|
1 header {* |
|
2 Separation logic for TM |
|
3 *} |
|
4 |
|
5 theory Hoare_tm |
|
6 imports Hoare_tm_basis My_block Data_slot |
|
7 begin |
|
8 |
|
9 |
|
10 section {* Aux lemmas *} |
|
11 |
|
12 lemma int_add_C :"x + (y::int) = y + x" |
|
13 by simp |
|
14 |
|
15 lemma int_add_A : "(x + y) + z = x + (y + (z::int))" |
|
16 by simp |
|
17 |
|
18 lemma int_add_LC: "x + (y + (z::int)) = y + (x + z)" |
|
19 by simp |
|
20 |
|
21 lemmas int_add_ac = int_add_A int_add_C int_add_LC |
|
22 |
|
23 method_setup prune = {* Scan.succeed (SIMPLE_METHOD' o (K (K prune_params_tac))) *} |
|
24 "pruning parameters" |
|
25 |
|
26 ML {* |
|
27 structure StepRules = Named_Thms |
|
28 (val name = @{binding "step"} |
|
29 val description = "Theorems for hoare rules for every step") |
|
30 *} |
|
31 |
|
32 ML {* |
|
33 structure FwdRules = Named_Thms |
|
34 (val name = @{binding "fwd"} |
|
35 val description = "Theorems for fwd derivation of seperation implication") |
|
36 *} |
|
37 |
|
38 setup {* StepRules.setup *} |
|
39 |
|
40 setup {* FwdRules.setup *} |
|
41 |
|
42 section {* Operational Semantics of TM *} |
|
43 |
|
44 type_synonym tconf = "nat \<times> (nat \<rightharpoonup> tm_inst) \<times> nat \<times> int \<times> (int \<rightharpoonup> Block)" |
|
45 |
|
46 fun next_tape :: "taction \<Rightarrow> (int \<times> (int \<rightharpoonup> Block)) \<Rightarrow> (int \<times> (int \<rightharpoonup> Block))" |
|
47 where "next_tape W0 (pos, m) = (pos, m(pos \<mapsto> Bk))" | |
|
48 "next_tape W1 (pos, m) = (pos, m(pos \<mapsto> Oc))" | |
|
49 "next_tape L (pos, m) = (pos - 1, m)" | |
|
50 "next_tape R (pos, m) = (pos + 1, m)" |
|
51 |
|
52 fun tstep :: "tconf \<Rightarrow> tconf" |
|
53 where "tstep (faults, prog, pc, pos, m) = |
|
54 (case (prog pc) of |
|
55 Some ((action0, St pc0), (action1, St pc1)) \<Rightarrow> |
|
56 case (m pos) of |
|
57 Some Bk \<Rightarrow> (faults, prog, pc0, next_tape action0 (pos, m)) | |
|
58 Some Oc \<Rightarrow> (faults, prog, pc1, next_tape action1 (pos, m)) | |
|
59 None \<Rightarrow> (faults + 1, prog, pc, pos, m) |
|
60 | None \<Rightarrow> (faults + 1, prog, pc, pos, m))" |
|
61 |
|
62 (* lemma tstep_splits: |
|
63 "(P (tstep s)) = ((\<forall> faults prog pc pos m action0 pc0 action1 pc1. |
|
64 s = (faults, prog, pc, pos, m) \<longrightarrow> |
|
65 prog pc = Some ((action0, pc0), (action1, pc1)) \<longrightarrow> |
|
66 m pos = Some Bk \<longrightarrow> P (faults, prog, pc0, next_tape action0 (pos, m))) \<and> |
|
67 (\<forall> faults prog pc pos m action0 pc0 action1 pc1. |
|
68 s = (faults, prog, pc, pos, m) \<longrightarrow> |
|
69 prog pc = Some ((action0, pc0), (action1, pc1)) \<longrightarrow> |
|
70 m pos = Some Oc \<longrightarrow> P (faults, prog, pc1, next_tape action1 (pos, m))) \<and> |
|
71 (\<forall> faults prog pc pos m action0 pc0 action1 pc1. |
|
72 s = (faults, prog, pc, pos, m) \<longrightarrow> |
|
73 prog pc = Some ((action0, pc0), (action1, pc1)) \<longrightarrow> |
|
74 m pos = None \<longrightarrow> P (faults + 1, prog, pc, pos, m)) \<and> |
|
75 (\<forall> faults prog pc pos m . |
|
76 s = (faults, prog, pc, pos, m) \<longrightarrow> |
|
77 prog pc = None \<longrightarrow> P (faults + 1, prog, pc, pos, m)) |
|
78 )" |
|
79 apply (case_tac s, auto split:option.splits Block.splits) |
|
80 *) |
|
81 |
|
82 definition "tprog_set prog = {TC i inst | i inst. prog i = Some inst}" |
|
83 definition "tpc_set pc = {TAt pc}" |
|
84 definition "tmem_set m = {TM i n | i n. m (i) = Some n}" |
|
85 definition "tpos_set pos = {TPos pos}" |
|
86 definition "tfaults_set faults = {TFaults faults}" |
|
87 |
|
88 lemmas tpn_set_def = tprog_set_def tpc_set_def tmem_set_def tfaults_set_def tpos_set_def |
|
89 |
|
90 fun trset_of :: "tconf \<Rightarrow> tresource set" |
|
91 where "trset_of (faults, prog, pc, pos, m) = |
|
92 tprog_set prog \<union> tpc_set pc \<union> tpos_set pos \<union> tmem_set m \<union> tfaults_set faults" |
|
93 |
|
94 interpretation tm: sep_exec tstep trset_of . |
|
95 |
|
96 section {* Hoare logic for TM *} |
|
97 |
|
98 abbreviation t_hoare :: |
|
99 "tassert \<Rightarrow> tassert \<Rightarrow> tassert \<Rightarrow> bool" ("(\<lbrace>(1_)\<rbrace> / (_)/ \<lbrace>(1_)\<rbrace>)" 50) |
|
100 where "\<lbrace> p \<rbrace> c \<lbrace> q \<rbrace> == sep_exec.Hoare_gen tstep trset_of p c q" |
|
101 |
|
102 abbreviation it_hoare :: |
|
103 "(('a::sep_algebra) \<Rightarrow> tresource set \<Rightarrow> bool) \<Rightarrow> |
|
104 ('a \<Rightarrow> bool) \<Rightarrow> (tresource set \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" |
|
105 ("(1_).(\<lbrace>(1_)\<rbrace> / (_)/ \<lbrace>(1_)\<rbrace>)" 50) |
|
106 where "I. \<lbrace>P\<rbrace> c \<lbrace>Q\<rbrace> == sep_exec.IHoare tstep trset_of I P c Q" |
|
107 |
|
108 (* |
|
109 primrec tpg_len :: "tpg \<Rightarrow> nat" where |
|
110 "tpg_len (TInstr ai) = 1" | |
|
111 "tpg_len (TSeq p1 p2) = tpg_len p1 + tpg_len " | |
|
112 "tpg_len (TLocal fp) = tpg_len (fp 0)" | |
|
113 "tpg_len (TLabel l) = 0" *) |
|
114 |
|
115 lemma tpg_fold_sg: "tpg_fold [tpg] = tpg" |
|
116 by (simp add:tpg_fold_def) |
|
117 |
|
118 lemma tpg_fold_cons: |
|
119 assumes h: "tpgs \<noteq> []" |
|
120 shows "tpg_fold (tpg#tpgs) = (tpg; (tpg_fold tpgs))" |
|
121 using h |
|
122 proof(induct tpgs arbitrary:tpg) |
|
123 case (Cons tpg1 tpgs1) |
|
124 thus ?case |
|
125 proof(cases "tpgs1 = []") |
|
126 case True |
|
127 thus ?thesis by (simp add:tpg_fold_def) |
|
128 next |
|
129 case False |
|
130 show ?thesis |
|
131 proof - |
|
132 have eq_1: "butlast (tpg # tpg1 # tpgs1) = tpg # (butlast (tpg1 # tpgs1))" |
|
133 by simp |
|
134 from False have eq_2: "last (tpg # tpg1 # tpgs1) = last (tpg1 # tpgs1)" |
|
135 by simp |
|
136 have eq_3: "foldr (op ;) (tpg # butlast (tpg1 # tpgs1)) (last (tpg1 # tpgs1)) = |
|
137 (tpg ; (foldr (op ;) (butlast (tpg1 # tpgs1)) (last (tpg1 # tpgs1))))" |
|
138 by simp |
|
139 show ?thesis |
|
140 apply (subst (1) tpg_fold_def, unfold eq_1 eq_2 eq_3) |
|
141 by (fold tpg_fold_def, simp) |
|
142 qed |
|
143 qed |
|
144 qed auto |
|
145 |
|
146 lemmas tpg_fold_simps = tpg_fold_sg tpg_fold_cons |
|
147 |
|
148 lemma tpg_fold_app: |
|
149 assumes h1: "tpgs1 \<noteq> []" |
|
150 and h2: "tpgs2 \<noteq> []" |
|
151 shows "i:[(tpg_fold (tpgs1 @ tpgs2))]:j = i:[(tpg_fold (tpgs1); tpg_fold tpgs2)]:j" |
|
152 using h1 h2 |
|
153 proof(induct tpgs1 arbitrary: i j tpgs2) |
|
154 case (Cons tpg1' tpgs1') |
|
155 thus ?case (is "?L = ?R") |
|
156 proof(cases "tpgs1' = []") |
|
157 case False |
|
158 from h2 have "(tpgs1' @ tpgs2) \<noteq> []" |
|
159 by (metis Cons.prems(2) Nil_is_append_conv) |
|
160 have "?L = (i :[ tpg_fold (tpg1' # (tpgs1' @ tpgs2)) ]: j )" by simp |
|
161 also have "\<dots> = (i:[(tpg1'; (tpg_fold (tpgs1' @ tpgs2)))]:j )" |
|
162 by (simp add:tpg_fold_cons[OF `(tpgs1' @ tpgs2) \<noteq> []`]) |
|
163 also have "\<dots> = ?R" |
|
164 proof - |
|
165 have "(EXS j'. i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold (tpgs1' @ tpgs2) ]: j) = |
|
166 (EXS j'. (EXS j'a. i :[ tpg1' ]: j'a \<and>* j'a :[ tpg_fold tpgs1' ]: j') \<and>* |
|
167 j' :[ tpg_fold tpgs2 ]: j)" |
|
168 proof(default+) |
|
169 fix s |
|
170 assume "(EXS j'. i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold (tpgs1' @ tpgs2) ]: j) s" |
|
171 thus "(EXS j'. (EXS j'a. i :[ tpg1' ]: j'a \<and>* j'a :[ tpg_fold tpgs1' ]: j') \<and>* |
|
172 j' :[ tpg_fold tpgs2 ]: j) s" |
|
173 proof(elim EXS_elim) |
|
174 fix j' |
|
175 assume "(i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold (tpgs1' @ tpgs2) ]: j) s" |
|
176 from this[unfolded Cons(1)[OF False Cons(3)] tassemble_to.simps] |
|
177 show "(EXS j'. (EXS j'a. i :[ tpg1' ]: j'a \<and>* j'a :[ tpg_fold tpgs1' ]: j') \<and>* |
|
178 j' :[ tpg_fold tpgs2 ]: j) s" |
|
179 proof(elim sep_conjE EXS_elim) |
|
180 fix x y j'a xa ya |
|
181 assume h: "(i :[ tpg1' ]: j') x" |
|
182 "x ## y" "s = x + y" |
|
183 "(j' :[ tpg_fold tpgs1' ]: j'a) xa" |
|
184 "(j'a :[ tpg_fold tpgs2 ]: j) ya" |
|
185 " xa ## ya" "y = xa + ya" |
|
186 show "(EXS j'. (EXS j'a. i :[ tpg1' ]: j'a \<and>* |
|
187 j'a :[ tpg_fold tpgs1' ]: j') \<and>* j' :[ tpg_fold tpgs2 ]: j) s" |
|
188 (is "(EXS j'. (?P j' \<and>* ?Q j')) s") |
|
189 proof(rule EXS_intro[where x = "j'a"]) |
|
190 from `(j'a :[ tpg_fold tpgs2 ]: j) ya` have "(?Q j'a) ya" . |
|
191 moreover have "(?P j'a) (x + xa)" |
|
192 proof(rule EXS_intro[where x = j']) |
|
193 have "x + xa = x + xa" by simp |
|
194 moreover from `x ## y` `y = xa + ya` `xa ## ya` |
|
195 have "x ## xa" by (metis sep_disj_addD) |
|
196 moreover note `(i :[ tpg1' ]: j') x` `(j' :[ tpg_fold tpgs1' ]: j'a) xa` |
|
197 ultimately show "(i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold tpgs1' ]: j'a) (x + xa)" |
|
198 by (auto intro!:sep_conjI) |
|
199 qed |
|
200 moreover from `x##y` `y = xa + ya` `xa ## ya` |
|
201 have "(x + xa) ## ya" |
|
202 by (metis sep_disj_addI1 sep_disj_commuteI) |
|
203 moreover from `s = x + y` `y = xa + ya` |
|
204 have "s = (x + xa) + ya" |
|
205 by (metis h(2) h(6) sep_add_assoc sep_disj_addD1 sep_disj_addD2) |
|
206 ultimately show "(?P j'a \<and>* ?Q j'a) s" |
|
207 by (auto intro!:sep_conjI) |
|
208 qed |
|
209 qed |
|
210 qed |
|
211 next |
|
212 fix s |
|
213 assume "(EXS j'. (EXS j'a. i :[ tpg1' ]: j'a \<and>* j'a :[ tpg_fold tpgs1' ]: j') \<and>* |
|
214 j' :[ tpg_fold tpgs2 ]: j) s" |
|
215 thus "(EXS j'. i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold (tpgs1' @ tpgs2) ]: j) s" |
|
216 proof(elim EXS_elim sep_conjE) |
|
217 fix j' x y j'a xa ya |
|
218 assume h: "(j' :[ tpg_fold tpgs2 ]: j) y" |
|
219 "x ## y" "s = x + y" "(i :[ tpg1' ]: j'a) xa" |
|
220 "(j'a :[ tpg_fold tpgs1' ]: j') ya" "xa ## ya" "x = xa + ya" |
|
221 show "(EXS j'. i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold (tpgs1' @ tpgs2) ]: j) s" |
|
222 proof(rule EXS_intro[where x = j'a]) |
|
223 from `(i :[ tpg1' ]: j'a) xa` have "(i :[ tpg1' ]: j'a) xa" . |
|
224 moreover have "(j'a :[ tpg_fold (tpgs1' @ tpgs2) ]: j) (ya + y)" |
|
225 proof(unfold Cons(1)[OF False Cons(3)] tassemble_to.simps) |
|
226 show "(EXS j'. j'a :[ tpg_fold tpgs1' ]: j' \<and>* j' :[ tpg_fold tpgs2 ]: j) (ya + y)" |
|
227 proof(rule EXS_intro[where x = "j'"]) |
|
228 from `x ## y` `x = xa + ya` `xa ## ya` |
|
229 have "ya ## y" by (metis sep_add_disjD) |
|
230 moreover have "ya + y = ya + y" by simp |
|
231 moreover note `(j'a :[ tpg_fold tpgs1' ]: j') ya` |
|
232 `(j' :[ tpg_fold tpgs2 ]: j) y` |
|
233 ultimately show "(j'a :[ tpg_fold tpgs1' ]: j' \<and>* |
|
234 j' :[ tpg_fold tpgs2 ]: j) (ya + y)" |
|
235 by (auto intro!:sep_conjI) |
|
236 qed |
|
237 qed |
|
238 moreover from `s = x + y` `x = xa + ya` |
|
239 have "s = xa + (ya + y)" |
|
240 by (metis h(2) h(6) sep_add_assoc sep_add_disjD) |
|
241 moreover from `xa ## ya` `x ## y` `x = xa + ya` |
|
242 have "xa ## (ya + y)" by (metis sep_disj_addI3) |
|
243 ultimately show "(i :[ tpg1' ]: j'a \<and>* j'a :[ tpg_fold (tpgs1' @ tpgs2) ]: j) s" |
|
244 by (auto intro!:sep_conjI) |
|
245 qed |
|
246 qed |
|
247 qed |
|
248 thus ?thesis |
|
249 by (simp add:tassemble_to.simps, unfold tpg_fold_cons[OF False], |
|
250 unfold tassemble_to.simps, simp) |
|
251 qed |
|
252 finally show ?thesis . |
|
253 next |
|
254 case True |
|
255 thus ?thesis |
|
256 by (simp add:tpg_fold_cons[OF Cons(3)] tpg_fold_sg) |
|
257 qed |
|
258 qed auto |
|
259 |
|
260 |
|
261 subsection {* Assertions and program logic for this assembly language *} |
|
262 |
|
263 definition "st l = sg (tpc_set l)" |
|
264 definition "ps p = sg (tpos_set p)" |
|
265 definition "tm a v =sg ({TM a v})" |
|
266 definition "one i = tm i Oc" |
|
267 definition "zero i= tm i Bk" |
|
268 definition "any i = (EXS v. tm i v)" |
|
269 |
|
270 declare trset_of.simps[simp del] |
|
271 |
|
272 lemma stimes_sgD: "(sg x ** q) s \<Longrightarrow> q (s - x) \<and> x \<subseteq> s" |
|
273 apply(erule_tac sep_conjE) |
|
274 apply(unfold set_ins_def sg_def) |
|
275 by (metis Diff_Int2 Diff_Int_distrib2 Diff_Un Diff_cancel |
|
276 Diff_empty Diff_idemp Diff_triv Int_Diff Un_Diff |
|
277 Un_Diff_cancel inf_commute inf_idem sup_bot_right sup_commute sup_ge2) |
|
278 |
|
279 lemma stD: "(st i ** r) (trset_of (ft, prog, i', pos, mem)) |
|
280 \<Longrightarrow> i' = i" |
|
281 proof - |
|
282 assume "(st i ** r) (trset_of (ft, prog, i', pos, mem))" |
|
283 from stimes_sgD [OF this[unfolded st_def], unfolded trset_of.simps] |
|
284 have "tpc_set i \<subseteq> tprog_set prog \<union> tpc_set i' \<union> tpos_set pos \<union> |
|
285 tmem_set mem \<union> tfaults_set ft" by auto |
|
286 thus ?thesis |
|
287 by (unfold tpn_set_def, auto) |
|
288 qed |
|
289 |
|
290 lemma psD: "(ps p ** r) (trset_of (ft, prog, i', pos, mem)) |
|
291 \<Longrightarrow> pos = p" |
|
292 proof - |
|
293 assume "(ps p ** r) (trset_of (ft, prog, i', pos, mem))" |
|
294 from stimes_sgD [OF this[unfolded ps_def], unfolded trset_of.simps] |
|
295 have "tpos_set p \<subseteq> tprog_set prog \<union> tpc_set i' \<union> |
|
296 tpos_set pos \<union> tmem_set mem \<union> tfaults_set ft" |
|
297 by simp |
|
298 thus ?thesis |
|
299 by (unfold tpn_set_def, auto) |
|
300 qed |
|
301 |
|
302 lemma codeD: "(st i ** sg {TC i inst} ** r) (trset_of (ft, prog, i', pos, mem)) |
|
303 \<Longrightarrow> prog i = Some inst" |
|
304 proof - |
|
305 assume "(st i ** sg {TC i inst} ** r) (trset_of (ft, prog, i', pos, mem))" |
|
306 thus ?thesis |
|
307 apply(unfold sep_conj_def set_ins_def sg_def trset_of.simps tpn_set_def) |
|
308 by auto |
|
309 qed |
|
310 |
|
311 lemma memD: "((tm a v) ** r) (trset_of (ft, prog, i, pos, mem)) \<Longrightarrow> mem a = Some v" |
|
312 proof - |
|
313 assume "((tm a v) ** r) (trset_of (ft, prog, i, pos, mem))" |
|
314 from stimes_sgD[OF this[unfolded trset_of.simps tpn_set_def tm_def]] |
|
315 have "{TM a v} \<subseteq> {TC i inst |i inst. prog i = Some inst} \<union> {TAt i} \<union> |
|
316 {TPos pos} \<union> {TM i n |i n. mem i = Some n} \<union> {TFaults ft}" by simp |
|
317 thus ?thesis by auto |
|
318 qed |
|
319 |
|
320 lemma t_hoare_seq: |
|
321 "\<lbrakk>\<And> i j. \<lbrace>st i ** p\<rbrace> i:[c1]:j \<lbrace>st j ** q\<rbrace>; |
|
322 \<And> j k. \<lbrace>st j ** q\<rbrace> j:[c2]:k \<lbrace>st k ** r\<rbrace>\<rbrakk> \<Longrightarrow> \<lbrace>st i ** p\<rbrace> i:[(c1 ; c2)]:k \<lbrace>st k ** r\<rbrace>" |
|
323 proof - |
|
324 assume h: "\<And> i j. \<lbrace>st i ** p\<rbrace> i:[c1]:j \<lbrace>st j ** q\<rbrace>" |
|
325 "\<And> j k. \<lbrace>st j ** q\<rbrace> j:[c2]:k \<lbrace>st k ** r\<rbrace>" |
|
326 show "\<lbrace>st i ** p\<rbrace> i:[(c1 ; c2)]:k \<lbrace>st k ** r\<rbrace>" |
|
327 proof(subst tassemble_to.simps, rule tm.code_exI) |
|
328 fix j' |
|
329 show "\<lbrace>st i \<and>* p\<rbrace> i :[ c1 ]: j' \<and>* j' :[ c2 ]: k \<lbrace>st k \<and>* r\<rbrace>" |
|
330 proof(rule tm.composition) |
|
331 from h(1) show "\<lbrace>st i \<and>* p\<rbrace> i :[ c1 ]: j' \<lbrace> st j' \<and>* q \<rbrace>" by auto |
|
332 next |
|
333 from h(2) show "\<lbrace>st j' \<and>* q\<rbrace> j' :[ c2 ]: k \<lbrace>st k \<and>* r\<rbrace>" by auto |
|
334 qed |
|
335 qed |
|
336 qed |
|
337 |
|
338 lemma t_hoare_seq1: |
|
339 "\<lbrakk>\<And>j'. \<lbrace>st i ** p\<rbrace> i:[c1]:j' \<lbrace>st j' ** q\<rbrace>; |
|
340 \<And>j'. \<lbrace>st j' ** q\<rbrace> j':[c2]:k \<lbrace>st k' ** r\<rbrace>\<rbrakk> \<Longrightarrow> |
|
341 \<lbrace>st i ** p\<rbrace> i:[(c1 ; c2)]:k \<lbrace>st k' ** r\<rbrace>" |
|
342 proof - |
|
343 assume h: "\<And>j'. \<lbrace>st i \<and>* p\<rbrace> i :[ c1 ]: j' \<lbrace>st j' \<and>* q\<rbrace>" |
|
344 "\<And>j'. \<lbrace>st j' \<and>* q\<rbrace> j' :[ c2 ]: k \<lbrace>st k' \<and>* r\<rbrace>" |
|
345 show "\<lbrace>st i \<and>* p\<rbrace> i :[ (c1 ; c2) ]: k \<lbrace>st k' \<and>* r\<rbrace>" |
|
346 proof(subst tassemble_to.simps, rule tm.code_exI) |
|
347 fix j' |
|
348 show "\<lbrace>st i \<and>* p\<rbrace> i :[ c1 ]: j' \<and>* j' :[ c2 ]: k \<lbrace>st k' \<and>* r\<rbrace>" |
|
349 proof(rule tm.composition) |
|
350 from h(1) show "\<lbrace>st i \<and>* p\<rbrace> i :[ c1 ]: j' \<lbrace> st j' \<and>* q \<rbrace>" by auto |
|
351 next |
|
352 from h(2) show " \<lbrace>st j' \<and>* q\<rbrace> j' :[ c2 ]: k \<lbrace>st k' \<and>* r\<rbrace>" by auto |
|
353 qed |
|
354 qed |
|
355 qed |
|
356 |
|
357 lemma t_hoare_seq2: |
|
358 assumes h: "\<And>j. \<lbrace>st i ** p\<rbrace> i:[c1]:j \<lbrace>st k' \<and>* r\<rbrace>" |
|
359 shows "\<lbrace>st i ** p\<rbrace> i:[(c1 ; c2)]:j \<lbrace>st k' ** r\<rbrace>" |
|
360 apply (unfold tassemble_to.simps, rule tm.code_exI) |
|
361 by (rule tm.code_extension, rule h) |
|
362 |
|
363 lemma t_hoare_local: |
|
364 assumes h: "(\<And> (l::nat). \<lbrace>st i \<and>* p\<rbrace> i :[ c l ]: j \<lbrace>st k \<and>* q\<rbrace>)" |
|
365 shows "\<lbrace>st i ** p\<rbrace> i:[TLocal c]:j \<lbrace>st k ** q\<rbrace>" using h |
|
366 by (unfold tassemble_to.simps, intro tm.code_exI, case_tac l, simp) |
|
367 |
|
368 lemma t_hoare_label: |
|
369 "(\<And>l. (l::nat) = i \<Longrightarrow> \<lbrace>st l \<and>* p\<rbrace> l :[ c (l::tstate) ]: j \<lbrace>st k \<and>* q\<rbrace>) \<Longrightarrow> |
|
370 \<lbrace>st i \<and>* p \<rbrace> |
|
371 i:[(TLabel l; c l)]:j |
|
372 \<lbrace>st k \<and>* q\<rbrace>" |
|
373 by (cases l, unfold tassemble_to.simps, intro tm.code_exI tm.code_condI, clarify, auto) |
|
374 |
|
375 primrec t_split_cmd :: "tpg \<Rightarrow> (tpg \<times> tpg option)" |
|
376 where "t_split_cmd (\<guillemotright>inst) = (\<guillemotright>inst, None)" | |
|
377 "t_split_cmd (TLabel l) = (TLabel l, None)" | |
|
378 "t_split_cmd (TSeq c1 c2) = (case (t_split_cmd c2) of |
|
379 (c21, Some c22) \<Rightarrow> (TSeq c1 c21, Some c22) | |
|
380 (c21, None) \<Rightarrow> (c1, Some c21))" | |
|
381 "t_split_cmd (TLocal c) = (TLocal c, None)" |
|
382 |
|
383 definition "t_last_cmd tpg = (snd (t_split_cmd tpg))" |
|
384 |
|
385 declare t_last_cmd_def [simp] |
|
386 |
|
387 definition "t_blast_cmd tpg = (fst (t_split_cmd tpg))" |
|
388 |
|
389 declare t_blast_cmd_def [simp] |
|
390 |
|
391 lemma "t_last_cmd (c1; c2; (TLabel l)) = (Some (TLabel l))" |
|
392 by simp |
|
393 |
|
394 lemma "t_blast_cmd (c1; c2; TLabel l) = (c1; c2)" |
|
395 by simp |
|
396 |
|
397 lemma t_split_cmd_eq: |
|
398 assumes "t_split_cmd c = (c1, Some c2)" |
|
399 shows "(i:[c]:j) = (i:[(c1; c2)]:j)" |
|
400 using assms |
|
401 proof(induct c arbitrary: c1 c2 i j) |
|
402 case (TSeq cx cy) |
|
403 from `t_split_cmd (cx ; cy) = (c1, Some c2)` |
|
404 show ?case |
|
405 apply (simp split:prod.splits option.splits) |
|
406 apply (cases cy, auto split:prod.splits option.splits) |
|
407 proof - |
|
408 fix a |
|
409 assume h: "t_split_cmd cy = (a, Some c2)" |
|
410 show "i :[ (cx ; cy) ]: j = i :[ ((cx ; a) ; c2) ]: j" |
|
411 apply (simp only: tassemble_to.simps(2) TSeq(2)[OF h] sep_conj_exists) |
|
412 apply (simp add:sep_conj_ac) |
|
413 by (simp add:pred_ex_def, default, auto) |
|
414 qed |
|
415 qed auto |
|
416 |
|
417 lemma t_hoare_label_last_pre: |
|
418 fixes l |
|
419 assumes h1: "t_split_cmd c = (c', Some (TLabel l))" |
|
420 and h2: "l = j \<Longrightarrow> \<lbrace>p\<rbrace> i:[c']:j \<lbrace>q\<rbrace>" |
|
421 shows "\<lbrace>p\<rbrace> i:[c]:j \<lbrace>q\<rbrace>" |
|
422 by (cases l, unfold t_split_cmd_eq[OF h1], |
|
423 simp only:tassemble_to.simps sep_conj_cond, |
|
424 intro tm.code_exI tm.code_condI, insert h2, auto) |
|
425 |
|
426 lemma t_hoare_label_last: |
|
427 fixes l |
|
428 assumes h1: "t_last_cmd c = Some (TLabel l)" |
|
429 and h2: "l = j \<Longrightarrow> \<lbrace>p\<rbrace> i:[t_blast_cmd c]:j \<lbrace>q\<rbrace>" |
|
430 shows "\<lbrace>p\<rbrace> i:[c]:j \<lbrace>q\<rbrace>" |
|
431 proof - |
|
432 have "t_split_cmd c = (t_blast_cmd c, t_last_cmd c)" |
|
433 by simp |
|
434 from t_hoare_label_last_pre[OF this[unfolded h1]] h2 |
|
435 show ?thesis by auto |
|
436 qed |
|
437 |
|
438 subsection {* Basic assertions for TM *} |
|
439 |
|
440 function ones :: "int \<Rightarrow> int \<Rightarrow> tassert" where |
|
441 "ones i j = (if j < i then <(i = j + 1)> else |
|
442 (one i) ** ones (i + 1) j)" |
|
443 by auto |
|
444 termination by (relation "measure(\<lambda> (i::int, j). nat (j - i + 1))") auto |
|
445 |
|
446 lemma ones_base_simp: "j < i \<Longrightarrow> ones i j = <(i = j + 1)>" |
|
447 by simp |
|
448 |
|
449 lemma ones_step_simp: "\<not> j < i \<Longrightarrow> ones i j = ((one i) ** ones (i + 1) j)" |
|
450 by simp |
|
451 |
|
452 lemmas ones_simps = ones_base_simp ones_step_simp |
|
453 |
|
454 declare ones.simps [simp del] ones_simps [simp] |
|
455 |
|
456 lemma ones_induct [case_names Base Step]: |
|
457 fixes P i j |
|
458 assumes h1: "\<And> i j. j < i \<Longrightarrow> P i j (<(i = j + (1::int))>)" |
|
459 and h2: "\<And> i j. \<lbrakk>\<not> j < i; P (i + 1) j (ones (i + 1) j)\<rbrakk> \<Longrightarrow> P i j ((one i) ** ones (i + 1) j)" |
|
460 shows "P i j (ones i j)" |
|
461 proof(induct i j rule:ones.induct) |
|
462 fix i j |
|
463 assume ih: "(\<not> j < i \<Longrightarrow> P (i + 1) j (ones (i + 1) j))" |
|
464 show "P i j (ones i j)" |
|
465 proof(cases "j < i") |
|
466 case True |
|
467 with h1 [OF True] |
|
468 show ?thesis by auto |
|
469 next |
|
470 case False |
|
471 from h2 [OF False] and ih[OF False] |
|
472 have "P i j (one i \<and>* ones (i + 1) j)" by blast |
|
473 with False show ?thesis by auto |
|
474 qed |
|
475 qed |
|
476 |
|
477 function ones' :: "int \<Rightarrow> int \<Rightarrow> tassert" where |
|
478 "ones' i j = (if j < i then <(i = j + 1)> else |
|
479 ones' i (j - 1) ** one j)" |
|
480 by auto |
|
481 termination by (relation "measure(\<lambda> (i::int, j). nat (j - i + 1))") auto |
|
482 |
|
483 lemma ones_rev: "\<not> j < i \<Longrightarrow> (ones i j) = ((ones i (j - 1)) ** one j)" |
|
484 proof(induct i j rule:ones_induct) |
|
485 case Base |
|
486 thus ?case by auto |
|
487 next |
|
488 case (Step i j) |
|
489 show ?case |
|
490 proof(cases "j < i + 1") |
|
491 case True |
|
492 with Step show ?thesis |
|
493 by simp |
|
494 next |
|
495 case False |
|
496 with Step show ?thesis |
|
497 by (auto simp:sep_conj_ac) |
|
498 qed |
|
499 qed |
|
500 |
|
501 lemma ones_rev_induct [case_names Base Step]: |
|
502 fixes P i j |
|
