734 thus "\<exists>a. c2p (sts' - sts) i (CLabel l) a" |
|
735 by (auto simp:c2p_def tassemble_to.simps) |
|
736 qed |
|
737 next |
|
738 case (CSeq cpg1 cpg2 sts sts') |
|
739 show ?case |
|
740 proof |
|
741 fix i |
|
742 from CSeq(3)[unfolded wf_cpg_test.simps] |
|
743 obtain b1 sts1 |
|
744 where LetE: "(let (b2, y) = wf_cpg_test sts1 cpg2 in (b1 \<and> b2, y)) = (True, sts')" |
|
745 "(b1, sts1) = wf_cpg_test sts cpg1" |
|
746 by (auto simp:Let_def split:prod.splits) |
|
747 show "\<exists> j. c2p (sts' - sts) i (CSeq cpg1 cpg2) j" |
|
748 proof - |
|
749 from LetE(1) |
|
750 obtain b2 where h: "(b2, sts') = wf_cpg_test sts1 cpg2" "b1=True" "b2=True" |
|
751 by (atomize_elim, unfold Let_def, auto split:prod.splits) |
|
752 from wf_cpg_test_le[OF LetE(2)[symmetric, unfolded h(2)]] |
|
753 have sts_le1: "sts \<le> sts1" . |
|
754 from CSeq(1)[OF LetE(2)[unfolded h(2), symmetric], rule_format, of i] |
|
755 obtain j1 where h1: "(c2p (sts1 - sts) i cpg1 j1)" by blast |
|
756 from wf_cpg_test_le[OF h(1)[symmetric, unfolded h(3)]] |
|
757 have sts_le2: "sts1 \<le> sts'" . |
|
758 from sts_le_comb[OF sts_le1 sts_le2] |
|
759 have hh: "sts_disj (sts1 - sts) (sts' - sts1)" |
|
760 "sts' - sts = (sts1 - sts) + (sts' - sts1)" . |
|
761 from CSeq(2)[OF h(1)[symmetric, unfolded h(3)], rule_format, of j1] |
|
762 obtain j2 where h2: "(c2p (sts' - sts1) j1 cpg2 j2)" by blast |
|
763 have "c2p (sts' - sts) i (CSeq cpg1 cpg2) j2" |
|
764 by(unfold hh(2), rule c2p_seq[OF h1 h2 hh(1)]) |
|
765 thus ?thesis by blast |
|
766 qed |
|
767 qed |
|
768 next |
|
769 case (CLocal body sts sts') |
|
770 from this(2) obtain b sts1 s where |
|
771 h: "wf_cpg_test (Free # sts) body = (True, sts1)" |
|
772 "sts' = tl sts1" |
|
773 by (unfold wf_cpg_test.simps, auto split:prod.splits) |
|
774 from wf_cpg_test_le[OF h(1), unfolded less_eq_list_def] h(2) |
|
775 obtain s where eq_sts1: "sts1 = s#sts'" |
|
776 by (metis Suc_length_conv list.size(4) tl.simps(2)) |
|
777 from CLocal(1)[OF h(1)] have p1: "\<forall>i. \<exists>a. c2p (sts1 - (Free # sts)) i body a" . |
|
778 show ?case |
|
779 proof |
|
780 fix i |
|
781 from p1[rule_format, of i] obtain j where "(c2p (sts1 - (Free # sts)) i body) j" by blast |
|
782 then obtain f where hh [rule_format]: |
|
783 "\<forall>x. length x = length (sts1 - (Free # sts)) \<and> |
|
784 (\<forall>k<length (sts1 - (Free # sts)). (sts1 - (Free # sts)) ! k = Bound \<longrightarrow> x ! k = f i k) \<longrightarrow> |
|
785 (\<exists>s. (i :[ c2t x body ]: j) s)" |
|
786 by (auto simp:c2p_def) |
|
787 let ?f = "\<lambda> i k. f i (Suc k)" |
|
788 have "\<exists>j f. \<forall>x. length x = length (sts' - sts) \<and> |
|
789 (\<forall>k<length (sts' - sts). (sts' - sts) ! k = Bound \<longrightarrow> x ! k = f i k) \<longrightarrow> |
|
790 (\<exists>s. (i :[ (TL xa. c2t (xa # x) body) ]: j) s)" |
|
791 proof(rule_tac x = j in exI, rule_tac x = ?f in exI, default, clarsimp) |
|
792 fix x |
|
793 assume h1: "length x = length (sts' - sts)" |
|
794 and h2: "\<forall>k<length (sts' - sts). (sts' - sts) ! k = Bound \<longrightarrow> x ! k = f i (Suc k)" |
|
795 let ?l = "f i 0" let ?x = " ?l#x" |
|
796 from wf_cpg_test_le[OF h(1)] have "length (Free#sts) = length sts1" |
|
797 by (unfold less_eq_list_def, simp) |
|
798 with h1 h(2) have q1: "length (?l # x) = length (sts1 - (Free # sts))" |
|
799 by (smt Suc_length_conv length_Suc_conv list.inject list.size(4) |
|
800 minus_list.simps(3) minus_list_len tl.simps(2)) |
|
801 have q2: "(\<forall>k<length (sts1 - (Free # sts)). |
|
802 (sts1 - (Free # sts)) ! k = Bound \<longrightarrow> (f i 0 # x) ! k = f i k)" |
|
803 proof - |
|
804 { fix k |
|
805 assume lt_k: "k<length (sts1 - (Free # sts))" |
|
806 and bd_k: "(sts1 - (Free # sts)) ! k = Bound" |
|
807 have "(f i 0 # x) ! k = f i k" |
|
808 proof(cases "k") |
|
809 case (Suc k') |
|
810 moreover have "x ! k' = f i (Suc k')" |
|
811 proof(rule h2[rule_format]) |
|
812 from bd_k Suc eq_sts1 show "(sts' - sts) ! k' = Bound" by simp |
|
813 next |
|
814 from Suc lt_k eq_sts1 show "k' < length (sts' - sts)" by simp |
|
815 qed |
|
816 ultimately show ?thesis by simp |
|
817 qed simp |
|
818 } thus ?thesis by auto |
|
819 qed |
|
820 from conjI[THEN hh[of ?x], OF q1 q2] obtain s |
|
821 where h_s: "(i :[ c2t (f i 0 # x) body ]: j) s" by blast |
|
822 thus "(\<exists>s. (i :[ (TL xa. c2t (xa # x) body) ]: j) s)" |
|
823 apply (simp add:tassemble_to.simps) |
|
824 by (rule_tac x = s in exI, rule_tac x = "?l::tstate" in EXS_intro, simp) |
|
825 qed |
|
826 thus "\<exists>j. c2p (sts' - sts) i (CLocal body) j" |
|
827 by (auto simp:c2p_def) |
|
828 qed |
|
829 qed |
|
830 |
|
831 lemma |
|
832 assumes "wf_cpg_test [] cpg = (True, sts')" |
|
833 and "tpg = c2t [] cpg" |
|
834 shows "\<forall> i. \<exists> j s. ((i:[tpg]:j) s)" |
|
835 proof |
|
836 fix i |
|
837 have eq_sts_minus: "(sts' - []) = []" |
|
838 by (metis list.exhaust minus_list.simps(1) minus_list.simps(2)) |
|
839 from wf_cpg_test_correct[OF assms(1), rule_format, of i] |
|
840 obtain j where "c2p (sts' - []) i cpg j" by auto |
|
841 from c2p_assert [OF this[unfolded eq_sts_minus]] |
|
842 obtain s where "(i :[ c2t [] cpg ]: j) s" by blast |
|
843 from this[folded assms(2)] |
|
844 show " \<exists> j s. ((i:[tpg]:j) s)" by blast |
|
845 qed |
|
846 |
|
847 lemma replicate_nth: "(replicate n x @ sts) ! (l + n) = sts!l" |
|
848 by (smt length_replicate nth_append) |
|
849 |
|
850 lemma replicate_update: |
|
851 "(replicate n x @ sts)[l + n := v] = replicate n x @ sts[l := v]" |
|
852 by (smt length_replicate list_update_append) |
|
853 |
|
854 lemma nth_app: "length xs \<le> a \<Longrightarrow> (xs @ ys)!a = ys!(a - length xs)" |
|
855 by (metis not_less nth_append) |
|
856 |
|
857 lemma l_n_v_orig: |
|
858 assumes "l0 < length env" |
|
859 and "t \<le> l0" |
|
860 shows "(take t env @ es @ drop t env) ! (l0 + length es) = env ! l0" |
|
861 proof - |
|
862 from assms(1, 2) have "t < length env" by auto |
|
863 hence h: "env = take t env @ drop t env" |
|
864 "length (take t env) = t" |
|
865 apply (metis append_take_drop_id) |
|
866 by (smt `t < length env` length_take) |
|
867 with assms(2) have eq_sts_l: "env!l0 = (drop t env)!(l0 - t)" |
|
868 by (metis nth_app) |
|
869 from h(2) have "length (take t env @ es) = t + length es" |
|
870 by (metis length_append length_replicate nat_add_commute) |
|
871 moreover from assms(2) have "t + (length es) \<le> l0 + (length es)" by auto |
|
872 ultimately have "((take t env @ es) @ drop t env)!(l0 + length es) = |
|
873 (drop t env)!(l0+ length es - (t + length es))" |
|
874 by (smt length_replicate length_splice nth_append) |
|
875 with eq_sts_l[symmetric, unfolded assms] |
|
876 show ?thesis by auto |
|
877 qed |
|
878 |
|
879 lemma l_n_v: |
|
880 assumes "l < length sts" |
|
881 and "sts!l = v" |
|
882 and "t \<le> l" |
|
883 shows "(take t sts @ replicate n x @ drop t sts) ! (l + n) = v" |
|
884 proof - |
|
885 from l_n_v_orig[OF assms(1) assms(3), of "replicate n x"] |
|
886 and assms(2) |
|
887 show ?thesis by auto |
|
888 qed |
|
889 |
|
890 lemma l_n_v_s: |
|
891 assumes "l < length sts" |
|
892 and "t \<le> l" |
|
893 shows "(take t sts @ sts0 @ drop t sts)[l + length sts0 := v] = |
|
894 take t (sts[l:=v])@ sts0 @ drop t (sts[l:=v])" |
|
895 proof - |
|
896 let ?n = "length sts0" |
|
897 from assms(1, 2) have "t < length sts" by auto |
|
898 hence h: "sts = take t sts @ drop t sts" |
|
899 "length (take t sts) = t" |
|
900 apply (metis append_take_drop_id) |
|
901 by (smt `t < length sts` length_take) |
|
902 with assms(2) have eq_sts_l: "sts[l:=v] = take t sts @ drop t sts [(l - t) := v]" |
|
903 by (smt list_update_append) |
|
904 with h(2) have eq_take_drop_t: "take t (sts[l:=v]) = take t sts" |
|
905 "drop t (sts[l:=v]) = (drop t sts)[l - t:=v]" |
|
906 apply (metis append_eq_conv_conj) |
|
907 by (metis append_eq_conv_conj eq_sts_l h(2)) |
|
908 from h(2) have "length (take t sts @ sts0) = t + ?n" |
|
909 by (metis length_append length_replicate nat_add_commute) |
|
910 moreover from assms(2) have "t + ?n \<le> l + ?n" by auto |
|
911 ultimately have "((take t sts @ sts0) @ drop t sts)[l + ?n := v] = |
|
912 (take t sts @ sts0) @ (drop t sts)[(l + ?n - (t + ?n)) := v]" |
|
913 by (smt list_update_append replicate_nth) |
|
914 with eq_take_drop_t |
|
915 show ?thesis by auto |
|
916 qed |
|
917 |
|
918 lemma l_n_v_s1: |
|
919 assumes "l < length sts" |
|
920 and "\<not> t \<le> l" |
|
921 shows "(take t sts @ sts0 @ drop t sts)[l := v] = |
|
922 take t (sts[l := v]) @ sts0 @ drop t (sts[l := v])" |
|
923 proof(cases "t < length sts") |
|
924 case False |
|
925 hence h: "take t sts = sts" "drop t sts = []" |
|
926 "take t (sts[l:=v]) = sts [l:=v]" |
|
927 "drop t (sts[l:=v]) = []" |
|
928 by auto |
|
929 with assms(1) |
|
930 show ?thesis |
|
931 by (metis list_update_append) |
|
932 next |
|
933 case True |
|
934 with assms(2) |
|
935 have h: "(take t sts)[l:=v] = take t (sts[l:=v])" |
|
936 "(sts[l:=v]) = (take t sts)[l:=v]@drop t sts" |
|
937 "length (take t sts) = t" |
|
938 apply (smt length_list_update length_take nth_equalityI nth_list_update nth_take) |
|
939 apply (smt True append_take_drop_id assms(2) length_take list_update_append1) |
|
940 by (smt True length_take) |
|
941 from h(2,3) have "drop t (sts[l := v]) = drop t sts" |
|
942 by (metis append_eq_conv_conj length_list_update) |
|
943 with h(1) |
|
944 show ?thesis |
|
945 apply simp |
|
946 by (metis assms(2) h(3) list_update_append1 not_leE) |
|
947 qed |
|
948 |
|
949 lemma l_n_v_s2: |
|
950 assumes "l0 < length env" |
|
951 and "t \<le> l0" |
|
952 and "\<not> t \<le> l1" |
|
953 shows "(take t env @ es @ drop t env) ! l1 = env ! l1" |
|
954 proof - |
|
955 from assms(1, 2) have "t < length env" by auto |
|
956 hence h: "env = take t env @ drop t env" |
|
957 "length (take t env) = t" |
|
958 apply (metis append_take_drop_id) |
|
959 by (smt `t < length env` length_take) |
|
960 with assms(3) show ?thesis |
|
961 by (smt nth_append) |
|
962 qed |
|
963 |
|
964 lemma l_n_v_s3: |
|
965 assumes "l0 < length env" |
|
966 and "\<not> t \<le> l0" |
|
967 shows "(take t env @ es @ drop t env) ! l0 = env ! l0" |
|
968 proof(cases "t < length env") |
|
969 case True |
|
970 hence h: "env = take t env @ drop t env" |
|
971 "length (take t env) = t" |
|
972 apply (metis append_take_drop_id) |
|
973 by (smt `t < length env` length_take) |
|
974 with assms(2) show ?thesis |
|
975 by (smt nth_append) |
|
976 next |
|
977 case False |
|