503 assumes h1: "\<And> i j. j < i \<Longrightarrow> P i j (<(i = j + (1::int))>)" |
|
504 and h2: "\<And> i j. \<lbrakk>\<not> j < i; P i (j - 1) (ones i (j - 1))\<rbrakk> \<Longrightarrow> P i j ((ones i (j - 1)) ** one j)" |
|
505 shows "P i j (ones i j)" |
|
506 proof(induct i j rule:ones'.induct) |
|
507 fix i j |
|
508 assume ih: "(\<not> j < i \<Longrightarrow> P i (j - 1) (ones i (j - 1)))" |
|
509 show "P i j (ones i j)" |
|
510 proof(cases "j < i") |
|
511 case True |
|
512 with h1 [OF True] |
|
513 show ?thesis by auto |
|
514 next |
|
515 case False |
|
516 from h2 [OF False] and ih[OF False] |
|
517 have "P i j (ones i (j - 1) \<and>* one j)" by blast |
|
518 with ones_rev and False |
|
519 show ?thesis |
|
520 by simp |
|
521 qed |
|
522 qed |
|
523 |
|
524 function zeros :: "int \<Rightarrow> int \<Rightarrow> tassert" where |
|
525 "zeros i j = (if j < i then <(i = j + 1)> else |
|
526 (zero i) ** zeros (i + 1) j)" |
|
527 by auto |
|
528 termination by (relation "measure(\<lambda> (i::int, j). nat (j - i + 1))") auto |
|
529 |
|
530 lemma zeros_base_simp: "j < i \<Longrightarrow> zeros i j = <(i = j + 1)>" |
|
531 by simp |
|
532 |
|
533 lemma zeros_step_simp: "\<not> j < i \<Longrightarrow> zeros i j = ((zero i) ** zeros (i + 1) j)" |
|
534 by simp |
|
535 |
|
536 declare zeros.simps [simp del] |
|
537 lemmas zeros_simps [simp] = zeros_base_simp zeros_step_simp |
|
538 |
|
539 lemma zeros_induct [case_names Base Step]: |
|
540 fixes P i j |
|
541 assumes h1: "\<And> i j. j < i \<Longrightarrow> P i j (<(i = j + (1::int))>)" |
|
542 and h2: "\<And> i j. \<lbrakk>\<not> j < i; P (i + 1) j (zeros (i + 1) j)\<rbrakk> \<Longrightarrow> |
|
543 P i j ((zero i) ** zeros (i + 1) j)" |
|
544 shows "P i j (zeros i j)" |
|
545 proof(induct i j rule:zeros.induct) |
|
546 fix i j |
|
547 assume ih: "(\<not> j < i \<Longrightarrow> P (i + 1) j (zeros (i + 1) j))" |
|
548 show "P i j (zeros i j)" |
|
549 proof(cases "j < i") |
|
550 case True |
|
551 with h1 [OF True] |
|
552 show ?thesis by auto |
|
553 next |
|
554 case False |
|
555 from h2 [OF False] and ih[OF False] |
|
556 have "P i j (zero i \<and>* zeros (i + 1) j)" by blast |
|
557 with False show ?thesis by auto |
|
558 qed |
|
559 qed |
|
560 |
|
561 lemma zeros_rev: "\<not> j < i \<Longrightarrow> (zeros i j) = ((zeros i (j - 1)) ** zero j)" |
|
562 proof(induct i j rule:zeros_induct) |
|
563 case (Base i j) |
|
564 thus ?case by auto |
|
565 next |
|
566 case (Step i j) |
|
567 show ?case |
|
568 proof(cases "j < i + 1") |
|
569 case True |
|
570 with Step show ?thesis by auto |
|
571 next |
|
572 case False |
|
573 with Step show ?thesis by (auto simp:sep_conj_ac) |
|
574 qed |
|
575 qed |
|
576 |
|
577 lemma zeros_rev_induct [case_names Base Step]: |
|
578 fixes P i j |
|
579 assumes h1: "\<And> i j. j < i \<Longrightarrow> P i j (<(i = j + (1::int))>)" |
|
580 and h2: "\<And> i j. \<lbrakk>\<not> j < i; P i (j - 1) (zeros i (j - 1))\<rbrakk> \<Longrightarrow> |
|
581 P i j ((zeros i (j - 1)) ** zero j)" |
|
582 shows "P i j (zeros i j)" |
|
583 proof(induct i j rule:ones'.induct) |
|
584 fix i j |
|
585 assume ih: "(\<not> j < i \<Longrightarrow> P i (j - 1) (zeros i (j - 1)))" |
|
586 show "P i j (zeros i j)" |
|
587 proof(cases "j < i") |
|
588 case True |
|
589 with h1 [OF True] |
|
590 show ?thesis by auto |
|
591 next |
|
592 case False |
|
593 from h2 [OF False] and ih[OF False] |
|
594 have "P i j (zeros i (j - 1) \<and>* zero j)" by blast |
|
595 with zeros_rev and False |
|
596 show ?thesis by simp |
|
597 qed |
|
598 qed |
|
599 |
|
600 definition "rep i j k = ((ones i (i + (int k))) ** <(j = i + int k)>)" |
|
601 |
|
602 fun reps :: "int \<Rightarrow> int \<Rightarrow> nat list\<Rightarrow> tassert" |
|
603 where |
|
604 "reps i j [] = <(i = j + 1)>" | |
|
605 "reps i j [k] = (ones i (i + int k) ** <(j = i + int k)>)" | |
|
606 "reps i j (k # ks) = (ones i (i + int k) ** zero (i + int k + 1) ** reps (i + int k + 2) j ks)" |
|
607 |
|
608 lemma reps_simp3: "ks \<noteq> [] \<Longrightarrow> |
|
609 reps i j (k # ks) = (ones i (i + int k) ** zero (i + int k + 1) ** reps (i + int k + 2) j ks)" |
|
610 by (cases ks, auto) |
|
611 |
|
612 definition "reps_sep_len ks = (if length ks \<le> 1 then 0 else (length ks) - 1)" |
|
613 |
|
614 definition "reps_ctnt_len ks = (\<Sum> k \<leftarrow> ks. (1 + k))" |
|
615 |
|
616 definition "reps_len ks = (reps_sep_len ks) + (reps_ctnt_len ks)" |
|
617 |
|
618 definition "splited xs ys zs = ((xs = ys @ zs) \<and> (ys \<noteq> []) \<and> (zs \<noteq> []))" |
|
619 |
|
620 lemma list_split: |
|
621 assumes h: "k # ks = ys @ zs" |
|
622 and h1: "ys \<noteq> []" |
|
623 shows "(ys = [k] \<and> zs = ks) \<or> (\<exists> ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> ks = ys' @ zs)" |
|
624 proof(cases ys) |
|
625 case Nil |
|
626 with h1 show ?thesis by auto |
|
627 next |
|
628 case (Cons y' ys') |
|
629 with h have "k#ks = y'#(ys' @ zs)" by simp |
|
630 hence hh: "y' = k" "ks = ys' @ zs" by auto |
|
631 show ?thesis |
|
632 proof(cases "ys' = []") |
|
633 case False |
|
634 show ?thesis |
|
635 proof(rule disjI2) |
|
636 show " \<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> ks = ys' @ zs" |
|
637 proof(rule exI[where x = ys']) |
|
638 from False hh Cons show "ys' \<noteq> [] \<and> ys = k # ys' \<and> ks = ys' @ zs" by auto |
|
639 qed |
|
640 qed |
|
641 next |
|
642 case True |
|
643 show ?thesis |
|
644 proof(rule disjI1) |
|
645 from hh True Cons |
|
646 show "ys = [k] \<and> zs = ks" by auto |
|
647 qed |
|
648 qed |
|
649 qed |
|
650 |
|
651 lemma splited_cons[elim_format]: |
|
652 assumes h: "splited (k # ks) ys zs" |
|
653 shows "(ys = [k] \<and> zs = ks) \<or> (\<exists> ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> splited ks ys' zs)" |
|
654 proof - |
|
655 from h have "k # ks = ys @ zs" "ys \<noteq> [] " unfolding splited_def by auto |
|
656 from list_split[OF this] |
|
657 have "ys = [k] \<and> zs = ks \<or> (\<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> ks = ys' @ zs)" . |
|
658 thus ?thesis |
|
659 proof |
|
660 assume " ys = [k] \<and> zs = ks" thus ?thesis by auto |
|
661 next |
|
662 assume "\<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> ks = ys' @ zs" |
|
663 then obtain ys' where hh: "ys' \<noteq> []" "ys = k # ys'" "ks = ys' @ zs" by auto |
|
664 show ?thesis |
|
665 proof(rule disjI2) |
|
666 show "\<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> splited ks ys' zs" |
|
667 proof(rule exI[where x = ys']) |
|
668 from h have "zs \<noteq> []" by (unfold splited_def, simp) |
|
669 with hh(1) hh(3) |
|
670 have "splited ks ys' zs" |
|
671 by (unfold splited_def, auto) |
|
672 with hh(1) hh(2) show "ys' \<noteq> [] \<and> ys = k # ys' \<and> splited ks ys' zs" by auto |
|
673 qed |
|
674 qed |
|
675 qed |
|
676 qed |
|
677 |
|
678 lemma splited_cons_elim: |
|
679 assumes h: "splited (k # ks) ys zs" |
|
680 and h1: "\<lbrakk>ys = [k]; zs = ks\<rbrakk> \<Longrightarrow> P" |
|
681 and h2: "\<And> ys'. \<lbrakk>ys' \<noteq> []; ys = k#ys'; splited ks ys' zs\<rbrakk> \<Longrightarrow> P" |
|
682 shows P |
|
683 proof(rule splited_cons[OF h]) |
|
684 assume "ys = [k] \<and> zs = ks \<or> (\<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> splited ks ys' zs)" |
|
685 thus P |
|
686 proof |
|
687 assume hh: "ys = [k] \<and> zs = ks" |
|
688 show P |
|
689 proof(rule h1) |
|
690 from hh show "ys = [k]" by simp |
|
691 next |
|
692 from hh show "zs = ks" by simp |
|
693 qed |
|
694 next |
|
695 assume "\<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> splited ks ys' zs" |
|
696 then obtain ys' where hh: "ys' \<noteq> []" "ys = k # ys'" "splited ks ys' zs" by auto |
|
697 from h2[OF this] |
|
698 show P . |
|
699 qed |
|
700 qed |
|
701 |
|
702 lemma list_nth_expand: |
|
703 "i < length xs \<Longrightarrow> xs = take i xs @ [xs!i] @ drop (Suc i) xs" |
|
704 by (metis Cons_eq_appendI append_take_drop_id drop_Suc_conv_tl eq_Nil_appendI) |
|
705 |
|
706 lemma reps_len_nil: "reps_len [] = 0" |
|
707 by (auto simp:reps_len_def reps_sep_len_def reps_ctnt_len_def) |
|
708 |
|
709 lemma reps_len_sg: "reps_len [k] = 1 + k" |
|
710 by (auto simp:reps_len_def reps_sep_len_def reps_ctnt_len_def) |
|
711 |
|
712 lemma reps_len_cons: "ks \<noteq> [] \<Longrightarrow> (reps_len (k # ks)) = 2 + k + reps_len ks " |
|
713 proof(induct ks arbitrary:k) |
|
714 case (Cons n ns) |
|
715 thus ?case |
|
716 by(cases "ns = []", |
|
717 auto simp:reps_len_def reps_sep_len_def reps_ctnt_len_def) |
|
718 qed auto |
|
719 |
|
720 lemma reps_len_correct: |
|
721 assumes h: "(reps i j ks) s" |
|
722 shows "j = i + int (reps_len ks) - 1" |
|
723 using h |
|
724 proof(induct ks arbitrary:i j s) |
|
725 case Nil |
|
726 thus ?case |
|
727 by (auto simp:reps_len_nil pasrt_def) |
|
728 next |
|
729 case (Cons n ns) |
|
730 thus ?case |
|
731 proof(cases "ns = []") |
|
732 case False |
|
733 from Cons(2)[unfolded reps_simp3[OF False]] |
|
734 obtain s' where "(reps (i + int n + 2) j ns) s'" |
|
735 by (auto elim!:sep_conjE) |
|
736 from Cons.hyps[OF this] |
|
737 show ?thesis |
|
738 by (unfold reps_len_cons[OF False], simp) |
|
739 next |
|
740 case True |
|
741 with Cons(2) |
|
742 show ?thesis |
|
743 by (auto simp:reps_len_sg pasrt_def) |
|
744 qed |
|
745 qed |
|
746 |
|
747 lemma reps_len_expand: |
|
748 shows "(EXS j. (reps i j ks)) = (reps i (i + int (reps_len ks) - 1) ks)" |
|
749 proof(default+) |
|
750 fix s |
|
751 assume "(EXS j. reps i j ks) s" |
|
752 with reps_len_correct show "reps i (i + int (reps_len ks) - 1) ks s" |
|
753 by (auto simp:pred_ex_def) |
|
754 next |
|
755 fix s |
|
756 assume "reps i (i + int (reps_len ks) - 1) ks s" |
|
757 thus "(EXS j. reps i j ks) s" by (auto simp:pred_ex_def) |
|
758 qed |
|
759 |
|
760 lemma reps_len_expand1: "(EXS j. (reps i j ks \<and>* r)) = (reps i (i + int (reps_len ks) - 1) ks \<and>* r)" |
|
761 by (metis reps_len_def reps_len_expand sep.mult_commute sep_conj_exists1) |
|
762 |
|
763 lemma reps_splited: |
|
764 assumes h: "splited xs ys zs" |
|
765 shows "reps i j xs = (reps i (i + int (reps_len ys) - 1) ys \<and>* |
|
766 zero (i + int (reps_len ys)) \<and>* |
|
767 reps (i + int (reps_len ys) + 1) j zs)" |
|
768 using h |
|
769 proof(induct xs arbitrary: i j ys zs) |
|
770 case Nil |
|
771 thus ?case |
|
772 by (unfold splited_def, auto) |
|
773 next |
|
774 case (Cons k ks) |
|
775 from Cons(2) |
|
776 show ?case |
|
777 proof(rule splited_cons_elim) |
|
778 assume h: "ys = [k]" "zs = ks" |
|
779 with Cons(2) |
|
780 show ?thesis |
|
781 proof(cases "ks = []") |
|
782 case True |
|
783 with Cons(2) have False |
|
784 by (simp add:splited_def, cases ys, auto) |
|
785 thus ?thesis by auto |
|
786 next |
|
787 case False |
|
788 have ss: "i + int k + 1 = i + (1 + int k)" |
|
789 "i + int k + 2 = 2 + (i + int k)" by auto |
|
790 show ?thesis |
|
791 by (unfold h(1), unfold reps_simp3[OF False] reps.simps(2) |
|
792 reps_len_sg, auto simp:sep_conj_ac, |
|
793 unfold ss h(2), simp) |
|
794 qed |
|
795 next |
|
796 fix ys' |
|
797 assume h: "ys' \<noteq> []" "ys = k # ys'" "splited ks ys' zs" |
|
798 hence nnks: "ks \<noteq> []" |
|
799 by (unfold splited_def, auto) |
|
800 have ss: "i + int k + 2 + int (reps_len ys') = |
|
801 i + (2 + (int k + int (reps_len ys')))" by auto |
|
802 show ?thesis |
|
803 by (simp add: reps_simp3[OF nnks] reps_simp3[OF h(1)] |
|
804 Cons(1)[OF h(3)] h(2) |
|
805 reps_len_cons[OF h(1)] |
|
806 sep_conj_ac, subst ss, simp) |
|
807 qed |
|
808 qed |
|
809 |
|
810 subsection {* A theory of list extension *} |
|
811 |
|
812 definition "list_ext n xs = xs @ replicate ((Suc n) - length xs) 0" |
|
813 |
|
814 lemma list_ext_len_eq: "length (list_ext a xs) = length xs + (Suc a - length xs)" |
|
815 by (metis length_append length_replicate list_ext_def) |
|
816 |
|
817 lemma list_ext_len: "a < length (list_ext a xs)" |
|
818 by (unfold list_ext_len_eq, auto) |
|
819 |
|
820 lemma list_ext_lt: "a < length xs \<Longrightarrow> list_ext a xs = xs" |
|
821 by (smt append_Nil2 list_ext_def replicate_0) |
|
822 |
|
823 lemma list_ext_lt_get: |
|
824 assumes h: "a' < length xs" |
|
825 shows "(list_ext a xs)!a' = xs!a'" |
|
826 proof(cases "a < length xs") |
|
827 case True |
|
828 with h |
|
829 show ?thesis by (auto simp:list_ext_lt) |
|
830 next |
|
831 case False |
|
832 with h show ?thesis |
|
833 apply (unfold list_ext_def) |
|
834 by (metis nth_append) |
|
835 qed |
|
836 |
|
837 lemma list_ext_get_upd: "((list_ext a xs)[a:=v])!a = v" |
|
838 by (metis list_ext_len nth_list_update_eq) |
|
839 |
|
840 lemma nth_app: "length xs \<le> a \<Longrightarrow> (xs @ ys)!a = ys!(a - length xs)" |
|
841 by (metis not_less nth_append) |
|
842 |
|
843 lemma pred_exI: |
|
844 assumes "(P(x) \<and>* r) s" |
|
845 shows "((EXS x. P(x)) \<and>* r) s" |
|
846 by (metis assms pred_ex_def sep_globalise) |
|
847 |
|
848 lemma list_ext_tail: |
|
849 assumes h1: "length xs \<le> a" |
|
850 and h2: "length xs \<le> a'" |
|
851 and h3: "a' \<le> a" |
|
852 shows "(list_ext a xs)!a' = 0" |
|
853 proof - |
|
854 from h1 h2 |
|
855 have "a' - length xs < length (replicate (Suc a - length xs) 0)" |
|
856 by (metis diff_less_mono h3 le_imp_less_Suc length_replicate) |
|
857 moreover from h1 have "replicate (Suc a - length xs) 0 \<noteq> []" |
|
858 by (smt empty_replicate) |
|
859 ultimately have "(replicate (Suc a - length xs) 0)!(a' - length xs) = 0" |
|
860 by (metis length_replicate nth_replicate) |
|
861 moreover have "(xs @ (replicate (Suc a - length xs) 0))!a' = |
|
862 (replicate (Suc a - length xs) 0)!(a' - length xs)" |
|
863 by (rule nth_app[OF h2]) |
|
864 ultimately show ?thesis |
|
865 by (auto simp:list_ext_def) |
|
866 qed |
|
867 |
|
868 lemmas list_ext_simps = list_ext_lt_get list_ext_lt list_ext_len list_ext_len_eq |
|
869 |
|
870 lemma listsum_upd_suc: |
|
871 "a < length ks \<Longrightarrow> listsum (map Suc (ks[a := Suc (ks ! a)]))= (Suc (listsum (map Suc ks)))" |
|
872 by (smt Ex_list_of_length Skolem_list_nth elem_le_listsum_nat |
|
873 length_induct length_list_update length_map length_splice |
|
874 list_eq_iff_nth_eq list_ext_get_upd list_ext_lt_get list_update_beyond |
|
875 list_update_id list_update_overwrite list_update_same_conv list_update_swap |
|
876 listsum_update_nat map_eq_imp_length_eq map_update neq_if_length_neq |
|
877 nth_equalityI nth_list_update nth_list_update_eq nth_list_update_neq nth_map reps_sep_len_def) |
|
878 |
|
879 lemma reps_len_suc: |
|
880 assumes "a < length ks" |
|
881 shows "reps_len (ks[a:=Suc(ks!a)]) = 1 + reps_len ks" |
|
882 proof(cases "length ks \<le> 1") |
|
883 case True |
|
884 with `a < length ks` |
|
885 obtain k where "ks = [k]" "a = 0" |
|
886 by (smt length_0_conv length_Suc_conv) |
|
887 thus ?thesis |
|
888 apply (unfold `ks = [k]` `a = 0`) |
|
889 by (unfold reps_len_def reps_sep_len_def reps_ctnt_len_def, auto) |
|
890 next |
|
891 case False |
|
892 have "Suc = (op + (Suc 0))" |
|
893 by (default, auto) |
|
894 with listsum_upd_suc[OF `a < length ks`] False |
|
895 show ?thesis |
|
896 by (unfold reps_len_def reps_sep_len_def reps_ctnt_len_def, simp) |
|
897 qed |
|
898 |
|
899 lemma ks_suc_len: |
|
900 assumes h1: "(reps i j ks) s" |
|
901 and h2: "ks!a = v" |
|
902 and h3: "a < length ks" |
|
903 and h4: "(reps i j' (ks[a:=Suc v])) s'" |
|
904 shows "j' = j + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1" |
|
905 proof - |
|
906 from reps_len_correct[OF h1, unfolded list_ext_len_eq] |
|
907 reps_len_correct[OF h4, unfolded list_ext_len_eq] |
|
908 reps_len_suc[OF `a < length ks`] h2 h3 |
|
909 show ?thesis |
|
910 by (unfold list_ext_lt[OF `a < length ks`], auto) |
|
911 qed |
|
912 |
|
913 lemma ks_ext_len: |
|
914 assumes h1: "(reps i j ks) s" |
|
915 and h3: "length ks \<le> a" |
|
916 and h4: "reps i j' (list_ext a ks) s'" |
|
917 shows "j' = j + int (reps_len (list_ext a ks)) - int (reps_len ks)" |
|
918 proof - |
|
919 from reps_len_correct[OF h1, unfolded list_ext_len_eq] |
|
920 and reps_len_correct[OF h4, unfolded list_ext_len_eq] |
|
921 h3 |
|
922 show ?thesis by auto |
|
923 qed |
|
924 |
|
925 definition |
|
926 "reps' i j ks = |
|
927 (if ks = [] then (<(i = j + 1)>) else (reps i (j - 1) ks \<and>* zero j))" |
|
928 |
|
929 lemma reps'_expand: |
|
930 assumes h: "ks \<noteq> []" |
|
931 shows "(EXS j. reps' i j ks) = reps' i (i + int (reps_len ks)) ks" |
|
932 proof - |
|
933 show ?thesis |
|
934 proof(default+) |
|
935 fix s |
|
936 assume "(EXS j. reps' i j ks) s" |
|
937 with h have "(EXS j. reps i (j - 1) ks \<and>* zero j) s" |
|
938 by (simp add:reps'_def) |
|
939 hence "(reps i (i + int (reps_len ks) - 1) ks \<and>* zero (i + int (reps_len ks))) s" |
|
940 proof(elim EXS_elim) |
|
941 fix j |
|
942 assume "(reps i (j - 1) ks \<and>* zero j) s" |
|
943 then obtain s1 s2 where "s = s1 + s2" "s1 ## s2" "reps i (j - 1) ks s1" "zero j s2" |
|
944 by (auto elim!:sep_conjE) |
|
945 from reps_len_correct[OF this(3)] |
|
946 have "j = i + int (reps_len ks)" by auto |
|
947 with `reps i (j - 1) ks s1` have "reps i (i + int (reps_len ks) - 1) ks s1" |
|
948 by simp |
|
949 moreover from `j = i + int (reps_len ks)` and `zero j s2` |
|
950 have "zero (i + int (reps_len ks)) s2" by auto |
|
951 ultimately show "(reps i (i + int (reps_len ks) - 1) ks \<and>* zero (i + int (reps_len ks))) s" |
|
952 using `s = s1 + s2` `s1 ## s2` by (auto intro!:sep_conjI) |
|
953 qed |
|
954 thus "reps' i (i + int (reps_len ks)) ks s" |
|
955 by (simp add:h reps'_def) |
|
956 next |
|
957 fix s |
|
958 assume "reps' i (i + int (reps_len ks)) ks s" |
|
959 thus "(EXS j. reps' i j ks) s" |
|
960 by (auto intro!:EXS_intro) |
|
961 qed |
|
962 qed |
|
963 |
|
964 lemma reps'_len_correct: |
|
965 assumes h: "(reps' i j ks) s" |
|
966 and h1: "ks \<noteq> []" |
|
967 shows "(j = i + int (reps_len ks))" |
|
968 proof - |
|
969 from h1 have "reps' i j ks s = (reps i (j - 1) ks \<and>* zero j) s" by (simp add:reps'_def) |
|
970 from h[unfolded this] |
|
971 obtain s' where "reps i (j - 1) ks s'" |
|
972 by (auto elim!:sep_conjE) |
|
973 from reps_len_correct[OF this] |
|
974 show ?thesis by simp |
|
975 qed |
|
976 |
|
977 lemma reps'_append: |
|
978 "reps' i j (ks1 @ ks2) = (EXS m. (reps' i (m - 1) ks1 \<and>* reps' m j ks2))" |
|
979 proof(cases "ks1 = []") |
|
980 case True |
|
981 thus ?thesis |
|
982 by (auto simp:reps'_def pred_ex_def pasrt_def set_ins_def sep_conj_def) |
|
983 next |
|
984 case False |
|
985 show ?thesis |
|
986 proof(cases "ks2 = []") |
|
987 case False |
|
988 from `ks1 \<noteq> []` and `ks2 \<noteq> []` |
|
989 have "splited (ks1 @ ks2) ks1 ks2" by (auto simp:splited_def) |
|
990 from reps_splited[OF this, of i "j - 1"] |
|
991 have eq_1: "reps i (j - 1) (ks1 @ ks2) = |
|
992 (reps i (i + int (reps_len ks1) - 1) ks1 \<and>* |
|
993 zero (i + int (reps_len ks1)) \<and>* |
|
994 reps (i + int (reps_len ks1) + 1) (j - 1) ks2)" . |
|
995 from `ks1 \<noteq> []` |
|
996 have eq_2: "reps' i j (ks1 @ ks2) = (reps i (j - 1) (ks1 @ ks2) \<and>* zero j)" |
|
997 by (unfold reps'_def, simp) |
|
998 show ?thesis |
|
999 proof(default+) |
|
1000 fix s |
|
1001 assume "reps' i j (ks1 @ ks2) s" |
|
1002 show "(EXS m. reps' i (m - 1) ks1 \<and>* reps' m j ks2) s" |
|
1003 proof(rule EXS_intro[where x = "i + int(reps_len ks1) + 1"]) |
|
1004 from `reps' i j (ks1 @ ks2) s`[unfolded eq_2 eq_1] |
|
1005 and `ks1 \<noteq> []` `ks2 \<noteq> []` |
|
1006 show "(reps' i (i + int (reps_len ks1) + 1 - 1) ks1 \<and>* |
|
1007 reps' (i + int (reps_len ks1) + 1) j ks2) s" |
|
1008 by (unfold reps'_def, simp, sep_cancel+) |
|
1009 qed |
|
1010 next |
|
1011 fix s |
|
1012 assume "(EXS m. reps' i (m - 1) ks1 \<and>* reps' m j ks2) s" |
|
1013 thus "reps' i j (ks1 @ ks2) s" |
|
1014 proof(elim EXS_elim) |
|
1015 fix m |
|
1016 assume "(reps' i (m - 1) ks1 \<and>* reps' m j ks2) s" |
|
1017 then obtain s1 s2 where h: |
|
1018 "s = s1 + s2" "s1 ## s2" "reps' i (m - 1) ks1 s1" |
|
1019 " reps' m j ks2 s2" by (auto elim!:sep_conjE) |
|
1020 from reps'_len_correct[OF this(3) `ks1 \<noteq> []`] |
|
1021 have eq_m: "m = i + int (reps_len ks1) + 1" by simp |
|
1022 have "((reps i (i + int (reps_len ks1) - 1) ks1 \<and>* zero (i + int (reps_len ks1))) \<and>* |
|
1023 ((reps (i + int (reps_len ks1) + 1) (j - 1) ks2) \<and>* zero j)) s" |
|
1024 (is "(?P \<and>* ?Q) s") |
|
1025 proof(rule sep_conjI) |
|
1026 from h(3) eq_m `ks1 \<noteq> []` show "?P s1" |
|
1027 by (simp add:reps'_def) |
|
1028 next |
|
1029 from h(4) eq_m `ks2 \<noteq> []` show "?Q s2" |
|
1030 by (simp add:reps'_def) |
|
1031 next |
|
1032 from h(2) show "s1 ## s2" . |
|
1033 next |
|
1034 from h(1) show "s = s1 + s2" . |
|
1035 qed |
|
1036 thus "reps' i j (ks1 @ ks2) s" |
|
1037 by (unfold eq_2 eq_1, auto simp:sep_conj_ac) |
|
1038 qed |
|
1039 qed |
|
1040 next |
|
1041 case True |
|
1042 have "-1 + j = j - 1" by auto |
|
1043 with `ks1 \<noteq> []` True |
|
1044 show ?thesis |
|
1045 apply (auto simp:reps'_def pred_ex_def pasrt_def) |
|
1046 apply (unfold `-1 + j = j - 1`) |
|
1047 by (fold sep_empty_def, simp only:sep_conj_empty) |
|
1048 qed |
|
1049 qed |
|
1050 |
|
1051 lemma reps'_sg: |
|
1052 "reps' i j [k] = |
|
1053 (<(j = i + int k + 1)> \<and>* ones i (i + int k) \<and>* zero j)" |
|
1054 apply (unfold reps'_def, default, auto simp:sep_conj_ac) |
|
1055 by (sep_cancel+, simp add:pasrt_def)+ |
|
1056 |
|
1057 |
|
1058 section {* Basic macros for TM *} |
|
1059 |
|
1060 lemma st_upd: |
|
1061 assumes pre: "(st i' ** r) (trset_of (f, x, i, y, z))" |
|
1062 shows "(st i'' ** r) (trset_of (f, x, i'', y, z))" |
|
1063 proof - |
|
1064 from stimes_sgD[OF pre[unfolded st_def], unfolded trset_of.simps, unfolded stD[OF pre]] |
|
1065 have "r (tprog_set x \<union> tpc_set i' \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f - tpc_set i')" |
|
1066 by blast |
|
1067 moreover have |
|
1068 "(tprog_set x \<union> tpc_set i' \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f - tpc_set i') = |
|
1069 (tprog_set x \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f)" |
|
1070 by (unfold tpn_set_def, auto) |
|
1071 ultimately have r_rest: "r (tprog_set x \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f)" |
|
1072 by auto |
|
1073 show ?thesis |
|
1074 proof(rule sep_conjI[where Q = r, OF _ r_rest]) |
|
1075 show "st i'' (tpc_set i'')" |
|
1076 by (unfold st_def sg_def, simp) |
|
1077 next |
|
1078 show "tpc_set i'' ## tprog_set x \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f" |
|
1079 by (unfold tpn_set_def sep_disj_set_def, auto) |
|
1080 next |
|
1081 show "trset_of (f, x, i'', y, z) = |
|
1082 tpc_set i'' + (tprog_set x \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f)" |
|
1083 by (unfold trset_of.simps plus_set_def, auto) |
|
1084 qed |
|
1085 qed |
|
1086 |
|
1087 lemma pos_upd: |
|
1088 assumes pre: "(ps i ** r) (trset_of (f, x, y, i', z))" |
|
1089 shows "(ps j ** r) (trset_of (f, x, y, j, z))" |
|
1090 proof - |
|
1091 from stimes_sgD[OF pre[unfolded ps_def], unfolded trset_of.simps, unfolded psD[OF pre]] |
|
1092 have "r (tprog_set x \<union> tpc_set y \<union> tpos_set i \<union> tmem_set z \<union> |
|
1093 tfaults_set f - tpos_set i)" (is "r ?xs") |
|
1094 by blast |
|
1095 moreover have |
|
1096 "?xs = tprog_set x \<union> tpc_set y \<union> tmem_set z \<union> tfaults_set f" |
|
1097 by (unfold tpn_set_def, auto) |
|
1098 ultimately have r_rest: "r \<dots>" |
|
1099 by auto |
|
1100 show ?thesis |
|
1101 proof(rule sep_conjI[where Q = r, OF _ r_rest]) |
|
1102 show "ps j (tpos_set j)" |
|
1103 by (unfold ps_def sg_def, simp) |
|
1104 next |
|
1105 show "tpos_set j ## tprog_set x \<union> tpc_set y \<union> tmem_set z \<union> tfaults_set f" |
|
1106 by (unfold tpn_set_def sep_disj_set_def, auto) |
|
1107 next |
|
1108 show "trset_of (f, x, y, j, z) = |
|
1109 tpos_set j + (tprog_set x \<union> tpc_set y \<union> tmem_set z \<union> tfaults_set f)" |
|
1110 by (unfold trset_of.simps plus_set_def, auto) |
|
1111 qed |
|
1112 qed |
|
1113 |
|
1114 lemma TM_in_simp: "({TM a v} \<subseteq> |
|
1115 tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tmem_set mem \<union> tfaults_set f) = |
|
1116 ({TM a v} \<subseteq> tmem_set mem)" |
|
1117 by (unfold tpn_set_def, auto) |
|
1118 |
|
1119 lemma tmem_set_upd: |
|
1120 "{TM a v} \<subseteq> tmem_set mem \<Longrightarrow> |
|
1121 tmem_set (mem(a:=Some v')) = ((tmem_set mem) - {TM a v}) \<union> {TM a v'}" |
|
1122 by (unfold tpn_set_def, auto) |
|
1123 |
|
1124 lemma tmem_set_disj: "{TM a v} \<subseteq> tmem_set mem \<Longrightarrow> |
|
1125 {TM a v'} \<inter> (tmem_set mem - {TM a v}) = {}" |
|
1126 by (unfold tpn_set_def, auto) |
|
1127 |
|
1128 lemma smem_upd: "((tm a v) ** r) (trset_of (f, x, y, z, mem)) \<Longrightarrow> |
|
1129 ((tm a v') ** r) (trset_of (f, x, y, z, mem(a := Some v')))" |
|
1130 proof - |
|
1131 have eq_s: "(tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tmem_set mem \<union> tfaults_set f - {TM a v}) = |
|
1132 (tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> (tmem_set mem - {TM a v}) \<union> tfaults_set f)" |
|
1133 by (unfold tpn_set_def, auto) |
|
1134 assume g: "(tm a v \<and>* r) (trset_of (f, x, y, z, mem))" |
|
1135 from this[unfolded trset_of.simps tm_def] |
|
1136 have h: "(sg {TM a v} \<and>* r) (tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tmem_set mem \<union> tfaults_set f)" . |
|
1137 hence h0: "r (tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> (tmem_set mem - {TM a v}) \<union> tfaults_set f)" |
|
1138 by(sep_drule stimes_sgD, clarify, unfold eq_s, auto) |
|
1139 from h TM_in_simp have "{TM a v} \<subseteq> tmem_set mem" |
|
1140 by(sep_drule stimes_sgD, auto) |
|
1141 from tmem_set_upd [OF this] tmem_set_disj[OF this] |
|
1142 have h2: "tmem_set (mem(a \<mapsto> v')) = {TM a v'} \<union> (tmem_set mem - {TM a v})" |
|
1143 "{TM a v'} \<inter> (tmem_set mem - {TM a v}) = {}" by auto |
|
1144 show ?thesis |
|
1145 proof - |
|
1146 have "(tm a v' ** r) (tmem_set (mem(a \<mapsto> v')) \<union> tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tfaults_set f)" |
|
1147 proof(rule sep_conjI) |
|
1148 show "tm a v' ({TM a v'})" by (unfold tm_def sg_def, simp) |
|
1149 next |
|
1150 from h0 show "r (tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> (tmem_set mem - {TM a v}) \<union> tfaults_set f)" . |
|
1151 next |
|
1152 show "{TM a v'} ## tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> (tmem_set mem - {TM a v}) \<union> tfaults_set f" |
|
1153 proof - |
|
1154 from g have " mem a = Some v" |
|
1155 by(sep_frule memD, simp) |
|
1156 thus "?thesis" |
|
1157 by(unfold tpn_set_def set_ins_def, auto) |
|
1158 qed |
|
1159 next |
|
1160 show "tmem_set (mem(a \<mapsto> v')) \<union> tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tfaults_set f = |
|
1161 {TM a v'} + (tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> (tmem_set mem - {TM a v}) \<union> tfaults_set f)" |
|
1162 by (unfold h2(1) set_ins_def eq_s, auto) |
|
1163 qed |
|
1164 thus ?thesis |
|
1165 apply (unfold trset_of.simps) |
|
1166 by (metis sup_commute sup_left_commute) |
|
1167 qed |
|
1168 qed |
|
1169 |
|
1170 lemma hoare_write_zero: |
|
1171 "\<lbrace>st i ** ps p ** tm p v\<rbrace> |
|
1172 i:[write_zero]:j |
|
1173 \<lbrace>st j ** ps p ** tm p Bk\<rbrace>" |
|
1174 proof(unfold write_zero_def, intro t_hoare_local, rule t_hoare_label_last, simp, simp) |
|
1175 show "\<lbrace>st i \<and>* ps p \<and>* tm p v\<rbrace> i :[ \<guillemotright> ((W0, j), W0, j) ]: j \<lbrace>st j \<and>* ps p \<and>* tm p Bk\<rbrace>" |
|
1176 proof(unfold tassemble_to.simps, simp only:sep_conj_cond, |
|
1177 intro tm.code_condI, simp) |
|
1178 assume eq_j: "j = Suc i" |
|
1179 show "\<lbrace>st i \<and>* ps p \<and>* tm p v\<rbrace> sg {TC i ((W0, Suc i), W0, Suc i)} |
|
1180 \<lbrace>st (Suc i) \<and>* ps p \<and>* tm p Bk\<rbrace>" |
|
1181 proof(fold eq_j, unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify) |
|
1182 fix ft prog cs i' mem r |
|
1183 assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v \<and>* sg {TC i ((W0, j), W0, j)}) |
|
1184 (trset_of (ft, prog, cs, i', mem))" |
|
1185 from h have "prog i = Some ((W0, j), W0, j)" |
|
1186 apply(rule_tac r = "r \<and>* ps p \<and>* tm p v" in codeD) |
|
1187 by(simp add: sep_conj_ac) |
|
1188 from h and this have stp: |
|
1189 "tm.run 1 (ft, prog, cs, i', mem) = (ft, prog, j, i', mem(i'\<mapsto> Bk))" (is "?x = ?y") |
|
1190 apply(sep_frule psD) |
|
1191 apply(sep_frule stD) |
|
1192 apply(sep_frule memD, simp) |
|
1193 by(cases v, unfold tm.run_def, auto) |
|
1194 from h have "i' = p" |
|
1195 by(sep_drule psD, simp) |
|
1196 with h |
|
1197 have "(r \<and>* ps p \<and>* st j \<and>* tm p Bk \<and>* sg {TC i ((W0, j), W0, j)}) (trset_of ?x)" |
|
1198 apply(unfold stp) |
|
1199 apply(sep_drule pos_upd, sep_drule st_upd, sep_drule smem_upd) |
|
1200 apply(auto simp: sep_conj_ac) |
|
1201 done |
|
1202 thus "\<exists>k. (r \<and>* ps p \<and>* st j \<and>* tm p Bk \<and>* sg {TC i ((W0, j), W0, j)}) |
|
1203 (trset_of (tm.run (Suc k) (ft, prog, cs, i', mem)))" |
|
1204 apply (rule_tac x = 0 in exI) |
|
1205 by auto |
|
1206 qed |
|
1207 qed |
|
1208 qed |
|
1209 |
|
1210 lemma hoare_write_zero_gen[step]: |
|
1211 assumes "p = q" |
|
1212 shows "\<lbrace>st i ** ps p ** tm q v\<rbrace> |
|
1213 i:[write_zero]:j |
|
1214 \<lbrace>st j ** ps p ** tm q Bk\<rbrace>" |
|
1215 by (unfold assms, rule hoare_write_zero) |
|
1216 |
|
1217 lemma hoare_write_one: |
|
1218 "\<lbrace>st i ** ps p ** tm p v\<rbrace> |
|
1219 i:[write_one]:j |
|
1220 \<lbrace>st j ** ps p ** tm p Oc\<rbrace>" |
|
1221 proof(unfold write_one_def, intro t_hoare_local, rule t_hoare_label_last, simp+) |
|
1222 fix l |
|
1223 show "\<lbrace>st i \<and>* ps p \<and>* tm p v\<rbrace> i :[ \<guillemotright> ((W1, j), W1, j) ]: j \<lbrace>st j \<and>* ps p \<and>* tm p Oc\<rbrace>" |
|
1224 proof(unfold tassemble_to.simps, simp only:sep_conj_cond, |
|
1225 rule_tac tm.code_condI, simp add: sep_conj_ac) |
|
1226 let ?j = "Suc i" |
|
1227 show "\<lbrace>ps p \<and>* st i \<and>* tm p v\<rbrace> sg {TC i ((W1, ?j), W1, ?j)} |
|
1228 \<lbrace>ps p \<and>* st ?j \<and>* tm p Oc\<rbrace>" |
|
1229 proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify) |
|
1230 fix ft prog cs i' mem r |
|
1231 assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v \<and>* sg {TC i ((W1, ?j), W1, ?j)}) |
|
1232 (trset_of (ft, prog, cs, i', mem))" |
|
1233 from h have "prog i = Some ((W1, ?j), W1, ?j)" |
|
1234 apply(rule_tac r = "r \<and>* ps p \<and>* tm p v" in codeD) |
|
1235 by(simp add: sep_conj_ac) |
|
1236 from h and this have stp: |
|
1237 "tm.run 1 (ft, prog, cs, i', mem) = |
|
1238 (ft, prog, ?j, i', mem(i'\<mapsto> Oc))" (is "?x = ?y") |
|
1239 apply(sep_frule psD) |
|
1240 apply(sep_frule stD) |
|
1241 apply(sep_frule memD, simp) |
|
1242 by(cases v, unfold tm.run_def, auto) |
|
1243 from h have "i' = p" |
|
1244 by(sep_drule psD, simp) |
|
1245 with h |
|
1246 have "(r \<and>* ps p \<and>* st ?j \<and>* tm p Oc \<and>* sg {TC i ((W1, ?j), W1, ?j)}) (trset_of ?x)" |
|
1247 apply(unfold stp) |
|
1248 apply(sep_drule pos_upd, sep_drule st_upd, sep_drule smem_upd) |
|
1249 apply(auto simp: sep_conj_ac) |
|
1250 done |
|
1251 thus "\<exists>k. (r \<and>* ps p \<and>* st ?j \<and>* tm p Oc \<and>* sg {TC i ((W1, ?j), W1, ?j)}) |
|
1252 (trset_of (tm.run (Suc k) (ft, prog, cs, i', mem)))" |
|
1253 apply (rule_tac x = 0 in exI) |
|
1254 by auto |
|
1255 qed |
|
1256 qed |
|
1257 qed |
|
1258 |
|
1259 lemma hoare_write_one_gen[step]: |
|
1260 assumes "p = q" |
|
1261 shows "\<lbrace>st i ** ps p ** tm q v\<rbrace> |
|
1262 i:[write_one]:j |
|
1263 \<lbrace>st j ** ps p ** tm q Oc\<rbrace>" |
|
1264 by (unfold assms, rule hoare_write_one) |
|
1265 |
|
1266 lemma hoare_move_left: |
|
1267 "\<lbrace>st i ** ps p ** tm p v2\<rbrace> |
|
1268 i:[move_left]:j |
|
1269 \<lbrace>st j ** ps (p - 1) ** tm p v2\<rbrace>" |
|
1270 proof(unfold move_left_def, intro t_hoare_local, rule t_hoare_label_last, simp+) |
|
1271 fix l |
|
1272 show "\<lbrace>st i \<and>* ps p \<and>* tm p v2\<rbrace> i :[ \<guillemotright> ((L, l), L, l) ]: l |
|
1273 \<lbrace>st l \<and>* ps (p - 1) \<and>* tm p v2\<rbrace>" |
|
1274 proof(unfold tassemble_to.simps, simp only:sep_conj_cond, |
|
1275 intro tm.code_condI, simp add: sep_conj_ac) |
|
1276 let ?j = "Suc i" |
|
1277 show "\<lbrace>ps p \<and>* st i \<and>* tm p v2\<rbrace> sg {TC i ((L, ?j), L, ?j)} |
|
1278 \<lbrace>st ?j \<and>* tm p v2 \<and>* ps (p - 1)\<rbrace>" |
|
1279 proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify) |
|
1280 fix ft prog cs i' mem r |
|
1281 assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v2 \<and>* sg {TC i ((L, ?j), L, ?j)}) |
|
1282 (trset_of (ft, prog, cs, i', mem))" |
|
1283 from h have "prog i = Some ((L, ?j), L, ?j)" |
|
1284 apply(rule_tac r = "r \<and>* ps p \<and>* tm p v2" in codeD) |
|
1285 by(simp add: sep_conj_ac) |
|
1286 from h and this have stp: |
|
1287 "tm.run 1 (ft, prog, cs, i', mem) = (ft, prog, ?j, i' - 1, mem)" (is "?x = ?y") |
|
1288 apply(sep_frule psD) |
|
1289 apply(sep_frule stD) |
|
1290 apply(sep_frule memD, simp) |
|
1291 apply(unfold tm.run_def, case_tac v2, auto) |
|
1292 done |
|
1293 from h have "i' = p" |
|
1294 by(sep_drule psD, simp) |
|
1295 with h |
|
1296 have "(r \<and>* st ?j \<and>* tm p v2 \<and>* ps (p - 1) \<and>* sg {TC i ((L, ?j), L, ?j)}) |
|
1297 (trset_of ?x)" |
|
1298 apply(unfold stp) |
|
1299 apply(sep_drule pos_upd, sep_drule st_upd, simp) |
|
1300 proof - |
|
1301 assume "(st ?j \<and>* ps (p - 1) \<and>* r \<and>* tm p v2 \<and>* sg {TC i ((L, ?j), L, ?j)}) |
|
1302 (trset_of (ft, prog, ?j, p - 1, mem))" |
|
1303 thus "(r \<and>* st ?j \<and>* tm p v2 \<and>* ps (p - 1) \<and>* sg {TC i ((L, ?j), L, ?j)}) |
|
1304 (trset_of (ft, prog, ?j, p - 1, mem))" |
|
1305 by(simp add: sep_conj_ac) |
|
1306 qed |
|
1307 thus "\<exists>k. (r \<and>* st ?j \<and>* tm p v2 \<and>* ps (p - 1) \<and>* sg {TC i ((L, ?j), L, ?j)}) |
|
1308 (trset_of (tm.run (Suc k) (ft, prog, cs, i', mem)))" |
|
1309 apply (rule_tac x = 0 in exI) |
|
1310 by auto |
|
1311 qed |
|
1312 qed |
|
1313 qed |
|
1314 |
|
1315 lemma hoare_move_left_gen[step]: |
|
1316 assumes "p = q" |
|
1317 shows "\<lbrace>st i ** ps p ** tm q v2\<rbrace> |
|
1318 i:[move_left]:j |
|
1319 \<lbrace>st j ** ps (p - 1) ** tm q v2\<rbrace>" |
|
1320 by (unfold assms, rule hoare_move_left) |
|
1321 |
|
1322 lemma hoare_move_right: |
|
1323 "\<lbrace>st i ** ps p ** tm p v1 \<rbrace> |
|
1324 i:[move_right]:j |
|
1325 \<lbrace>st j ** ps (p + 1) ** tm p v1 \<rbrace>" |
|
1326 proof(unfold move_right_def, intro t_hoare_local, rule t_hoare_label_last, simp+) |
|
1327 fix l |
|
1328 show "\<lbrace>st i \<and>* ps p \<and>* tm p v1\<rbrace> i :[ \<guillemotright> ((R, l), R, l) ]: l |
|
1329 \<lbrace>st l \<and>* ps (p + 1) \<and>* tm p v1\<rbrace>" |
|
1330 proof(unfold tassemble_to.simps, simp only:sep_conj_cond, |
|
1331 intro tm.code_condI, simp add: sep_conj_ac) |
|
1332 let ?j = "Suc i" |
|
1333 show "\<lbrace>ps p \<and>* st i \<and>* tm p v1\<rbrace> sg {TC i ((R, ?j), R, ?j)} |
|
1334 \<lbrace>st ?j \<and>* tm p v1 \<and>* ps (p + 1)\<rbrace>" |
|
1335 proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify) |
|
1336 fix ft prog cs i' mem r |
|
1337 assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v1 \<and>* sg {TC i ((R, ?j), R, ?j)}) |
|
1338 (trset_of (ft, prog, cs, i', mem))" |
|
1339 from h have "prog i = Some ((R, ?j), R, ?j)" |
|
1340 apply(rule_tac r = "r \<and>* ps p \<and>* tm p v1" in codeD) |
|
1341 by(simp add: sep_conj_ac) |
|
1342 from h and this have stp: |
|
1343 "tm.run 1 (ft, prog, cs, i', mem) = (ft, prog, ?j, i'+ 1, mem)" (is "?x = ?y") |
|
1344 apply(sep_frule psD) |
|
1345 apply(sep_frule stD) |
|
1346 apply(sep_frule memD, simp) |
|
1347 apply(unfold tm.run_def, case_tac v1, auto) |
|
1348 done |
|
1349 from h have "i' = p" |
|
1350 by(sep_drule psD, simp) |
|
1351 with h |
|
1352 have "(r \<and>* st ?j \<and>* tm p v1 \<and>* ps (p + 1) \<and>* |
|
1353 sg {TC i ((R, ?j), R, ?j)}) (trset_of ?x)" |
|
1354 apply(unfold stp) |
|
1355 apply(sep_drule pos_upd, sep_drule st_upd, simp) |
|
1356 proof - |
|
1357 assume "(st ?j \<and>* ps (p + 1) \<and>* r \<and>* tm p v1 \<and>* sg {TC i ((R, ?j), R, ?j)}) |
|
1358 (trset_of (ft, prog, ?j, p + 1, mem))" |
|
1359 thus "(r \<and>* st ?j \<and>* tm p v1 \<and>* ps (p + 1) \<and>* sg {TC i ((R, ?j), R, ?j)}) |
|
1360 (trset_of (ft, prog, ?j, p + 1, mem))" |
|
1361 by (simp add: sep_conj_ac) |
|
1362 qed |
|
1363 thus "\<exists>k. (r \<and>* st ?j \<and>* tm p v1 \<and>* ps (p + 1) \<and>* sg {TC i ((R, ?j), R, ?j)}) |
|
1364 (trset_of (tm.run (Suc k) (ft, prog, cs, i', mem)))" |
|
1365 apply (rule_tac x = 0 in exI) |
|
1366 by auto |
|
1367 qed |
|
1368 qed |
|
1369 qed |
|
1370 |
|
1371 lemma hoare_move_right_gen[step]: |
|
1372 assumes "p = q" |
|
1373 shows "\<lbrace>st i ** ps p ** tm q v1 \<rbrace> |
|
1374 i:[move_right]:j |
|
1375 \<lbrace>st j ** ps (p + 1) ** tm q v1 \<rbrace>" |
|
1376 by (unfold assms, rule hoare_move_right) |
|
1377 |
|
1378 lemma hoare_if_one_true: |
|
1379 "\<lbrace>st i ** ps p ** one p\<rbrace> |
|
1380 i:[if_one e]:j |
|
1381 \<lbrace>st e ** ps p ** one p\<rbrace>" |
|
1382 proof(unfold if_one_def, intro t_hoare_local, rule t_hoare_label_last, simp+) |
|
1383 fix l |
|
1384 show " \<lbrace>st i \<and>* ps p \<and>* one p\<rbrace> i :[ \<guillemotright> ((W0, l), W1, e) ]: l \<lbrace>st e \<and>* ps p \<and>* one p\<rbrace>" |
|
1385 proof(unfold tassemble_to.simps, simp only:sep_conj_cond, |
|
1386 intro tm.code_condI, simp add: sep_conj_ac) |
|
1387 let ?j = "Suc i" |
|
1388 show "\<lbrace>one p \<and>* ps p \<and>* st i\<rbrace> sg {TC i ((W0, ?j), W1, e)} \<lbrace>one p \<and>* ps p \<and>* st e\<rbrace>" |
|
1389 proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify) |
|
1390 fix ft prog cs pc mem r |
|
1391 assume h: "(r \<and>* one p \<and>* ps p \<and>* st i \<and>* sg {TC i ((W0, ?j), W1, e)}) |
|
1392 (trset_of (ft, prog, cs, pc, mem))" |
|
1393 from h have k1: "prog i = Some ((W0, ?j), W1, e)" |
|
1394 apply(rule_tac r = "r \<and>* one p \<and>* ps p" in codeD) |
|
1395 by(simp add: sep_conj_ac) |
|
1396 from h have k2: "pc = p" |
|
1397 by(sep_drule psD, simp) |
|
1398 from h and this have k3: "mem pc = Some Oc" |
|
1399 apply(unfold one_def) |
|
1400 by(sep_drule memD, simp) |
|
1401 from h k1 k2 k3 have stp: |
|
1402 "tm.run 1 (ft, prog, cs, pc, mem) = (ft, prog, e, pc, mem)" (is "?x = ?y") |
|
1403 apply(sep_drule stD) |
|
1404 by(unfold tm.run_def, auto) |
|
1405 from h k2 |
|
1406 have "(r \<and>* one p \<and>* ps p \<and>* st e \<and>* sg {TC i ((W0, ?j), W1, e)}) (trset_of ?x)" |
|
1407 apply(unfold stp) |
|
1408 by(sep_drule st_upd, simp add: sep_conj_ac) |
|
1409 thus "\<exists>k.(r \<and>* one p \<and>* ps p \<and>* st e \<and>* sg {TC i ((W0, ?j), W1, e)}) |
|
1410 (trset_of (tm.run (Suc k) (ft, prog, cs, pc, mem)))" |
|
1411 apply (rule_tac x = 0 in exI) |
|
1412 by auto |
|
1413 qed |
|
1414 qed |
|
1415 qed |
|
1416 |
|
1417 text {* |
|
1418 The following problematic lemma is not provable now |
|
1419 lemma hoare_self: "\<lbrace>p\<rbrace> i :[ap]: j \<lbrace>p\<rbrace>" |
|
1420 apply(simp add: tm.Hoare_gen_def, clarify) |
|
1421 apply(rule_tac x = 0 in exI, simp add: tm.run_def) |
|
1422 done |
|
1423 *} |
|
1424 |
|
1425 lemma hoare_if_one_true_gen[step]: |
|
1426 assumes "p = q" |
|
1427 shows |
|
1428 "\<lbrace>st i ** ps p ** one q\<rbrace> |
|
1429 i:[if_one e]:j |
|
1430 \<lbrace>st e ** ps p ** one q\<rbrace>" |
|
1431 by (unfold assms, rule hoare_if_one_true) |
|
1432 |
|
1433 lemma hoare_if_one_true1: |
|
1434 "\<lbrace>st i ** ps p ** one p\<rbrace> |
|
1435 i:[(if_one e; c)]:j |
|
1436 \<lbrace>st e ** ps p ** one p\<rbrace>" |
|
1437 proof(unfold tassemble_to.simps, rule tm.code_exI, |
|
1438 simp add: sep_conj_ac tm.Hoare_gen_def, clarify) |
|
1439 fix j' ft prog cs pos mem r |
|
1440 assume h: "(r \<and>* one p \<and>* ps p \<and>* st i \<and>* j' :[ c ]: j \<and>* i :[ if_one e ]: j') |
|
1441 (trset_of (ft, prog, cs, pos, mem))" |
|
1442 from tm.frame_rule[OF hoare_if_one_true] |
|
1443 have "\<And> r. \<lbrace>st i \<and>* ps p \<and>* one p \<and>* r\<rbrace> i :[ if_one e ]: j' \<lbrace>st e \<and>* ps p \<and>* one p \<and>* r\<rbrace>" |
|
1444 by(simp add: sep_conj_ac) |
|
1445 from this[unfolded tm.Hoare_gen_def tassemble_to.simps, rule_format, of "j' :[ c ]: j"] h |
|
1446 have "\<exists> k. (r \<and>* one p \<and>* ps p \<and>* st e \<and>* i :[ if_one e ]: j' \<and>* j' :[ c ]: j) |
|
1447 (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))" |
|
1448 by(auto simp: sep_conj_ac) |
|
1449 thus "\<exists>k. (r \<and>* one p \<and>* ps p \<and>* st e \<and>* j' :[ c ]: j \<and>* i :[ if_one e ]: j') |
|
1450 (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))" |
|
1451 by(simp add: sep_conj_ac) |
|
1452 qed |
|
1453 |
|
1454 lemma hoare_if_one_true1_gen[step]: |
|
1455 assumes "p = q" |
|
1456 shows |
|
1457 "\<lbrace>st i ** ps p ** one q\<rbrace> |
|
1458 i:[(if_one e; c)]:j |
|
1459 \<lbrace>st e ** ps p ** one q\<rbrace>" |
|
1460 by (unfold assms, rule hoare_if_one_true1) |
|
1461 |
|
1462 lemma hoare_if_one_false: |
|
1463 "\<lbrace>st i ** ps p ** zero p\<rbrace> |
|
1464 i:[if_one e]:j |
|
1465 \<lbrace>st j ** ps p ** zero p\<rbrace>" |
|
1466 proof(unfold if_one_def, intro t_hoare_local, rule t_hoare_label_last, simp+) |
|
1467 show "\<lbrace>st i \<and>* ps p \<and>* zero p\<rbrace> i :[ (\<guillemotright> ((W0, j), W1, e)) ]: j |
|
1468 \<lbrace>st j \<and>* ps p \<and>* zero p\<rbrace>" |
|
1469 proof(unfold tassemble_to.simps, simp only:sep_conj_cond, |
|
1470 intro tm.code_condI, simp add: sep_conj_ac) |
|
1471 let ?j = "Suc i" |
|
1472 show "\<lbrace>ps p \<and>* st i \<and>* zero p\<rbrace> sg {TC i ((W0, ?j), W1, e)} \<lbrace>ps p \<and>* zero p \<and>* st ?j \<rbrace>" |
|
1473 proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify) |
|
1474 fix ft prog cs pc mem r |
|
1475 assume h: "(r \<and>* ps p \<and>* st i \<and>* zero p \<and>* sg {TC i ((W0, ?j), W1, e)}) |
|
1476 (trset_of (ft, prog, cs, pc, mem))" |
|
1477 from h have k1: "prog i = Some ((W0, ?j), W1, e)" |
|
1478 apply(rule_tac r = "r \<and>* zero p \<and>* ps p" in codeD) |
|
1479 by(simp add: sep_conj_ac) |
|
1480 from h have k2: "pc = p" |
|
1481 by(sep_drule psD, simp) |
|
1482 from h and this have k3: "mem pc = Some Bk" |
|
1483 apply(unfold zero_def) |
|
1484 by(sep_drule memD, simp) |
|
1485 from h k1 k2 k3 have stp: |
|
1486 "tm.run 1 (ft, prog, cs, pc, mem) = (ft, prog, ?j, pc, mem)" (is "?x = ?y") |
|
1487 apply(sep_drule stD) |
|
1488 by (unfold tm.run_def, auto split:tstate.splits) |
|
1489 from h k2 |
|
1490 have "(r \<and>* zero p \<and>* ps p \<and>* st ?j \<and>* sg {TC i ((W0, ?j), W1, e)}) (trset_of ?x)" |
|
1491 apply (unfold stp) |
|
1492 by (sep_drule st_upd[where i''="?j"], auto simp:sep_conj_ac) |
|
1493 thus "\<exists>k. (r \<and>* ps p \<and>* zero p \<and>* st ?j \<and>* sg {TC i ((W0, ?j), W1, e)}) |
|
1494 (trset_of (tm.run (Suc k) (ft, prog, cs, pc, mem)))" |
|
1495 by(auto simp: sep_conj_ac) |
|
1496 qed |
|
1497 qed |
|
1498 qed |
|
1499 |
|
1500 lemma hoare_if_one_false_gen[step]: |
|
1501 assumes "p = q" |
|
1502 shows "\<lbrace>st i ** ps p ** zero q\<rbrace> |
|
1503 i:[if_one e]:j |
|
1504 \<lbrace>st j ** ps p ** zero q\<rbrace>" |
|
1505 by (unfold assms, rule hoare_if_one_false) |
|
1506 |
|
1507 lemma hoare_if_zero_true: |
|
1508 "\<lbrace>st i ** ps p ** zero p\<rbrace> |
|
1509 i:[if_zero e]:j |
|
1510 \<lbrace>st e ** ps p ** zero p\<rbrace>" |
|
1511 proof(unfold if_zero_def, intro t_hoare_local, rule t_hoare_label_last, simp+) |
|
1512 fix l |
|
1513 show "\<lbrace>st i \<and>* ps p \<and>* zero p\<rbrace> i :[ \<guillemotright> ((W0, e), W1, l) ]: l \<lbrace>st e \<and>* ps p \<and>* zero p\<rbrace>" |
|
1514 proof(unfold tassemble_to.simps, simp only:sep_conj_cond, |
|
1515 intro tm.code_condI, simp add: sep_conj_ac) |
|
1516 let ?j = "Suc i" |
|
1517 show "\<lbrace>ps p \<and>* st i \<and>* zero p\<rbrace> sg {TC i ((W0, e), W1, ?j)} \<lbrace>ps p \<and>* st e \<and>* zero p\<rbrace>" |
|
1518 proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify) |
|
1519 fix ft prog cs pc mem r |
|
1520 assume h: "(r \<and>* ps p \<and>* st i \<and>* zero p \<and>* sg {TC i ((W0, e), W1, ?j)}) |
|
1521 (trset_of (ft, prog, cs, pc, mem))" |
|