978 hence "take t env = env" by auto |
|
979 with assms(1) show ?thesis |
|
980 by (metis nth_append) |
|
981 qed |
|
982 |
|
983 subsection {* Invariant under lifts and perms *} |
|
984 |
|
985 definition "lift_b t i j = (if (j \<ge> t) then (j + i) else j)" |
|
986 |
|
987 fun lift_t :: "nat \<Rightarrow> nat \<Rightarrow> cpg \<Rightarrow> cpg" |
|
988 where "lift_t t i (CInstr ((act0, l0), (act1, l1))) = |
|
989 (CInstr ((act0, lift_b t i (nat_of l0)), |
|
990 (act1, lift_b t i (nat_of l1))))" | |
|
991 "lift_t t i (CLabel l) = CLabel (lift_b t i l)" | |
|
992 "lift_t t i (CSeq c1 c2) = CSeq (lift_t t i c1) (lift_t t i c2)" | |
|
993 "lift_t t i (CLocal c) = CLocal (lift_t (t + 1) i c)" |
|
994 |
|
995 definition "lift0 (i::nat) cpg = lift_t 0 i cpg" |
|
996 |
|
997 definition "perm_b t i j k = (if ((k::nat) = i \<and> i < t \<and> j < t) then j else |
|
998 if (k = j \<and> i < t \<and> j < t) then i else k)" |
|
999 |
|
1000 fun perm :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> cpg \<Rightarrow> cpg" |
|
1001 where "perm t i j (CInstr ((act0, l0), (act1, l1))) = |
|
1002 (CInstr ((act0, perm_b t i j l0), (act1, perm_b t i j l1)))" | |
|
1003 "perm t i j (CLabel l) = CLabel (perm_b t i j l)" | |
|
1004 "perm t i j (CSeq c1 c2) = CSeq (perm t i j c1) (perm t i j c2)" | |
|
1005 "perm t i j (CLocal c) = CLocal (perm (t + 1) (i + 1) (j + 1) c)" |
|
1006 |
|
1007 definition "map_idx f sts = map (\<lambda> k. sts!(f (nat k))) [0 .. int (length sts) - 1]" |
|
1008 |
|
1009 definition "perm_s i j sts = map_idx (perm_b (length sts) i j) sts" |
|
1010 |
|
1011 fun lift_es :: "(tstate list \<times> nat) list \<Rightarrow> tstate list \<Rightarrow> tstate list" where |
|
1012 "lift_es [] env = env" |
|
1013 | "lift_es ((env', t)#ops) env = lift_es ops (take t env @ env' @ drop t env)" |
|
1014 |
|
1015 fun lift_ss :: "(tstate list \<times> nat) list \<Rightarrow> status list \<Rightarrow> status list" where |
|
1016 "lift_ss [] sts = sts" |
|
1017 | "lift_ss ((env', t)#ops) sts = lift_ss ops (take t sts @ map (\<lambda> x. Free) env' @ drop t sts)" |
|
1018 |
|
1019 |
|
1020 fun lift_ts :: "(nat \<times> nat) list \<Rightarrow> cpg \<Rightarrow> cpg" where |
|
1021 "lift_ts [] cpg = cpg" |
|
1022 | "lift_ts ((lenv, t)#ops) cpg = lift_ts ops (lift_t t lenv cpg)" |
|
1023 |
|
1024 fun perm_ss :: "(nat \<times> nat) list \<Rightarrow> 'a list \<Rightarrow> 'a list" where |
|
1025 "perm_ss [] env = env" |
|
1026 | "perm_ss ((i, j)#ops) env = perm_ss ops (perm_s i j env)" |
|
1027 |
|
1028 fun perms :: "nat => (nat \<times> nat) list \<Rightarrow> cpg \<Rightarrow> cpg" where |
|
1029 "perms n [] cpg = cpg" |
|
1030 | "perms n ((i, j)#ops) cpg = perms n ops (perm n i j cpg)" |
|
1031 |
|
1032 definition |
|
1033 "adjust_cpg len sps lfs cpg = lift_ts lfs (perms len sps cpg)" |
|
1034 |
|
1035 definition |
|
1036 "red_lfs lfs = map (apfst length) lfs" |
|
1037 |
|
1038 definition |
|
1039 "adjust_env sps lfs env = lift_es lfs (perm_ss sps env)" |
|
1040 |
|
1041 definition |
|
1042 "adjust_sts sps lfs sts = lift_ss lfs (perm_ss sps sts)" |
|
1043 |
|
1044 fun sts_disj_test :: "status list \<Rightarrow> status list \<Rightarrow> bool" where |
|
1045 "sts_disj_test [] [] = True" |
|
1046 | "sts_disj_test [] (s#ss) = False" |
|
1047 | "sts_disj_test (s#ss) [] = False" |
|
1048 | "sts_disj_test (s1#ss1) (s2#ss2) = (case (s1, s2) of |
|
1049 (Bound, Bound) \<Rightarrow> False |
|
1050 | _ \<Rightarrow> sts_disj_test ss1 ss2)" |
|
1051 |
|
1052 lemma inj_perm_b: "inj (perm_b t i j)" |
|
1053 proof(induct rule:injI) |
|
1054 case (1 x y) |
|
1055 thus ?case |
|
1056 by (unfold perm_b_def, auto split:if_splits) |
|
1057 qed |
|
1058 |
|
1059 lemma lift_wf_cpg_test: |
|
1060 assumes "wf_cpg_test sts cpg = (True, sts')" |
|
1061 shows "wf_cpg_test (take t sts @ sts0 @ drop t sts) (lift_t t (length sts0) cpg) = |
|
1062 (True, take t sts' @ sts0 @ drop t sts')" |
|
1063 using assms |
|
1064 proof(induct cpg arbitrary:t sts0 sts sts') |
|
1065 case (CInstr instr t sts0 sts sts') |
|
1066 obtain a0 l0 a1 l1 where eq_instr: "instr = ((a0, St l0), (a1, St l1))" |
|
1067 by (metis surj_pair tstate.exhaust) |
|
1068 from CInstr |
|
1069 show ?case |
|
1070 by (auto simp:eq_instr lift_b_def) |
|
1071 next |
|
1072 case (CLabel l t sts0 sts sts') |
|
1073 thus ?case |
|
1074 apply (auto simp:lift_b_def |
|
1075 replicate_nth replicate_update l_n_v_orig l_n_v_s) |
|
1076 apply (metis (mono_tags) diff_diff_cancel length_drop length_rev |
|
1077 linear not_less nth_append nth_take rev_take take_all) |
|
1078 by (simp add:l_n_v_s1) |
|
1079 next |
|
1080 case (CSeq c1 c2 sts0 sts sts') |
|
1081 thus ?case |
|
1082 by (auto simp: lift0_def lift_b_def split:prod.splits) |
|
1083 next |
|
1084 case (CLocal body t sts0 sts sts') |
|
1085 from this(2) obtain sts1 where h: "wf_cpg_test (Free # sts) body = (True, sts1)" "tl sts1 = sts'" |
|
1086 by (auto simp:lift0_def lift_b_def split:prod.splits) |
|
1087 let ?lift_s = "\<lambda> t sts. take t sts @ sts0 @ drop t sts" |
|
1088 have eq_lift_1: "(?lift_s (Suc t) (Free # sts)) = Free#?lift_s t sts" |
|
1089 by (simp) |
|
1090 from wf_cpg_test_le[OF h(1)] have "length (Free#sts) = length sts1" |
|
1091 by (unfold less_eq_list_def, simp) |
|
1092 hence eq_sts1: "sts1 = hd sts1 # tl sts1" |
|
1093 by (metis append_Nil append_eq_conv_conj hd.simps list.exhaust tl.simps(2)) |
|
1094 from CLocal(1)[OF h(1), of "Suc t", of "sts0", unfolded eq_lift_1] |
|
1095 show ?case |
|
1096 apply (simp, subst eq_sts1, simp) |
|
1097 apply (simp add:h(2)) |
|
1098 by (subst eq_sts1, simp add:h(2)) |
|
1099 qed |
|
1100 |
|
1101 lemma lift_c2t: |
|
1102 assumes "wf_cpg_test sts cpg = (True, sts')" |
|
1103 and "length env = length sts" |
|
1104 shows "c2t (take t env @ es @ drop t env) (lift_t t (length es) cpg) = |
|
1105 c2t env cpg" |
|
1106 using assms |
|
1107 proof(induct cpg arbitrary: t env es sts sts') |
|
1108 case (CInstr instr t env es sts sts') |
|
1109 obtain a0 l0 a1 l1 where eq_instr: "instr = ((a0, St l0), (a1, St l1))" |
|
1110 by (metis nat_of.cases surj_pair) |
|
1111 from CInstr have h: "l0 < length env" "l1 < length env" |
|
1112 by (auto simp:eq_instr) |
|
1113 with CInstr(2) |
|
1114 show ?case |
|
1115 by (auto simp:eq_instr lift_b_def l_n_v_orig l_n_v_s2 l_n_v_s3) |
|
1116 next |
|
1117 case (CLabel l t env es sts sts') |
|
1118 thus ?case |
|
1119 by (auto simp:lift_b_def |
|
1120 replicate_nth replicate_update l_n_v_orig l_n_v_s3) |
|
1121 next |
|
1122 case (CSeq c1 c2 t env es sts sts') |
|
1123 from CSeq(3) obtain sts1 |
|
1124 where h: "wf_cpg_test sts c1 = (True, sts1)" "wf_cpg_test sts1 c2 = (True, sts')" |
|
1125 by (auto split:prod.splits) |
|
1126 from wf_cpg_test_le[OF h(1)] have "length sts = length sts1" |
|
1127 by (auto simp:less_eq_list_def) |
|
1128 from CSeq(4)[unfolded this] have eq_len_env: "length env = length sts1" . |
|
1129 from CSeq(1)[OF h(1) CSeq(4)] |
|
1130 CSeq(2)[OF h(2) eq_len_env] |
|
1131 show ?case |
|
1132 by (auto simp: lift0_def lift_b_def split:prod.splits) |
|
1133 next |
|
1134 case (CLocal body t env es sts sts') |
|
1135 { fix x |
|
1136 from CLocal(2) |
|
1137 obtain sts1 where h1: "wf_cpg_test (Free # sts) body = (True, sts1)" |
|
1138 by (auto split:prod.splits) |
|
1139 from CLocal(3) have "length (x#env) = length (Free # sts)" by simp |
|
1140 from CLocal(1)[OF h1 this, of "Suc t"] |
|
1141 have "c2t (x # take t env @ es @ drop t env) (lift_t (Suc t) (length es) body) = |
|
1142 c2t (x # env) body" |
|
1143 by simp |
|
1144 } thus ?case by simp |
|
1145 qed |
|
1146 |
|
1147 lemma upto_len: "length [i .. j] = (if j < i then 0 else (nat (j - i + 1)))" |
|
1148 proof(induct i j rule:upto.induct) |
|
1149 case (1 i j) |
|
1150 show ?case |
|
1151 proof(cases "j < i") |
|
1152 case True |
|
1153 thus ?thesis by simp |
|
1154 next |
|
1155 case False |
|
1156 hence eq_ij: "[i..j] = i # [i + 1..j]" by (simp add:upto.simps) |
|
1157 from 1 False |
|
1158 show ?thesis |
|
1159 by (auto simp:eq_ij) |
|
1160 qed |
|
1161 qed |
|
1162 |
|
1163 lemma upto_append: |
|
1164 assumes "x \<le> y + 1" |
|
1165 shows "[x .. y + 1] = [x .. y]@[y + 1]" |
|
1166 using assms |
|
1167 by (induct x y rule:upto.induct, auto simp:upto.simps) |
|
1168 |
|
1169 lemma nth_upto: |
|
1170 assumes "l < length sts" |
|
1171 shows "[0..(int (length sts)) - 1]!l = int l" |
|
1172 using assms |
|
1173 proof(induct sts arbitrary:l) |
|
1174 case Nil |
|
1175 thus ?case by simp |
|
1176 next |
|
1177 case (Cons s sts l) |
|
1178 from Cons(2) |
|
1179 have "0 \<le> (int (length sts) - 1) + 1" by auto |
|
1180 from upto_append[OF this] |
|
1181 have eq_upto: "[0..int (length sts)] = [0..int (length sts) - 1] @ [int (length sts)]" |
|
1182 by simp |
|
1183 show ?case |
|
1184 proof(cases "l < length sts") |
|
1185 case True |
|
1186 with Cons(1)[OF True] eq_upto |
|
1187 show ?thesis |
|
1188 apply simp |
|
1189 by (smt nth_append take_eq_Nil upto_len) |
|
1190 next |
|
1191 case False |
|
1192 with Cons(2) have eq_l: "l = length sts" by simp |
|
1193 show ?thesis |
|
1194 proof(cases sts) |
|
1195 case (Cons x xs) |
|
1196 have "[0..1 + int (length xs)] = [0 .. int (length xs)]@[1 + int (length xs)]" |
|
1197 by (smt upto_append) |
|
1198 moreover have "length [0 .. int (length xs)] = Suc (length xs)" |
|
1199 by (smt upto_len) |
|
1200 moreover note Cons |
|
1201 ultimately show ?thesis |
|
1202 apply (simp add:eq_l) |
|
1203 by (smt nth_Cons' nth_append) |
|
1204 qed (simp add:upto_len upto.simps eq_l) |
|
1205 qed |
|
1206 qed |
|
1207 |
|
1208 lemma map_idx_idx: |
|
1209 assumes "l < length sts" |
|
1210 shows "(map_idx f sts)!l = sts!(f l)" |
|
1211 proof - |
|
1212 from assms have lt_l: "l < length [0..int (length sts) - 1]" |
|
1213 by (smt upto_len) |
|
1214 show ?thesis |
|
1215 apply (unfold map_idx_def nth_map[OF lt_l]) |
|
1216 by (metis assms nat_int nth_upto) |
|
1217 qed |
|
1218 |
|
1219 lemma map_idx_len: "length (map_idx f sts) = length sts" |
|
1220 apply (unfold map_idx_def) |
|
1221 by (smt length_map upto_len) |
|
1222 |
|
1223 lemma map_idx_eq: |
|
1224 assumes "\<forall> l < length sts. f l = g l" |
|
1225 shows "map_idx f sts = map_idx g sts" |
|
1226 proof(induct rule: nth_equalityI) |
|
1227 case 1 |
|
1228 show "length (map_idx f sts) = length (map_idx g sts)" |
|
1229 by (metis map_idx_len) |
|
1230 next |
|
1231 case 2 |
|
1232 { fix l |
|
1233 assume "l < length (map_idx f sts)" |
|
1234 hence "l < length sts" |
|
1235 by (metis map_idx_len) |
|