1522 from h have k1: "prog i = Some ((W0, e), W1, ?j)" |
|
1523 apply(rule_tac r = "r \<and>* zero p \<and>* ps p" in codeD) |
|
1524 by(simp add: sep_conj_ac) |
|
1525 from h have k2: "pc = p" |
|
1526 by(sep_drule psD, simp) |
|
1527 from h and this have k3: "mem pc = Some Bk" |
|
1528 apply(unfold zero_def) |
|
1529 by(sep_drule memD, simp) |
|
1530 from h k1 k2 k3 have stp: |
|
1531 "tm.run 1 (ft, prog, cs, pc, mem) = (ft, prog, e, pc, mem)" (is "?x = ?y") |
|
1532 apply(sep_drule stD) |
|
1533 by(unfold tm.run_def, auto) |
|
1534 from h k2 |
|
1535 have "(r \<and>* zero p \<and>* ps p \<and>* st e \<and>* sg {TC i ((W0, e), W1, ?j)}) (trset_of ?x)" |
|
1536 apply(unfold stp) |
|
1537 by(sep_drule st_upd, simp add: sep_conj_ac) |
|
1538 thus "\<exists>k. (r \<and>* ps p \<and>* st e \<and>* zero p \<and>* sg {TC i ((W0, e), W1, ?j)}) |
|
1539 (trset_of (tm.run (Suc k) (ft, prog, cs, pc, mem)))" |
|
1540 by(auto simp: sep_conj_ac) |
|
1541 qed |
|
1542 qed |
|
1543 qed |
|
1544 |
|
1545 lemma hoare_if_zero_true_gen[step]: |
|
1546 assumes "p = q" |
|
1547 shows |
|
1548 "\<lbrace>st i ** ps p ** zero q\<rbrace> |
|
1549 i:[if_zero e]:j |
|
1550 \<lbrace>st e ** ps p ** zero q\<rbrace>" |
|
1551 by (unfold assms, rule hoare_if_zero_true) |
|
1552 |
|
1553 lemma hoare_if_zero_true1: |
|
1554 "\<lbrace>st i ** ps p ** zero p\<rbrace> |
|
1555 i:[(if_zero e; c)]:j |
|
1556 \<lbrace>st e ** ps p ** zero p\<rbrace>" |
|
1557 proof(unfold tassemble_to.simps, rule tm.code_exI, simp add: sep_conj_ac |
|
1558 tm.Hoare_gen_def, clarify) |
|
1559 fix j' ft prog cs pos mem r |
|
1560 assume h: "(r \<and>* ps p \<and>* st i \<and>* zero p \<and>* j' :[ c ]: j \<and>* i :[ if_zero e ]: j') |
|
1561 (trset_of (ft, prog, cs, pos, mem))" |
|
1562 from tm.frame_rule[OF hoare_if_zero_true] |
|
1563 have "\<And> r. \<lbrace>st i \<and>* ps p \<and>* zero p \<and>* r\<rbrace> i :[ if_zero e ]: j' \<lbrace>st e \<and>* ps p \<and>* zero p \<and>* r\<rbrace>" |
|
1564 by(simp add: sep_conj_ac) |
|
1565 from this[unfolded tm.Hoare_gen_def tassemble_to.simps, rule_format, of "j' :[ c ]: j"] h |
|
1566 have "\<exists> k. (r \<and>* zero p \<and>* ps p \<and>* st e \<and>* i :[ if_zero e ]: j' \<and>* j' :[ c ]: j) |
|
1567 (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))" |
|
1568 by(auto simp: sep_conj_ac) |
|
1569 thus "\<exists>k. (r \<and>* ps p \<and>* st e \<and>* zero p \<and>* j' :[ c ]: j \<and>* i :[ if_zero e ]: j') |
|
1570 (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))" |
|
1571 by(simp add: sep_conj_ac) |
|
1572 qed |
|
1573 |
|
1574 lemma hoare_if_zero_true1_gen[step]: |
|
1575 assumes "p = q" |
|
1576 shows |
|
1577 "\<lbrace>st i ** ps p ** zero q\<rbrace> |
|
1578 i:[(if_zero e; c)]:j |
|
1579 \<lbrace>st e ** ps p ** zero q\<rbrace>" |
|
1580 by (unfold assms, rule hoare_if_zero_true1) |
|
1581 |
|
1582 lemma hoare_if_zero_false: |
|
1583 "\<lbrace>st i ** ps p ** tm p Oc\<rbrace> |
|
1584 i:[if_zero e]:j |
|
1585 \<lbrace>st j ** ps p ** tm p Oc\<rbrace>" |
|
1586 proof(unfold if_zero_def, intro t_hoare_local, rule t_hoare_label_last, simp, simp) |
|
1587 fix l |
|
1588 show "\<lbrace>st i \<and>* ps p \<and>* tm p Oc\<rbrace> i :[ \<guillemotright> ((W0, e), W1, l) ]: l |
|
1589 \<lbrace>st l \<and>* ps p \<and>* tm p Oc\<rbrace>" |
|
1590 proof(unfold tassemble_to.simps, simp only:sep_conj_cond, |
|
1591 intro tm.code_condI, simp add: sep_conj_ac) |
|
1592 let ?j = "Suc i" |
|
1593 show "\<lbrace>ps p \<and>* st i \<and>* tm p Oc\<rbrace> sg {TC i ((W0, e), W1, ?j)} |
|
1594 \<lbrace>ps p \<and>* st ?j \<and>* tm p Oc\<rbrace>" |
|
1595 proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify) |
|
1596 fix ft prog cs pc mem r |
|
1597 assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p Oc \<and>* sg {TC i ((W0, e), W1, ?j)}) |
|
1598 (trset_of (ft, prog, cs, pc, mem))" |
|
1599 from h have k1: "prog i = Some ((W0, e), W1, ?j)" |
|
1600 apply(rule_tac r = "r \<and>* tm p Oc \<and>* ps p" in codeD) |
|
1601 by(simp add: sep_conj_ac) |
|
1602 from h have k2: "pc = p" |
|
1603 by(sep_drule psD, simp) |
|
1604 from h and this have k3: "mem pc = Some Oc" |
|
1605 by(sep_drule memD, simp) |
|
1606 from h k1 k2 k3 have stp: |
|
1607 "tm.run 1 (ft, prog, cs, pc, mem) = (ft, prog, ?j, pc, mem)" (is "?x = ?y") |
|
1608 apply(sep_drule stD) |
|
1609 by(unfold tm.run_def, auto split:tstate.splits) |
|
1610 from h k2 |
|
1611 have "(r \<and>* tm p Oc \<and>* ps p \<and>* st ?j \<and>* sg {TC i ((W0, e), W1, ?j)}) (trset_of ?x)" |
|
1612 apply(unfold stp) |
|
1613 by(sep_drule st_upd, simp add: sep_conj_ac) |
|
1614 thus "\<exists>k. (r \<and>* ps p \<and>* st ?j \<and>* tm p Oc \<and>* sg {TC i ((W0, e), W1, ?j)}) |
|
1615 (trset_of (tm.run (Suc k) (ft, prog, cs, pc, mem)))" |
|
1616 by(auto simp: sep_conj_ac) |
|
1617 qed |
|
1618 qed |
|
1619 qed |
|
1620 |
|
1621 lemma hoare_if_zero_false_gen[step]: |
|
1622 assumes "p = q" |
|
1623 shows |
|
1624 "\<lbrace>st i ** ps p ** tm q Oc\<rbrace> |
|
1625 i:[if_zero e]:j |
|
1626 \<lbrace>st j ** ps p ** tm q Oc\<rbrace>" |
|
1627 by (unfold assms, rule hoare_if_zero_false) |
|
1628 |
|
1629 lemma hoare_jmp: |
|
1630 "\<lbrace>st i \<and>* ps p \<and>* tm p v\<rbrace> i:[jmp e]:j \<lbrace>st e \<and>* ps p \<and>* tm p v\<rbrace>" |
|
1631 proof(unfold jmp_def tm.Hoare_gen_def tassemble_to.simps sep_conj_ac, clarify) |
|
1632 fix ft prog cs pos mem r |
|
1633 assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v \<and>* <(j = i + 1)> \<and>* sg {TC i ((W0, e), W1, e)}) |
|
1634 (trset_of (ft, prog, cs, pos, mem))" |
|
1635 from h have k1: "prog i = Some ((W0, e), W1, e)" |
|
1636 apply(rule_tac r = "r \<and>* <(j = i + 1)> \<and>* tm p v \<and>* ps p" in codeD) |
|
1637 by(simp add: sep_conj_ac) |
|
1638 from h have k2: "p = pos" |
|
1639 by(sep_drule psD, simp) |
|
1640 from h k2 have k3: "mem pos = Some v" |
|
1641 by(sep_drule memD, simp) |
|
1642 from h k1 k2 k3 have |
|
1643 stp: "tm.run 1 (ft, prog, cs, pos, mem) = (ft, prog, e, pos, mem)" (is "?x = ?y") |
|
1644 apply(sep_drule stD) |
|
1645 by(unfold tm.run_def, cases "mem pos", simp, cases v, auto) |
|
1646 from h k2 |
|
1647 have "(r \<and>* ps p \<and>* st e \<and>* tm p v \<and>* <(j = i + 1)> \<and>* |
|
1648 sg {TC i ((W0, e), W1, e)}) (trset_of ?x)" |
|
1649 apply(unfold stp) |
|
1650 by(sep_drule st_upd, simp add: sep_conj_ac) |
|
1651 thus "\<exists> k. (r \<and>* ps p \<and>* st e \<and>* tm p v \<and>* <(j = i + 1)> \<and>* sg {TC i ((W0, e), W1, e)}) |
|
1652 (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))" |
|
1653 apply (rule_tac x = 0 in exI) |
|
1654 by auto |
|
1655 qed |
|
1656 |
|
1657 lemma hoare_jmp_gen[step]: |
|
1658 assumes "p = q" |
|
1659 shows "\<lbrace>st i \<and>* ps p \<and>* tm q v\<rbrace> i:[jmp e]:j \<lbrace>st e \<and>* ps p \<and>* tm q v\<rbrace>" |
|
1660 by (unfold assms, rule hoare_jmp) |
|
1661 |
|
1662 lemma hoare_jmp1: |
|
1663 "\<lbrace>st i \<and>* ps p \<and>* tm p v\<rbrace> |
|
1664 i:[(jmp e; c)]:j |
|
1665 \<lbrace>st e \<and>* ps p \<and>* tm p v\<rbrace>" |
|
1666 proof(unfold tassemble_to.simps, rule tm.code_exI, simp |
|
1667 add: sep_conj_ac tm.Hoare_gen_def, clarify) |
|
1668 fix j' ft prog cs pos mem r |
|
1669 assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v \<and>* j' :[ c ]: j \<and>* i :[ jmp e ]: j') |
|
1670 (trset_of (ft, prog, cs, pos, mem))" |
|
1671 from tm.frame_rule[OF hoare_jmp] |
|
1672 have "\<And> r. \<lbrace>st i \<and>* ps p \<and>* tm p v \<and>* r\<rbrace> i :[ jmp e ]: j' \<lbrace>st e \<and>* ps p \<and>* tm p v \<and>* r\<rbrace>" |
|
1673 by(simp add: sep_conj_ac) |
|
1674 from this[unfolded tm.Hoare_gen_def tassemble_to.simps, rule_format, of "j' :[ c ]: j"] h |
|
1675 have "\<exists> k. (r \<and>* tm p v \<and>* ps p \<and>* st e \<and>* i :[ jmp e ]: j' \<and>* j' :[ c ]: j) |
|
1676 (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))" |
|
1677 by(auto simp: sep_conj_ac) |
|
1678 thus "\<exists>k. (r \<and>* ps p \<and>* st e \<and>* tm p v \<and>* j' :[ c ]: j \<and>* i :[ jmp e ]: j') |
|
1679 (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))" |
|
1680 by(simp add: sep_conj_ac) |
|
1681 qed |
|
1682 |
|
1683 |
|
1684 lemma hoare_jmp1_gen[step]: |
|
1685 assumes "p = q" |
|
1686 shows "\<lbrace>st i \<and>* ps p \<and>* tm q v\<rbrace> |
|
1687 i:[(jmp e; c)]:j |
|
1688 \<lbrace>st e \<and>* ps p \<and>* tm q v\<rbrace>" |
|
1689 by (unfold assms, rule hoare_jmp1) |
|
1690 |
|
1691 |
|
1692 lemma condI: |
|
1693 assumes h1: b |
|
1694 and h2: "b \<Longrightarrow> p s" |
|
1695 shows "(<b> \<and>* p) s" |
|
1696 by (metis (full_types) cond_true_eq1 h1 h2) |
|
1697 |
|
1698 lemma condE: |
|
1699 assumes "(<b> \<and>* p) s" |
|
1700 obtains "b" and "p s" |
|
1701 proof(atomize_elim) |
|
1702 from condD[OF assms] |
|
1703 show "b \<and> p s" . |
|
1704 qed |
|
1705 |
|
1706 |
|
1707 section {* Tactics *} |
|
1708 |
|
1709 ML {* |
|
1710 val trace_step = Attrib.setup_config_bool @{binding trace_step} (K false) |
|
1711 val trace_fwd = Attrib.setup_config_bool @{binding trace_fwd} (K false) |
|
1712 *} |
|
1713 |
|
1714 |
|
1715 ML {* |
|
1716 val tracing = (fn ctxt => fn str => |
|
1717 if (Config.get ctxt trace_step) then tracing str else ()) |
|
1718 fun not_pred p = fn s => not (p s) |
|
1719 fun break_sep_conj (Const (@{const_name sep_conj},_) $ t1 $ t2 $ _) = |
|
1720 (break_sep_conj t1) @ (break_sep_conj t2) |
|
1721 | break_sep_conj (Const (@{const_name sep_conj},_) $ t1 $ t2) = |
|
1722 (break_sep_conj t1) @ (break_sep_conj t2) |
|
1723 (* dig through eta exanded terms: *) |
|
1724 | break_sep_conj (Abs (_, _, t $ Bound 0)) = break_sep_conj t |
|
1725 | break_sep_conj t = [t]; |
|
1726 |
|
1727 val empty_env = (Vartab.empty, Vartab.empty) |
|
1728 |
|
1729 fun match_env ctxt pat trm env = |
|
1730 Pattern.match (ctxt |> Proof_Context.theory_of) (pat, trm) env |
|
1731 |
|
1732 fun match ctxt pat trm = match_env ctxt pat trm empty_env; |
|
1733 |
|
1734 val inst = Envir.subst_term; |
|
1735 |
|
1736 fun term_of_thm thm = thm |> prop_of |> HOLogic.dest_Trueprop |
|
1737 |
|
1738 fun get_cmd ctxt code = |
|
1739 let val pat = term_of @{cpat "_:[(?cmd)]:_"} |
|
1740 val pat1 = term_of @{cpat "?cmd::tpg"} |
|
1741 val env = match ctxt pat code |
|
1742 in inst env pat1 end |
|
1743 |
|
1744 fun is_seq_term (Const (@{const_name TSeq}, _) $ _ $ _) = true |
|
1745 | is_seq_term _ = false |
|
1746 |
|
1747 fun get_hcmd (Const (@{const_name TSeq}, _) $ hcmd $ _) = hcmd |
|
1748 | get_hcmd hcmd = hcmd |
|
1749 |
|
1750 fun last [a] = a | |
|
1751 last (a::b) = last b |
|
1752 |
|
1753 fun but_last [a] = [] | |
|
1754 but_last (a::b) = a::(but_last b) |
|
1755 |
|
1756 fun foldr f [] = (fn x => x) | |
|
1757 foldr f (x :: xs) = (f x) o (foldr f xs) |
|
1758 |
|
1759 fun concat [] = [] | |
|
1760 concat (x :: xs) = x @ concat xs |
|
1761 |
|
1762 fun match_any ctxt pats tm = |
|
1763 fold |
|
1764 (fn pat => fn b => (b orelse Pattern.matches |
|
1765 (ctxt |> Proof_Context.theory_of) (pat, tm))) |
|
1766 pats false |
|
1767 |
|
1768 fun is_ps_term (Const (@{const_name ps}, _) $ _) = true |
|
1769 | is_ps_term _ = false |
|
1770 |
|
1771 fun string_of_term ctxt t = t |> Syntax.pretty_term ctxt |> Pretty.str_of |
|
1772 fun string_of_cterm ctxt ct = ct |> term_of |> string_of_term ctxt |
|
1773 fun pterm ctxt t = |
|
1774 t |> string_of_term ctxt |> tracing ctxt |
|
1775 fun pcterm ctxt ct = ct |> string_of_cterm ctxt |> tracing ctxt |
|
1776 fun string_for_term ctxt t = |
|
1777 Print_Mode.setmp (filter (curry (op =) Symbol.xsymbolsN) |
|
1778 (print_mode_value ())) (Syntax.string_of_term ctxt) t |
|
1779 |> String.translate (fn c => if Char.isPrint c then str c else "") |
|
1780 |> Sledgehammer_Util.simplify_spaces |
|
1781 fun string_for_cterm ctxt ct = ct |> term_of |> string_for_term ctxt |
|
1782 fun attemp tac = fn i => fn st => (tac i st) handle exn => Seq.empty |
|
1783 fun try_tac tac = fn i => fn st => (tac i st) handle exn => (Seq.single st) |
|
1784 (* aux end *) |
|
1785 *} |
|
1786 |
|
1787 ML {* (* Functions specific to Hoare triples *) |
|
1788 fun get_pre ctxt t = |
|
1789 let val pat = term_of @{cpat "\<lbrace>?P\<rbrace> ?c \<lbrace>?Q\<rbrace>"} |
|
1790 val env = match ctxt pat t |
|
1791 in inst env (term_of @{cpat "?P::tresource set \<Rightarrow> bool"}) end |
|
1792 |
|
1793 fun can_process ctxt t = ((get_pre ctxt t; true) handle _ => false) |
|
1794 |
|
1795 fun get_post ctxt t = |
|
1796 let val pat = term_of @{cpat "\<lbrace>?P\<rbrace> ?c \<lbrace>?Q\<rbrace>"} |
|
1797 val env = match ctxt pat t |
|
1798 in inst env (term_of @{cpat "?Q::tresource set \<Rightarrow> bool"}) end; |
|
1799 |
|
1800 fun get_mid ctxt t = |
|
1801 let val pat = term_of @{cpat "\<lbrace>?P\<rbrace> ?c \<lbrace>?Q\<rbrace>"} |
|
1802 val env = match ctxt pat t |
|
1803 in inst env (term_of @{cpat "?c::tresource set \<Rightarrow> bool"}) end; |
|
1804 |
|
1805 fun is_pc_term (Const (@{const_name st}, _) $ _) = true |
|
1806 | is_pc_term _ = false |
|
1807 |
|
1808 fun mk_pc_term x = |
|
1809 Const (@{const_name st}, @{typ "nat \<Rightarrow> tresource set \<Rightarrow> bool"}) $ Free (x, @{typ "nat"}) |
|
1810 |
|
1811 val sconj_term = term_of @{cterm "sep_conj::tassert \<Rightarrow> tassert \<Rightarrow> tassert"} |
|
1812 |
|
1813 fun mk_ps_term x = |
|
1814 Const (@{const_name ps}, @{typ "int \<Rightarrow> tresource set \<Rightarrow> bool"}) $ Free (x, @{typ "int"}) |
|
1815 |
|
1816 fun atomic tac = ((SOLVED' tac) ORELSE' (K all_tac)) |
|
1817 |
|
1818 fun pure_sep_conj_ac_tac ctxt = |
|
1819 (auto_tac (ctxt |> Simplifier.map_simpset (fn ss => ss addsimps @{thms sep_conj_ac})) |
|
1820 |> SELECT_GOAL) |
|
1821 |
|
1822 |
|
1823 fun potential_facts ctxt prop = Facts.could_unify (Proof_Context.facts_of ctxt) |
|
1824 ((Term.strip_all_body prop) |> Logic.strip_imp_concl); |
|
1825 |
|
1826 fun some_fact_tac ctxt = SUBGOAL (fn (goal, i) => |
|
1827 (Method.insert_tac (potential_facts ctxt goal) i) THEN |
|
1828 (pure_sep_conj_ac_tac ctxt i)); |
|
1829 |
|
1830 fun sep_conj_ac_tac ctxt = |
|
1831 (SOLVED' (auto_tac (ctxt |> Simplifier.map_simpset (fn ss => ss addsimps @{thms sep_conj_ac})) |
|
1832 |> SELECT_GOAL)) ORELSE' (atomic (some_fact_tac ctxt)) |
|
1833 *} |
|
1834 |
|
1835 ML {* |
|
1836 type HoareTriple = { |
|
1837 binding: binding, |
|
1838 can_process: Proof.context -> term -> bool, |
|
1839 get_pre: Proof.context -> term -> term, |
|
1840 get_mid: Proof.context -> term -> term, |
|
1841 get_post: Proof.context -> term -> term, |
|
1842 is_pc_term: term -> bool, |
|
1843 mk_pc_term: string -> term, |
|
1844 sconj_term: term, |
|
1845 sep_conj_ac_tac: Proof.context -> int -> tactic, |
|
1846 hoare_seq1: thm, |
|
1847 hoare_seq2: thm, |
|
1848 pre_stren: thm, |
|
1849 post_weaken: thm, |
|
1850 frame_rule: thm |
|
1851 } |
|
1852 |
|
1853 val tm_triple = {binding = @{binding "tm_triple"}, |
|
1854 can_process = can_process, |
|
1855 get_pre = get_pre, |
|
1856 get_mid = get_mid, |
|
1857 get_post = get_post, |
|
1858 is_pc_term = is_pc_term, |
|
1859 mk_pc_term = mk_pc_term, |
|
1860 sconj_term = sconj_term, |
|
1861 sep_conj_ac_tac = sep_conj_ac_tac, |
|
1862 hoare_seq1 = @{thm t_hoare_seq1}, |
|
1863 hoare_seq2 = @{thm t_hoare_seq2}, |
|
1864 pre_stren = @{thm tm.pre_stren}, |
|
1865 post_weaken = @{thm tm.post_weaken}, |
|
1866 frame_rule = @{thm tm.frame_rule} |
|
1867 }:HoareTriple |
|
1868 *} |
|
1869 |
|
1870 ML {* |
|
1871 val _ = data_slot "HoareTriples" "HoareTriple list" "[]" |
|
1872 *} |
|
1873 |
|
1874 ML {* |
|
1875 val _ = HoareTriples_store [tm_triple] |
|
1876 *} |
|
1877 |
|
1878 ML {* (* aux1 functions *) |
|
1879 |
|
1880 fun focus_params t ctxt = |
|
1881 let |
|
1882 val (xs, Ts) = |
|
1883 split_list (Term.variant_frees t (Term.strip_all_vars t)); (*as they are printed :-*) |
|
1884 (* val (xs', ctxt') = variant_fixes xs ctxt; *) |
|
1885 (* val ps = xs' ~~ Ts; *) |
|
1886 val ps = xs ~~ Ts |
|
1887 val (_, ctxt'') = ctxt |> Variable.add_fixes xs |
|
1888 in ((xs, ps), ctxt'') end |
|
1889 |
|
1890 fun focus_concl ctxt t = |
|
1891 let |
|
1892 val ((xs, ps), ctxt') = focus_params t ctxt |
|
1893 val t' = Term.subst_bounds (rev (map Free ps), Term.strip_all_body t); |
|
1894 in (t' |> Logic.strip_imp_concl, ctxt') end |
|
1895 |
|
1896 fun get_concl ctxt (i, state) = |
|
1897 nth (Thm.prems_of state) (i - 1) |
|
1898 |> focus_concl ctxt |> (fn (x, _) => x |> HOLogic.dest_Trueprop) |
|
1899 (* aux1 end *) |
|
1900 *} |
|
1901 |
|
1902 ML {* |
|
1903 fun indexing xs = upto (0, length xs - 1) ~~ xs |
|
1904 fun select_idxs idxs ps = |
|
1905 map_index (fn (i, e) => if (member (op =) idxs i) then [e] else []) ps |> flat |
|
1906 fun select_out_idxs idxs ps = |
|
1907 map_index (fn (i, e) => if (member (op =) idxs i) then [] else [e]) ps |> flat |
|
1908 fun match_pres ctxt mf env ps qs = |
|
1909 let fun sel_match mf env [] qs = [(env, [])] |
|
1910 | sel_match mf env (p::ps) qs = |
|
1911 let val pm = map (fn (i, q) => [(i, |
|
1912 let val _ = tracing ctxt "Matching:" |
|
1913 val _ = [p, q] |> |
|
1914 (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt |
|
1915 val r = mf p q env |
|
1916 in r end)] |
|
1917 handle _ => ( |
|
1918 let val _ = tracing ctxt "Failed matching:" |
|
1919 val _ = [p, q] |> |
|
1920 (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt |
|
1921 in [] end)) qs |> flat |
|
1922 val r = pm |> map (fn (i, env') => |
|
1923 let val qs' = filter_out (fn (j, q) => j = i) qs |
|
1924 in sel_match mf env' ps qs' |> |
|
1925 map (fn (env'', idxs) => (env'', i::idxs)) end) |
|
1926 |> flat |
|
1927 in r end |
|
1928 in sel_match mf env ps (indexing qs) end |
|
1929 |
|
1930 fun provable tac ctxt goal = |
|
1931 let |
|
1932 val _ = tracing ctxt "Provable trying to prove:" |
|
1933 val _ = [goal] |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt |
|
1934 in |
|
1935 (Goal.prove ctxt [] [] goal (fn {context, ...} => tac context 1); true) |
|
1936 handle exn => false |
|
1937 end |
|
1938 fun make_sense tac ctxt thm_assms env = |
|
1939 thm_assms |> map (inst env) |> forall (provable tac ctxt) |
|
1940 *} |
|
1941 |
|
1942 ML {* |
|
1943 fun triple_for ctxt goal = |
|
1944 filter (fn trpl => (#can_process trpl) ctxt goal) (HoareTriples.get (Proof_Context.theory_of ctxt)) |> hd |
|
1945 |
|
1946 fun step_terms_for thm goal ctxt = |
|
1947 let |
|
1948 val _ = tracing ctxt "This is the new version of step_terms_for!" |
|
1949 val _ = tracing ctxt "Tring to find triple processor: TP" |
|
1950 val TP = triple_for ctxt goal |
|
1951 val _ = #binding TP |> Binding.name_of |> tracing ctxt |
|
1952 fun mk_sep_conj tms = foldr (fn tm => fn rtm => |
|
1953 ((#sconj_term TP)$tm$rtm)) (but_last tms) (last tms) |
|
1954 val thm_concl = thm |> prop_of |
|
1955 |> Logic.strip_imp_concl |> HOLogic.dest_Trueprop |
|
1956 val thm_assms = thm |> prop_of |
|
1957 |> Logic.strip_imp_prems |
|
1958 val cmd_pat = thm_concl |> #get_mid TP ctxt |> get_cmd ctxt |
|
1959 val cmd = goal |> #get_mid TP ctxt |> get_cmd ctxt |
|
1960 val _ = tracing ctxt "matching command ... " |
|
1961 val _ = tracing ctxt "cmd_pat = " |
|
1962 val _ = pterm ctxt cmd_pat |
|
1963 val (hcmd, env1, is_last) = (cmd, match ctxt cmd_pat cmd, true) |
|
1964 handle exn => (cmd |> get_hcmd, match ctxt cmd_pat (cmd |> get_hcmd), false) |
|
1965 val _ = tracing ctxt "hcmd =" |
|
1966 val _ = pterm ctxt hcmd |
|
1967 val _ = tracing ctxt "match command succeed! " |
|
1968 val _ = tracing ctxt "pres =" |
|
1969 val pres = goal |> #get_pre TP ctxt |> break_sep_conj |
|
1970 val _ = pres |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt |
|
1971 val _ = tracing ctxt "pre_pats =" |
|
1972 val pre_pats = thm_concl |> #get_pre TP ctxt |> inst env1 |> break_sep_conj |
|
1973 val _ = pre_pats |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt |
|
1974 val _ = tracing ctxt "post_pats =" |
|
1975 val post_pats = thm_concl |> #get_post TP ctxt |> inst env1 |> break_sep_conj |
|
1976 val _ = post_pats |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt |
|
1977 val _ = tracing ctxt "Calculating sols" |
|
1978 val sols = match_pres ctxt (match_env ctxt) env1 pre_pats pres |
|
1979 val _ = tracing ctxt "End calculating sols, sols =" |
|
1980 val _ = tracing ctxt (@{make_string} sols) |
|
1981 val _ = tracing ctxt "Calulating env2 and idxs" |
|
1982 val (env2, idxs) = filter (fn (env, idxs) => make_sense (#sep_conj_ac_tac TP) |
|
1983 ctxt thm_assms env) sols |> hd |
|
1984 val _ = tracing ctxt "End calculating env2 and idxs" |
|
1985 val _ = tracing ctxt "mterms =" |
|
1986 val mterms = select_idxs idxs pres |> map (inst env2) |
|
1987 val _ = mterms |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt |
|
1988 val _ = tracing ctxt "nmterms = " |
|
1989 val nmterms = select_out_idxs idxs pres |> map (inst env2) |
|
1990 val _ = nmterms |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt |
|
1991 val pre_cond = pre_pats |> map (inst env2) |> mk_sep_conj |
|
1992 val post_cond = post_pats |> map (inst env2) |> mk_sep_conj |
|
1993 val post_cond_npc = |
|
1994 post_cond |> break_sep_conj |> filter (not_pred (#is_pc_term TP)) |
|
1995 |> (fn x => x @ nmterms) |> mk_sep_conj |> cterm_of (Proof_Context.theory_of ctxt) |
|
1996 fun mk_frame cond rest = |
|
1997 if rest = [] then cond else ((#sconj_term TP)$ cond) $ (mk_sep_conj rest) |
|
1998 val pre_cond_frame = mk_frame pre_cond nmterms |> cterm_of (Proof_Context.theory_of ctxt) |
|
1999 fun post_cond_frame j' = post_cond |> break_sep_conj |> filter (not_pred (#is_pc_term TP)) |
|
2000 |> (fn x => [#mk_pc_term TP j']@x) |> mk_sep_conj |
|
2001 |> (fn x => mk_frame x nmterms) |
|
2002 |> cterm_of (Proof_Context.theory_of ctxt) |
|
2003 val need_frame = (nmterms <> []) |
|
2004 in |
|
2005 (post_cond_npc, |
|
2006 pre_cond_frame, |
|
2007 post_cond_frame, need_frame, is_last) |
|
2008 end |
|
2009 *} |
|
2010 |
|
2011 ML {* |
|
2012 fun step_tac ctxt thm i state = |
|
2013 let |
|
2014 val _ = tracing ctxt "This is the new version of step_tac" |
|
2015 val (goal, ctxt) = nth (Thm.prems_of state) (i - 1) |
|
2016 |> focus_concl ctxt |
|
2017 |> (apfst HOLogic.dest_Trueprop) |
|
2018 val _ = tracing ctxt "step_tac: goal = " |