1236 from map_idx_idx[OF this] and assms and this |
|
1237 have "map_idx f sts ! l = map_idx g sts ! l" |
|
1238 by (smt list_eq_iff_nth_eq map_idx_idx map_idx_len) |
|
1239 } thus ?case by auto |
|
1240 qed |
|
1241 |
|
1242 lemma perm_s_commut: "perm_s i j sts = perm_s j i sts" |
|
1243 apply (unfold perm_s_def, rule map_idx_eq, unfold perm_b_def) |
|
1244 by smt |
|
1245 |
|
1246 lemma map_idx_id: "map_idx id sts = sts" |
|
1247 proof(induct rule:nth_equalityI) |
|
1248 case 1 |
|
1249 from map_idx_len show "length (map_idx id sts) = length sts" . |
|
1250 next |
|
1251 case 2 |
|
1252 { fix l |
|
1253 assume "l < length (map_idx id sts)" |
|
1254 from map_idx_idx[OF this[unfolded map_idx_len]] |
|
1255 have "map_idx id sts ! l = sts ! l" by simp |
|
1256 } thus ?case by auto |
|
1257 qed |
|
1258 |
|
1259 lemma perm_s_lt_i: |
|
1260 assumes "\<not> i < length sts" |
|
1261 shows "perm_s i j sts = sts" |
|
1262 proof - |
|
1263 have "map_idx (perm_b (length sts) i j) sts = map_idx id sts" |
|
1264 proof(rule map_idx_eq, default, clarsimp) |
|
1265 fix l |
|
1266 assume "l < length sts" |
|
1267 with assms |
|
1268 show "perm_b (length sts) i j l = l" |
|
1269 by (unfold perm_b_def, auto) |
|
1270 qed |
|
1271 with map_idx_id |
|
1272 have "map_idx (perm_b (length sts) i j) sts = sts" by simp |
|
1273 thus ?thesis by (simp add:perm_s_def) |
|
1274 qed |
|
1275 |
|
1276 lemma perm_s_lt: |
|
1277 assumes "\<not> i < length sts \<or> \<not> j < length sts" |
|
1278 shows "perm_s i j sts = sts" |
|
1279 using assms |
|
1280 proof |
|
1281 assume "\<not> i < length sts" |
|
1282 from perm_s_lt_i[OF this] show ?thesis . |
|
1283 next |
|
1284 assume "\<not> j < length sts" |
|
1285 from perm_s_lt_i[OF this, of i, unfolded perm_s_commut] |
|
1286 show ?thesis . |
|
1287 qed |
|
1288 |
|
1289 lemma perm_s_update_i: |
|
1290 assumes "i < length sts" |
|
1291 and "j < length sts" |
|
1292 shows "sts ! i = perm_s i j sts ! j" |
|
1293 proof - |
|
1294 from map_idx_idx[OF assms(2)] |
|
1295 have "map_idx (perm_b (length sts) i j) sts ! j = sts!(perm_b (length sts) i j j)" . |
|
1296 with assms |
|
1297 show ?thesis |
|
1298 by (auto simp:perm_s_def perm_b_def) |
|
1299 qed |
|
1300 |
|
1301 lemma nth_perm_s_neq: |
|
1302 assumes "l \<noteq> j" |
|
1303 and "l \<noteq> i" |
|
1304 and "l < length sts" |
|
1305 shows "sts ! l = perm_s i j sts ! l" |
|
1306 proof - |
|
1307 have "map_idx (perm_b (length sts) i j) sts ! l = sts!(perm_b (length sts) i j l)" |
|
1308 by (metis assms(3) map_idx_def map_idx_idx) |
|
1309 with assms |
|
1310 show ?thesis |
|
1311 by (unfold perm_s_def perm_b_def, auto) |
|
1312 qed |
|
1313 |
|
1314 lemma map_idx_update: |
|
1315 assumes "f j = i" |
|
1316 and "inj f" |
|
1317 and "i < length sts" |
|
1318 and "j < length sts" |
|
1319 shows "map_idx f (sts[i:=v]) = map_idx f sts[j := v]" |
|
1320 proof(induct rule:nth_equalityI) |
|
1321 case 1 |
|
1322 show "length (map_idx f (sts[i := v])) = length (map_idx f sts[j := v])" |
|
1323 by (metis length_list_update map_idx_len) |
|
1324 next |
|
1325 case 2 |
|
1326 { fix l |
|
1327 assume lt_l: "l < length (map_idx f (sts[i := v]))" |
|
1328 have eq_nth: "sts[i := v] ! f l = map_idx f sts[j := v] ! l" |
|
1329 proof(cases "f l = i") |
|
1330 case False |
|
1331 from lt_l have "l < length sts" |
|
1332 by (metis length_list_update map_idx_len) |
|
1333 from map_idx_idx[OF this, of f] have " map_idx f sts ! l = sts ! f l" . |
|
1334 moreover from False assms have "l \<noteq> j" by auto |
|
1335 moreover note False |
|
1336 ultimately show ?thesis by simp |
|
1337 next |
|
1338 case True |
|
1339 with assms have eq_l: "l = j" |
|
1340 by (metis inj_eq) |
|
1341 moreover from lt_l eq_l |
|
1342 have "j < length (map_idx f sts[j := v])" |
|
1343 by (metis length_list_update map_idx_len) |
|
1344 moreover note True assms |
|
1345 ultimately show ?thesis by simp |
|
1346 qed |
|
1347 from lt_l have "l < length (sts[i := v])" |
|
1348 by (metis map_idx_len) |
|
1349 from map_idx_idx[OF this] eq_nth |
|
1350 have "map_idx f (sts[i := v]) ! l = map_idx f sts[j := v] ! l" by simp |
|
1351 } thus ?case by auto |
|
1352 qed |
|
1353 |
|
1354 lemma perm_s_update: |
|
1355 assumes "i < length sts" |
|
1356 and "j < length sts" |
|
1357 shows "(perm_s i j sts)[i := v] = perm_s i j (sts[j := v])" |
|
1358 proof - |
|
1359 have "map_idx (perm_b (length (sts[j := v])) i j) (sts[j := v]) = |
|
1360 map_idx (perm_b (length (sts[j := v])) i j) sts[i := v]" |
|
1361 proof(rule map_idx_update[OF _ _ assms(2, 1)]) |
|
1362 from inj_perm_b show "inj (perm_b (length (sts[j := v])) i j)" . |
|
1363 next |
|
1364 from assms show "perm_b (length (sts[j := v])) i j i = j" |
|
1365 by (auto simp:perm_b_def) |
|
1366 qed |
|
1367 hence "map_idx (perm_b (length sts) i j) sts[i := v] = |
|
1368 map_idx (perm_b (length (sts[j := v])) i j) (sts[j := v])" |
|
1369 by simp |
|
1370 thus ?thesis by (simp add:perm_s_def) |
|
1371 qed |
|
1372 |
|
1373 lemma perm_s_len: "length (perm_s i j sts') = length sts'" |
|
1374 apply (unfold perm_s_def map_idx_def) |
|
1375 by (smt Nil_is_map_conv length_0_conv length_greater_0_conv length_map neq_if_length_neq upto_len) |
|
1376 |
|
1377 lemma perm_s_update_neq: |
|
1378 assumes "l \<noteq> i" |
|
1379 and "l \<noteq> j" |
|
1380 shows "perm_s i j sts[l := v] = perm_s i j (sts[l := v])" |
|
1381 proof(cases "i < length sts \<and> j < length sts") |
|
1382 case False |
|
1383 with perm_s_lt have "perm_s i j sts = sts" by auto |
|
1384 moreover have "perm_s i j (sts[l:=v]) = sts[l:=v]" |
|
1385 proof - |
|
1386 have "length (sts[l:=v]) = length sts" by auto |
|
1387 from False[folded this] perm_s_lt |
|
1388 show ?thesis by metis |
|
1389 qed |
|
1390 ultimately show ?thesis by simp |
|
1391 next |
|
1392 case True |
|
1393 note lt_ij = this |
|
1394 show ?thesis |
|
1395 proof(cases "l < length sts") |
|
1396 case False |
|
1397 hence "sts[l:=v] = sts" by auto |
|
1398 moreover have "perm_s i j sts[l := v] = perm_s i j sts" |
|
1399 proof - |
|
1400 from False and perm_s_len |
|
1401 have "\<not> l < length (perm_s i j sts)" by metis |
|
1402 thus ?thesis by auto |
|
1403 qed |
|
1404 ultimately show ?thesis by simp |
|
1405 next |
|
1406 case True |
|
1407 show ?thesis |
|
1408 proof - |
|
1409 have "map_idx (perm_b (length (sts[l := v])) i j) (sts[l := v]) = |
|
1410 map_idx (perm_b (length (sts[l := v])) i j) sts[l := v]" |
|
1411 proof(induct rule:map_idx_update [OF _ inj_perm_b True True]) |
|
1412 case 1 |
|
1413 from assms lt_ij |
|
1414 show ?case |
|
1415 by (unfold perm_b_def, auto) |
|
1416 qed |
|
1417 thus ?thesis |
|
1418 by (unfold perm_s_def, simp) |
|
1419 qed |
|
1420 qed |
|
1421 qed |
|
1422 |
|
1423 lemma perm_sb: "(perm_s i j sts)[perm_b (length sts) i j l := v] = perm_s i j (sts[l := v])" |
|
1424 apply(subst perm_b_def, auto simp:perm_s_len perm_s_lt perm_s_update) |
|
1425 apply (subst perm_s_commut, subst (2) perm_s_commut, rule_tac perm_s_update, auto) |
|
1426 by (rule_tac perm_s_update_neq, auto) |
|
1427 |
|
1428 lemma perm_s_id: "perm_s i i sts = sts" (is "?L = ?R") |
|
1429 proof - |
|
1430 from map_idx_id have "?R = map_idx id sts" by metis |
|
1431 also have "\<dots> = ?L" |
|
1432 by (unfold perm_s_def, rule map_idx_eq, unfold perm_b_def, auto) |
|
1433 finally show ?thesis by simp |
|
1434 qed |
|
1435 |
|
1436 lemma upto_map: |
|
1437 assumes "i \<le> j" |
|
1438 shows "[i .. j] = i # map (\<lambda> x. x + 1) [i .. (j - 1)]" |
|
1439 using assms |
|
1440 proof(induct i j rule:upto.induct) |
|
1441 case (1 i j) |
|
1442 show ?case (is "?L = ?R") |
|
1443 proof - |
|
1444 from 1(2) |
|
1445 have eq_l: "?L = i # [i+1 .. j]" by (simp add:upto.simps) |
|
1446 show ?thesis |
|
1447 proof(cases "i + 1 \<le> j") |
|
1448 case False |
|
1449 with eq_l show ?thesis by (auto simp:upto.simps) |
|
1450 next |
|
1451 case True |
|
1452 have "[i + 1..j] = map (\<lambda>x. x + 1) [i..j - 1]" |
|
1453 by (smt "1.hyps" Cons_eq_map_conv True upto.simps) |
|
1454 with eq_l |
|
1455 show ?thesis by simp |
|
1456 qed |
|
1457 qed |
|
1458 qed |
|
1459 |
|
1460 lemma perm_s_cons: "(perm_s (Suc i) (Suc j) (s # sts)) = s#perm_s i j sts" |
|
1461 proof - |
|
1462 have le_0: "0 \<le> int (length (s # sts)) - 1" by simp |
|
1463 have "map (\<lambda>k. (s # sts) ! perm_b (length (s # sts)) (Suc i) (Suc j) (nat k)) |
|
1464 [0..int (length (s # sts)) - 1] = |
|
1465 s # map (\<lambda>k. sts ! perm_b (length sts) i j (nat k)) [0..int (length sts) - 1]" |
|
1466 by (unfold upto_map[OF le_0], auto simp:perm_b_def, smt+) |
|
1467 thus ?thesis by (unfold perm_s_def map_idx_def, simp) |
|
1468 qed |
|
1469 |
|
1470 lemma perm_wf_cpg_test: |
|
1471 assumes "wf_cpg_test sts cpg = (True, sts')" |
|
1472 shows "wf_cpg_test (perm_s i j sts) (perm (length sts) i j cpg) = |
|
1473 (True, perm_s i j sts')" |
|
1474 using assms |
|
1475 proof(induct cpg arbitrary:t i j sts sts') |
|
1476 case (CInstr instr i j sts sts') |
|
1477 obtain a0 l0 a1 l1 where eq_instr: "instr = ((a0, St l0), (a1, St l1))" |
|
1478 by (metis surj_pair tstate.exhaust) |
|
1479 from CInstr |
|
1480 show ?case |
|
1481 apply (unfold eq_instr, clarsimp) |
|
1482 by (unfold perm_s_len perm_b_def, clarsimp) |
|
1483 next |
|
1484 case (CLabel l i j sts sts') |
|
1485 have "(perm_s i j sts)[perm_b (length sts) i j l := Bound] = perm_s i j (sts[l := Bound])" |
|
1486 by (metis perm_sb) |
|
1487 with CLabel |
|
1488 show ?case |
|
1489 apply (auto simp:perm_s_len perm_sb) |
|
1490 apply (subst perm_b_def, auto simp:perm_sb) |
|
1491 apply (subst perm_b_def, auto simp:perm_s_lt perm_s_update_i) |
|
1492 apply (unfold perm_s_id, subst perm_s_commut, simp add: perm_s_update_i[symmetric]) |
|
1493 apply (simp add:perm_s_update_i[symmetric]) |
|
1494 by (simp add: nth_perm_s_neq[symmetric]) |
|
1495 next |
|
1496 case (CSeq c1 c2 i j sts sts') |
|
1497 thus ?case |
|
1498 apply (auto split:prod.splits) |
|
1499 apply (metis (hide_lams, no_types) less_eq_list_def prod.inject wf_cpg_test_le) |
|
1500 by (metis (hide_lams, no_types) less_eq_list_def prod.inject wf_cpg_test_le) |
|
1501 next |
|
1502 case (CLocal body i j sts sts') |
|
1503 from this(2) obtain sts1 where h: "wf_cpg_test (Free # sts) body = (True, sts1)" "tl sts1 = sts'" |
|
1504 by (auto simp:lift0_def lift_b_def split:prod.splits) |
|
1505 from wf_cpg_test_le[OF h(1)] have "length (Free#sts) = length sts1" |
|
1506 by (unfold less_eq_list_def, simp) |
|
1507 hence eq_sts1: "sts1 = hd sts1 # tl sts1" |
|
1508 by (metis append_Nil append_eq_conv_conj hd.simps list.exhaust tl.simps(2)) |
|
1509 from CLocal(1)[OF h(1), of "Suc i" "Suc j"] h(2) eq_sts1 |
|
1510 show ?case |
|
1511 apply (auto split:prod.splits simp:perm_s_cons) |
|
1512 by (metis perm_s_cons tl.simps(2)) |
|
1513 qed |
|
1514 |
|
1515 lemma nth_perm_sb: |
|
1516 assumes "l0 < length env" |
|
1517 shows "perm_s i j env ! perm_b (length env) i j l0 = env ! l0" |
|
1518 by (metis assms nth_perm_s_neq perm_b_def perm_s_commut perm_s_lt perm_s_update_i) |
|
1519 |
|
1520 |
|
1521 lemma perm_c2t: |
|
1522 assumes "wf_cpg_test sts cpg = (True, sts')" |
|
1523 and "length env = length sts" |
|
1524 shows "c2t (perm_s i j env) (perm (length env) i j cpg) = |
|
1525 c2t env cpg" |
|
1526 using assms |
|
1527 proof(induct cpg arbitrary:i j env sts sts') |
|
1528 case (CInstr instr i j env sts sts') |
|
1529 obtain a0 l0 a1 l1 where eq_instr: "instr = ((a0, St l0), (a1, St l1))" |
|
1530 by (metis surj_pair tstate.exhaust) |
|
1531 from CInstr have h: "l0 < length env" "l1 < length env" |
|
1532 by (auto simp:eq_instr) |
|
1533 with CInstr(2) |
|
1534 show ?case |
|
1535 apply (auto simp:eq_instr) |
|
1536 by (metis nth_perm_sb)+ |
|
1537 next |
|
1538 case (CLabel l t env es sts sts') |
|
1539 thus ?case |
|
1540 apply (auto) |
|
1541 by (metis nth_perm_sb) |
|
1542 next |
|
1543 case (CSeq c1 c2 i j env sts sts') |
|
1544 from CSeq(3) obtain sts1 |
|
1545 where h: "wf_cpg_test sts c1 = (True, sts1)" "wf_cpg_test sts1 c2 = (True, sts')" |
|
1546 by (auto split:prod.splits) |
|
1547 from wf_cpg_test_le[OF h(1)] have "length sts = length sts1" |
|
1548 by (auto simp:less_eq_list_def) |
|
1549 from CSeq(4)[unfolded this] have eq_len_env: "length env = length sts1" . |
|
1550 from CSeq(1)[OF h(1) CSeq(4)] |
|
1551 CSeq(2)[OF h(2) eq_len_env] |
|
1552 show ?case by auto |
|
1553 next |
|
1554 case (CLocal body i j env sts sts') |
|
1555 { fix x |
|
1556 from CLocal(2, 3) |
|
1557 obtain sts1 where "wf_cpg_test (Free # sts) body = (True, sts1)" |
|
1558 "length (x#env) = length (Free # sts)" |
|
1559 by (auto split:prod.splits) |
|
1560 from CLocal(1)[OF this] |
|
1561 have "(c2t (x # perm_s i j env) (perm (Suc (length env)) (Suc i) (Suc j) body)) = |
|
1562 (c2t (x # env) body)" |
|
1563 by (metis Suc_length_conv perm_s_cons) |
|
1564 } thus ?case by simp |
|
1565 qed |
|
1566 |
|
1567 lemma wf_cpg_test_disj_aux1: |
|
1568 assumes "sts_disj sts1 (sts[l := Bound] - sts)" |
|
1569 "l < length sts" |
|
1570 "sts ! l = Free" |
|
1571 shows "(sts1 + sts) ! l = Free" |
|
1572 proof - |
|
1573 from assms(1)[unfolded sts_disj_def] |
|
1574 have h: "length sts1 = length (sts[l := Bound] - sts)" |
|
1575 "(\<forall>i<length sts1. \<not> (sts1 ! i = Bound \<and> (sts[l := Bound] - sts) ! i = Bound))" |
|
1576 by auto |
|
1577 from h(1) assms(2) |
|
1578 have lt_l: "l < length sts1" |
|
1579 "l < length (sts[l := Bound] - sts)" |
|
1580 "l < length (sts1 + sts)" |
|
1581 apply (smt length_list_update minus_list_len) |
|
1582 apply (smt assms(2) length_list_update minus_list_len) |
|
1583 by (smt assms(2) h(1) length_list_update length_sts_plus minus_list_len) |
|
1584 from h(2)[rule_format, of l, OF this(1)] |
|
1585 have " \<not> (sts1 ! l = Bound \<and> (sts[l := Bound] - sts) ! l = Bound)" . |
|
1586 with assms(3) nth_sts_minus[OF lt_l(2)] nth_sts_plus[OF lt_l(3)] assms(2) |
|
1587 show ?thesis |
|
1588 by (cases "sts1!l", auto) |
|
1589 qed |
|
1590 |
|
1591 lemma wf_cpg_test_disj_aux2: |
|
1592 assumes "sts_disj sts1 (sts[l := Bound] - sts)" |
|
1593 " l < length sts" |
|
1594 shows "(sts1 + sts)[l := Bound] = sts1 + sts[l := Bound]" |
|
1595 proof - |
|
1596 from assms have lt_l: "l < length (sts1 + sts[l:=Bound])" |
|
1597 "l < length (sts1 + sts)" |
|
1598 apply (smt length_list_update length_sts_plus minus_list_len sts_disj_def) |
|
1599 by (smt assms(1) assms(2) length_list_update length_sts_plus minus_list_len sts_disj_def) |
|
1600 show ?thesis |
|
1601 proof(induct rule:nth_equalityI) |
|
1602 case 1 |
|
1603 show ?case |
|
1604 by (smt assms(1) length_list_update length_sts_plus minus_list_len sts_disj_def) |
|
1605 next |
|
1606 case 2 |
|
1607 { fix i |
|
1608 assume lt_i: "i < length ((sts1 + sts)[l := Bound])" |
|
1609 have " (sts1 + sts)[l := Bound] ! i = (sts1 + sts[l := Bound]) ! i" |
|
1610 proof(cases "i = l") |
|
1611 case True |
|
1612 with nth_sts_plus[OF lt_l(1)] assms(2) nth_sts_plus[OF lt_l(2)] lt_l |
|
1613 show ?thesis |
|
1614 by (cases "sts1 ! l", auto) |
|
1615 next |
|
1616 case False |
|
1617 from lt_i have "i < length (sts1 + sts)" "i < length (sts1 + sts[l := Bound])" |
|
1618 apply auto |
|
1619 by (metis length_list_update plus_list_len) |
|
1620 from nth_sts_plus[OF this(1)] nth_sts_plus[OF this(2)] lt_i lt_l False |
|
1621 show ?thesis |
|
1622 by simp |
|
1623 qed |
|
1624 } thus ?case by auto |
|
1625 qed |
|
1626 qed |
|
1627 |
|
1628 lemma sts_list_plus_commut: |
|
1629 shows "sts1 + sts2 = sts2 + (sts1:: status list)" |
|
1630 proof(induct rule:nth_equalityI) |
|
1631 case 1 |
|
1632 show ?case |
|
1633 by (metis min_max.inf.commute plus_list_len) |
|
1634 next |
|
1635 case 2 |
|
1636 { fix i |
|
1637 assume lt_i1: "i<length (sts1 + sts2)" |
|
1638 hence lt_i2: "i < length (sts2 + sts1)" |
|
1639 by (smt plus_list_len) |
|
1640 from nth_sts_plus[OF this] nth_sts_plus[OF lt_i1] |
|
1641 have "(sts1 + sts2) ! i = (sts2 + sts1) ! i" |
|
1642 apply simp |
|
1643 apply (cases "sts1!i", cases "sts2!i", auto) |
|
1644 by (cases "sts2!i", auto) |
|
1645 } thus ?case by auto |
|
1646 qed |
|
1647 |
|
1648 lemma sts_disj_cons: |
|
1649 assumes "sts_disj sts1 sts2" |
|
1650 shows "sts_disj (Free # sts1) (s # sts2)" |
|
1651 using assms |
|
1652 proof - |
|
1653 from assms |
|
1654 have h: "length sts1 = length sts2" |
|
1655 "(\<forall>i<length sts1. \<not> (sts1 ! i = Bound \<and> sts2 ! i = Bound))" |
|
1656 by (unfold sts_disj_def, auto) |
|
1657 from h(1) have "length (Free # sts1) = length (s # sts2)" by simp |
|
1658 moreover { |
|
1659 fix i |
|
1660 assume lt_i: "i<length (Free # sts1)" |
|
1661 have "\<not> ((Free # sts1) ! i = Bound \<and> (s # sts2) ! i = Bound)" |
|
1662 proof(cases "i") |
|
1663 case 0 |
|
1664 thus ?thesis by simp |
|
1665 next |
|
1666 case (Suc k) |
|
1667 from h(2)[rule_format, of k] lt_i[unfolded Suc] Suc |
|
1668 show ?thesis by auto |
|
1669 qed |
|
1670 } |
|
1671 ultimately show ?thesis by (auto simp:sts_disj_def) |
|
1672 qed |
|
1673 |
|
1674 lemma sts_disj_uncomb: |
|
1675 assumes "sts_disj sts (sts1 + sts2)" |
|
1676 and "sts_disj sts1 sts2" |
|
1677 shows "sts_disj sts sts1" "sts_disj sts sts2" |
|
1678 using assms |
|
1679 apply (smt assms(1) assms(2) length_sts_plus nth_sts_plus plus_status.simps(2) sts_disj_def) |
|
1680 by (smt assms(1) assms(2) length_sts_plus nth_sts_plus |
|
1681 plus_status.simps(2) sts_disj_def sts_list_plus_commut) |
|
1682 |
|
1683 lemma wf_cpg_test_disj: |
|
1684 assumes "wf_cpg_test sts cpg = (True, sts')" |
|
1685 and "sts_disj sts1 (sts' - sts)" |
|
1686 shows "wf_cpg_test (sts1 + sts) cpg = (True, sts1 + sts')" |
|
1687 using assms |
|
1688 proof(induct cpg arbitrary:sts sts1 sts') |
|
1689 case (CInstr instr sts sts1 sts') |
|
1690 obtain a0 l0 a1 l1 where eq_instr: "instr = ((a0, St l0), (a1, St l1))" |
|
1691 by (metis nat_of.cases surj_pair) |
|
1692 with CInstr(1) have h: "l0 < length sts" "l1 < length sts" "sts = sts'" by auto |
|
1693 with CInstr eq_instr |
|
1694 show ?case |
|
1695 apply (auto) |
|
1696 by (smt length_sts_plus minus_list_len sts_disj_def)+ |
|
1697 next |
|
1698 case (CLabel l sts sts1 sts') |
|
1699 thus ?case |
|
1700 apply auto |
|
1701 apply (smt length_list_update length_sts_plus minus_list_len sts_disj_def) |
|
1702 by (auto simp: wf_cpg_test_disj_aux1 wf_cpg_test_disj_aux2) |
|
1703 next |
|
1704 case (CSeq c1 c2 sts sts1 sts') |
|
1705 from CSeq(3) obtain sts'' |
|
1706 where h: "wf_cpg_test sts c1 = (True, sts'')" "wf_cpg_test sts'' c2 = (True, sts')" |
|
1707 by (auto split:prod.splits) |
|
1708 from wf_cpg_test_le[OF h(1)] have "length sts = length sts''" |
|
1709 by (auto simp:less_eq_list_def) |
|
1710 from sts_le_comb[OF wf_cpg_test_le[OF h(1)] wf_cpg_test_le[OF h(2)]] |
|
1711 have " sts' - sts = (sts'' - sts) + (sts' - sts'')" "sts_disj (sts'' - sts) (sts' - sts'')" |
|
1712 by auto |
|
1713 from sts_disj_uncomb[OF CSeq(4)[unfolded this(1)] this(2)] |
|
1714 have "sts_disj sts1 (sts'' - sts)" "sts_disj sts1 (sts' - sts'')" . |
|
1715 from CSeq(1)[OF h(1) this(1)] CSeq(2)[OF h(2) this(2)] |
|
1716 have "wf_cpg_test (sts1 + sts) c1 = (True, sts1 + sts'')" |
|
1717 "wf_cpg_test (sts1 + sts'') c2 = (True, sts1 + sts')" . |
|
1718 thus ?case |
|
1719 by simp |
|
1720 next |
|
1721 case (CLocal body sts sts1 sts') |
|
1722 from this(2) |
|
1723 obtain sts'' where h: "wf_cpg_test (Free # sts) body = (True, sts'')" "sts' = tl sts''" |
|
1724 by (auto split:prod.splits) |
|
1725 from wf_cpg_test_le[OF h(1), unfolded less_eq_list_def] h(2) |
|
1726 obtain s where eq_sts'': "sts'' = s#sts'" |
|
1727 by (metis Suc_length_conv list.size(4) tl.simps(2)) |
|
1728 let ?sts = "Free#sts1" |
|
1729 from CLocal(3) have "sts_disj ?sts (sts'' - (Free # sts))" |
|
1730 apply (unfold eq_sts'', simp) |
|
1731 by (metis sts_disj_cons) |
|
1732 from CLocal(1)[OF h(1) this] eq_sts'' |
|
1733 show ?case |
|
1734 by (auto split:prod.splits) |
|
1735 qed |
|
1736 |
|
1737 lemma sts_disj_free: |
|
1738 assumes "list_all (op = Free) sts" |
|
1739 and "length sts' = length sts" |
|
1740 shows "sts_disj sts' sts" |
|
1741 by (metis (full_types) assms(1) assms(2) list_all_length |
|
1742 status.distinct(1) sts_disj_def) |
|
1743 |
|
1744 lemma all_free_plus: |
|
1745 assumes "length sts' = length sts" |
|
1746 and "list_all (op = Free) sts" |
|
1747 shows "sts' + sts = sts'" |
|
1748 using assms |
|
1749 proof(induct sts' arbitrary:sts) |
|
1750 case (Cons s sts' sts) |
|
1751 note cs = Cons |
|
1752 thus ?case |
|
1753 proof(cases "sts") |
|
1754 case (Cons s1 sts1) |
|
1755 with cs |
|
1756 show ?thesis |
|
1757 by (smt list.size(4) list_all_simps(1) |
|
1758 plus_list.simps(3) plus_status.simps(1) sts_list_plus_commut) |
|
1759 qed auto |
|
1760 qed auto |
|
1761 |
|
1762 lemma wf_cpg_test_extrapo: |
|
1763 assumes "wf_cpg_test sts cpg = (True, sts)" |
|
1764 and "list_all (op = Free) sts" |
|
1765 and "length sts' = length sts" |
|
1766 shows "wf_cpg_test sts' cpg = (True, sts')" |
|
1767 proof - |
|
1768 have "sts_disj sts' (sts - sts)" |
|
1769 proof(rule sts_disj_free) |
|