|
2019 val _ = goal |> pterm ctxt |
|
2020 val _ = tracing ctxt "Start to calculate intermediate terms ... " |
|
2021 val (post_cond_npc, pre_cond_frame, post_cond_frame, need_frame, is_last) |
|
2022 = step_terms_for thm goal ctxt |
|
2023 val _ = tracing ctxt "Tring to find triple processor: TP" |
|
2024 val TP = triple_for ctxt goal |
|
2025 val _ = #binding TP |> Binding.name_of |> tracing ctxt |
|
2026 fun mk_sep_conj tms = foldr (fn tm => fn rtm => |
|
2027 ((#sconj_term TP)$tm$rtm)) (but_last tms) (last tms) |
|
2028 val _ = tracing ctxt "Calculate intermediate terms finished! " |
|
2029 val post_cond_npc_str = post_cond_npc |> string_for_cterm ctxt |
|
2030 val pre_cond_frame_str = pre_cond_frame |> string_for_cterm ctxt |
|
2031 val _ = tracing ctxt "step_tac: post_cond_npc = " |
|
2032 val _ = post_cond_npc |> pcterm ctxt |
|
2033 val _ = tracing ctxt "step_tac: pre_cond_frame = " |
|
2034 val _ = pre_cond_frame |> pcterm ctxt |
|
2035 fun tac1 i state = |
|
2036 if is_last then (K all_tac) i state else |
|
2037 res_inst_tac ctxt [(("q", 0), post_cond_npc_str)] |
|
2038 (#hoare_seq1 TP) i state |
|
2039 fun tac2 i state = res_inst_tac ctxt [(("p", 0), pre_cond_frame_str)] |
|
2040 (#pre_stren TP) i state |
|
2041 fun foc_tac post_cond_frame ctxt i state = |
|
2042 let |
|
2043 val goal = get_concl ctxt (i, state) |
|
2044 val pc_term = goal |> #get_post TP ctxt |> break_sep_conj |
|
2045 |> filter (#is_pc_term TP) |> hd |
|
2046 val (_$Free(j', _)) = pc_term |
|
2047 val psd = post_cond_frame j' |
|
2048 val str_psd = psd |> string_for_cterm ctxt |
|
2049 val _ = tracing ctxt "foc_tac: psd = " |
|
2050 val _ = psd |> pcterm ctxt |
|
2051 in |
|
2052 res_inst_tac ctxt [(("q", 0), str_psd)] |
|
2053 (#post_weaken TP) i state |
|
2054 end |
|
2055 val frame_tac = if need_frame then (rtac (#frame_rule TP)) else (K all_tac) |
|
2056 val print_tac = if (Config.get ctxt trace_step) then Tactical.print_tac else (K all_tac) |
|
2057 val tac = (tac1 THEN' (K (print_tac "tac1 success"))) THEN' |
|
2058 (tac2 THEN' (K (print_tac "tac2 success"))) THEN' |
|
2059 ((foc_tac post_cond_frame ctxt) THEN' (K (print_tac "foc_tac success"))) THEN' |
|
2060 (frame_tac THEN' (K (print_tac "frame_tac success"))) THEN' |
|
2061 (((rtac thm) THEN_ALL_NEW (#sep_conj_ac_tac TP ctxt)) THEN' (K (print_tac "rtac thm success"))) THEN' |
|
2062 (K (ALLGOALS (atomic (#sep_conj_ac_tac TP ctxt)))) THEN' |
|
2063 (* (#sep_conj_ac_tac TP ctxt) THEN' (#sep_conj_ac_tac TP ctxt) THEN' *) |
|
2064 (K prune_params_tac) |
|
2065 in |
|
2066 tac i state |
|
2067 end |
|
2068 |
|
2069 fun unfold_cell_tac ctxt = (Local_Defs.unfold_tac ctxt @{thms one_def zero_def}) |
|
2070 fun fold_cell_tac ctxt = (Local_Defs.fold_tac ctxt @{thms one_def zero_def}) |
|
2071 *} |
|
2072 |
|
2073 ML {* |
|
2074 fun sg_step_tac thms ctxt = |
|
2075 let val sg_step_tac' = (map (fn thm => attemp (step_tac ctxt thm)) thms) |
|
2076 (* @ [attemp (goto_tac ctxt)] *) |
|
2077 |> FIRST' |
|
2078 val sg_step_tac'' = (K (unfold_cell_tac ctxt)) THEN' sg_step_tac' THEN' (K (fold_cell_tac ctxt)) |
|
2079 in |
|
2080 sg_step_tac' ORELSE' sg_step_tac'' |
|
2081 end |
|
2082 fun steps_tac thms ctxt i = REPEAT (sg_step_tac thms ctxt i) THEN (prune_params_tac) |
|
2083 *} |
|
2084 |
|
2085 ML {* |
|
2086 open StackMonad |
|
2087 *} |
|
2088 |
|
2089 method_setup hstep = {* |
|
2090 Attrib.thms >> (fn thms => fn ctxt => |
|
2091 (SIMPLE_METHOD' (fn i => |
|
2092 sg_step_tac (thms@(StepRules.get ctxt)) ctxt i))) |
|
2093 *} |
|
2094 "One step symbolic execution using step theorems." |
|
2095 |
|
2096 method_setup hsteps = {* |
|
2097 Attrib.thms >> (fn thms => fn ctxt => |
|
2098 (SIMPLE_METHOD' (fn i => |
|
2099 steps_tac (thms@(StepRules.get ctxt)) ctxt i))) |
|
2100 *} |
|
2101 "Sequential symbolic execution using step theorems." |
|
2102 |
|
2103 ML {* |
|
2104 fun goto_tac ctxt thm i state = |
|
2105 let |
|
2106 val (goal, ctxt) = nth (Thm.prems_of state) (i - 1) |
|
2107 |> focus_concl ctxt |> (apfst HOLogic.dest_Trueprop) |
|
2108 val _ = tracing ctxt "goto_tac: goal = " |
|
2109 val _ = goal |> string_of_term ctxt |> tracing ctxt |
|
2110 val (post_cond_npc, pre_cond_frame, post_cond_frame, need_frame, is_last) |
|
2111 = step_terms_for thm goal ctxt |
|
2112 val _ = tracing ctxt "Tring to find triple processor: TP" |
|
2113 val TP = triple_for ctxt goal |
|
2114 val _ = #binding TP |> Binding.name_of |> tracing ctxt |
|
2115 val _ = tracing ctxt "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
|
2116 val post_cond_npc_str = post_cond_npc |> string_for_cterm ctxt |
|
2117 val pre_cond_frame_str = pre_cond_frame |> string_for_cterm ctxt |
|
2118 val _ = tracing ctxt "goto_tac: post_cond_npc = " |
|
2119 val _ = post_cond_npc_str |> tracing ctxt |
|
2120 val _ = tracing ctxt "goto_tac: pre_cond_frame = " |
|
2121 val _ = pre_cond_frame_str |> tracing ctxt |
|
2122 fun tac1 i state = |
|
2123 if is_last then (K all_tac) i state else |
|
2124 res_inst_tac ctxt [] |
|
2125 (#hoare_seq2 TP) i state |
|
2126 fun tac2 i state = res_inst_tac ctxt [(("p", 0), pre_cond_frame_str)] |
|
2127 (#pre_stren TP) i state |
|
2128 fun foc_tac post_cond_frame ctxt i state = |
|
2129 let |
|
2130 val goal = get_concl ctxt (i, state) |
|
2131 val pc_term = goal |> #get_post TP ctxt |> break_sep_conj |
|
2132 |> filter (#is_pc_term TP) |> hd |
|
2133 val (_$Free(j', _)) = pc_term |
|
2134 val psd = post_cond_frame j' |
|
2135 val str_psd = psd |> string_for_cterm ctxt |
|
2136 val _ = tracing ctxt "goto_tac: psd = " |
|
2137 val _ = str_psd |> tracing ctxt |
|
2138 in |
|
2139 res_inst_tac ctxt [(("q", 0), str_psd)] |
|
2140 (#post_weaken TP) i state |
|
2141 end |
|
2142 val frame_tac = if need_frame then (rtac (#frame_rule TP)) else (K all_tac) |
|
2143 val _ = tracing ctxt "goto_tac: starting to apply tacs" |
|
2144 val print_tac = if (Config.get ctxt trace_step) then Tactical.print_tac else (K all_tac) |
|
2145 val tac = (tac1 THEN' (K (print_tac "tac1 success"))) THEN' |
|
2146 (tac2 THEN' (K (print_tac "tac2 success"))) THEN' |
|
2147 ((foc_tac post_cond_frame ctxt) THEN' (K (print_tac "foc_tac success"))) THEN' |
|
2148 (frame_tac THEN' (K (print_tac "frame_tac success"))) THEN' |
|
2149 ((((rtac thm) THEN_ALL_NEW (#sep_conj_ac_tac TP ctxt))) THEN' |
|
2150 (K (print_tac "rtac success")) |
|
2151 ) THEN' |
|
2152 (K (ALLGOALS (atomic (#sep_conj_ac_tac TP ctxt)))) THEN' |
|
2153 (K prune_params_tac) |
|
2154 in |
|
2155 tac i state |
|
2156 end |
|
2157 *} |
|
2158 |
|
2159 ML {* |
|
2160 fun sg_goto_tac thms ctxt = |
|
2161 let val sg_goto_tac' = (map (fn thm => attemp (goto_tac ctxt thm)) thms) |
|
2162 |> FIRST' |
|
2163 val sg_goto_tac'' = (K (unfold_cell_tac ctxt)) THEN' sg_goto_tac' THEN' (K (fold_cell_tac ctxt)) |
|
2164 in |
|
2165 sg_goto_tac' ORELSE' sg_goto_tac'' |
|
2166 end |
|
2167 fun gotos_tac thms ctxt i = REPEAT (sg_goto_tac thms ctxt i) THEN (prune_params_tac) |
|
2168 *} |
|
2169 |
|
2170 method_setup hgoto = {* |
|
2171 Attrib.thms >> (fn thms => fn ctxt => |
|
2172 (SIMPLE_METHOD' (fn i => |
|
2173 sg_goto_tac (thms@(StepRules.get ctxt)) ctxt i))) |
|
2174 *} |
|
2175 "One step symbolic execution using goto theorems." |
|
2176 |
|
2177 subsection {* Tactic for forward reasoning *} |
|
2178 |
|
2179 ML {* |
|
2180 fun mk_msel_rule ctxt conclusion idx term = |
|
2181 let |
|
2182 val cjt_count = term |> break_sep_conj |> length |
|
2183 fun variants nctxt names = fold_map Name.variant names nctxt; |
|
2184 |
|
2185 val (state, nctxt0) = Name.variant "s" (Variable.names_of ctxt); |
|
2186 |
|
2187 fun sep_conj_prop cjts = |
|
2188 FunApp.fun_app_free |
|
2189 (FunApp.fun_app_foldr SepConj.sep_conj_term cjts) state |
|
2190 |> HOLogic.mk_Trueprop; |
|
2191 |
|
2192 (* concatenate string and string of an int *) |
|
2193 fun conc_str_int str int = str ^ Int.toString int; |
|
2194 |
|
2195 (* make the conjunct names *) |
|
2196 val (cjts, _) = ListExtra.range 1 cjt_count |
|
2197 |> map (conc_str_int "a") |> variants nctxt0; |
|
2198 |
|
2199 fun skel_sep_conj names (Const (@{const_name sep_conj}, _) $ t1 $ t2 $ y) = |
|
2200 (let val nm1 = take (length (break_sep_conj t1)) names |
|
2201 val nm2 = drop (length (break_sep_conj t1)) names |
|
2202 val t1' = skel_sep_conj nm1 t1 |
|
2203 val t2' = skel_sep_conj nm2 t2 |
|
2204 in (SepConj.sep_conj_term $ t1' $ t2' $ y) end) |
|
2205 | skel_sep_conj names (Const (@{const_name sep_conj}, _) $ t1 $ t2) = |
|
2206 (let val nm1 = take (length (break_sep_conj t1)) names |
|
2207 val nm2 = drop (length (break_sep_conj t1)) names |
|
2208 val t1' = skel_sep_conj nm1 t1 |
|
2209 val t2' = skel_sep_conj nm2 t2 |
|
2210 in (SepConj.sep_conj_term $ t1' $ t2') end) |
|
2211 | skel_sep_conj names (Abs (x, y, t $ Bound 0)) = |
|
2212 let val t' = (skel_sep_conj names t) |
|
2213 val ty' = t' |> type_of |> domain_type |
|
2214 in (Abs (x, ty', (t' $ Bound 0))) end |
|
2215 | skel_sep_conj names t = Free (hd names, SepConj.sep_conj_term |> type_of |> domain_type); |
|
2216 val _ = tracing ctxt "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" |
|
2217 val oskel = skel_sep_conj cjts term; |
|
2218 val _ = tracing ctxt "yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy" |
|
2219 val ttt = oskel |> type_of |
|
2220 val _ = tracing ctxt "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz" |
|
2221 val orig = FunApp.fun_app_free oskel state |> HOLogic.mk_Trueprop |
|
2222 val _ = tracing ctxt "uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu" |
|
2223 val is_selected = member (fn (x, y) => x = y) idx |
|
2224 val all_idx = ListExtra.range 0 cjt_count |
|
2225 val selected_idx = idx |
|
2226 val unselected_idx = filter_out is_selected all_idx |
|
2227 val selected = map (nth cjts) selected_idx |
|
2228 val unselected = map (nth cjts) unselected_idx |
|
2229 |
|
2230 fun fun_app_foldr f [a,b] = FunApp.fun_app_free (FunApp.fun_app_free f a) b |
|
2231 | fun_app_foldr f [a] = Free (a, SepConj.sep_conj_term |> type_of |> domain_type) |
|
2232 | fun_app_foldr f (x::xs) = (FunApp.fun_app_free f x) $ (fun_app_foldr f xs) |
|
2233 | fun_app_foldr _ _ = raise Fail "fun_app_foldr"; |
|
2234 |
|
2235 val reordered_skel = |
|
2236 if unselected = [] then (fun_app_foldr SepConj.sep_conj_term selected) |
|
2237 else (SepConj.sep_conj_term $ (fun_app_foldr SepConj.sep_conj_term selected) |
|
2238 $ (fun_app_foldr SepConj.sep_conj_term unselected)) |
|
2239 |
|
2240 val reordered = FunApp.fun_app_free reordered_skel state |> HOLogic.mk_Trueprop |
|
2241 val goal = Logic.mk_implies |
|
2242 (if conclusion then (orig, reordered) else (reordered, orig)); |
|
2243 val rule = |
|
2244 Goal.prove ctxt [] [] goal (fn _ => |
|
2245 auto_tac (ctxt |> Simplifier.map_simpset (fn ss => ss addsimps @{thms sep_conj_ac}))) |
|
2246 |> Drule.export_without_context |
|
2247 in |
|
2248 rule |
|
2249 end |
|
2250 *} |
|
2251 |
|
2252 lemma fwd_rule: |
|
2253 assumes "\<And> s . U s \<longrightarrow> V s" |
|
2254 shows "(U ** RR) s \<Longrightarrow> (V ** RR) s" |
|
2255 by (metis assms sep_globalise) |
|
2256 |
|
2257 ML {* |
|
2258 fun sg_sg_fwd_tac ctxt thm pos i state = |
|
2259 let |
|
2260 |
|
2261 val tracing = (fn str => |
|
2262 if (Config.get ctxt trace_fwd) then Output.tracing str else ()) |
|
2263 fun pterm t = |
|
2264 t |> string_of_term ctxt |> tracing |
|
2265 fun pcterm ct = ct |> string_of_cterm ctxt |> tracing |
|
2266 |
|
2267 fun atm thm = |
|
2268 let |
|
2269 (* val thm = thm |> Drule.forall_intr_vars *) |
|
2270 val res = thm |> cprop_of |> Object_Logic.atomize |
|
2271 val res' = Raw_Simplifier.rewrite_rule [res] thm |
|
2272 in res' end |
|
2273 |
|
2274 fun find_idx ctxt pats terms = |
|
2275 let val result = |
|
2276 map (fn pat => (find_index (fn trm => ((match ctxt pat trm; true) |
|
2277 handle _ => false)) terms)) pats |
|
2278 in (assert_all (fn x => x >= 0) result (K "match of precondition failed")); |
|
2279 result |
|
2280 end |
|
2281 |
|
2282 val goal = nth (Drule.cprems_of state) (i - 1) |> term_of |
|
2283 val _ = tracing "goal = " |
|
2284 val _ = goal |> pterm |
|
2285 |
|
2286 val ctxt_orig = ctxt |
|
2287 |
|
2288 val ((ps, goal), ctxt) = Variable.focus goal ctxt_orig |
|
2289 |
|
2290 val prems = goal |> Logic.strip_imp_prems |
|
2291 |
|
2292 val cprem = nth prems (pos - 1) |
|
2293 val (_ $ (the_prem $ _)) = cprem |
|
2294 val cjts = the_prem |> break_sep_conj |
|
2295 val thm_prems = thm |> cprems_of |> hd |> Thm.dest_arg |> Thm.dest_fun |
|
2296 val thm_assms = thm |> cprems_of |> tl |> map term_of |
|
2297 val thm_cjts = thm_prems |> term_of |> break_sep_conj |
|
2298 val thm_trm = thm |> prop_of |
|
2299 |
|
2300 val _ = tracing "cjts = " |
|
2301 val _ = cjts |> map pterm |
|
2302 val _ = tracing "thm_cjts = " |
|
2303 val _ = thm_cjts |> map pterm |
|
2304 |
|
2305 val _ = tracing "Calculating sols" |
|
2306 val sols = match_pres ctxt (match_env ctxt) empty_env thm_cjts cjts |
|
2307 val _ = tracing "End calculating sols, sols =" |
|
2308 val _ = tracing (@{make_string} sols) |
|
2309 val _ = tracing "Calulating env2 and idxs" |
|
2310 val (env2, idx) = filter (fn (env, idxs) => make_sense sep_conj_ac_tac ctxt thm_assms env) sols |> hd |
|
2311 val ([thm'_trm], ctxt') = thm_trm |> inst env2 |> single |
|
2312 |> (fn trms => Variable.import_terms true trms ctxt) |
|
2313 val thm'_prem = Logic.strip_imp_prems thm'_trm |> hd |
|
2314 val thm'_concl = Logic.strip_imp_concl thm'_trm |
|
2315 val thm'_prem = (Goal.prove ctxt' [] [thm'_prem] thm'_concl |
|
2316 (fn {context, prems = [prem]} => |
|
2317 (rtac (prem RS thm) THEN_ALL_NEW (sep_conj_ac_tac ctxt)) 1)) |
|
2318 val [thm'] = Variable.export ctxt' ctxt_orig [thm'_prem] |
|
2319 val trans_rule = |
|
2320 mk_msel_rule ctxt true idx the_prem |
|
2321 val _ = tracing "trans_rule = " |
|
2322 val _ = trans_rule |> cprop_of |> pcterm |
|
2323 val app_rule = |
|
2324 if (length cjts = length thm_cjts) then thm' else |
|
2325 ((thm' |> atm) RS @{thm fwd_rule}) |
|
2326 val _ = tracing "app_rule = " |
|
2327 val _ = app_rule |> cprop_of |> pcterm |
|
2328 val print_tac = if (Config.get ctxt trace_fwd) then Tactical.print_tac else (K all_tac) |
|
2329 val the_tac = (dtac trans_rule THEN' (K (print_tac "dtac1 success"))) THEN' |
|
2330 ((dtac app_rule THEN' (K (print_tac "dtac2 success")))) |
|
2331 in |
|
2332 (the_tac i state) handle _ => no_tac state |
|
2333 end |
|
2334 *} |
|
2335 |
|
2336 ML {* |
|
2337 fun sg_fwd_tac ctxt thm i state = |
|
2338 let |
|
2339 val goal = nth (Drule.cprems_of state) (i - 1) |
|
2340 val prems = goal |> term_of |> Term.strip_all_body |> Logic.strip_imp_prems |
|
2341 val posx = ListExtra.range 1 (length prems) |
|
2342 in |
|
2343 ((map (fn pos => attemp (sg_sg_fwd_tac ctxt thm pos)) posx) |> FIRST') i state |
|
2344 end |
|
2345 |
|
2346 fun fwd_tac ctxt thms i state = |
|
2347 ((map (fn thm => sg_fwd_tac ctxt thm) thms) |> FIRST') i state |
|
2348 *} |
|
2349 |
|
2350 method_setup fwd = {* |
|
2351 Attrib.thms >> (fn thms => fn ctxt => |
|
2352 (SIMPLE_METHOD' (fn i => |
|
2353 fwd_tac ctxt (thms@(FwdRules.get ctxt)) i))) |
|
2354 *} |
|
2355 "Forward derivation of separation implication" |
|
2356 |
|
2357 text {* Testing the fwd tactic *} |
|
2358 |
|
2359 lemma ones_abs: |
|
2360 assumes "(ones u v \<and>* ones w x) s" "w = v + 1" |
|
2361 shows "ones u x s" |
|
2362 using assms(1) unfolding assms(2) |
|
2363 proof(induct u v arbitrary: x s rule:ones_induct) |
|
2364 case (Base i j x s) |
|
2365 thus ?case by (auto elim!:condE) |
|
2366 next |
|
2367 case (Step i j x s) |
|
2368 hence h: "\<And> x s. (ones (i + 1) j \<and>* ones (j + 1) x) s \<longrightarrow> ones (i + 1) x s" |
|
2369 by metis |
|
2370 hence "(ones (i + 1) x \<and>* one i) s" |
|
2371 by (rule fwd_rule, insert Step(3), auto simp:sep_conj_ac) |
|
2372 thus ?case |
|
2373 by (smt condD ones.simps sep_conj_commute) |
|
2374 qed |
|
2375 |
|
2376 lemma one_abs: "(one m) s \<Longrightarrow> (ones m m) s" |
|
2377 by (smt cond_true_eq2 ones.simps) |
|
2378 |
|
2379 lemma ones_reps_abs: |
|
2380 assumes "ones m n s" |
|
2381 "m \<le> n" |
|
2382 shows "(reps m n [nat (n - m)]) s" |
|
2383 using assms |
|
2384 by simp |
|
2385 |
|
2386 lemma reps_reps'_abs: |
|
2387 assumes "(reps m n xs \<and>* zero u) s" "u = n + 1" "xs \<noteq> []" |
|
2388 shows "(reps' m u xs) s" |
|
2389 unfolding assms using assms |
|
2390 by (unfold reps'_def, simp) |
|
2391 |
|
2392 lemma reps'_abs: |
|
2393 assumes "(reps' m n xs \<and>* reps' u v ys) s" "u = n + 1" |
|
2394 shows "(reps' m v (xs @ ys)) s" |
|
2395 apply (unfold reps'_append, rule_tac x = u in EXS_intro) |
|
2396 by (insert assms, simp) |
|
2397 |
|
2398 lemmas abs_ones = one_abs ones_abs |
|
2399 |
|
2400 lemmas abs_reps' = ones_reps_abs reps_reps'_abs reps'_abs |
|
2401 |
|
2402 |
|
2403 section {* Modular TM programming and verification *} |
|
2404 |
|
2405 lemma ones_false [simp]: "j < i - 1 \<Longrightarrow> (ones i j) = sep_false" |
|
2406 by (simp add:pasrt_def) |
|
2407 |
|
2408 lemma hoare_right_until_zero: |
|
2409 "\<lbrace>st i ** ps u ** ones u (v - 1) ** zero v \<rbrace> |
|
2410 i:[right_until_zero]:j |
|
2411 \<lbrace>st j ** ps v ** ones u (v - 1) ** zero v \<rbrace>" |
|
2412 proof(unfold right_until_zero_def, |
|
2413 intro t_hoare_local t_hoare_label, clarify, |
|
2414 rule t_hoare_label_last, simp, simp) |
|
2415 fix la |
|
2416 let ?body = "i :[ (if_zero la ; move_right ; jmp i) ]: la" |
|
2417 let ?j = la |
|
2418 show "\<lbrace>st i \<and>* ps u \<and>* ones u (v - 1) \<and>* zero v\<rbrace> ?body |
|
2419 \<lbrace>st ?j \<and>* ps v \<and>* ones u (v - 1) \<and>* zero v\<rbrace>" (is "?P u (v - 1) (ones u (v - 1))") |
|
2420 proof(induct "u" "v - 1" rule:ones_induct) |
|
2421 case (Base k) |
|
2422 moreover have "\<lbrace>st i \<and>* ps v \<and>* zero v\<rbrace> ?body |
|
2423 \<lbrace>st ?j \<and>* ps v \<and>* zero v\<rbrace>" by hsteps |
|
2424 ultimately show ?case by (auto intro!:tm.pre_condI simp:sep_conj_cond) |
|
2425 next |
|
2426 case (Step k) |
|
2427 moreover have "\<lbrace>st i \<and>* ps k \<and>* (one k \<and>* ones (k + 1) (v - 1)) \<and>* zero v\<rbrace> |
|
2428 i :[ (if_zero ?j ; move_right ; jmp i) ]: ?j |
|
2429 \<lbrace>st ?j \<and>* ps v \<and>* (one k \<and>* ones (k + 1) (v - 1)) \<and>* zero v\<rbrace>" |
|
2430 proof - |
|
2431 have s1: "\<lbrace>st i \<and>* ps k \<and>* (one k \<and>* ones (k + 1) (v - 1)) \<and>* zero v\<rbrace> |
|
2432 ?body |
|
2433 \<lbrace>st i \<and>* ps (k + 1) \<and>* one k \<and>* ones (k + 1) (v - 1) \<and>* zero v\<rbrace>" |
|
2434 proof(cases "k + 1 \<ge> v") |
|
2435 case True |
|
2436 with Step(1) have "v = k + 1" by arith |
|
2437 thus ?thesis |
|
2438 apply(simp add: one_def) |
|
2439 by hsteps |
|
2440 next |
|
2441 case False |
|
2442 hence eq_ones: "ones (k + 1) (v - 1) = |
|
2443 (one (k + 1) \<and>* ones ((k + 1) + 1) (v - 1))" |
|
2444 by simp |
|
2445 show ?thesis |
|
2446 apply(simp only: eq_ones) |
|
2447 by hsteps |
|
2448 qed |
|
2449 note Step(2)[step] |
|
2450 have s2: "\<lbrace>st i \<and>* ps (k + 1) \<and>* one k \<and>* ones (k + 1) (v - 1) \<and>* zero v\<rbrace> |
|
2451 ?body |
|
2452 \<lbrace>st ?j \<and>* ps v \<and>* one k \<and>* ones (k + 1) (v - 1) \<and>* zero v\<rbrace>" |
|
2453 by hsteps |
|
2454 from tm.sequencing [OF s1 s2, step] |
|
2455 show ?thesis |
|
2456 by (auto simp:sep_conj_ac) |
|
2457 qed |
|
2458 ultimately show ?case by simp |
|
2459 qed |
|
2460 qed |
|
2461 |
|
2462 lemma hoare_right_until_zero_gen[step]: |
|
2463 assumes "u = v" "w = x - 1" |
|
2464 shows "\<lbrace>st i ** ps u ** ones v w ** zero x \<rbrace> |
|
2465 i:[right_until_zero]:j |
|
2466 \<lbrace>st j ** ps x ** ones v w ** zero x \<rbrace>" |
|
2467 by (unfold assms, rule hoare_right_until_zero) |
|
2468 |
|
2469 lemma hoare_left_until_zero: |
|
2470 "\<lbrace>st i ** ps v ** zero u ** ones (u + 1) v \<rbrace> |
|
2471 i:[left_until_zero]:j |
|
2472 \<lbrace>st j ** ps u ** zero u ** ones (u + 1) v \<rbrace>" |
|
2473 proof(unfold left_until_zero_def, |
|
2474 intro t_hoare_local t_hoare_label, clarify, |
|
2475 rule t_hoare_label_last, simp+) |
|
2476 fix la |
|
2477 let ?body = "i :[ (if_zero la ; move_left ; jmp i) ]: la" |
|
2478 let ?j = la |
|
2479 show "\<lbrace>st i \<and>* ps v \<and>* zero u \<and>* ones (u + 1) v\<rbrace> ?body |
|
2480 \<lbrace>st ?j \<and>* ps u \<and>* zero u \<and>* ones (u + 1) v\<rbrace>" |
|
2481 proof(induct "u+1" v rule:ones_rev_induct) |
|
2482 case (Base k) |
|
2483 thus ?case |
|
2484 by (simp add:sep_conj_cond, intro tm.pre_condI, simp, hstep) |
|
2485 next |
|
2486 case (Step k) |
|
2487 have "\<lbrace>st i \<and>* ps k \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace> |
|
2488 ?body |
|
2489 \<lbrace>st ?j \<and>* ps u \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace>" |
|
2490 proof(rule tm.sequencing[where q = |
|
2491 "st i \<and>* ps (k - 1) \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k"]) |
|
2492 show "\<lbrace>st i \<and>* ps k \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace> |
|
2493 ?body |
|
2494 \<lbrace>st i \<and>* ps (k - 1) \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace>" |
|
2495 proof(induct "u + 1" "k - 1" rule:ones_rev_induct) |
|
2496 case Base with Step(1) have "k = u + 1" by arith |
|
2497 thus ?thesis |
|
2498 by (simp, hsteps) |
|
2499 next |
|
2500 case Step |
|
2501 show ?thesis |
|
2502 apply (unfold ones_rev[OF Step(1)], simp) |
|
2503 apply (unfold one_def) |
|
2504 by hsteps |
|
2505 qed |
|
2506 next |
|
2507 note Step(2) [step] |
|
2508 show "\<lbrace>st i \<and>* ps (k - 1) \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace> |
|
2509 ?body |
|
2510 \<lbrace>st ?j \<and>* ps u \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace>" by hsteps |
|
2511 qed |
|
2512 thus ?case by (unfold ones_rev[OF Step(1)], simp) |
|
2513 qed |
|
2514 qed |
|
2515 |
|
2516 lemma hoare_left_until_zero_gen[step]: |
|
2517 assumes "u = x" "w = v + 1" |
|
2518 shows "\<lbrace>st i ** ps u ** zero v ** ones w x \<rbrace> |
|
2519 i:[left_until_zero]:j |
|
2520 \<lbrace>st j ** ps v ** zero v ** ones w x \<rbrace>" |
|
2521 by (unfold assms, rule hoare_left_until_zero) |
|
2522 |
|