1770 from assms(2) |
|
1771 show "list_all (op = Free) (sts - sts)" |
|
1772 by (induct sts, auto) |
|
1773 next |
|
1774 from assms(3) show "length sts' = length (sts - sts)" |
|
1775 by (metis length_sts_plus minus_list_len plus_list_len) |
|
1776 qed |
|
1777 from wf_cpg_test_disj [OF assms(1) this] |
|
1778 have "wf_cpg_test (sts' + sts) cpg = (True, sts' + sts)" . |
|
1779 moreover from all_free_plus[OF assms(3, 2)] have "sts' + sts = sts'" . |
|
1780 finally show ?thesis by simp |
|
1781 qed |
|
1782 |
|
1783 lemma perms_wf_cpg_test: |
|
1784 assumes "wf_cpg_test sts cpg = (True, sts')" |
|
1785 shows "wf_cpg_test (perm_ss ops sts) (perms (length sts) ops cpg) = |
|
1786 (True, perm_ss ops sts')" |
|
1787 using assms |
|
1788 proof(induct ops arbitrary:sts cpg sts') |
|
1789 case (Cons sp ops sts cpg sts') |
|
1790 show ?case |
|
1791 proof(cases "sp") |
|
1792 case (Pair i j) |
|
1793 show ?thesis |
|
1794 proof - |
|
1795 let ?sts = "(perm_s i j sts)" and ?cpg = "(perm (length sts) i j cpg)" |
|
1796 and ?sts' = "perm_s i j sts'" |
|
1797 have "wf_cpg_test (perm_ss ops ?sts) (perms (length ?sts) ops ?cpg) = |
|
1798 (True, perm_ss ops ?sts')" |
|
1799 proof(rule Cons(1)) |
|
1800 show "wf_cpg_test (perm_s i j sts) (perm (length sts) i j cpg) = (True, perm_s i j sts')" |
|
1801 by (metis Cons.prems perm_wf_cpg_test) |
|
1802 qed |
|
1803 thus ?thesis |
|
1804 apply (unfold Pair) |
|
1805 apply simp |
|
1806 by (metis perm_s_len) |
|
1807 qed |
|
1808 qed |
|
1809 qed auto |
|
1810 |
|
1811 lemma perm_ss_len: "length (perm_ss ops xs) = length xs" |
|
1812 proof(induct ops arbitrary:xs) |
|
1813 case (Cons sp ops xs) |
|
1814 show ?case |
|
1815 proof(cases "sp") |
|
1816 case (Pair i j) |
|
1817 show ?thesis |
|
1818 proof - |
|
1819 let ?xs = "(perm_s i j xs)" |
|
1820 have "length (perm_ss ops ?xs) = length ?xs" |
|
1821 by (metis Cons.hyps) |
|
1822 also have "\<dots> = length xs" |
|
1823 by (metis perm_s_len) |
|
1824 finally show ?thesis |
|
1825 by (unfold Pair, simp) |
|
1826 qed |
|
1827 qed |
|
1828 qed auto |
|
1829 |
|
1830 lemma perms_c2t: |
|
1831 assumes "wf_cpg_test sts cpg = (True, sts')" |
|
1832 and "length env = length sts" |
|
1833 shows "c2t (perm_ss ops env) (perms (length env) ops cpg) = c2t env cpg" |
|
1834 using assms |
|
1835 proof(induct ops arbitrary:sts cpg sts' env) |
|
1836 case (Cons sp ops sts cpg sts' env) |
|
1837 show ?case |
|
1838 proof(cases "sp") |
|
1839 case (Pair i j) |
|
1840 show ?thesis |
|
1841 proof - |
|
1842 let ?env = "(perm_s i j env)" and ?cpg = "(perm (length env) i j cpg)" |
|
1843 have " c2t (perm_ss ops ?env) (perms (length ?env) ops ?cpg) = c2t ?env ?cpg" |
|
1844 proof(rule Cons(1)) |
|
1845 from perm_wf_cpg_test[OF Cons(2), of i j, folded Cons(3)] |
|
1846 show "wf_cpg_test (perm_s i j sts) (perm (length env) i j cpg) = (True, perm_s i j sts')" . |
|
1847 next |
|
1848 show "length (perm_s i j env) = length (perm_s i j sts)" |
|
1849 by (metis Cons.prems(2) perm_s_len) |
|
1850 qed |
|
1851 also have "\<dots> = c2t env cpg" |
|
1852 by (metis Cons.prems(1) Cons.prems(2) perm_c2t) |
|
1853 finally show ?thesis |
|
1854 apply (unfold Pair) |
|
1855 apply simp |
|
1856 by (metis perm_s_len) |
|
1857 qed |
|
1858 qed |
|
1859 qed auto |
|
1860 |
|
1861 lemma red_lfs_nil: "red_lfs [] = []" |
|
1862 by (simp add:red_lfs_def) |
|
1863 |
|
1864 lemma red_lfs_cons: "red_lfs ((env, t)#lfs) = (length env, t)#(red_lfs lfs)" |
|
1865 by (simp add:red_lfs_def) |
|
1866 |
|
1867 lemmas red_lfs_simps [simp] = red_lfs_nil red_lfs_cons |
|
1868 |
|
1869 lemma lifts_wf_cpg_test: |
|
1870 assumes "wf_cpg_test sts cpg = (True, sts')" |
|
1871 shows "wf_cpg_test (lift_ss ops sts) (lift_ts (red_lfs ops) cpg) |
|
1872 = (True, lift_ss ops sts')" |
|
1873 using assms |
|
1874 proof(induct ops arbitrary:sts cpg sts') |
|
1875 case (Cons sp ops sts cpg sts') |
|
1876 show ?case |
|
1877 proof(cases "sp") |
|
1878 case (Pair env' t) |
|
1879 thus ?thesis |
|
1880 proof - |
|
1881 let ?sts = "(take t sts @ map (\<lambda>x. Free) env' @ drop t sts)" |
|
1882 and ?sts' = "(take t sts' @ map (\<lambda>x. Free) env' @ drop t sts')" |
|
1883 and ?cpg = "(lift_t t (length env') cpg)" |
|
1884 have "wf_cpg_test (lift_ss ops ?sts) (lift_ts (red_lfs ops) ?cpg) = (True, lift_ss ops ?sts')" |
|
1885 proof(induct rule: Cons(1)) |
|
1886 case 1 |
|
1887 show ?case |
|
1888 by (metis Cons.prems length_map lift_wf_cpg_test) |
|
1889 qed |
|
1890 thus ?thesis |
|
1891 by (unfold Pair, simp) |
|
1892 qed |
|
1893 qed |
|
1894 qed auto |
|
1895 |
|
1896 lemma lifts_c2t: |
|
1897 assumes "wf_cpg_test sts cpg = (True, sts')" |
|
1898 and "length env = length sts" |
|
1899 shows "c2t (lift_es ops env) (lift_ts (red_lfs ops) cpg) = c2t env cpg" |
|
1900 using assms |
|
1901 proof(induct ops arbitrary:sts cpg sts' env) |
|
1902 case (Cons sp ops sts cpg sts' env) |
|
1903 show ?case |
|
1904 proof(cases "sp") |
|
1905 case (Pair env' t) |
|
1906 show ?thesis |
|
1907 proof - |
|
1908 let ?env = "(take t env @ env' @ drop t env)" |
|
1909 and ?cpg = "(lift_t t (length env') cpg)" |
|
1910 have "c2t (lift_es ops ?env) (lift_ts (red_lfs ops) ?cpg) = c2t ?env ?cpg" |
|
1911 proof(rule Cons(1)) |
|
1912 from lift_wf_cpg_test[OF Cons(2), of t "map (\<lambda> x. Free) env'", simplified length_map] |
|
1913 show "wf_cpg_test (take t sts @ map (\<lambda>x. Free) env' @ drop t sts) |
|
1914 (lift_t t (length env') cpg) = |
|
1915 (True, take t sts' @ map (\<lambda>x. Free) env' @ drop t sts')" . |
|
1916 next |
|
1917 show "length (take t env @ env' @ drop t env) = |
|
1918 length (take t sts @ map (\<lambda>x. Free) env' @ drop t sts)" |
|
1919 by (metis (full_types) Cons.prems(2) Pair assms(2) length_append |
|
1920 length_drop length_map length_take) |
|
1921 qed |
|
1922 also have "\<dots> = c2t env cpg" |
|
1923 by (metis Cons.prems(1) Cons.prems(2) lift_c2t) |
|
1924 finally show ?thesis |
|
1925 by (unfold Pair, simp) |
|
1926 qed |
|
1927 qed |
|
1928 qed auto |
|
1929 |
|
1930 lemma adjust_c2t: |
|
1931 assumes "wf_cpg_test sts cpg = (True, sts')" |
|
1932 and "length env = length sts" |
|
1933 shows "c2t (adjust_env sps lfs env) (adjust_cpg (length sts) sps (red_lfs lfs) cpg) = c2t env cpg" |
|
1934 proof - |
|
1935 let ?cpg = "(perms (length sts) sps cpg)" |
|
1936 and ?env = "(perm_ss sps env)" |
|
1937 have "c2t (lift_es lfs ?env) |
|
1938 (lift_ts (red_lfs lfs) ?cpg) = c2t ?env ?cpg" |
|
1939 proof (rule lifts_c2t) |
|
1940 from perms_wf_cpg_test[OF assms(1), of sps] |
|
1941 show "wf_cpg_test (perm_ss sps sts) (perms (length sts) sps cpg) = (True, perm_ss sps sts')" . |
|
1942 next |
|
1943 show "length (perm_ss sps env) = length (perm_ss sps sts)" |
|
1944 by (metis assms(2) perm_ss_len) |
|
1945 qed |
|
1946 also have "\<dots> = c2t env cpg" |
|
1947 proof(fold assms(2), rule perms_c2t) |
|
1948 from assms(1) show " wf_cpg_test sts cpg = (True, sts')" . |
|
1949 next |
|
1950 from assms(2) show "length env = length sts" . |
|
1951 qed |
|
1952 finally show ?thesis |
|
1953 by (unfold adjust_env_def adjust_cpg_def, simp) |
|
1954 qed |
|
1955 |
|
1956 lemma adjust_wf_cpg_test: |
|
1957 assumes "wf_cpg_test sts cpg = (True, sts')" |
|
1958 shows "wf_cpg_test (adjust_sts sps lfs sts) (adjust_cpg (length sts) sps (red_lfs lfs) cpg) = |
|
1959 (True, adjust_sts sps lfs sts')" |
|
1960 proof - |
|
1961 have " wf_cpg_test (lift_ss lfs (perm_ss sps sts)) (lift_ts (red_lfs lfs) (perms (length sts) sps cpg)) = |
|
1962 (True, lift_ss lfs (perm_ss sps sts'))" |
|
1963 proof(rule lifts_wf_cpg_test) |
|
1964 show " wf_cpg_test (perm_ss sps sts) (perms (length sts) sps cpg) = (True, perm_ss sps sts')" |
|
1965 by (rule perms_wf_cpg_test[OF assms]) |
|
1966 qed |
|
1967 thus ?thesis |
|
1968 by (unfold adjust_sts_def adjust_cpg_def, simp) |
|
1969 qed |
|
1970 |
|
1971 lemma sts_disj_test_correct: |
|
1972 assumes "sts_disj_test sts1 sts2" |
|
1973 shows "sts_disj sts1 sts2" |
|
1974 using assms |
|
1975 proof(induct sts1 arbitrary:sts2) |
|
1976 case (Nil sts2) |
|
1977 note Nil_1 = Nil |
|
1978 show ?case |
|
1979 proof(cases sts2) |
|
1980 case Nil |
|
1981 with Nil_1 |
|
1982 show ?thesis by (simp add:sts_disj_def) |
|
1983 next |
|
1984 case (Cons s2 ss2) |
|
1985 with Nil_1 show ?thesis by simp |
|
1986 qed |
|
1987 next |
|
1988 case (Cons s1 ss1 sts2) |
|
1989 note Cons_1 = Cons |
|
1990 show ?case |
|
1991 proof(cases "sts2") |
|
1992 case Nil |
|
1993 with Cons_1 show ?thesis by simp |
|
1994 next |
|
1995 case (Cons s2 ss2) |
|
1996 show ?thesis |
|
1997 proof(cases "s1 = Bound \<and> s2 = Bound") |
|
1998 case True |
|
1999 with Cons_1 Cons |
|
2000 show ?thesis by simp |
|
2001 next |
|
2002 case False |
|
2003 with Cons_1 Cons |
|
2004 have "sts_disj_test ss1 ss2" by (auto split:status.splits) |
|
2005 from Cons_1(1) [OF this] False |
|
2006 show ?thesis |
|
2007 apply (unfold Cons) |
|
2008 apply (unfold sts_disj_def) |
|
2009 by (smt False length_Suc_conv list.size(4) nth_Cons') |
|
2010 qed |
|
2011 qed |
|
2012 qed |
|
2013 |
|
2014 lemma sts_minus_free: |
|
2015 assumes "length sts1 = length sts2" |
|
2016 and "list_all (op = Free) sts2" |
|
2017 shows "sts1 - sts2 = sts1" |
|
2018 using assms |
|
2019 proof(induct sts1 arbitrary:sts2) |
|
2020 case (Nil sts2) |
|
2021 thus ?case by simp |
|
2022 next |
|
2023 case (Cons s1 ss1 sts2) |
|
2024 note Cons_1 = Cons |
|
2025 thus ?case |
|
2026 proof(cases sts2) |
|
2027 case Nil |
|
2028 with Cons |
|
2029 show ?thesis by simp |
|
2030 next |
|
2031 case (Cons s2 ss2) |
|
2032 have "ss1 - ss2 = ss1" |
|
2033 proof(rule Cons_1(1)) |
|
2034 show "length ss1 = length ss2" |
|
2035 by (metis Cons Cons_1(2) Suc_length_conv list.inject) |
|
2036 next |
|
2037 show "list_all (op = Free) ss2" |
|
2038 by (metis Cons Cons_1(3) list_all_simps(1)) |
|
2039 qed |
|
2040 moreover from Cons_1(3) Cons have "s2 = Free" |
|
2041 by (metis (full_types) list_all_simps(1)) |
|
2042 ultimately show ?thesis using Cons |
|
2043 apply simp |
|
2044 by (metis (hide_lams, mono_tags) minus_status.simps(2) minus_status.simps(3) status.exhaust) |
|
2045 qed |
|
2046 qed |
|
2047 |
|
2048 lemma st_simp [simp]: "St (nat_of x) = x" |
|
2049 by (metis nat_of.simps tstate.exhaust) |
|
2050 |
|
2051 lemma wf_cpg_test_len: |
|
2052 assumes "wf_cpg_test sts cpg = (b, sts')" |
|
2053 shows "length sts' = length sts" |
|
2054 using assms |
|
2055 proof(induct cpg arbitrary:sts sts' b) |
|
2056 case (CInstr instr sts sts' b) |
|
2057 then obtain a1 s1 a2 s2 where |
|
2058 eq_instr: "instr = ((a1, St s1), (a2, St s2))" |
|
2059 by (metis st_simp surj_pair) |
|
2060 with CInstr |
|
2061 show ?case by simp |
|
2062 qed (auto split:prod.splits) |
|
2063 |
|
2064 lemma wf_cpg_test_seq: |
|
2065 assumes "wf_cpg_test sts1 c1 = (True, sts1')" |
|
2066 and "wf_cpg_test sts2 c2 = (True, sts2')" |
|
2067 and "length sts1 = length sts2" |
|
2068 and "list_all (op = Free) sts1" |
|
2069 and "list_all (op = Free) sts2" |
|
2070 and "sts_disj_test sts1' sts2'" |
|
2071 shows "wf_cpg_test sts1 (CSeq c1 c2) = (True, sts1' + sts2')" |
|
2072 proof - |
|
2073 have "wf_cpg_test (sts1' + sts2) c2 = (True, sts1' + sts2')" |
|
2074 by (metis add_imp_eq assms(2) assms(5) assms(6) length_sts_plus |
|
2075 plus_list_len sts_disj_test_correct sts_minus_free wf_cpg_test_disj wf_cpg_test_extrapo wf_cpg_test_len) |
|
2076 hence "wf_cpg_test sts1' c2 = (True, sts1' + sts2')" |
|
2077 by (metis all_free_plus assms(1) assms(3) assms(5) wf_cpg_test_len) |
|
2078 with assms(1) |
|
2079 show ?thesis by simp |
|
2080 qed |
|
2081 |
|
2082 lemma c2t_seq: |
|
2083 assumes "c2t env c1 = t1" |
|
2084 and "c2t env c2 = t2" |
|
2085 shows "c2t env (CSeq c1 c2) = (t1; t2)" |
|
2086 using assms by simp |
|
2087 |
|
2088 lemma c2t_local: |
|
2089 assumes "\<And>x. (c2t (x#xs) cpg = body x)" |
|
2090 shows "c2t xs (CLocal cpg) = (TL x. body x)" |
|
2091 using assms |
|
2092 by simp |
|
2093 |
|
2094 lemma wf_cpg_test_local: |
|
2095 assumes "wf_cpg_test (Free#sts) cpg = (b, s'#sts')" |
|
2096 shows "wf_cpg_test sts (CLocal cpg) = (b, sts')" |
|
2097 by (simp add:assms) |
|
2098 |
|
2099 lemma wf_c2t_combined: |
|
2100 assumes "wf_cpg_test sts cpg = (True, sts)" |
|
2101 and "c2t env cpg = tpg" |
|
2102 and "list_all (op = Free) sts" |
|
2103 and "length env = length sts" |
|
2104 shows "\<forall> i. \<exists> j s. ((i:[tpg]:j) s)" |
|
2105 proof |
|
2106 fix i |
|
2107 from wf_cpg_test_correct[OF assms(1), rule_format, of i] |
|
2108 obtain j where "c2p (sts - sts) i cpg j" by metis |
|
2109 from this[unfolded c2p_def] |
|
2110 obtain f where h: "\<forall>x. length x = length (sts - sts) \<and> |
|
2111 (\<forall>k<length (sts - sts). (sts - sts) ! k = Bound \<longrightarrow> x ! k = f i k) \<longrightarrow> |
|
2112 Ex (i :[ c2t x cpg ]: j)" by metis |
|
2113 have "\<exists> s. (i :[ c2t env cpg ]: j) s" |
|
2114 proof(rule h[rule_format], rule conjI) |
|
2115 show "length env = length (sts - sts)" |
|
2116 by (smt assms(4) minus_list_len) |
|
2117 next |
|
2118 show "\<forall>k<length (sts - sts). (sts - sts) ! k = Bound \<longrightarrow> env ! k = f i k" |
|
2119 by (metis assms(3) minus_status.simps(1) nth_sts_minus status.distinct(1) sts_minus_free) |
|
2120 qed |
|
2121 show "\<exists> j s. ((i:[tpg]:j) s)" |
|
2122 by (metis `\<exists>s. (i :[ c2t env cpg ]: j) s` assms(2)) |
|
2123 qed |
|
2124 |
|
2125 subsection {* The Checker *} |
|
2126 |
|
2127 ML {* |
|
2128 print_depth 200 |
|
2129 *} |
|
2130 |
|
2131 subsubsection {* Auxilary functions *} |
|
2132 |
|
2133 ML {* |
|
2134 local |
|
2135 fun clear_binds ctxt = (ctxt |> Variable.binds_of |> Vartab.keys |> map (fn xi => (xi, NONE)) |
|
2136 |> fold Variable.bind_term) ctxt |
|
2137 fun get_binds ctxt = ctxt |> Variable.binds_of |> Vartab.dest |> map (fn (xi, (_, tm)) => (xi, SOME tm)) |
|
2138 fun set_binds blist ctxt = (fold Variable.bind_term blist) (clear_binds ctxt) |
|
2139 in |
|
2140 fun blocalM f = liftM (m2M (fn ctxt => returnM (get_binds ctxt))) |
|
2141 :|-- (fn binds => |
|
2142 f |
|
2143 :|-- (fn result => |
|
2144 liftM (m2M (fn ctxt' => s2M (set_binds binds ctxt') |-- returnM result |
|
2145 ))) |
|
2146 ) |
|
2147 end |
|
2148 |
|
2149 fun condM bf scan = (fn v => m0M (fn st => if (bf (v, st)) then scan v else returnM v)) |
|
2150 |
|
2151 local |
|
2152 val counter = Unsynchronized.ref 0 |
|
2153 in |
|
2154 fun init_counter n = (counter := n) |
|
2155 fun counter_test x = |
|
2156 if !counter <= 1 then true |
|
2157 else (counter := !counter - 1; false) |
|
2158 end |
|
2159 |
|
2160 (* break point monad *) |
|
2161 fun bpM v' = (fn v => m0M (fn st => raiseM (v', (v, st)))) |
|
2162 |
|
2163 fun the_theory () = ML_Context.the_local_context () |> Proof_Context.theory_of |
|
2164 fun the_context () = ML_Context.the_local_context () |
|
2165 |
|
2166 (* Calculating the numberal of integer [i] *) |
|
2167 fun nat_of i = if i = 0 then @{term "0::nat"} else |
|
2168 (Const ("Num.numeral_class.numeral", @{typ "num \<Rightarrow> nat"}) $ |
|
2169 (Numeral.mk_cnumeral i |> term_of)) |
|
2170 |
|
2171 fun vfixM nm typ = (m2M' (fn ctxt => let |
|
2172 val ([x], ctxt') = Variable.variant_fixes [nm] ctxt |
|
2173 val tm_x = Free (x, typ) |
|
2174 in s2M ctxt' |-- returnM tm_x end)) |
|
2175 fun fixM nm typ = (m2M' (fn ctxt => let |
|
2176 val ([x], ctxt') = Variable.add_fixes [nm] ctxt |
|
2177 val tm_x = Free (x, typ) |
|
2178 in s2M ctxt' |-- returnM tm_x end)) |
|
2179 local |
|
2180 fun mk_listM l = |
|
2181 case l of |
|
2182 [] => @{fterm "[]"} |
|
2183 | (tm::tms) => localM (@{match "?x"} tm |
|
2184 |-- (mk_listM tms) |
|
2185 :|-- @{match "?xs"} |
|
2186 |-- @{fterm "?x#?xs"}) |
|
2187 in |
|
2188 fun mk_list_term ctxt l = [((), ctxt)] |> mk_listM l |> normVal |> fst |
|
2189 end |
|
2190 fun term_name (Const (x, _)) = Long_Name.base_name x |
|
2191 | term_name (Free (x, _)) = x |
|
2192 | term_name (Var ((x, _), _)) = x |
|
2193 | term_name _ = Name.uu; |
|
2194 |
|
2195 val rew_conv = Raw_Simplifier.rewrite_cterm (true, false, false) (K (K NONE)); |
|
2196 |
|
2197 fun simpl_conv ss thl ctm = |
|
2198 rew_conv (ss addsimps thl) ctm RS meta_eq_to_obj_eq; |
|
2199 |
|
2200 fun find_thms ctxt pats = |
|
2201 Find_Theorems.find_theorems ctxt NONE NONE true |
|
2202 (map (fn pat =>(true, Find_Theorems.Pattern |
|
2203 (Proof_Context.read_term_pattern ctxt pat))) pats) |> snd |> map snd |
|
2204 |
|
2205 |
|
2206 fun local_on arg rhs = [((), @{context})] |> |
|
2207 @{match "?body"} (Term.lambda arg rhs) |-- |
|
2208 @{fterm "TL x. ?body x"} |> normVal |> fst |
|
2209 fun find_idx vars l = (nat_of (find_index (equal l) vars)) |
|
2210 |
|
2211 local |
|
2212 fun mk_pair_term (i, j) = [((), @{context})] |> |
|
2213 @{match "?i"} (nat_of i) |
|
2214 |-- @{match "?j"} (nat_of j) |
|
2215 |-- @{fterm "(?i, ?j)"} |> normVal |> fst |
|
2216 in |
|
2217 fun mk_npair_list_term ctxt pair_list = |
|
2218 if pair_list = [] then @{term "[]::(nat \<times> nat) list"} |
|
2219 else pair_list |> map mk_pair_term |> mk_list_term ctxt |
|
2220 end |
|
2221 |
|
2222 fun list_of_array ary = let |
|
2223 val len = Array.length ary |
|
2224 val idx = upto (0, len - 1) |
|
2225 in map (fn i => Array.sub (ary, i)) idx end |
|
2226 |
|
2227 local |
|
2228 fun mk_env_term ctxt lst = |
|
2229 if lst = [] then @{term "[]::tstate list"} else (mk_list_term ctxt lst) |
|
2230 fun mk_pair_term ctxt (i, j) = [((), ctxt)] |> |
|
2231 @{match "?i"} (mk_env_term ctxt i) |
|
2232 |-- @{match "?j"} (nat_of j) |
|
2233 |-- @{fterm "(?i, ?j)"} |> normVal |> fst |
|
2234 in |
|
2235 fun mk_tpair_list_term ctxt pair_list = |
|
2236 if pair_list = [] then @{term "[] :: (tstate list \<times> nat) list"} |
|
2237 else pair_list |> map (mk_pair_term ctxt) |> mk_list_term ctxt |
|
2238 end |
|
2239 |
|
2240 *} |
|
2241 |
|
2242 subsubsection {* The reifier *} |
|
2243 |
|
2244 ML {* |
|
2245 fun locM (c2t_thm, test_thm) = (m1M' (fn env => |
|
2246 let |
|
2247 val Free (x, _) = hd env |
|
2248 val c2t_thm = Drule.generalize ([], [x]) c2t_thm |
|
2249 val c2t_thm = @{thm c2t_local} OF [c2t_thm] |
|
2250 val test_thm = @{thm wf_cpg_test_local} OF [test_thm] |
|
2251 in |
|
2252 s1M (tl env) |-- returnM (c2t_thm, test_thm) |
|
2253 end)) |
|
2254 |
|
2255 fun reify_local reify t = |
|
2256 ( @{match "TL x . ?body (x::tstate)"} t |
|
2257 |-- vfixM "x" @{typ "tstate"} |
|
2258 :|-- @{match "?x"} |
|
2259 :|-- (fn tmx => m1M' (fn env => s1M (tmx::env))) |
|
2260 |-- @{fterm "?body ?x"} |
|
2261 :|-- reify |
|
2262 :|-- locM |
|
2263 (* :|-- condM counter_test (bpM ("local", t)) *) |
|
2264 ) |
|
2265 |
|
2266 fun labelM exp = m0M' (fn (env, ctxt) => let |
|
2267 (* The following three lines are used for debugging purpose |
|
2268 (* (* The following two lines are used to set breakpoint counter |
|
2269 and invoke the reifyer in debug mode *) |
|
2270 val _ = init_counter 3 |
|
2271 val t = reify tpg_def_rhs [(rev tpg_def_largs_sufx, ctxt_tpg_def)] |> normExcp |
|
2272 *) |
|
2273 (* The following line is used to extract break point information and |
|
2274 establish the environment to execute body statements *) |
|
2275 val ((brc, exp), (_, (env, ctxt)::_)) = t |
|
2276 *) |
|
2277 val c2t_thm = [((), ctxt)] |> |
|
2278 @{match "?cpg"} exp |
|
2279 |-- @{match "?env"} (env |> mk_list_term ctxt) |
|
2280 |-- @{fterm "c2t ?env ?cpg"} |> normVal |> fst |> cterm_of (Proof_Context.theory_of ctxt) |
|
2281 |> simpl_conv (simpset_of ctxt) [] |
|
2282 val test_thm = [((), ctxt)] |> |
|
2283 @{match "?cpg"} exp |
|
2284 |-- @{match "?sts"} (env |> map (fn _ => @{term "Free"}) |> mk_list_term ctxt) |
|
2285 |-- @{fterm "wf_cpg_test ?sts ?cpg"} |> normVal |> fst |> cterm_of (Proof_Context.theory_of ctxt) |
|
2286 |> simpl_conv (simpset_of ctxt) [] |
|
2287 in returnM (c2t_thm, test_thm) end) |
|
2288 |
|
2289 fun reify_label t = |
|
2290 @{match "TLabel ?L"} t |
|
2291 |-- @{fterm "?L"} |
|
2292 :|-- (fn l => m1M' (fn st => returnM (find_idx st l))) |
|
2293 :|-- @{match ?L1} |
|
2294 |-- @{fterm "CLabel ?L1"} |
|
2295 (* :|-- condM counter_test (bpM ("label", t)) *) |
|
2296 :|-- labelM |
|
2297 |
|
2298 fun seqM ((c2t_thm1, test_thm1), (c2t_thm2, test_thm2)) = |
|
2299 m0M' (fn (env, ctxt) => |
|
2300 let |
|
2301 val simp_trans = (simpset_of ctxt) delsimps @{thms wf_cpg_test.simps c2t.simps} |> full_simplify |
|
2302 val ct2_thm = (@{thm c2t_seq} OF [c2t_thm1, c2t_thm2]) |> simp_trans |
|
2303 val test_thm = (@{thm wf_cpg_test_seq} OF [test_thm1, test_thm2]) |> simp_trans |
|
2304 in returnM (ct2_thm, test_thm) end) |
|
2305 |
|
2306 fun reify_seq reify t = |
|
2307 @{match "?c1; ?c2"} t |
|
2308 |-- ((@{fterm "?c1"} :|-- reify) -- |
|
2309 (@{fterm "?c2"} :|-- reify)) |
|
2310 (* :|-- condM counter_test (bpM ("seq", t)) *) |
|
2311 :|-- seqM |
|
2312 |
|
2313 fun reify_instr t = |
|
2314 @{match "\<guillemotright> ((?A0, ?L0), (?A1, ?L1))"} t |
|
2315 |-- @{fterm "?L0"} |
|
2316 :|-- (fn l => m1M' (fn st => returnM (find_idx st l))) |
|
2317 :|-- @{match ?L0'} |
|
2318 |-- @{fterm "?L1"} |
|