2523 lemma hoare_right_until_one: |
|
2524 "\<lbrace>st i ** ps u ** zeros u (v - 1) ** one v \<rbrace> |
|
2525 i:[right_until_one]:j |
|
2526 \<lbrace>st j ** ps v ** zeros u (v - 1) ** one v \<rbrace>" |
|
2527 proof(unfold right_until_one_def, |
|
2528 intro t_hoare_local t_hoare_label, clarify, |
|
2529 rule t_hoare_label_last, simp+) |
|
2530 fix la |
|
2531 let ?body = "i :[ (if_one la ; move_right ; jmp i) ]: la" |
|
2532 let ?j = la |
|
2533 show "\<lbrace>st i \<and>* ps u \<and>* zeros u (v - 1) \<and>* one v\<rbrace> ?body |
|
2534 \<lbrace>st ?j \<and>* ps v \<and>* zeros u (v - 1) \<and>* one v\<rbrace>" |
|
2535 proof(induct u "v - 1" rule:zeros_induct) |
|
2536 case (Base k) |
|
2537 thus ?case |
|
2538 by (simp add:sep_conj_cond, intro tm.pre_condI, simp, hsteps) |
|
2539 next |
|
2540 case (Step k) |
|
2541 have "\<lbrace>st i \<and>* ps k \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace> |
|
2542 ?body |
|
2543 \<lbrace>st ?j \<and>* ps v \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace>" |
|
2544 proof(rule tm.sequencing[where q = |
|
2545 "st i \<and>* ps (k + 1) \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v"]) |
|
2546 show "\<lbrace>st i \<and>* ps k \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace> |
|
2547 ?body |
|
2548 \<lbrace>st i \<and>* ps (k + 1) \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace>" |
|
2549 proof(induct "k + 1" "v - 1" rule:zeros_induct) |
|
2550 case Base |
|
2551 with Step(1) have eq_v: "k + 1 = v" by arith |
|
2552 from Base show ?thesis |
|
2553 apply (simp add:sep_conj_cond, intro tm.pre_condI, simp) |
|
2554 apply (hstep, clarsimp) |
|
2555 by hsteps |
|
2556 next |
|
2557 case Step |
|
2558 thus ?thesis |
|
2559 by (simp, hsteps) |
|
2560 qed |
|
2561 next |
|
2562 note Step(2)[step] |
|
2563 show "\<lbrace>st i \<and>* ps (k + 1) \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace> |
|
2564 ?body |
|
2565 \<lbrace>st ?j \<and>* ps v \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace>" |
|
2566 by hsteps |
|
2567 qed |
|
2568 thus ?case by (auto simp: sep_conj_ac Step(1)) |
|
2569 qed |
|
2570 qed |
|
2571 |
|
2572 lemma hoare_right_until_one_gen[step]: |
|
2573 assumes "u = v" "w = x - 1" |
|
2574 shows |
|
2575 "\<lbrace>st i ** ps u ** zeros v w ** one x \<rbrace> |
|
2576 i:[right_until_one]:j |
|
2577 \<lbrace>st j ** ps x ** zeros v w ** one x \<rbrace>" |
|
2578 by (unfold assms, rule hoare_right_until_one) |
|
2579 |
|
2580 lemma hoare_left_until_one: |
|
2581 "\<lbrace>st i ** ps v ** one u ** zeros (u + 1) v \<rbrace> |
|
2582 i:[left_until_one]:j |
|
2583 \<lbrace>st j ** ps u ** one u ** zeros (u + 1) v \<rbrace>" |
|
2584 proof(unfold left_until_one_def, |
|
2585 intro t_hoare_local t_hoare_label, clarify, |
|
2586 rule t_hoare_label_last, simp+) |
|
2587 fix la |
|
2588 let ?body = "i :[ (if_one la ; move_left ; jmp i) ]: la" |
|
2589 let ?j = la |
|
2590 show "\<lbrace>st i \<and>* ps v \<and>* one u \<and>* zeros (u + 1) v\<rbrace> ?body |
|
2591 \<lbrace>st ?j \<and>* ps u \<and>* one u \<and>* zeros (u + 1) v\<rbrace>" |
|
2592 proof(induct u v rule: ones'.induct) |
|
2593 fix ia ja |
|
2594 assume h: "\<not> ja < ia \<Longrightarrow> |
|
2595 \<lbrace>st i \<and>* ps (ja - 1) \<and>* one ia \<and>* zeros (ia + 1) (ja - 1)\<rbrace> ?body |
|
2596 \<lbrace>st ?j \<and>* ps ia \<and>* one ia \<and>* zeros (ia + 1) (ja - 1)\<rbrace>" |
|
2597 show "\<lbrace>st i \<and>* ps ja \<and>* one ia \<and>* zeros (ia + 1) ja\<rbrace> ?body |
|
2598 \<lbrace>st ?j \<and>* ps ia \<and>* one ia \<and>* zeros (ia + 1) ja\<rbrace>" |
|
2599 proof(cases "ja < ia") |
|
2600 case False |
|
2601 note lt = False |
|
2602 from h[OF this] have [step]: |
|
2603 "\<lbrace>st i \<and>* ps (ja - 1) \<and>* one ia \<and>* zeros (ia + 1) (ja - 1)\<rbrace> ?body |
|
2604 \<lbrace>st ?j \<and>* ps ia \<and>* one ia \<and>* zeros (ia + 1) (ja - 1)\<rbrace>" . |
|
2605 show ?thesis |
|
2606 proof(cases "ja = ia") |
|
2607 case True |
|
2608 moreover |
|
2609 have "\<lbrace>st i \<and>* ps ja \<and>* one ja\<rbrace> ?body \<lbrace>st ?j \<and>* ps ja \<and>* one ja\<rbrace>" |
|
2610 by hsteps |
|
2611 ultimately show ?thesis by auto |
|
2612 next |
|
2613 case False |
|
2614 with lt have k1: "ia < ja" by auto |
|
2615 from zeros_rev[of "ja" "ia + 1"] this |
|
2616 have eq_zeros: "zeros (ia + 1) ja = (zeros (ia + 1) (ja - 1) \<and>* zero ja)" |
|
2617 by simp |
|
2618 have s1: "\<lbrace>st i \<and>* ps ja \<and>* one ia \<and>* zeros (ia + 1) (ja - 1) \<and>* zero ja\<rbrace> |
|
2619 ?body |
|
2620 \<lbrace>st i \<and>* ps (ja - 1) \<and>* one ia \<and>* zeros (ia + 1) (ja - 1) \<and>* zero ja\<rbrace>" |
|
2621 proof(cases "ia + 1 \<ge> ja") |
|
2622 case True |
|
2623 from k1 True have "ja = ia + 1" by arith |
|
2624 moreover have "\<lbrace>st i \<and>* ps (ia + 1) \<and>* one (ia + 1 - 1) \<and>* zero (ia + 1)\<rbrace> |
|
2625 i :[ (if_one ?j ; move_left ; jmp i) ]: ?j |
|
2626 \<lbrace>st i \<and>* ps (ia + 1 - 1) \<and>* one (ia + 1 - 1) \<and>* zero (ia + 1)\<rbrace>" |
|
2627 by (hsteps) |
|
2628 ultimately show ?thesis |
|
2629 by (simp) |
|
2630 next |
|
2631 case False |
|
2632 from zeros_rev[of "ja - 1" "ia + 1"] False |
|
2633 have k: "zeros (ia + 1) (ja - 1) = |
|
2634 (zeros (ia + 1) (ja - 1 - 1) \<and>* zero (ja - 1))" |
|
2635 by auto |
|
2636 show ?thesis |
|
2637 apply (unfold k, simp) |
|
2638 by hsteps |
|
2639 qed |
|
2640 have s2: "\<lbrace>st i \<and>* ps (ja - 1) \<and>* one ia \<and>* zeros (ia + 1) (ja - 1) \<and>* zero ja\<rbrace> |
|
2641 ?body |
|
2642 \<lbrace>st ?j \<and>* ps ia \<and>* one ia \<and>* zeros (ia + 1) (ja - 1) \<and>* zero ja\<rbrace>" |
|
2643 by hsteps |
|
2644 from tm.sequencing[OF s1 s2, step] |
|
2645 show ?thesis |
|
2646 apply (unfold eq_zeros) |
|
2647 by hstep |
|
2648 qed (* ccc *) |
|
2649 next |
|
2650 case True |
|
2651 thus ?thesis by (auto intro:tm.hoare_sep_false) |
|
2652 qed |
|
2653 qed |
|
2654 qed |
|
2655 |
|
2656 lemma hoare_left_until_one_gen[step]: |
|
2657 assumes "u = x" "w = v + 1" |
|
2658 shows "\<lbrace>st i ** ps u ** one v ** zeros w x \<rbrace> |
|
2659 i:[left_until_one]:j |
|
2660 \<lbrace>st j ** ps v ** one v ** zeros w x \<rbrace>" |
|
2661 by (unfold assms, rule hoare_left_until_one) |
|
2662 |
|
2663 declare ones.simps[simp del] |
|
2664 |
|
2665 lemma reps_simps3: "ks \<noteq> [] \<Longrightarrow> |
|
2666 reps i j (k # ks) = (ones i (i + int k) ** zero (i + int k + 1) ** reps (i + int k + 2) j ks)" |
|
2667 by(case_tac ks, simp, simp add: reps.simps) |
|
2668 |
|
2669 lemma cond_eqI: |
|
2670 assumes h: "b \<Longrightarrow> r = s" |
|
2671 shows "(<b> ** r) = (<b> ** s)" |
|
2672 proof(cases b) |
|
2673 case True |
|
2674 from h[OF this] show ?thesis by simp |
|
2675 next |
|
2676 case False |
|
2677 thus ?thesis |
|
2678 by (unfold sep_conj_def set_ins_def pasrt_def, auto) |
|
2679 qed |
|
2680 |
|
2681 lemma reps_rev: "ks \<noteq> [] |
|
2682 \<Longrightarrow> reps i j (ks @ [k]) = (reps i (j - int (k + 1) - 1 ) ks \<and>* |
|
2683 zero (j - int (k + 1)) \<and>* ones (j - int k) j)" |
|
2684 proof(induct ks arbitrary: i j) |
|
2685 case Nil |
|
2686 thus ?case by simp |
|
2687 next |
|
2688 case (Cons a ks) |
|
2689 show ?case |
|
2690 proof(cases "ks = []") |
|
2691 case True |
|
2692 thus ?thesis |
|
2693 proof - |
|
2694 have eq_cond: "(j = i + int a + 2 + int k) = (-2 + (j - int k) = i + int a)" by auto |
|
2695 have "(<(-2 + (j - int k) = i + int a)> \<and>* |
|
2696 one i \<and>* ones (i + 1) (i + int a) \<and>* |
|
2697 zero (i + int a + 1) \<and>* one (i + int a + 2) \<and>* ones (3 + (i + int a)) (i + int a + 2 + int k)) |
|
2698 = |
|
2699 (<(-2 + (j - int k) = i + int a)> \<and>* one i \<and>* ones (i + 1) (i + int a) \<and>* |
|
2700 zero (j - (1 + int k)) \<and>* one (j - int k) \<and>* ones (j - int k + 1) j)" |
|
2701 (is "(<?X> \<and>* ?L) = (<?X> \<and>* ?R)") |
|
2702 proof(rule cond_eqI) |
|
2703 assume h: "-2 + (j - int k) = i + int a" |
|
2704 hence eqs: "i + int a + 1 = j - (1 + int k)" |
|
2705 "i + int a + 2 = j - int k" |
|
2706 "3 + (i + int a) = j - int k + 1" |
|
2707 "(i + int a + 2 + int k) = j" |
|
2708 by auto |
|
2709 show "?L = ?R" |
|
2710 by (unfold eqs, auto simp:sep_conj_ac) |
|
2711 qed |
|
2712 with True |
|
2713 show ?thesis |
|
2714 apply (simp del:ones_simps reps.simps) |
|
2715 apply (simp add:sep_conj_cond eq_cond) |
|
2716 by (auto simp:sep_conj_ac) |
|
2717 qed |
|
2718 next |
|
2719 case False |
|
2720 from Cons(1)[OF False, of "i + int a + 2" j] this |
|
2721 show ?thesis |
|
2722 by(simp add: reps_simps3 sep_conj_ac) |
|
2723 qed |
|
2724 qed |
|
2725 |
|
2726 lemma hoare_if_one_reps: |
|
2727 assumes nn: "ks \<noteq> []" |
|
2728 shows "\<lbrace>st i ** ps v ** reps u v ks\<rbrace> |
|
2729 i:[if_one e]:j |
|
2730 \<lbrace>st e ** ps v ** reps u v ks\<rbrace>" |
|
2731 proof(rule rev_exhaust[of ks]) |
|
2732 assume "ks = []" with nn show ?thesis by simp |
|
2733 next |
|
2734 fix y ys |
|
2735 assume eq_ks: "ks = ys @ [y]" |
|
2736 show " \<lbrace>st i \<and>* ps v \<and>* reps u v ks\<rbrace> i :[ if_one e ]: j \<lbrace>st e \<and>* ps v \<and>* reps u v ks\<rbrace>" |
|
2737 proof(cases "ys = []") |
|
2738 case False |
|
2739 have "\<lbrace>st i \<and>* ps v \<and>* reps u v (ys @ [y])\<rbrace> i :[ if_one e ]: j \<lbrace>st e \<and>* ps v \<and>* reps u v (ys @ [y])\<rbrace>" |
|
2740 apply(unfold reps_rev[OF False], simp del:ones_simps add:ones_rev) |
|
2741 by hstep |
|
2742 thus ?thesis |
|
2743 by (simp add:eq_ks) |
|
2744 next |
|
2745 case True |
|
2746 with eq_ks |
|
2747 show ?thesis |
|
2748 apply (simp del:ones_simps add:ones_rev sep_conj_cond, intro tm.pre_condI, simp) |
|
2749 by hstep |
|
2750 qed |
|
2751 qed |
|
2752 |
|
2753 lemma hoare_if_one_reps_gen[step]: |
|
2754 assumes nn: "ks \<noteq> []" "u = w" |
|
2755 shows "\<lbrace>st i ** ps u ** reps v w ks\<rbrace> |
|
2756 i:[if_one e]:j |
|
2757 \<lbrace>st e ** ps u ** reps v w ks\<rbrace>" |
|
2758 by (unfold `u = w`, rule hoare_if_one_reps[OF `ks \<noteq> []`]) |
|
2759 |
|
2760 lemma hoare_if_zero_ones_false[step]: |
|
2761 assumes "\<not> w < u" "v = w" |
|
2762 shows "\<lbrace>st i \<and>* ps v \<and>* ones u w\<rbrace> |
|
2763 i :[if_zero e]: j |
|
2764 \<lbrace>st j \<and>* ps v \<and>* ones u w\<rbrace>" |
|
2765 by (unfold `v = w` ones_rev[OF `\<not> w < u`], hstep) |
|
2766 |
|
2767 lemma hoare_left_until_double_zero_nil[step]: |
|
2768 assumes "u = v" |
|
2769 shows "\<lbrace>st i ** ps u ** zero v\<rbrace> |
|
2770 i:[left_until_double_zero]:j |
|
2771 \<lbrace>st j ** ps u ** zero v\<rbrace>" |
|
2772 apply (unfold `u = v` left_until_double_zero_def, |
|
2773 intro t_hoare_local t_hoare_label, clarsimp, |
|
2774 rule t_hoare_label_last, simp+) |
|
2775 by (hsteps) |
|
2776 |
|
2777 lemma hoare_if_zero_reps_false: |
|
2778 assumes nn: "ks \<noteq> []" |
|
2779 shows "\<lbrace>st i ** ps v ** reps u v ks\<rbrace> |
|
2780 i:[if_zero e]:j |
|
2781 \<lbrace>st j ** ps v ** reps u v ks\<rbrace>" |
|
2782 proof(rule rev_exhaust[of ks]) |
|
2783 assume "ks = []" with nn show ?thesis by simp |
|
2784 next |
|
2785 fix y ys |
|
2786 assume eq_ks: "ks = ys @ [y]" |
|
2787 show " \<lbrace>st i \<and>* ps v \<and>* reps u v ks\<rbrace> i :[ if_zero e ]: j \<lbrace>st j \<and>* ps v \<and>* reps u v ks\<rbrace>" |
|
2788 proof(cases "ys = []") |
|
2789 case False |
|
2790 have "\<lbrace>st i \<and>* ps v \<and>* reps u v (ys @ [y])\<rbrace> i :[ if_zero e ]: j \<lbrace>st j \<and>* ps v \<and>* reps u v (ys @ [y])\<rbrace>" |
|
2791 apply(unfold reps_rev[OF False], simp del:ones_simps add:ones_rev) |
|
2792 by hstep |
|
2793 thus ?thesis |
|
2794 by (simp add:eq_ks) |
|
2795 next |
|
2796 case True |
|
2797 with eq_ks |
|
2798 show ?thesis |
|
2799 apply (simp del:ones_simps add:ones_rev sep_conj_cond, intro tm.pre_condI, simp) |
|
2800 by hstep |
|
2801 qed |
|
2802 qed |
|
2803 |
|
2804 lemma hoare_if_zero_reps_false_gen[step]: |
|
2805 assumes "ks \<noteq> []" "u = w" |
|
2806 shows "\<lbrace>st i ** ps u ** reps v w ks\<rbrace> |
|
2807 i:[if_zero e]:j |
|
2808 \<lbrace>st j ** ps u ** reps v w ks\<rbrace>" |
|
2809 by (unfold `u = w`, rule hoare_if_zero_reps_false[OF `ks \<noteq> []`]) |
|
2810 |
|
2811 |
|
2812 lemma hoare_if_zero_reps_false1: |
|
2813 assumes nn: "ks \<noteq> []" |
|
2814 shows "\<lbrace>st i ** ps u ** reps u v ks\<rbrace> |
|
2815 i:[if_zero e]:j |
|
2816 \<lbrace>st j ** ps u ** reps u v ks\<rbrace>" |
|
2817 proof - |
|
2818 from nn obtain y ys where eq_ys: "ks = y#ys" |
|
2819 by (metis neq_Nil_conv) |
|
2820 show ?thesis |
|
2821 apply (unfold eq_ys) |
|
2822 by (case_tac ys, (simp, hsteps)+) |
|
2823 qed |
|
2824 |
|
2825 lemma hoare_if_zero_reps_false1_gen[step]: |
|
2826 assumes nn: "ks \<noteq> []" |
|
2827 and h: "u = w" |
|
2828 shows "\<lbrace>st i ** ps u ** reps w v ks\<rbrace> |
|
2829 i:[if_zero e]:j |
|
2830 \<lbrace>st j ** ps u ** reps w v ks\<rbrace>" |
|
2831 by (unfold h, rule hoare_if_zero_reps_false1[OF `ks \<noteq> []`]) |
|
2832 |
|
2833 lemma hoare_left_until_double_zero: |
|
2834 assumes h: "ks \<noteq> []" |
|
2835 shows "\<lbrace>st i ** ps v ** zero u ** zero (u + 1) ** reps (u+2) v ks\<rbrace> |
|
2836 i:[left_until_double_zero]:j |
|
2837 \<lbrace>st j ** ps u ** zero u ** zero (u + 1) ** reps (u+2) v ks\<rbrace>" |
|
2838 proof(unfold left_until_double_zero_def, |
|
2839 intro t_hoare_local t_hoare_label, clarsimp, |
|
2840 rule t_hoare_label_last, simp+) |
|
2841 fix la |
|
2842 let ?body = "i :[ (if_zero la ; left_until_zero ; move_left ; if_one i) ]: j" |
|
2843 let ?j = j |
|
2844 show "\<lbrace>st i \<and>* ps v \<and>* zero u \<and>* zero (u + 1) \<and>* reps (u + 2) v ks\<rbrace> |
|
2845 ?body |
|
2846 \<lbrace>st ?j \<and>* ps u \<and>* zero u \<and>* zero (u + 1) \<and>* reps (u + 2) v ks\<rbrace>" |
|
2847 using h |
|
2848 proof(induct ks arbitrary: v rule:rev_induct) |
|
2849 case Nil |
|
2850 with h show ?case by auto |
|
2851 next |
|
2852 case (snoc k ks) |
|
2853 show ?case |
|
2854 proof(cases "ks = []") |
|
2855 case True |
|
2856 have eq_ones: |
|
2857 "ones (u + 2) (u + 2 + int k) = (ones (u + 2) (u + 1 + int k) \<and>* one (u + 2 + int k))" |
|
2858 by (smt ones_rev) |
|
2859 have eq_ones': "(one (u + 2) \<and>* ones (3 + u) (u + 2 + int k)) = |
|
2860 (one (u + 2 + int k) \<and>* ones (u + 2) (u + 1 + int k))" |
|
2861 by (smt eq_ones ones.simps sep.mult_commute) |
|
2862 thus ?thesis |
|
2863 apply (insert True, simp del:ones_simps add:sep_conj_cond) |
|
2864 apply (rule tm.pre_condI, simp del:ones_simps, unfold eq_ones) |
|
2865 apply hsteps |
|
2866 apply (rule_tac p = "st j' \<and>* ps (u + 2 + int k) \<and>* zero u \<and>* |
|
2867 zero (u + 1) \<and>* ones (u + 2) (u + 2 + int k)" |
|
2868 in tm.pre_stren) |
|
2869 by (hsteps) |
|
2870 next |
|
2871 case False |
|
2872 from False have spt: "splited (ks @ [k]) ks [k]" by (unfold splited_def, auto) |
|
2873 show ?thesis |
|
2874 apply (unfold reps_splited[OF spt], simp del:ones_simps add:sep_conj_cond) |
|
2875 apply (rule tm.pre_condI, simp del:ones_simps) |
|
2876 apply (rule_tac q = "st i \<and>* |
|
2877 ps (1 + (u + int (reps_len ks))) \<and>* |
|
2878 zero u \<and>* |
|
2879 zero (u + 1) \<and>* |
|
2880 reps (u + 2) (1 + (u + int (reps_len ks))) ks \<and>* |
|
2881 zero (u + 2 + int (reps_len ks)) \<and>* |
|
2882 ones (3 + (u + int (reps_len ks))) (3 + (u + int (reps_len ks)) + int k)" in |
|
2883 tm.sequencing) |
|
2884 apply hsteps[1] |
|
2885 by (hstep snoc(1)) |
|
2886 qed |
|
2887 qed |
|
2888 qed |
|
2889 |
|
2890 lemma hoare_left_until_double_zero_gen[step]: |
|
2891 assumes h1: "ks \<noteq> []" |
|
2892 and h: "u = y" "w = v + 1" "x = v + 2" |
|
2893 shows "\<lbrace>st i ** ps u ** zero v ** zero w ** reps x y ks\<rbrace> |
|
2894 i:[left_until_double_zero]:j |
|
2895 \<lbrace>st j ** ps v ** zero v ** zero w ** reps x y ks\<rbrace>" |
|
2896 by (unfold h, rule hoare_left_until_double_zero[OF h1]) |
|
2897 |
|
2898 lemma hoare_jmp_reps1: |
|
2899 assumes "ks \<noteq> []" |
|
2900 shows "\<lbrace> st i \<and>* ps u \<and>* reps u v ks\<rbrace> |
|
2901 i:[jmp e]:j |
|
2902 \<lbrace> st e \<and>* ps u \<and>* reps u v ks\<rbrace>" |
|
2903 proof - |
|
2904 from assms obtain k ks' where Cons:"ks = k#ks'" |
|
2905 by (metis neq_Nil_conv) |
|
2906 thus ?thesis |
|
2907 proof(cases "ks' = []") |
|
2908 case True with Cons |
|
2909 show ?thesis |
|
2910 apply(simp add:sep_conj_cond reps.simps, intro tm.pre_condI, simp add:ones_simps) |
|
2911 by (hgoto hoare_jmp_gen) |
|
2912 next |
|
2913 case False |
|
2914 show ?thesis |
|
2915 apply (unfold `ks = k#ks'` reps_simp3[OF False], simp add:ones_simps) |
|
2916 by (hgoto hoare_jmp[where p = u]) |
|
2917 qed |
|
2918 qed |
|
2919 |
|
2920 lemma hoare_jmp_reps1_gen[step]: |
|
2921 assumes "ks \<noteq> []" "u = v" |
|
2922 shows "\<lbrace> st i \<and>* ps u \<and>* reps v w ks\<rbrace> |
|
2923 i:[jmp e]:j |
|
2924 \<lbrace> st e \<and>* ps u \<and>* reps v w ks\<rbrace>" |
|
2925 by (unfold assms, rule hoare_jmp_reps1[OF `ks \<noteq> []`]) |
|
2926 |
|
2927 lemma hoare_jmp_reps: |
|
2928 "\<lbrace> st i \<and>* ps u \<and>* reps u v ks \<and>* tm (v + 1) x \<rbrace> |
|
2929 i:[(jmp e; c)]:j |
|
2930 \<lbrace> st e \<and>* ps u \<and>* reps u v ks \<and>* tm (v + 1) x \<rbrace>" |
|
2931 proof(cases "ks") |
|
2932 case Nil |
|
2933 thus ?thesis |
|
2934 by (simp add:sep_conj_cond, intro tm.pre_condI, simp, hsteps) |
|
2935 next |
|
2936 case (Cons k ks') |
|
2937 thus ?thesis |
|
2938 proof(cases "ks' = []") |
|
2939 case True with Cons |
|
2940 show ?thesis |
|
2941 apply(simp add:sep_conj_cond, intro tm.pre_condI, simp) |
|
2942 by (hgoto hoare_jmp[where p = u]) |
|
2943 next |
|
2944 case False |
|
2945 show ?thesis |
|
2946 apply (unfold `ks = k#ks'` reps_simp3[OF False], simp) |
|
2947 by (hgoto hoare_jmp[where p = u]) |
|
2948 qed |
|
2949 qed |
|
2950 |
|
2951 lemma hoare_shift_right_cons: |
|
2952 assumes h: "ks \<noteq> []" |
|
2953 shows "\<lbrace>st i \<and>* ps u ** reps u v ks \<and>* zero (v + 1) \<and>* zero (v + 2) \<rbrace> |
|
2954 i:[shift_right]:j |
|
2955 \<lbrace>st j ** ps (v + 2) ** zero u ** reps (u + 1) (v + 1) ks ** zero (v + 2) \<rbrace>" |
|
2956 proof(unfold shift_right_def, intro t_hoare_local t_hoare_label, clarify, |
|
2957 rule t_hoare_label_last, auto) |
|
2958 fix la |
|
2959 have eq_ones: "\<And> u k. (one (u + int k + 1) \<and>* ones (u + 1) (u + int k)) = |
|
2960 (one (u + 1) \<and>* ones (2 + u) (u + 1 + int k))" |
|
2961 by (smt cond_true_eq2 ones.simps ones_rev sep.mult_assoc sep.mult_commute |
|
2962 sep.mult_left_commute sep_conj_assoc sep_conj_commute |
|
2963 sep_conj_cond1 sep_conj_cond2 sep_conj_cond3 sep_conj_left_commute |
|
2964 sep_conj_trivial_strip2) |
|
2965 show "\<lbrace>st i \<and>* ps u \<and>* reps u v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace> |
|
2966 i :[ (if_zero la ; |
|
2967 write_zero ; move_right ; right_until_zero ; write_one ; move_right ; jmp i) ]: la |
|
2968 \<lbrace>st la \<and>* ps (v + 2) \<and>* zero u \<and>* reps (u + 1) (v + 1) ks \<and>* zero (v + 2)\<rbrace>" |
|
2969 using h |
|
2970 proof(induct ks arbitrary:i u v) |
|
2971 case (Cons k ks) |
|
2972 thus ?case |
|
2973 proof(cases "ks = []") |
|
2974 let ?j = la |
|
2975 case True |
|
2976 let ?body = "i :[ (if_zero ?j ; |
|
2977 write_zero ; |
|
2978 move_right ; |
|
2979 right_until_zero ; |
|
2980 write_one ; move_right ; jmp i) ]: ?j" |
|
2981 have first_interation: |
|
2982 "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 1) \<and>* |
|
2983 zero (u + int k + 2)\<rbrace> |
|
2984 ?body |
|
2985 \<lbrace>st i \<and>* |
|
2986 ps (u + int k + 2) \<and>* |
|
2987 one (u + int k + 1) \<and>* ones (u + 1) (u + int k) \<and>* zero u \<and>* zero (u + int k + 2)\<rbrace>" |
|
2988 apply (hsteps) |
|
2989 by (simp add:sep_conj_ac, sep_cancel+, smt) |
|
2990 hence "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 1) \<and>* |
|
2991 zero (u + int k + 2)\<rbrace> |
|
2992 ?body |
|
2993 \<lbrace>st ?j \<and>* ps (u + int k + 2) \<and>* zero u \<and>* one (u + 1) \<and>* |
|
2994 ones (2 + u) (u + 1 + int k) \<and>* zero (u + int k + 2)\<rbrace>" |
|
2995 proof(rule tm.sequencing) |
|
2996 show "\<lbrace>st i \<and>* |
|
2997 ps (u + int k + 2) \<and>* |
|
2998 one (u + int k + 1) \<and>* ones (u + 1) (u + int k) \<and>* zero u \<and>* zero (u + int k + 2)\<rbrace> |
|
2999 ?body |
|
3000 \<lbrace>st ?j \<and>* |
|
3001 ps (u + int k + 2) \<and>* |
|
3002 zero u \<and>* one (u + 1) \<and>* ones (2 + u) (u + 1 + int k) \<and>* zero (u + int k + 2)\<rbrace>" |
|
3003 apply (hgoto hoare_if_zero_true_gen) |
|
3004 by (simp add:sep_conj_ac eq_ones) |
|
3005 qed |
|
3006 with True |
|
3007 show ?thesis |
|
3008 by (simp, simp only:sep_conj_cond, intro tm.pre_condI, auto simp:sep_conj_ac) |
|
3009 next |
|
3010 case False |
|
3011 let ?j = la |
|
3012 let ?body = "i :[ (if_zero ?j ; |
|
3013 write_zero ; |
|
3014 move_right ; right_until_zero ; |
|
3015 write_one ; move_right ; jmp i) ]: ?j" |
|
3016 have eq_ones': |
|
3017 "(one (u + int k + 1) \<and>* |
|
3018 ones (u + 1) (u + int k) \<and>* |
|
3019 zero u \<and>* reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)) |
|
3020 = |
|
3021 (zero u \<and>* |
|
3022 ones (u + 1) (u + int k) \<and>* |
|
3023 one (u + int k + 1) \<and>* reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2))" |
|
3024 by (simp add:eq_ones sep_conj_ac) |
|
3025 have "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 1) \<and>* |
|
3026 reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace> |
|
3027 ?body |
|
3028 \<lbrace>st i \<and>* ps (u + int k + 2) \<and>* zero u \<and>* ones (u + 1) (u + int k) \<and>* |
|
3029 one (u + int k + 1) \<and>* reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace>" |
|
3030 apply (hsteps) |
|
3031 by (auto simp:sep_conj_ac, sep_cancel+, smt) |
|
3032 hence "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 1) \<and>* |
|
3033 reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace> |
|
3034 ?body |
|
3035 \<lbrace>st ?j \<and>* ps (v + 2) \<and>* zero u \<and>* one (u + 1) \<and>* ones (2 + u) (u + 1 + int k) \<and>* |
|
3036 zero (2 + (u + int k)) \<and>* reps (3 + (u + int k)) (v + 1) ks \<and>* zero (v + 2)\<rbrace>" |
|
3037 proof(rule tm.sequencing) |
|
3038 have eq_ones': |
|
3039 "\<And> u k. (one (u + int k + 1) \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 2)) = |
|
3040 (one (u + 1) \<and>* zero (2 + (u + int k)) \<and>* ones (2 + u) (u + 1 + int k))" |
|
3041 by (smt eq_ones sep.mult_assoc sep_conj_commute) |
|
3042 show "\<lbrace>st i \<and>* ps (u + int k + 2) \<and>* zero u \<and>* |
|
3043 ones (u + 1) (u + int k) \<and>* one (u + int k + 1) \<and>* reps (u + int k + 2) v ks \<and>* |
|
3044 zero (v + 1) \<and>* zero (v + 2)\<rbrace> |
|
3045 ?body |
|
3046 \<lbrace>st ?j \<and>* ps (v + 2) \<and>* zero u \<and>* one (u + 1) \<and>* ones (2 + u) (u + 1 + int k) \<and>* |
|
3047 zero (2 + (u + int k)) \<and>* reps (3 + (u + int k)) (v + 1) ks \<and>* zero (v + 2)\<rbrace>" |
|
3048 apply (hsteps Cons.hyps) |
|
3049 by (simp add:sep_conj_ac eq_ones, sep_cancel+, smt) |
|
3050 qed |
|
3051 thus ?thesis |
|
3052 by (unfold reps_simp3[OF False], auto simp:sep_conj_ac) |
|
3053 qed |
|
3054 qed auto |
|
3055 qed |
|
3056 |
|
3057 lemma hoare_shift_right_cons_gen[step]: |
|
3058 assumes h: "ks \<noteq> []" |
|
3059 and h1: "u = v" "x = w + 1" "y = w + 2" |
|
3060 shows "\<lbrace>st i \<and>* ps u ** reps v w ks \<and>* zero x \<and>* zero y \<rbrace> |
|
3061 i:[shift_right]:j |
|
3062 \<lbrace>st j ** ps y ** zero v ** reps (v + 1) x ks ** zero y\<rbrace>" |
|
3063 by (unfold h1, rule hoare_shift_right_cons[OF h]) |
|
3064 |
|
3065 lemma shift_right_nil [step]: |
|
3066 assumes "u = v" |
|
3067 shows |
|
3068 "\<lbrace> st i \<and>* ps u \<and>* zero v \<rbrace> |
|
3069 i:[shift_right]:j |
|
3070 \<lbrace> st j \<and>* ps u \<and>* zero v \<rbrace>" |
|
3071 by (unfold assms shift_right_def, intro t_hoare_local t_hoare_label, clarify, |
|
3072 rule t_hoare_label_last, simp+, hstep) |
|
3073 |
|
3074 |
|
3075 text {* |
|
3076 @{text "clear_until_zero"} is useful to implement @{text "drag"}. |
|
3077 *} |
|
3078 |
|
3079 lemma hoare_clear_until_zero[step]: |
|
3080 "\<lbrace>st i ** ps u ** ones u v ** zero (v + 1)\<rbrace> |
|
3081 i :[clear_until_zero]: j |
|
3082 \<lbrace>st j ** ps (v + 1) ** zeros u v ** zero (v + 1)\<rbrace> " |
|
3083 proof(unfold clear_until_zero_def, intro t_hoare_local, rule t_hoare_label, |
|
3084 rule t_hoare_label_last, simp+) |
|
3085 let ?body = "i :[ (if_zero j ; write_zero ; move_right ; jmp i) ]: j" |
|
3086 show "\<lbrace>st i \<and>* ps u \<and>* ones u v \<and>* zero (v + 1)\<rbrace> ?body |
|
3087 \<lbrace>st j \<and>* ps (v + 1) \<and>* zeros u v \<and>* zero (v + 1)\<rbrace>" |
|
3088 proof(induct u v rule: zeros.induct) |
|
3089 fix ia ja |
|
3090 assume h: "\<not> ja < ia \<Longrightarrow> |
|
3091 \<lbrace>st i \<and>* ps (ia + 1) \<and>* ones (ia + 1) ja \<and>* zero (ja + 1)\<rbrace> ?body |
|
3092 \<lbrace>st j \<and>* ps (ja + 1) \<and>* zeros (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>" |
|
3093 show "\<lbrace>st i \<and>* ps ia \<and>* ones ia ja \<and>* zero (ja + 1)\<rbrace> ?body |
|
3094 \<lbrace>st j \<and>* ps (ja + 1) \<and>* zeros ia ja \<and>* zero (ja + 1)\<rbrace>" |
|
3095 proof(cases "ja < ia") |
|
3096 case True |
|
3097 thus ?thesis |
|
3098 by (simp add: ones.simps zeros.simps sep_conj_ac, simp only:sep_conj_cond, |
|
3099 intro tm.pre_condI, simp, hsteps) |
|
3100 next |
|
3101 case False |
|
3102 note h[OF False, step] |
|
3103 from False have ones_eq: "ones ia ja = (one ia \<and>* ones (ia + 1) ja)" |
|
3104 by(simp add: ones.simps) |
|
3105 from False have zeros_eq: "zeros ia ja = (zero ia \<and>* zeros (ia + 1) ja)" |
|
3106 by(simp add: zeros.simps) |
|
3107 have s1: "\<lbrace>st i \<and>* ps ia \<and>* one ia \<and>* ones (ia + 1) ja \<and>* zero (ja + 1)\<rbrace> ?body |
|
3108 \<lbrace>st i \<and>* ps (ia + 1) \<and>* zero ia \<and>* ones (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>" |
|
3109 proof(cases "ja < ia + 1") |
|
3110 case True |
|
3111 from True False have "ja = ia" by auto |
|
3112 thus ?thesis |
|
3113 apply(simp add: ones.simps) |
|
3114 by (hsteps) |
|
3115 next |
|
3116 case False |
|
3117 from False have "ones (ia + 1) ja = (one (ia + 1) \<and>* ones (ia + 1 + 1) ja)" |
|
3118 by(simp add: ones.simps) |
|
3119 thus ?thesis |
|
3120 by (simp, hsteps) |
|
3121 qed |
|
3122 have s2: "\<lbrace>st i \<and>* ps (ia + 1) \<and>* zero ia \<and>* ones (ia + 1) ja \<and>* zero (ja + 1)\<rbrace> |
|
3123 ?body |
|
3124 \<lbrace>st j \<and>* ps (ja + 1) \<and>* zero ia \<and>* zeros (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>" |
|
3125 by hsteps |
|
3126 from tm.sequencing[OF s1 s2] have |
|
3127 "\<lbrace>st i \<and>* ps ia \<and>* one ia \<and>* ones (ia + 1) ja \<and>* zero (ja + 1)\<rbrace> ?body |
|
3128 \<lbrace>st j \<and>* ps (ja + 1) \<and>* zero ia \<and>* zeros (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>" . |
|
3129 thus ?thesis |
|
3130 unfolding ones_eq zeros_eq by(simp add: sep_conj_ac) |
|
3131 qed |
|
3132 qed |
|
3133 qed |
|
3134 |
|
3135 lemma hoare_clear_until_zero_gen[step]: |
|
3136 assumes "u = v" "x = w + 1" |
|
3137 shows "\<lbrace>st i ** ps u ** ones v w ** zero x\<rbrace> |
|
3138 i :[clear_until_zero]: j |
|
3139 \<lbrace>st j ** ps x ** zeros v w ** zero x\<rbrace>" |
|
3140 by (unfold assms, rule hoare_clear_until_zero) |
|
3141 |
|
3142 declare ones_simps[simp del] |
|
3143 |
|
3144 lemma hoare_move_left_reps[step]: |
|
3145 assumes "ks \<noteq> []" "u = v" |
|
3146 shows |
|
3147 "\<lbrace>st i ** ps u ** reps v w ks\<rbrace> |
|
3148 i:[move_left]:j |
|
3149 \<lbrace>st j ** ps (u - 1) ** reps v w ks\<rbrace>" |
|
3150 proof - |
|
3151 from `ks \<noteq> []` obtain y ys where eq_ks: "ks = y#ys" |
|
3152 by (metis neq_Nil_conv) |
|
3153 show ?thesis |
|
3154 apply (unfold assms eq_ks) |
|
3155 apply (case_tac ys, simp) |
|
3156 my_block |
|
3157 have "(ones v (v + int y)) = (one v \<and>* ones (v + 1) (v + int y))" |
|
3158 by (smt ones_step_simp) |
|
3159 my_block_end |
|
3160 apply (unfold this, hsteps) |
|
3161 by (simp add:this, hsteps) |
|
3162 qed |
|
3163 |
|
3164 lemma hoare_shift_left_cons: |
|
3165 assumes h: "ks \<noteq> []" |
|
3166 shows "\<lbrace>st i \<and>* ps u \<and>* tm (u - 1) x \<and>* reps u v ks \<and>* zero (v + 1) \<and>* zero (v + 2) \<rbrace> |
|
3167 i:[shift_left]:j |
|
3168 \<lbrace>st j \<and>* ps (v + 2) \<and>* reps (u - 1) (v - 1) ks \<and>* zero v \<and>* zero (v + 1) \<and>* zero (v + 2) \<rbrace>" |
|
3169 proof(unfold shift_left_def, intro t_hoare_local t_hoare_label, clarify, |
|
3170 rule t_hoare_label_last, simp+, clarify, prune) |
|
3171 show " \<lbrace>st i \<and>* ps u \<and>* tm (u - 1) x \<and>* reps u v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace> |
|
3172 i :[ (if_zero j ; |
|
3173 move_left ; |
|
3174 write_one ; |
|
3175 right_until_zero ; |
|
3176 move_left ; write_zero ; |
|
3177 move_right ; move_right ; jmp i) ]: j |
|
3178 \<lbrace>st j \<and>* ps (v + 2) \<and>* reps (u - 1) (v - 1) ks \<and>* zero v \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace>" |
|
3179 using h |
|
3180 proof(induct ks arbitrary:i u v x) |
|
3181 case (Cons k ks) |
|
3182 thus ?case |
|
3183 proof(cases "ks = []") |
|
3184 let ?body = "i :[ (if_zero j ; move_left ; write_one ; right_until_zero ; |
|
3185 move_left ; write_zero ; move_right ; move_right ; jmp i) ]: j" |
|
3186 case True |
|
3187 have "\<lbrace>st i \<and>* ps u \<and>* tm (u - 1) x \<and>* (one u \<and>* ones (u + 1) (u + int k)) \<and>* |
|
3188 zero (u + int k + 1) \<and>* zero (u + int k + 2)\<rbrace> |
|
3189 ?body |
|
3190 \<lbrace>st j \<and>* ps (u + int k + 2) \<and>* (one (u - 1) \<and>* ones u (u - 1 + int k)) \<and>* |
|
3191 zero (u + int k) \<and>* zero (u + int k + 1) \<and>* zero (u + int k + 2)\<rbrace>" |
|
3192 apply(rule tm.sequencing [where q = "st i \<and>* ps (u + int k + 2) \<and>* |
|
3193 (one (u - 1) \<and>* ones u (u - 1 + int k)) \<and>* |
|
3194 zero (u + int k) \<and>* zero (u + int k + 1) \<and>* zero (u + int k + 2)"]) |
|
3195 apply (hsteps) |
|
3196 apply (rule_tac p = "st j' \<and>* ps (u - 1) \<and>* ones (u - 1) (u + int k) \<and>* |
|
3197 zero (u + int k + 1) \<and>* zero (u + int k + 2)" |
|
3198 in tm.pre_stren) |
|
3199 apply (hsteps) |
|
3200 my_block |
|
3201 have "(ones (u - 1) (u + int k)) = (ones (u - 1) (u + int k - 1) \<and>* one (u + int k))" |
|
3202 by (smt ones_rev) |
|
3203 my_block_end |
|
3204 apply (unfold this) |
|
3205 apply hsteps |
|
3206 apply (simp add:sep_conj_ac, sep_cancel+) |
|
3207 apply (smt ones.simps sep.mult_assoc sep_conj_commuteI) |
|
3208 apply (simp add:sep_conj_ac)+ |
|
3209 apply (sep_cancel+) |
|
3210 apply (smt ones.simps sep.mult_left_commute sep_conj_commuteI this) |
|
3211 by hstep |
|
3212 with True show ?thesis |
|
3213 by (simp add:ones_simps, simp only:sep_conj_cond, intro tm.pre_condI, simp) |
|
3214 next |
|
3215 case False |
|
3216 let ?body = "i :[ (if_zero j ; move_left ; write_one ;right_until_zero ; move_left ; |
|
3217 write_zero ; move_right ; move_right ; jmp i) ]: j" |
|
3218 have "\<lbrace>st i \<and>* ps u \<and>* tm (u - 1) x \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>* |
|
3219 zero (u + int k + 1) \<and>* reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace> |
|
3220 ?body |
|
3221 \<lbrace>st j \<and>* ps (v + 2) \<and>* one (u - 1) \<and>* ones u (u - 1 + int k) \<and>* |
|
3222 zero (u + int k) \<and>* reps (1 + (u + int k)) (v - 1) ks \<and>* |
|
3223 zero v \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace>" |
|
3224 apply (rule tm.sequencing[where q = "st i \<and>* ps (u + int k + 2) \<and>* |
|
3225 zero (u + int k + 1) \<and>* reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* |
|
3226 zero (v + 2) \<and>* one (u - 1) \<and>* ones u (u - 1 + int k) \<and>* zero (u + int k)"]) |
|
3227 apply (hsteps) |
|
3228 apply (rule_tac p = "st j' \<and>* ps (u - 1) \<and>* |
|
3229 ones (u - 1) (u + int k) \<and>* |
|
3230 zero (u + int k + 1) \<and>* |
|
3231 reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2) |
|
3232 " in tm.pre_stren) |
|
3233 apply hsteps |
|
3234 my_block |
|
3235 have "(ones (u - 1) (u + int k)) = |
|
3236 (ones (u - 1) (u + int k - 1) \<and>* one (u + int k))" |
|
3237 by (smt ones_rev) |
|
3238 my_block_end |
|
3239 apply (unfold this) |
|
3240 apply (hsteps) |
|
3241 apply (sep_cancel+) |
|
3242 apply (smt ones.simps sep.mult_assoc sep_conj_commuteI) |
|
3243 apply (sep_cancel+) |
|
3244 apply (smt ones.simps this) |
|
3245 my_block |
|
3246 have eq_u: "1 + (u + int k) = u + int k + 1" by simp |
|
3247 from Cons.hyps[OF `ks \<noteq> []`, of i "u + int k + 2" Bk v, folded zero_def] |
|
3248 have "\<lbrace>st i \<and>* ps (u + int k + 2) \<and>* zero (u + int k + 1) \<and>* |
|
3249 reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace> |
|
3250 ?body |
|
3251 \<lbrace>st j \<and>* ps (v + 2) \<and>* reps (1 + (u + int k)) (v - 1) ks \<and>* |
|
3252 zero v \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace>" |
|
3253 by (simp add:eq_u) |
|
3254 my_block_end my_note hh[step] = this |
|
3255 by hsteps |
|
3256 thus ?thesis |
|
3257 by (unfold reps_simp3[OF False], auto simp:sep_conj_ac ones_simps) |
|
3258 qed |
|
3259 qed auto |
|
3260 qed |
|
3261 |
|
3262 lemma hoare_shift_left_cons_gen[step]: |
|
3263 assumes h: "ks \<noteq> []" |
|
3264 "v = u - 1" "w = u" "y = x + 1" "z = x + 2" |
|
3265 shows "\<lbrace>st i \<and>* ps u \<and>* tm v vv \<and>* reps w x ks \<and>* tm y Bk \<and>* tm z Bk\<rbrace> |
|
3266 i:[shift_left]:j |
|
3267 \<lbrace>st j \<and>* ps z \<and>* reps v (x - 1) ks \<and>* zero x \<and>* zero y \<and>* zero z \<rbrace>" |
|
3268 by (unfold assms, fold zero_def, rule hoare_shift_left_cons[OF `ks \<noteq> []`]) |
|
3269 |
|
3270 lemma hoare_bone_1_out: |
|
3271 assumes h: |
|
3272 "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace> |
|
3273 i:[c1]:j |
|
3274 \<lbrace>st e \<and>* q \<rbrace> |
|
3275 " |
|
3276 shows "\<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace> |
|
3277 i:[(bone c1 c2)]:j |
|
3278 \<lbrace>st e \<and>* q \<rbrace> |
|
3279 " |
|
3280 apply (unfold bone_def, intro t_hoare_local) |
|
3281 apply hsteps |
|
3282 apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension) |
|
3283 apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension) |
|
3284 by (rule h) |
|
3285 |
|
3286 lemma hoare_bone_1: |
|
3287 assumes h: |
|
3288 "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace> |
|
3289 i:[c1]:j |
|
3290 \<lbrace>st j \<and>* ps v \<and>* tm v x \<and>* q \<rbrace> |
|
3291 " |
|
3292 shows "\<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace> |
|
3293 i:[(bone c1 c2)]:j |
|
3294 \<lbrace>st j \<and>* ps v \<and>* tm v x \<and>* q \<rbrace> |
|
3295 " |
|
3296 proof - |
|
3297 note h[step] |
|
3298 show ?thesis |
|
3299 apply (unfold bone_def, intro t_hoare_local) |
|
3300 apply (rule t_hoare_label_last, auto) |
|
3301 apply hsteps |
|
3302 apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension) |
|
3303 by hsteps |
|
3304 qed |
|
3305 |
|
3306 lemma hoare_bone_2: |
|
3307 assumes h: |
|
3308 "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace> |
|
3309 i:[c2]:j |
|
3310 \<lbrace>st j \<and>* q \<rbrace> |
|
3311 " |
|
3312 shows "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace> |
|
3313 i:[(bone c1 c2)]:j |
|
3314 \<lbrace>st j \<and>* q \<rbrace> |
|
3315 " |
|
3316 apply (unfold bone_def, intro t_hoare_local) |
|
3317 apply (rule_tac q = "st la \<and>* ps u \<and>* one u \<and>* p" in tm.sequencing) |
|
3318 apply hsteps |
|
3319 apply (subst tassemble_to.simps(2), intro tm.code_exI, intro tm.code_extension1) |
|
3320 apply (subst tassemble_to.simps(2), intro tm.code_exI, intro tm.code_extension1) |
|
3321 apply (subst tassemble_to.simps(2), intro tm.code_exI) |
|
3322 apply (subst tassemble_to.simps(4), intro tm.code_condI, simp) |
|
3323 apply (subst tassemble_to.simps(2), intro tm.code_exI) |
|
3324 apply (subst tassemble_to.simps(4), simp add:sep_conj_cond, rule tm.code_condI, simp ) |
|
3325 by (rule h) |
|
3326 |
|
3327 lemma hoare_bone_2_out: |
|
3328 assumes h: |
|
3329 "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace> |
|
3330 i:[c2]:j |
|
3331 \<lbrace>st e \<and>* q \<rbrace> |
|
3332 " |
|
3333 shows "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace> |
|
3334 i:[(bone c1 c2)]:j |
|
3335 \<lbrace>st e \<and>* q \<rbrace> |
|
3336 " |
|
3337 apply (unfold bone_def, intro t_hoare_local) |
|
3338 apply (rule_tac q = "st la \<and>* ps u \<and>* one u \<and>* p" in tm.sequencing) |
|
3339 apply hsteps |
|
3340 apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension1) |
|
3341 apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension1) |
|
3342 apply (subst tassemble_to.simps(2), intro tm.code_exI) |
|
3343 apply (subst tassemble_to.simps(4), rule tm.code_condI, simp) |
|
3344 apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension) |
|
3345 by (rule h) |
|
3346 |
|
3347 lemma hoare_bzero_1: |
|
3348 assumes h[step]: |
|
3349 "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace> |
|
3350 i:[c1]:j |
|
3351 \<lbrace>st j \<and>* ps v \<and>* tm v x \<and>* q \<rbrace> |
|
3352 " |
|
3353 shows "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace> |
|
3354 i:[(bzero c1 c2)]:j |
|
3355 \<lbrace>st j \<and>* ps v \<and>* tm v x \<and>* q \<rbrace> |
|
3356 " |
|
3357 apply (unfold bzero_def, intro t_hoare_local) |
|
3358 apply hsteps |
|
3359 apply (rule_tac c = " ((c1 ; jmp l) ; TLabel la ; c2 ; TLabel l)" in t_hoare_label_last, auto) |
|
3360 apply (subst tassemble_to.simps(2), intro tm.code_exI, intro tm.code_extension) |
|
3361 by hsteps |
|
3362 |
|
3363 lemma hoare_bzero_1_out: |
|
3364 assumes h[step]: |
|
3365 "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace> |
|
3366 i:[c1]:j |
|
3367 \<lbrace>st e \<and>* q \<rbrace> |
|
3368 " |
|
3369 shows "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace> |
|
3370 i:[(bzero c1 c2)]:j |
|
3371 \<lbrace>st e \<and>* q \<rbrace> |
|
3372 " |
|
3373 apply (unfold bzero_def, intro t_hoare_local) |
|
3374 apply hsteps |
|
3375 apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension) |
|
3376 apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension) |
|
3377 by (rule h) |
|
3378 |
|
3379 lemma hoare_bzero_2: |
|
3380 assumes h: |
|
3381 "\<And> i j. \<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace> |
|
3382 i:[c2]:j |
|
3383 \<lbrace>st j \<and>* q \<rbrace> |
|
3384 " |
|
3385 shows "\<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace> |
|
3386 i:[(bzero c1 c2)]:j |
|
3387 \<lbrace>st j \<and>* q \<rbrace> |
|
3388 " |
|
3389 apply (unfold bzero_def, intro t_hoare_local) |
|
3390 apply (rule_tac q = "st la \<and>* ps u \<and>* zero u \<and>* p" in tm.sequencing) |
|
3391 apply hsteps |
|
3392 apply (subst tassemble_to.simps(2), intro tm.code_exI, intro tm.code_extension1) |
|
3393 apply (subst tassemble_to.simps(2), intro tm.code_exI, intro tm.code_extension1) |
|
3394 apply (subst tassemble_to.simps(2), intro tm.code_exI) |
|
3395 apply (subst tassemble_to.simps(4)) |
|
3396 apply (rule tm.code_condI, simp) |
|
3397 apply (subst tassemble_to.simps(2)) |
|
3398 apply (rule tm.code_exI) |
|
3399 apply (subst tassemble_to.simps(4), simp add:sep_conj_cond) |
|
3400 apply (rule tm.code_condI, simp) |
|
3401 by (rule h) |
|
3402 |
|
3403 lemma hoare_bzero_2_out: |
|
3404 assumes h: |
|
3405 "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace> |
|
3406 i:[c2]:j |
|
3407 \<lbrace>st e \<and>* q \<rbrace> |
|
3408 " |
|
3409 shows "\<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p\<rbrace> |
|
3410 i:[(bzero c1 c2)]:j |
|
3411 \<lbrace>st e \<and>* q \<rbrace> |
|
3412 " |
|
3413 apply (unfold bzero_def, intro t_hoare_local) |
|
3414 apply (rule_tac q = "st la \<and>* ps u \<and>* zero u \<and>* p" in tm.sequencing) |
|
3415 apply hsteps |
|
3416 apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension1) |
|
3417 apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension1) |
|
3418 apply (subst tassemble_to.simps(2), intro tm.code_exI) |
|
3419 apply (subst tassemble_to.simps(4), rule tm.code_condI, simp) |
|
3420 apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension) |
|
3421 by (rule h) |
|
3422 |
|
3423 lemma reps_len_split: |
|
3424 assumes "xs \<noteq> []" "ys \<noteq> []" |
|
3425 shows "reps_len (xs @ ys) = reps_len xs + reps_len ys + 1" |
|
3426 using assms |
|
3427 proof(induct xs arbitrary:ys) |
|
3428 case (Cons x1 xs1) |
|
3429 show ?case |
|
3430 proof(cases "xs1 = []") |
|
3431 case True |
|
3432 thus ?thesis |
|
3433 by (simp add:reps_len_cons[OF `ys \<noteq> []`] reps_len_sg) |
|
3434 next |
|
3435 case False |
|
3436 hence " xs1 @ ys \<noteq> []" by simp |
|
3437 thus ?thesis |
|
3438 apply (simp add:reps_len_cons[OF `xs1@ys \<noteq> []`] reps_len_cons[OF `xs1 \<noteq> []`]) |
|
3439 by (simp add: Cons.hyps[OF `xs1 \<noteq> []` `ys \<noteq> []`]) |
|
3440 qed |
|
3441 qed auto |
|
3442 |
|
3443 lemma hoare_skip_or_set_set: |
|
3444 "\<lbrace> st i \<and>* ps u \<and>* zero u \<and>* zero (u + 1) \<and>* tm (u + 2) x\<rbrace> |
|
3445 i:[skip_or_set]:j |
|
3446 \<lbrace> st j \<and>* ps (u + 2) \<and>* one u \<and>* zero (u + 1) \<and>* tm (u + 2) x\<rbrace>" |
|
3447 apply(unfold skip_or_set_def) |
|
3448 apply(rule_tac q = "st j \<and>* ps (u + 2) \<and>* tm (u + 2) x \<and>* one u \<and>* zero (u + 1)" |
|
3449 in tm.post_weaken) |
|
3450 apply(rule hoare_bone_1) |
|
3451 apply hsteps |
|
3452 by (auto simp:sep_conj_ac, sep_cancel+, smt) |
|
3453 |
|
3454 lemma hoare_skip_or_set_set_gen[step]: |
|
3455 assumes "u = v" "w = v + 1" "x = v + 2" |
|
3456 shows "\<lbrace>st i \<and>* ps u \<and>* zero v \<and>* zero w \<and>* tm x xv\<rbrace> |
|
3457 i:[skip_or_set]:j |
|
3458 \<lbrace>st j \<and>* ps x \<and>* one v \<and>* zero w \<and>* tm x xv\<rbrace>" |
|
3459 by (unfold assms, rule hoare_skip_or_set_set) |
|
3460 |
|
3461 lemma hoare_skip_or_set_skip: |
|
3462 "\<lbrace> st i \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace> |
|
3463 i:[skip_or_set]:j |
|
3464 \<lbrace> st j \<and>* ps (v + 2) \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace>" |
|
3465 proof - |
|
3466 show ?thesis |
|
3467 apply(unfold skip_or_set_def, unfold reps.simps, simp add:sep_conj_cond) |
|
3468 apply(rule tm.pre_condI, simp) |
|
3469 apply(rule_tac p = "st i \<and>* ps u \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>* |
|
3470 zero (u + int k + 1)" |
|
3471 in tm.pre_stren) |
|
3472 apply (rule_tac q = "st j \<and>* ps (u + int k + 2) \<and>* |
|
3473 one u \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 1) |
|
3474 " in tm.post_weaken) |
|
3475 apply (rule hoare_bone_2) |
|
3476 apply (rule_tac p = " st i \<and>* ps u \<and>* ones u (u + int k) \<and>* zero (u + int k + 1) |
|
3477 " in tm.pre_stren) |
|
3478 apply hsteps |
|
3479 apply (simp add:sep_conj_ac, sep_cancel+, auto simp:sep_conj_ac ones_simps) |
|
3480 by (sep_cancel+, smt) |
|
3481 qed |
|
3482 |
|
3483 lemma hoare_skip_or_set_skip_gen[step]: |
|
3484 assumes "u = v" "x = w + 1" |
|
3485 shows "\<lbrace> st i \<and>* ps u \<and>* reps v w [k] \<and>* zero x\<rbrace> |
|
3486 i:[skip_or_set]:j |
|
3487 \<lbrace> st j \<and>* ps (w + 2) \<and>* reps v w [k] \<and>* zero x\<rbrace>" |
|
3488 by (unfold assms, rule hoare_skip_or_set_skip) |
|
3489 |
|
3490 lemma hoare_if_reps_z_true: |
|
3491 assumes h: "k = 0" |
|
3492 shows |
|
3493 "\<lbrace>st i \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace> |
|
3494 i:[if_reps_z e]:j |
|
3495 \<lbrace>st e \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace>" |
|
3496 apply (unfold reps.simps, simp add:sep_conj_cond) |
|
3497 apply (rule tm.pre_condI, simp add:h) |
|
3498 apply (unfold if_reps_z_def) |
|
3499 apply (simp add:ones_simps) |
|
3500 apply (hsteps) |
|
3501 apply (rule_tac p = "st j' \<and>* ps (u + 1) \<and>* zero (u + 1) \<and>* one u" in tm.pre_stren) |
|
3502 apply (rule hoare_bone_1_out) |
|
3503 by (hsteps) |
|
3504 |
|
3505 lemma hoare_if_reps_z_true_gen[step]: |
|
3506 assumes "k = 0" "u = v" "x = w + 1" |
|
3507 shows "\<lbrace>st i \<and>* ps u \<and>* reps v w [k] \<and>* zero x\<rbrace> |