2319 :|-- (fn l => m1M' (fn st => returnM (find_idx st l))) |
|
2320 :|-- @{match ?L1'} |
|
2321 |-- @{fterm "CInstr ((?A0, ?L0'), (?A1, St ?L1'))"} |
|
2322 :|-- labelM |
|
2323 (* :|-- condM counter_test (bpM ("instr", t)) *) |
|
2324 |
|
2325 fun reify_var var = |
|
2326 (* condM counter_test (bpM ("var", var)) () |-- *) |
|
2327 (m0M' (fn (env, ctxt) => let |
|
2328 (* The following three lines are used for debugging purpose |
|
2329 (* (* The following two lines are used to set breakpoint counter |
|
2330 and invoke the reifyer in debug mode *) |
|
2331 val _ = init_counter 3 |
|
2332 val t = reify tpg_def_rhs [(rev tpg_def_largs_sufx, ctxt_tpg_def)] |> normExcp |
|
2333 *) |
|
2334 (* The following line is used to extract break point information and |
|
2335 establish the environment to execute body statements *) |
|
2336 val ((brc, var), (_, (env, ctxt)::_)) = t |
|
2337 *) |
|
2338 val (var_hd, var_args) = Term.strip_comb var |
|
2339 val (var_args_prefx, var_args_sufx) = |
|
2340 take_suffix (fn tm => type_of tm = @{typ "tstate"}) var_args |
|
2341 val var_skel_hd_typ = var_args_prefx |> map type_of |> (fn typs => typs ---> @{typ "cpg"}) |
|
2342 (* We discriminate two cases, one for tpg constants; the other for argument variable *) |
|
2343 val ([var_skel_hd_name], ctxt1) = |
|
2344 case var_hd of |
|
2345 (Const (nm, _)) => ([((nm |> Long_Name.base_name)^"_skel")], ctxt) |
|
2346 | _ => Variable.variant_fixes [(term_name var_hd^"_skel_")] ctxt |
|
2347 (* If [var_hd] is a constant, a corresponding skeleton constant is assumed to exist alrady *) |
|
2348 val var_skel_hd = if (Term.is_Const var_hd) then Syntax.read_term ctxt1 var_skel_hd_name |
|
2349 else Free (var_skel_hd_name, var_skel_hd_typ) |
|
2350 (* [skel_tm] is the skeleton object the properties of which will either be assumed (in case of |
|
2351 argument variable), or proved (in case of global constants ) *) |
|
2352 val skel_tm = Term.list_comb (var_skel_hd, var_args_prefx) |
|
2353 (* Start to prove or assume [c2t] property (named [c2t_thm]) of the skeleton object, |
|
2354 since the [c2t] property needs to be universally qantified, we |
|
2355 need to invent quantifier names: *) |
|
2356 val (var_skel_args_sufx_names, ctxt2) = |
|
2357 Variable.variant_fixes (var_args_sufx |> map term_name) ctxt1 |
|
2358 val var_skel_args_sufx = var_skel_args_sufx_names |> map (fn nm => Free (nm, @{typ "tstate"})) |
|
2359 val c2t_rhs = Term.list_comb (var_hd, var_args_prefx@var_skel_args_sufx) |
|
2360 val c2t_env = mk_list_term ctxt2 (var_skel_args_sufx |> rev) |
|
2361 val eqn = [((), ctxt2)] |> |
|
2362 @{match ?env} c2t_env |
|
2363 |-- @{match ?skel_tm} skel_tm |
|
2364 |-- @{match ?c2t_rhs} c2t_rhs |
|
2365 |-- @{fterm "Trueprop (c2t ?env ?skel_tm = ?c2t_rhs)"} |> normVal |> fst |
|
2366 fun all_on ctxt arg body = Const ("all", dummyT) $ (Term.lambda arg body) |> |
|
2367 Syntax.check_term ctxt |
|
2368 val c2t_eqn = fold (all_on ctxt2) (rev var_skel_args_sufx) eqn |> cterm_of (Proof_Context.theory_of ctxt2) |
|
2369 val ([c2t_thm], ctxt3) = |
|
2370 if (Term.is_Const var_hd) then |
|
2371 (* if [var_hd] is an constant, try to prove [c2t_eqn] by searching |
|
2372 into the facts database *) |
|
2373 let |
|
2374 val pat_skel_args = fold (curry (op ^)) (map (K " _ ") var_args_prefx) "" |
|
2375 val pat_skel_str = "( "^ var_skel_hd_name ^ pat_skel_args ^" )" |
|
2376 val test_pat = ("wf_cpg_test _ "^ pat_skel_str ^" = (True, _)") |
|
2377 val c2t_pat = ("c2t _ "^ pat_skel_str ^" = _") |
|
2378 val (wf_test_thms, c2t_thms) = ([test_pat], [c2t_pat]) |> pairself (find_thms ctxt2) |
|
2379 in |
|
2380 ([([((0, @{thm "refl"}), ctxt2)] |> |
|
2381 goalM (c2t_eqn |> term_of) |
|
2382 |-- tacM (fn ctxt => (Simplifier.simp_tac ((simpset_of ctxt) addsimps c2t_thms) 1)) |
|
2383 >> Goal.conclude |> normVal |> fst |> Raw_Simplifier.norm_hhf)], ctxt2) |
|
2384 end |
|
2385 else (* Otherwise, make [c2t_eqn] an assumption *) |
|
2386 Assumption.add_assumes [c2t_eqn] ctxt2 |
|
2387 (* Start to prove or assume [wf_cpg_test] property (named [wf_test_thm]) of the skeleton object. *) |
|
2388 val sts = map (fn tm => @{term "Free"}) var_args_sufx |> mk_list_term ctxt3 |
|
2389 val wf_test_eqn = [((), ctxt3)] |> |
|
2390 @{match ?cpg} skel_tm |
|
2391 |-- @{match ?sts} sts |
|
2392 |-- @{fterm "Trueprop (wf_cpg_test ?sts ?cpg = (True, ?sts))"} |> normVal |> fst |
|
2393 |> cterm_of (Proof_Context.theory_of ctxt3) |
|
2394 val ([wf_test_thm], ctxt4) = |
|
2395 if (Term.is_Const var_hd) then |
|
2396 let |
|
2397 val pat_skel_args = fold (curry (op ^)) (map (K " _ ") var_args_prefx) "" |
|
2398 val pat_skel_str = "( "^ var_skel_hd_name ^ pat_skel_args ^ " )" |
|
2399 val test_pat = ("wf_cpg_test _ "^ pat_skel_str ^" = (True, _)") |
|
2400 val c2t_pat = ("c2t _ "^ pat_skel_str ^" = _") |
|
2401 val wf_test_thms = [test_pat] |> (find_thms ctxt2) |
|
2402 in |
|
2403 ([([((0, @{thm "refl"}), ctxt2)] |> |
|
2404 goalM (wf_test_eqn |> term_of) |
|
2405 |-- tacM (fn ctxt => (Simplifier.simp_tac ((simpset_of ctxt) addsimps wf_test_thms) 1)) |
|
2406 >> Goal.conclude |> normVal |> fst |> Raw_Simplifier.norm_hhf)], ctxt3) |
|
2407 end |
|
2408 else Assumption.add_assumes [wf_test_eqn] ctxt3 |
|
2409 (* Start the derivation of the length theorem *) |
|
2410 val length_env = mk_list_term ctxt4 (var_args_sufx |> rev) |
|
2411 val length_thm = [((0, @{thm "init"}), ctxt4)] |> |
|
2412 @{match "(?env)"} length_env |
|
2413 |-- @{match "(?sts)"} sts |
|
2414 |-- @{fterm "Trueprop (length (?env::tstate list) = length (?sts::status list))"} |
|
2415 :|-- goalM |
|
2416 |-- tacM (fn ctxt => (Simplifier.simp_tac (simpset_of ctxt) 1)) |
|
2417 >> Goal.conclude |> normVal |> fst |
|
2418 (* Start compute two adjust operations, namely [sps] and [lfs] *) |
|
2419 val locs = var_args_sufx |> map (fn arg => find_index (equal arg) env) |> rev |
|
2420 val swaps = swaps_of locs |
|
2421 val sps = swaps |> mk_npair_list_term @{context} |
|
2422 val locs' = sexec swaps (Array.fromList locs) |> list_of_array |
|
2423 val pairs = ((~1::locs') ~~ (locs' @ [length env])) |
|
2424 fun lfs_of (t, ops) [] = ops |> rev |
|
2425 | lfs_of (t, ops) ((i, j)::pairs) = let |
|
2426 val stuf = upto (i + 1, j - 1) |> map (fn idx => nth env idx) |
|
2427 in if (stuf <> []) then lfs_of (t + length stuf + 1, (stuf, t)::ops) pairs |
|
2428 else lfs_of (t + length stuf + 1, ops) pairs |
|
2429 end |
|
2430 val lfs = lfs_of (0, []) pairs |> mk_tpair_list_term @{context} |
|
2431 (* [simp_trans] is the simplification procedure used to simply the theorem after |
|
2432 instantiation. |
|
2433 *) |
|
2434 val simp_trans = full_simplify ((simpset_of @{context}) addsimps @{thms adjust_sts_def |
|
2435 adjust_env_def perm_s_def perm_b_def map_idx_len |
|
2436 map_idx_def upto_map upto_empty} @ [c2t_thm]) |
|
2437 (* Instantiating adjust theorems *) |
|
2438 val adjust_c2t_thm = [((), ctxt4)] |> |
|
2439 @{match "?sps"} sps |
|
2440 |-- @{match "?lfs"} lfs |
|
2441 |-- thm_instM (@{thm adjust_c2t} OF [wf_test_thm, length_thm]) |
|
2442 |> normVal |> fst |> simp_trans |
|
2443 val adjust_test_thm = [((), ctxt4)] |> |
|
2444 @{match "?sps"} sps |
|
2445 |-- @{match "?lfs"} lfs |
|
2446 |-- thm_instM (@{thm adjust_wf_cpg_test} OF [wf_test_thm]) |
|
2447 |> normVal |> fst |> simp_trans |
|
2448 in |
|
2449 (* s2M ctxt4 |-- *) returnM (adjust_c2t_thm, adjust_test_thm) |
|
2450 end)) |
|
2451 |
|
2452 fun reify t = |
|
2453 localM (reify_seq reify t || |
|
2454 reify_local reify t || |
|
2455 reify_label t || |
|
2456 reify_instr t || |
|
2457 reify_var t |
|
2458 ) |
|
2459 *} |
|
2460 |
|
2461 subsubsection {* The Checker packed up as the asmb attribute *} |
|
2462 |
|
2463 ML {* |
|
2464 fun asmb_attrib def_thm = |
|
2465 Context.cases (fn thy => |
|
2466 (* val thy = @{theory} *) let |
|
2467 fun thy_exit ctxt = |
|
2468 Context.Theory (Local_Theory.exit_global (Local_Theory.assert_bottom true ctxt)) |
|
2469 val ctxt0 = Named_Target.theory_init thy |
|
2470 val (((x, y), [tpg_def]), ctxt_tpg_def) = Variable.import true [def_thm] ctxt0 |
|
2471 val (tpg_def_lhs, tpg_def_rhs) = [((), ctxt_tpg_def)] |> |
|
2472 @{match "Trueprop (?L = ?R)"} (prop_of tpg_def) |
|
2473 |-- @{fterm "?L"} -- @{fterm "?R"} |> normVal |> fst |
|
2474 val (tpg_def_lhd, tpg_def_largs) = Term.strip_comb tpg_def_lhs |
|
2475 val (tpg_def_largs_prefx, tpg_def_largs_sufx) = |
|
2476 take_suffix (fn tm => type_of tm = @{typ "tstate"}) tpg_def_largs |
|
2477 (* Invoking the reifyer in normal mode *) |
|
2478 val ((c2t_thm_1, test_thm_1), ((_, ctxt_r)::y)) = |
|
2479 reify tpg_def_rhs [(rev tpg_def_largs_sufx, ctxt_tpg_def)] |
|
2480 |> normVal |
|
2481 val asmb_thm_1 = (@{thm wf_c2t_combined} OF [test_thm_1, c2t_thm_1]) |> (full_simplify (simpset_of ctxt_r)) |
|
2482 val (r_cpg, r_tpg) = [((), ctxt_r)] |> |
|
2483 @{match "Trueprop (c2t _ ?X = ?tpg)"} (c2t_thm_1 |> prop_of) |
|
2484 |-- (@{fterm "?X"} -- @{fterm "?tpg"}) |> normVal |> fst |
|
2485 val tpg_def_params = Variable.add_fixed ctxt_tpg_def (tpg_def_lhs) [] |> map fst |
|
2486 |> sort (Variable.fixed_ord ctxt_tpg_def) |
|
2487 val r_cpg_frees = Term.add_frees r_cpg [] |
|
2488 local fun condense [] = [] |
|
2489 | condense xs = [hd xs] |
|
2490 in |
|
2491 val skel_def_params = |
|
2492 tpg_def_params |> map (fn nm => condense |
|
2493 (filter (fn (tnm, _) => String.isPrefix nm tnm) r_cpg_frees)) |
|
2494 |> flat |> map Free |
|
2495 end |
|
2496 val skel_def_rhs = fold Term.lambda (skel_def_params |> rev) r_cpg |
|
2497 local |
|
2498 val Const (nm, _) = tpg_def_lhs |> Term.head_of |
|
2499 in |
|
2500 val tpg_def_name = nm |> Long_Name.base_name |
|
2501 val skel_def_lhs = Free (tpg_def_name^"_skel", type_of skel_def_rhs) |
|
2502 end |
|
2503 val skel_def_eqn = [((), ctxt_r)] |> |
|
2504 @{match "?lhs"} skel_def_lhs |
|
2505 |-- @{match "?rhs"} skel_def_rhs |
|
2506 |-- @{fterm "Trueprop (?lhs = ?rhs)"} |> normVal |> fst |
|
2507 val ((skel_def_lhs, (skel_def_name, skel_def_thm)), lthy2) = |
|
2508 Specification.definition (NONE, (Attrib.empty_binding, skel_def_eqn)) ctxt_r |
|
2509 val c2t_thm_final = [((0, @{thm refl}), lthy2)] |> |
|
2510 @{match "?env"} (mk_list_term lthy2 (rev tpg_def_largs_sufx)) |
|
2511 |-- @{match "?skel"} (Term.list_comb (skel_def_lhs, skel_def_params)) |
|
2512 val c2t_thm_final = [((0, @{thm refl}), lthy2)] |> |
|
2513 @{match "?env"} (mk_list_term lthy2 (rev tpg_def_largs_sufx)) |
|
2514 |-- @{match "?skel"} (Term.list_comb (skel_def_lhs, skel_def_params)) |
|
2515 |-- @{match "?tpg"} tpg_def_lhs |
|
2516 |-- @{fterm "Trueprop (c2t ?env ?skel = ?tpg)"} |
|
2517 :|-- goalM |
|
2518 |-- tacM (fn ctxt => (Simplifier.simp_tac ((simpset_of ctxt |> Simplifier.clear_ss) |
|
2519 addsimps [skel_def_thm, c2t_thm_1]) 1)) |
|
2520 |-- tacM (fn ctxt => (Simplifier.simp_tac ((simpset_of ctxt |> Simplifier.clear_ss) |
|
2521 addsimps [def_thm]) 1)) |
|
2522 >> Goal.conclude |> normVal |> fst |
|
2523 val test_thm_final = [((0, @{thm refl}), lthy2)] |> |
|
2524 @{match "?sts"} (tpg_def_largs_sufx |> map (fn _ => @{term "Free"}) |> mk_list_term lthy2) |
|
2525 |-- @{match "?skel"} (Term.list_comb (skel_def_lhs, skel_def_params)) |
|
2526 |-- @{fterm "Trueprop (wf_cpg_test ?sts ?skel = (True, ?sts))"} |
|
2527 :|-- goalM |
|
2528 |-- tacM (fn ctxt => (Simplifier.simp_tac ((simpset_of ctxt |> Simplifier.clear_ss) |
|
2529 addsimps [skel_def_thm, test_thm_1]) 1)) |
|
2530 >> Goal.conclude |> normVal |> fst |
|
2531 val asmb_thm_final = [((0, @{thm refl}), lthy2)] |> |
|
2532 @{match "?tpg"} tpg_def_lhs |
|
2533 |-- @{fterm "Trueprop (\<forall> i. \<exists> j s. (i:[?tpg]:j) s)"} |
|
2534 :|-- goalM |
|
2535 |-- tacM (fn ctxt => (Simplifier.simp_tac ((simpset_of ctxt) |
|
2536 addsimps [tpg_def, asmb_thm_1]) 1)) |
|
2537 >> Goal.conclude |> normVal |> fst |
|
2538 fun generalize thm = let |
|
2539 val hyps = (#hyps (thm |> Thm.crep_thm)) |
|
2540 val thm' = if (length hyps = 0) then thm |
|
2541 else (fold Thm.implies_intr (#hyps (thm |> Thm.crep_thm) |> rev |> tl |> rev) thm) |
|
2542 in |
|
2543 thm' |> Thm.forall_intr_frees |
|
2544 end |
|
2545 val lthy3 = |
|
2546 Local_Theory.note ((Binding.name ("c2t_" ^ tpg_def_name ^ "_skel"), []), |
|
2547 [c2t_thm_final |> generalize]) lthy2 |> snd |
|
2548 val lthy4 = |
|
2549 Local_Theory.note ((Binding.name ("wf_" ^ tpg_def_name ^ "_skel"), []), |
|
2550 [test_thm_final |> generalize]) lthy3 |> snd |
|
2551 val lthy5 = |
|
2552 Local_Theory.note ((Binding.name ("asmb_" ^ tpg_def_name), []), |
|
2553 [asmb_thm_final |> Drule.export_without_context]) lthy4 |> snd |
|
2554 in |
|
2555 thy_exit lthy5 |
|
2556 end) (fn ctxt => Context.Proof ctxt) |
|
2557 *} |
|
2558 |
|
2559 setup {* |
|
2560 Attrib.setup @{binding asmb} (Scan.succeed (Thm.declaration_attribute asmb_attrib)) "asmb attribute" |
|
2561 *} |
|
2562 |
|
2563 |
|
2564 section {* Basic macros for TM *} |
|
2565 |
|
2566 definition [asmb]: "write_zero = (TL exit. \<guillemotright>((W0, exit), (W0, exit)); TLabel exit)" |
|
2567 |
|
2568 definition [asmb]: "write_one = (TL exit. \<guillemotright>((W1, exit), (W1, exit)); TLabel exit)" |
|
2569 |
|
2570 definition [asmb]: "move_left = (TL exit . \<guillemotright>((L, exit), (L, exit)); TLabel exit)" |
|
2571 |
|
2572 definition [asmb]: "move_right = (TL exit . \<guillemotright>((R, exit), (R, exit)); TLabel exit)" |
|
2573 |
|
2574 definition [asmb]: "if_one e = (TL exit . \<guillemotright>((W0, exit), (W1, e)); TLabel exit)" |
|
2575 |
|
2576 definition [asmb]: "if_zero e = (TL exit . \<guillemotright>((W0, e), (W1, exit)); TLabel exit)" |
|
2577 |
|
2578 definition [asmb]: "jmp e = \<guillemotright>((W0, e), (W1, e))" |
|
2579 |
|
2580 definition [asmb]: |
|
2581 "right_until_zero = |
|
2582 (TL start exit. |
|
2583 TLabel start; |
|
2584 if_zero exit; |
|
2585 move_right; |
|
2586 jmp start; |
|
2587 TLabel exit |
|
2588 )" |
|
2589 |
|
2590 definition [asmb]: |
|
2591 "left_until_zero = |
|
2592 (TL start exit. |
|
2593 TLabel start; |
|
2594 if_zero exit; |
|
2595 move_left; |
|
2596 jmp start; |
|
2597 TLabel exit |
|
2598 )" |
|
2599 |
|
2600 definition [asmb]: |
|
2601 "right_until_one = |
|
2602 (TL start exit. |
|
2603 TLabel start; |
|
2604 if_one exit; |
|
2605 move_right; |
|
2606 jmp start; |
|
2607 TLabel exit |
|
2608 )" |
|
2609 |
|
2610 definition [asmb]: |
|
2611 "left_until_one = |
|
2612 (TL start exit. |
|
2613 TLabel start; |
|
2614 if_one exit; |
|
2615 move_left; |
|
2616 jmp start; |
|
2617 TLabel exit |
|
2618 )" |
|
2619 |
|
2620 definition [asmb]: |
|
2621 "left_until_double_zero = |
|
2622 (TL start exit. |
|
2623 TLabel start; |
|
2624 if_zero exit; |
|
2625 left_until_zero; |
|
2626 move_left; |
|
2627 if_one start; |
|
2628 TLabel exit)" |
|
2629 |
|
2630 definition [asmb]: |
|
2631 "shift_right = |
|
2632 (TL start exit. |
|
2633 TLabel start; |
|
2634 if_zero exit; |
|
2635 write_zero; |
|
2636 move_right; |
|
2637 right_until_zero; |
|
2638 write_one; |
|
2639 move_right; |
|
2640 jmp start; |
|
2641 TLabel exit |
|
2642 )" |
|
2643 |
|
2644 definition [asmb]: |
|
2645 "clear_until_zero = |
|
2646 (TL start exit. |
|
2647 TLabel start; |
|
2648 if_zero exit; |
|
2649 write_zero; |
|
2650 move_right; |
|
2651 jmp start; |
|
2652 TLabel exit)" |
|
2653 |
|
2654 definition [asmb]: |
|
2655 "shift_left = |
|
2656 (TL start exit. |
|
2657 TLabel start; |
|
2658 if_zero exit; |
|
2659 move_left; |
|
2660 write_one; |
|
2661 right_until_zero; |
|
2662 move_left; |
|
2663 write_zero; |
|
2664 move_right; |
|
2665 move_right; |
|
2666 jmp start; |
|
2667 TLabel exit) |
|
2668 " |
|
2669 |
|
2670 definition [asmb]: |
|
2671 "bone c1 c2 = (TL exit l_one. |
|
2672 if_one l_one; |
|
2673 (c1; |
|
2674 jmp exit); |
|
2675 TLabel l_one; |
|
2676 c2; |
|
2677 TLabel exit |
|
2678 )" |
|
2679 |
|
2680 definition [asmb]: |
|
2681 "cfill_until_one = (TL start exit. |
|
2682 TLabel start; |
|
2683 if_one exit; |
|
2684 write_one; |
|
2685 move_left; |
|
2686 jmp start; |
|
2687 TLabel exit |
|
2688 )" |
|
2689 |
|
2690 definition [asmb]: |
|
2691 "cmove = (TL start exit. |
|
2692 TLabel start; |
|
2693 left_until_zero; |
|
2694 left_until_one; |
|
2695 move_left; |
|
2696 if_zero exit; |
|
2697 move_right; |
|
2698 write_zero; |
|
2699 right_until_one; |
|
2700 right_until_zero; |
|
2701 write_one; |
|
2702 jmp start; |
|
2703 TLabel exit |
|
2704 )" |
|
2705 |
|
2706 definition [asmb]: |
|
2707 "cinit = (right_until_zero; move_right; write_one)" |
|
2708 |
|
2709 definition [asmb]: |
|
2710 "copy = (cinit; cmove; move_right; move_right; right_until_one; |
|
2711 move_left; move_left; cfill_until_one)" |
|
2712 |
|
2713 definition |
|
2714 "bzero c1 c2 = (TL exit l_zero. |
|
2715 if_zero l_zero; |
|
2716 (c1; |
|
2717 jmp exit); |
|
2718 TLabel l_zero; |
|
2719 c2; |
|
2720 TLabel exit |
|
2721 )" |
|
2722 |
|
2723 definition "if_reps_nz e = (move_right; |
|
2724 bzero (move_left; jmp e) (move_left) |
|
2725 )" |
|
2726 |
|
2727 declare if_reps_nz_def[unfolded bzero_def, asmb] |
|
2728 |
|
2729 definition "if_reps_z e = (move_right; |
|
2730 bone (move_left; jmp e) (move_left) |
|
2731 )" |
|
2732 |
|
2733 declare if_reps_z_def [unfolded bone_def, asmb] |
|
2734 |
|
2735 definition |
|
2736 "skip_or_set = bone (write_one; move_right; move_right) |
|
2737 (right_until_zero; move_right)" |
|
2738 |
|
2739 declare skip_or_set_def[unfolded bone_def, asmb] |
|
2740 |
|
2741 definition "tpg_fold tpgs = foldr TSeq (butlast tpgs) (last tpgs)" |
|
2742 |
|
2743 definition "cpg_fold cpgs = foldr CSeq (butlast cpgs) (last cpgs)" |
|
2744 |
|
2745 definition "skip_or_sets n = tpg_fold (replicate n skip_or_set)" |
|
2746 |
|
2747 definition "skip_or_sets_skel n = cpg_fold (replicate n skip_or_set_skel)" |
|
2748 |
|
2749 lemma c2t_skip_or_sets_skel: |
|
2750 "c2t [] (skip_or_sets_skel (Suc n)) = skip_or_sets (Suc n)" |
|
2751 proof(induct n) |
|
2752 case (Suc k) |
|
2753 thus ?case |
|
2754 apply (unfold skip_or_sets_skel_def cpg_fold_def skip_or_sets_def tpg_fold_def) |
|
2755 my_block |
|
2756 fix x k |
|
2757 have "(last (replicate (Suc k) x)) = x" |
|
2758 by (metis Suc_neq_Zero last_replicate) |
|
2759 my_block_end |
|
2760 apply (unfold this) |
|
2761 my_block |
|
2762 fix x k |
|
2763 have "(butlast (replicate (Suc k) x)) = replicate k x" |
|
2764 by (metis butlast_snoc replicate_Suc replicate_append_same) |
|
2765 my_block_end |
|
2766 apply (unfold this) |
|
2767 my_block |
|
2768 fix x k f y |
|
2769 have "foldr f (replicate (Suc k) x) y = f x (foldr f (replicate k x) y)" |
|
2770 by simp |
|
2771 my_block_end |
|
2772 apply (unfold this) |
|
2773 by (simp add:c2t_skip_or_set_skel) |
|
2774 next |
|
2775 case 0 |
|
2776 show ?case |
|
2777 by (simp add:skip_or_sets_skel_def cpg_fold_def skip_or_sets_def tpg_fold_def |
|
2778 c2t_skip_or_set_skel) |
|
2779 qed |
|
2780 |
|
2781 lemma wf_skip_or_sets_skel: |
|
2782 "wf_cpg_test [] (skip_or_sets_skel (Suc n)) = (True, [])" |
|
2783 proof(induct n) |
|
2784 case (Suc k) |
|
2785 thus ?case |
|
2786 apply (unfold skip_or_sets_skel_def cpg_fold_def) |
|
2787 my_block |
|
2788 fix x k |
|
2789 have "(last (replicate (Suc k) x)) = x" |
|
2790 by (metis Suc_neq_Zero last_replicate) |
|
2791 my_block_end |
|
2792 apply (unfold this) |
|
2793 my_block |
|
2794 fix x k |
|
2795 have "(butlast (replicate (Suc k) x)) = replicate k x" |
|
2796 by (metis butlast_snoc replicate_Suc replicate_append_same) |
|
2797 my_block_end |
|
2798 apply (unfold this) |
|
2799 my_block |
|
2800 fix x k f y |
|
2801 have "foldr f (replicate (Suc k) x) y = f x (foldr f (replicate k x) y)" |
|
2802 by simp |
|
2803 my_block_end |
|
2804 apply (unfold this) |
|
2805 by (simp add:wf_skip_or_set_skel) |
|
2806 next |
|
2807 case 0 |
|
2808 thus ?case |
|
2809 apply (unfold skip_or_sets_skel_def cpg_fold_def) |
|
2810 by (simp add:wf_skip_or_set_skel) |
|
2811 qed |
|
2812 |
|
2813 lemma asmb_skip_or_sets: |
|
2814 "\<forall>i. \<exists>j s. (i :[ skip_or_sets (Suc n) ]: j) s" |
|
2815 by (rule wf_c2t_combined[OF wf_skip_or_sets_skel c2t_skip_or_sets_skel], auto) |
|
2816 |
|
2817 definition [asmb]: "locate n = (skip_or_sets (Suc n); |
|
2818 move_left; |
|
2819 move_left; |
|
2820 left_until_zero; |
|
2821 move_right |
|
2822 )" |
|
2823 |
|
2824 definition [asmb]: "Inc a = locate a; |
|
2825 right_until_zero; |
|
2826 move_right; |
|
2827 shift_right; |
|
2828 move_left; |
|
2829 left_until_double_zero; |
|
2830 write_one; |
|
2831 left_until_double_zero; |
|
2832 move_right; |
|
2833 move_right |
|
2834 " |
|
2835 |
|
2836 definition [asmb]: "Dec a e = (TL continue. |
|
2837 (locate a; |
|
2838 if_reps_nz continue; |
|
2839 left_until_double_zero; |
|
2840 move_right; |
|
2841 move_right; |
|
2842 jmp e); |
|
2843 (TLabel continue; |
|
2844 right_until_zero; |
|
2845 move_left; |
|
2846 write_zero; |
|
2847 move_right; |
|
2848 move_right; |
|
2849 shift_left; |
|
2850 move_left; |
|
2851 move_left; |
|
2852 move_left; |
|
2853 left_until_double_zero; |
|
2854 move_right; |
|
2855 move_right))" |
|
2856 |
|
2857 end |