|
3508 i:[if_reps_z e]:j |
|
3509 \<lbrace>st e \<and>* ps u \<and>* reps v w [k] \<and>* zero x\<rbrace>" |
|
3510 by (unfold assms, rule hoare_if_reps_z_true, simp) |
|
3511 |
|
3512 lemma hoare_if_reps_z_false: |
|
3513 assumes h: "k \<noteq> 0" |
|
3514 shows |
|
3515 "\<lbrace>st i \<and>* ps u \<and>* reps u v [k]\<rbrace> |
|
3516 i:[if_reps_z e]:j |
|
3517 \<lbrace>st j \<and>* ps u \<and>* reps u v [k]\<rbrace>" |
|
3518 proof - |
|
3519 from h obtain k' where "k = Suc k'" by (metis not0_implies_Suc) |
|
3520 show ?thesis |
|
3521 apply (unfold `k = Suc k'`) |
|
3522 apply (simp add:sep_conj_cond, rule tm.pre_condI, simp) |
|
3523 apply (unfold if_reps_z_def) |
|
3524 apply (simp add:ones_simps) |
|
3525 apply hsteps |
|
3526 apply (rule_tac p = "st j' \<and>* ps (u + 1) \<and>* one (u + 1) \<and>* one u \<and>* |
|
3527 ones (2 + u) (u + (1 + int k'))" in tm.pre_stren) |
|
3528 apply (rule_tac hoare_bone_2) |
|
3529 by (hsteps) |
|
3530 qed |
|
3531 |
|
3532 lemma hoare_if_reps_z_false_gen[step]: |
|
3533 assumes h: "k \<noteq> 0" "u = v" |
|
3534 shows |
|
3535 "\<lbrace>st i \<and>* ps u \<and>* reps v w [k]\<rbrace> |
|
3536 i:[if_reps_z e]:j |
|
3537 \<lbrace>st j \<and>* ps u \<and>* reps v w [k]\<rbrace>" |
|
3538 by (unfold assms, rule hoare_if_reps_z_false[OF `k \<noteq> 0`]) |
|
3539 |
|
3540 lemma EXS_postI: |
|
3541 assumes "\<lbrace>P\<rbrace> |
|
3542 c |
|
3543 \<lbrace>Q x\<rbrace>" |
|
3544 shows "\<lbrace>P\<rbrace> |
|
3545 c |
|
3546 \<lbrace>EXS x. Q x\<rbrace>" |
|
3547 by (metis EXS_intro assms tm.hoare_adjust) |
|
3548 |
|
3549 lemma hoare_if_reps_nz_true: |
|
3550 assumes h: "k \<noteq> 0" |
|
3551 shows |
|
3552 "\<lbrace>st i \<and>* ps u \<and>* reps u v [k]\<rbrace> |
|
3553 i:[if_reps_nz e]:j |
|
3554 \<lbrace>st e \<and>* ps u \<and>* reps u v [k]\<rbrace>" |
|
3555 proof - |
|
3556 from h obtain k' where "k = Suc k'" by (metis not0_implies_Suc) |
|
3557 show ?thesis |
|
3558 apply (unfold `k = Suc k'`) |
|
3559 apply (unfold reps.simps, simp add:sep_conj_cond, rule tm.pre_condI, simp) |
|
3560 apply (unfold if_reps_nz_def) |
|
3561 apply (simp add:ones_simps) |
|
3562 apply hsteps |
|
3563 apply (rule_tac p = "st j' \<and>* ps (u + 1) \<and>* one (u + 1) \<and>* one u \<and>* |
|
3564 ones (2 + u) (u + (1 + int k'))" in tm.pre_stren) |
|
3565 apply (rule hoare_bzero_1_out) |
|
3566 by hsteps |
|
3567 qed |
|
3568 |
|
3569 |
|
3570 lemma hoare_if_reps_nz_true_gen[step]: |
|
3571 assumes h: "k \<noteq> 0" "u = v" |
|
3572 shows |
|
3573 "\<lbrace>st i \<and>* ps u \<and>* reps v w [k]\<rbrace> |
|
3574 i:[if_reps_nz e]:j |
|
3575 \<lbrace>st e \<and>* ps u \<and>* reps v w [k]\<rbrace>" |
|
3576 by (unfold assms, rule hoare_if_reps_nz_true[OF `k\<noteq> 0`]) |
|
3577 |
|
3578 lemma hoare_if_reps_nz_false: |
|
3579 assumes h: "k = 0" |
|
3580 shows |
|
3581 "\<lbrace>st i \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace> |
|
3582 i:[if_reps_nz e]:j |
|
3583 \<lbrace>st j \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace>" |
|
3584 apply (simp add:h sep_conj_cond) |
|
3585 apply (rule tm.pre_condI, simp) |
|
3586 apply (unfold if_reps_nz_def) |
|
3587 apply (simp add:ones_simps) |
|
3588 apply (hsteps) |
|
3589 apply (rule_tac p = "st j' \<and>* ps (u + 1) \<and>* zero (u + 1) \<and>* one u" in tm.pre_stren) |
|
3590 apply (rule hoare_bzero_2) |
|
3591 by (hsteps) |
|
3592 |
|
3593 lemma hoare_if_reps_nz_false_gen[step]: |
|
3594 assumes h: "k = 0" "u = v" "x = w + 1" |
|
3595 shows |
|
3596 "\<lbrace>st i \<and>* ps u \<and>* reps v w [k] \<and>* zero x\<rbrace> |
|
3597 i:[if_reps_nz e]:j |
|
3598 \<lbrace>st j \<and>* ps u \<and>* reps v w [k] \<and>* zero x\<rbrace>" |
|
3599 by (unfold assms, rule hoare_if_reps_nz_false, simp) |
|
3600 |
|
3601 lemma hoare_skip_or_sets_set: |
|
3602 shows "\<lbrace>st i \<and>* ps u \<and>* zeros u (u + int (reps_len (replicate (Suc n) 0))) \<and>* |
|
3603 tm (u + int (reps_len (replicate (Suc n) 0)) + 1) x\<rbrace> |
|
3604 i:[skip_or_sets (Suc n)]:j |
|
3605 \<lbrace>st j \<and>* ps (u + int (reps_len (replicate (Suc n) 0)) + 1) \<and>* |
|
3606 reps' u (u + int (reps_len (replicate (Suc n) 0))) (replicate (Suc n) 0) \<and>* |
|
3607 tm (u + int (reps_len (replicate (Suc n) 0)) + 1) x \<rbrace>" |
|
3608 proof(induct n arbitrary:i j u x) |
|
3609 case 0 |
|
3610 from 0 show ?case |
|
3611 apply (simp add:reps'_def reps_len_def reps_ctnt_len_def reps_sep_len_def reps.simps) |
|
3612 apply (unfold skip_or_sets_def, simp add:tpg_fold_sg) |
|
3613 apply hsteps |
|
3614 by (auto simp:sep_conj_ac, smt cond_true_eq2 ones.simps sep_conj_left_commute) |
|
3615 next |
|
3616 case (Suc n) |
|
3617 { fix n |
|
3618 have "listsum (replicate n (Suc 0)) = n" |
|
3619 by (induct n, auto) |
|
3620 } note eq_sum = this |
|
3621 have eq_len: "\<And>n. n \<noteq> 0 \<Longrightarrow> reps_len (replicate (Suc n) 0) = reps_len (replicate n 0) + 2" |
|
3622 by (simp add:reps_len_def reps_sep_len_def reps_ctnt_len_def) |
|
3623 have eq_zero: "\<And> u v. (zeros u (u + int (v + 2))) = |
|
3624 (zeros u (u + (int v)) \<and>* zero (u + (int v) + 1) \<and>* zero (u + (int v) + 2))" |
|
3625 by (smt sep.mult_assoc zeros_rev) |
|
3626 hence eq_z: |
|
3627 "zeros u (u + int (reps_len (replicate (Suc (Suc n)) 0))) = |
|
3628 (zeros u (u + int (reps_len (replicate (Suc n) 0))) \<and>* |
|
3629 zero ((u + int (reps_len (replicate (Suc n) 0))) + 1) \<and>* |
|
3630 zero ((u + int (reps_len (replicate (Suc n) 0))) + 2)) |
|
3631 " by (simp only:eq_len) |
|
3632 have hh: "\<And>x. (replicate (Suc (Suc n)) x) = (replicate (Suc n) x) @ [x]" |
|
3633 by (metis replicate_Suc replicate_append_same) |
|
3634 have hhh: "replicate (Suc n) skip_or_set \<noteq> []" "[skip_or_set] \<noteq> []" by auto |
|
3635 have eq_code: |
|
3636 "(i :[ skip_or_sets (Suc (Suc n)) ]: j) = |
|
3637 (i :[ (skip_or_sets (Suc n); skip_or_set) ]: j)" |
|
3638 proof(unfold skip_or_sets_def) |
|
3639 show "i :[ tpg_fold (replicate (Suc (Suc n)) skip_or_set) ]: j = |
|
3640 i :[ (tpg_fold (replicate (Suc n) skip_or_set) ; skip_or_set) ]: j" |
|
3641 apply (insert tpg_fold_app[OF hhh, of i j], unfold hh) |
|
3642 by (simp only:tpg_fold_sg) |
|
3643 qed |
|
3644 have "Suc n \<noteq> 0" by simp |
|
3645 show ?case |
|
3646 apply (unfold eq_z eq_code) |
|
3647 apply (hstep Suc(1)) |
|
3648 apply (unfold eq_len[OF `Suc n \<noteq> 0`]) |
|
3649 apply hstep |
|
3650 apply (auto simp:sep_conj_ac)[1] |
|
3651 apply (sep_cancel+, prune) |
|
3652 apply (fwd abs_ones) |
|
3653 apply ((fwd abs_reps')+, simp add:int_add_ac) |
|
3654 by (metis replicate_append_same) |
|
3655 qed |
|
3656 |
|
3657 lemma hoare_skip_or_sets_set_gen[step]: |
|
3658 assumes h: "p2 = p1" |
|
3659 "p3 = p1 + int (reps_len (replicate (Suc n) 0))" |
|
3660 "p4 = p3 + 1" |
|
3661 shows "\<lbrace>st i \<and>* ps p1 \<and>* zeros p2 p3 \<and>* tm p4 x\<rbrace> |
|
3662 i:[skip_or_sets (Suc n)]:j |
|
3663 \<lbrace>st j \<and>* ps p4 \<and>* reps' p2 p3 (replicate (Suc n) 0) \<and>* tm p4 x\<rbrace>" |
|
3664 apply (unfold h) |
|
3665 by (rule hoare_skip_or_sets_set) |
|
3666 |
|
3667 declare reps.simps[simp del] |
|
3668 |
|
3669 lemma hoare_skip_or_sets_skip: |
|
3670 assumes h: "n < length ks" |
|
3671 shows "\<lbrace>st i \<and>* ps u \<and>* reps' u v (take n ks) \<and>* reps' (v + 1) w [ks!n] \<rbrace> |
|
3672 i:[skip_or_sets (Suc n)]:j |
|
3673 \<lbrace>st j \<and>* ps (w+1) \<and>* reps' u v (take n ks) \<and>* reps' (v + 1) w [ks!n]\<rbrace>" |
|
3674 using h |
|
3675 proof(induct n arbitrary: i j u v w ks) |
|
3676 case 0 |
|
3677 show ?case |
|
3678 apply (subst (1 5) reps'_def, simp add:sep_conj_cond, intro tm.pre_condI, simp) |
|
3679 apply (unfold skip_or_sets_def, simp add:tpg_fold_sg) |
|
3680 apply (unfold reps'_def, simp del:reps.simps) |
|
3681 apply hsteps |
|
3682 by (sep_cancel+, smt+) |
|
3683 next |
|
3684 case (Suc n) |
|
3685 from `Suc n < length ks` have "n < length ks" by auto |
|
3686 note h = Suc(1) [OF this] |
|
3687 show ?case |
|
3688 my_block |
|
3689 from `Suc n < length ks` |
|
3690 have eq_take: "take (Suc n) ks = take n ks @ [ks!n]" |
|
3691 by (metis not_less_eq not_less_iff_gr_or_eq take_Suc_conv_app_nth) |
|
3692 my_block_end |
|
3693 apply (unfold this) |
|
3694 apply (subst reps'_append, simp add:sep_conj_exists, rule tm.precond_exI) |
|
3695 my_block |
|
3696 have "(i :[ skip_or_sets (Suc (Suc n)) ]: j) = |
|
3697 (i :[ (skip_or_sets (Suc n); skip_or_set )]: j)" |
|
3698 proof - |
|
3699 have eq_rep: |
|
3700 "(replicate (Suc (Suc n)) skip_or_set) = ((replicate (Suc n) skip_or_set) @ [skip_or_set])" |
|
3701 by (metis replicate_Suc replicate_append_same) |
|
3702 have "replicate (Suc n) skip_or_set \<noteq> []" "[skip_or_set] \<noteq> []" by auto |
|
3703 from tpg_fold_app[OF this] |
|
3704 show ?thesis |
|
3705 by (unfold skip_or_sets_def eq_rep, simp del:replicate.simps add:tpg_fold_sg) |
|
3706 qed |
|
3707 my_block_end |
|
3708 apply (unfold this) |
|
3709 my_block |
|
3710 fix i j m |
|
3711 have "\<lbrace>st i \<and>* ps u \<and>* (reps' u (m - 1) (take n ks) \<and>* reps' m v [ks ! n])\<rbrace> |
|
3712 i :[ (skip_or_sets (Suc n)) ]: j |
|
3713 \<lbrace>st j \<and>* ps (v + 1) \<and>* (reps' u (m - 1) (take n ks) \<and>* reps' m v [ks ! n])\<rbrace>" |
|
3714 apply (rule h[THEN tm.hoare_adjust]) |
|
3715 by (sep_cancel+, auto) |
|
3716 my_block_end my_note h_c1 = this |
|
3717 my_block |
|
3718 fix j' j m |
|
3719 have "\<lbrace>st j' \<and>* ps (v + 1) \<and>* reps' (v + 1) w [ks ! Suc n]\<rbrace> |
|
3720 j' :[ skip_or_set ]: j |
|
3721 \<lbrace>st j \<and>* ps (w + 1) \<and>* reps' (v + 1) w [ks ! Suc n]\<rbrace>" |
|
3722 apply (unfold reps'_def, simp) |
|
3723 apply (rule hoare_skip_or_set_skip[THEN tm.hoare_adjust]) |
|
3724 by (sep_cancel+, smt)+ |
|
3725 my_block_end |
|
3726 apply (hstep h_c1 this)+ |
|
3727 by ((fwd abs_reps'), simp, sep_cancel+) |
|
3728 qed |
|
3729 |
|
3730 lemma hoare_skip_or_sets_skip_gen[step]: |
|
3731 assumes h: "n < length ks" "u = v" "x = w + 1" |
|
3732 shows "\<lbrace>st i \<and>* ps u \<and>* reps' v w (take n ks) \<and>* reps' x y [ks!n] \<rbrace> |
|
3733 i:[skip_or_sets (Suc n)]:j |
|
3734 \<lbrace>st j \<and>* ps (y+1) \<and>* reps' v w (take n ks) \<and>* reps' x y [ks!n]\<rbrace>" |
|
3735 by (unfold assms, rule hoare_skip_or_sets_skip[OF `n < length ks`]) |
|
3736 |
|
3737 lemma fam_conj_interv_simp: |
|
3738 "(fam_conj {(ia::int)<..} p) = ((p (ia + 1)) \<and>* fam_conj {ia + 1 <..} p)" |
|
3739 by (smt Collect_cong fam_conj_insert_simp greaterThan_def |
|
3740 greaterThan_eq_iff greaterThan_iff insertI1 |
|
3741 insert_compr lessThan_iff mem_Collect_eq) |
|
3742 |
|
3743 lemma zeros_fam_conj: |
|
3744 assumes "u \<le> v" |
|
3745 shows "(zeros u v \<and>* fam_conj {v<..} zero) = fam_conj {u - 1<..} zero" |
|
3746 proof - |
|
3747 have "{u - 1<..v} ## {v <..}" by (auto simp:set_ins_def) |
|
3748 from fam_conj_disj_simp[OF this, symmetric] |
|
3749 have "(fam_conj {u - 1<..v} zero \<and>* fam_conj {v<..} zero) = fam_conj ({u - 1<..v} + {v<..}) zero" . |
|
3750 moreover |
|
3751 from `u \<le> v` have eq_set: "{u - 1 <..} = {u - 1 <..v} + {v <..}" by (auto simp:set_ins_def) |
|
3752 moreover have "fam_conj {u - 1<..v} zero = zeros u v" |
|
3753 proof - |
|
3754 have "({u - 1<..v}) = ({u .. v})" by auto |
|
3755 moreover { |
|
3756 fix u v |
|
3757 assume "u \<le> (v::int)" |
|
3758 hence "fam_conj {u .. v} zero = zeros u v" |
|
3759 proof(induct rule:ones_induct) |
|
3760 case (Base i j) |
|
3761 thus ?case by auto |
|
3762 next |
|
3763 case (Step i j) |
|
3764 thus ?case |
|
3765 proof(cases "i = j") |
|
3766 case True |
|
3767 show ?thesis |
|
3768 by (unfold True, simp add:fam_conj_simps) |
|
3769 next |
|
3770 case False |
|
3771 with `i \<le> j` have hh: "i + 1 \<le> j" by auto |
|
3772 hence eq_set: "{i..j} = (insert i {i + 1 .. j})" |
|
3773 by (smt simp_from_to) |
|
3774 have "i \<notin> {i + 1 .. j}" by simp |
|
3775 from fam_conj_insert_simp[OF this, folded eq_set] |
|
3776 have "fam_conj {i..j} zero = (zero i \<and>* fam_conj {i + 1..j} zero)" . |
|
3777 with Step(2)[OF hh] Step |
|
3778 show ?thesis by simp |
|
3779 qed |
|
3780 qed |
|
3781 } |
|
3782 moreover note this[OF `u \<le> v`] |
|
3783 ultimately show ?thesis by simp |
|
3784 qed |
|
3785 ultimately show ?thesis by smt |
|
3786 qed |
|
3787 |
|
3788 declare replicate.simps [simp del] |
|
3789 |
|
3790 lemma hoare_skip_or_sets_comb: |
|
3791 assumes "length ks \<le> n" |
|
3792 shows "\<lbrace>st i \<and>* ps u \<and>* reps u v ks \<and>* fam_conj {v<..} zero\<rbrace> |
|
3793 i:[skip_or_sets (Suc n)]:j |
|
3794 \<lbrace>st j \<and>* ps ((v + int (reps_len (list_ext n ks)) - int (reps_len ks))+ 2) \<and>* |
|
3795 reps' u (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1) (list_ext n ks) \<and>* |
|
3796 fam_conj {(v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1)<..} zero \<rbrace>" |
|
3797 proof(cases "ks = []") |
|
3798 case True |
|
3799 show ?thesis |
|
3800 apply (subst True, simp only:reps.simps sep_conj_cond) |
|
3801 apply (rule tm.pre_condI, simp) |
|
3802 apply (rule_tac p = "st i \<and>* ps (v + 1) \<and>* |
|
3803 zeros (v + 1) (v + 1 + int (reps_len (replicate (Suc n) 0))) \<and>* |
|
3804 tm (v + 2 + int (reps_len (replicate (Suc n) 0))) Bk \<and>* |
|
3805 fam_conj {(v + 2 + int (reps_len (replicate (Suc n) 0)))<..} zero |
|
3806 " in tm.pre_stren) |
|
3807 apply hsteps |
|
3808 apply (auto simp:sep_conj_ac)[1] |
|
3809 apply (auto simp:sep_conj_ac)[2] |
|
3810 my_block |
|
3811 from True have "(list_ext n ks) = (replicate (Suc n) 0)" |
|
3812 by (metis append_Nil diff_zero list.size(3) list_ext_def) |
|
3813 my_block_end my_note le_red = this |
|
3814 my_block |
|
3815 from True have "(reps_len ks) = 0" |
|
3816 by (metis reps_len_nil) |
|
3817 my_block_end |
|
3818 apply (unfold this le_red, simp) |
|
3819 my_block |
|
3820 have "v + 2 + int (reps_len (replicate (Suc n) 0)) = |
|
3821 v + int (reps_len (replicate (Suc n) 0)) + 2" by smt |
|
3822 my_block_end my_note eq_len = this |
|
3823 apply (unfold this) |
|
3824 apply (sep_cancel+) |
|
3825 apply (fold zero_def) |
|
3826 apply (subst fam_conj_interv_simp, simp) |
|
3827 apply (simp only:int_add_ac) |
|
3828 apply (simp only:sep_conj_ac, sep_cancel+) |
|
3829 my_block |
|
3830 have "v + 1 \<le> (2 + (v + int (reps_len (replicate (Suc n) 0))))" by simp |
|
3831 from zeros_fam_conj[OF this] |
|
3832 have "(fam_conj {v<..} zero) = (zeros (v + 1) (2 + (v + int (reps_len (replicate (Suc n) 0)))) \<and>* |
|
3833 fam_conj {2 + (v + int (reps_len (replicate (Suc n) 0)))<..} zero)" |
|
3834 by simp |
|
3835 my_block_end |
|
3836 apply (subst (asm) this, simp only:int_add_ac, sep_cancel+) |
|
3837 by (smt cond_true_eq2 sep.mult_assoc sep.mult_commute |
|
3838 sep.mult_left_commute sep_conj_assoc sep_conj_commute |
|
3839 sep_conj_left_commute zeros.simps zeros_rev) |
|
3840 next |
|
3841 case False |
|
3842 show ?thesis |
|
3843 my_block |
|
3844 have "(i:[skip_or_sets (Suc n)]:j) = |
|
3845 (i:[(skip_or_sets (length ks); skip_or_sets (Suc n - length ks))]:j)" |
|
3846 apply (unfold skip_or_sets_def) |
|
3847 my_block |
|
3848 have "(replicate (Suc n) skip_or_set) = |
|
3849 (replicate (length ks) skip_or_set @ (replicate (Suc n - length ks) skip_or_set))" |
|
3850 by (smt assms replicate_add) |
|
3851 my_block_end |
|
3852 apply (unfold this, rule tpg_fold_app, simp add:False) |
|
3853 by (insert `length ks \<le> n`, simp) |
|
3854 my_block_end |
|
3855 apply (unfold this) |
|
3856 my_block |
|
3857 from False have "length ks = (Suc (length ks - 1))" by simp |
|
3858 my_block_end |
|
3859 apply (subst (1) this) |
|
3860 my_block |
|
3861 from False |
|
3862 have "(reps u v ks \<and>* fam_conj {v<..} zero) = |
|
3863 (reps' u (v + 1) ks \<and>* fam_conj {v+1<..} zero)" |
|
3864 apply (unfold reps'_def, simp) |
|
3865 by (subst fam_conj_interv_simp, simp add:sep_conj_ac) |
|
3866 my_block_end |
|
3867 apply (unfold this) |
|
3868 my_block |
|
3869 fix i j |
|
3870 have "\<lbrace>st i \<and>* ps u \<and>* reps' u (v + 1) ks \<rbrace> |
|
3871 i :[ skip_or_sets (Suc (length ks - 1))]: j |
|
3872 \<lbrace>st j \<and>* ps (v + 2) \<and>* reps' u (v + 1) ks \<rbrace>" |
|
3873 my_block |
|
3874 have "ks = take (length ks - 1) ks @ [ks!(length ks - 1)]" |
|
3875 by (smt False drop_0 drop_eq_Nil id_take_nth_drop) |
|
3876 my_block_end my_note eq_ks = this |
|
3877 apply (subst (1) this) |
|
3878 apply (unfold reps'_append, simp add:sep_conj_exists, rule tm.precond_exI) |
|
3879 my_block |
|
3880 from False have "(length ks - Suc 0) < length ks" |
|
3881 by (smt `length ks = Suc (length ks - 1)`) |
|
3882 my_block_end |
|
3883 apply hsteps |
|
3884 apply (subst eq_ks, unfold reps'_append, simp only:sep_conj_exists) |
|
3885 by (rule_tac x = m in EXS_intro, simp add:sep_conj_ac, sep_cancel+, smt) |
|
3886 my_block_end |
|
3887 apply (hstep this) |
|
3888 my_block |
|
3889 fix u n |
|
3890 have "(fam_conj {u <..} zero) = |
|
3891 (zeros (u + 1) (u + int n + 1) \<and>* tm (u + int n + 2) Bk \<and>* fam_conj {(u + int n + 2)<..} zero)" |
|
3892 my_block |
|
3893 have "u + 1 \<le> (u + int n + 2)" by auto |
|
3894 from zeros_fam_conj[OF this, symmetric] |
|
3895 have "fam_conj {u<..} zero = (zeros (u + 1) (u + int n + 2) \<and>* fam_conj {u + int n + 2<..} zero)" |
|
3896 by simp |
|
3897 my_block_end |
|
3898 apply (subst this) |
|
3899 my_block |
|
3900 have "(zeros (u + 1) (u + int n + 2)) = |
|
3901 ((zeros (u + 1) (u + int n + 1) \<and>* tm (u + int n + 2) Bk))" |
|
3902 by (smt zero_def zeros_rev) |
|
3903 my_block_end |
|
3904 by (unfold this, auto simp:sep_conj_ac) |
|
3905 my_block_end |
|
3906 apply (subst (1) this[of _ "(reps_len (replicate (Suc (n - length ks)) 0))"]) |
|
3907 my_block |
|
3908 from `length ks \<le> n` |
|
3909 have "Suc n - length ks = Suc (n - length ks)" by auto |
|
3910 my_block_end my_note eq_suc = this |
|
3911 apply (subst this) |
|
3912 apply hsteps |
|
3913 apply (simp add: sep_conj_ac this, sep_cancel+) |
|
3914 apply (fwd abs_reps')+ |
|
3915 my_block |
|
3916 have "(int (reps_len (replicate (Suc (n - length ks)) 0))) = |
|
3917 (int (reps_len (list_ext n ks)) - int (reps_len ks) - 1)" |
|
3918 apply (unfold list_ext_def eq_suc) |
|
3919 my_block |
|
3920 have "replicate (Suc (n - length ks)) 0 \<noteq> []" by simp |
|
3921 my_block_end |
|
3922 by (unfold reps_len_split[OF False this], simp) |
|
3923 my_block_end |
|
3924 apply (unfold this) |
|
3925 my_block |
|
3926 from `length ks \<le> n` |
|
3927 have "(ks @ replicate (Suc (n - length ks)) 0) = (list_ext n ks)" |
|
3928 by (unfold list_ext_def, simp) |
|
3929 my_block_end |
|
3930 apply (unfold this, simp) |
|
3931 apply (subst fam_conj_interv_simp, unfold zero_def, simp, simp add:int_add_ac sep_conj_ac) |
|
3932 by (sep_cancel+, smt) |
|
3933 qed |
|
3934 |
|
3935 lemma hoare_skip_or_sets_comb_gen: |
|
3936 assumes "length ks \<le> n" "u = v" "w = x" |
|
3937 shows "\<lbrace>st i \<and>* ps u \<and>* reps v w ks \<and>* fam_conj {x<..} zero\<rbrace> |
|
3938 i:[skip_or_sets (Suc n)]:j |
|
3939 \<lbrace>st j \<and>* ps ((x + int (reps_len (list_ext n ks)) - int (reps_len ks))+ 2) \<and>* |
|
3940 reps' u (x + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1) (list_ext n ks) \<and>* |
|
3941 fam_conj {(x + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1)<..} zero \<rbrace>" |
|
3942 by (unfold assms, rule hoare_skip_or_sets_comb[OF `length ks \<le> n`]) |
|
3943 |
|
3944 lemma list_ext_tail_expand: |
|
3945 assumes h: "length ks \<le> a" |
|
3946 shows "list_ext a ks = take a (list_ext a ks) @ [(list_ext a ks)!a]" |
|
3947 proof - |
|
3948 let ?l = "list_ext a ks" |
|
3949 from h have eq_len: "length ?l = Suc a" |
|
3950 by (smt list_ext_len_eq) |
|
3951 hence "?l \<noteq> []" by auto |
|
3952 hence "?l = take (length ?l - 1) ?l @ [?l!(length ?l - 1)]" |
|
3953 by (metis `length (list_ext a ks) = Suc a` diff_Suc_1 le_refl |
|
3954 lessI take_Suc_conv_app_nth take_all) |
|
3955 from this[unfolded eq_len] |
|
3956 show ?thesis by simp |
|
3957 qed |
|
3958 |
|
3959 lemma reps'_nn_expand: |
|
3960 assumes "xs \<noteq> []" |
|
3961 shows "(reps' u v xs) = (reps u (v - 1) xs \<and>* zero v)" |
|
3962 by (metis assms reps'_def) |
|
3963 |
|
3964 lemma sep_conj_st1: "(p \<and>* st t \<and>* q) = (st t \<and>* p \<and>* q)" |
|
3965 by (simp only:sep_conj_ac) |
|
3966 |
|
3967 lemma sep_conj_st2: "(p \<and>* st t) = (st t \<and>* p)" |
|
3968 by (simp only:sep_conj_ac) |
|
3969 |
|
3970 lemma sep_conj_st3: "((st t \<and>* p) \<and>* r) = (st t \<and>* p \<and>* r)" |
|
3971 by (simp only:sep_conj_ac) |
|
3972 |
|
3973 lemma sep_conj_st4: "(EXS x. (st t \<and>* r x)) = ((st t) \<and>* (EXS x. r x))" |
|
3974 apply (unfold pred_ex_def, default+) |
|
3975 apply (safe) |
|
3976 apply (sep_cancel, auto) |
|
3977 by (auto elim!: sep_conjE intro!:sep_conjI) |
|
3978 |
|
3979 lemmas sep_conj_st = sep_conj_st1 sep_conj_st2 sep_conj_st3 sep_conj_st4 |
|
3980 |
|
3981 lemma sep_conj_cond3 : "(<cond1> \<and>* <cond2>) = <(cond1 \<and> cond2)>" |
|
3982 by (smt cond_eqI cond_true_eq sep_conj_commute sep_conj_empty) |
|
3983 |
|
3984 lemma sep_conj_cond4 : "(<cond1> \<and>* <cond2> \<and>* r) = (<(cond1 \<and> cond2)> \<and>* r)" |
|
3985 by (metis Hoare_gen.sep_conj_cond3 Hoare_tm.sep_conj_cond3) |
|
3986 |
|
3987 lemmas sep_conj_cond = sep_conj_cond3 sep_conj_cond4 sep_conj_cond |
|
3988 |
|
3989 lemma hoare_left_until_zero_reps: |
|
3990 "\<lbrace>st i ** ps v ** zero u ** reps (u + 1) v [k]\<rbrace> |
|
3991 i:[left_until_zero]:j |
|
3992 \<lbrace>st j ** ps u ** zero u ** reps (u + 1) v [k]\<rbrace>" |
|
3993 apply (unfold reps.simps, simp only:sep_conj_cond) |
|
3994 apply (rule tm.pre_condI, simp) |
|
3995 by hstep |
|
3996 |
|
3997 lemma hoare_left_until_zero_reps_gen[step]: |
|
3998 assumes "u = x" "w = v + 1" |
|
3999 shows "\<lbrace>st i ** ps u ** zero v ** reps w x [k]\<rbrace> |
|
4000 i:[left_until_zero]:j |
|
4001 \<lbrace>st j ** ps v ** zero v ** reps w x [k]\<rbrace>" |
|
4002 by (unfold assms, rule hoare_left_until_zero_reps) |
|
4003 |
|
4004 lemma reps_lenE: |
|
4005 assumes "reps u v ks s" |
|
4006 shows "( <(v = u + int (reps_len ks) - 1)> \<and>* reps u v ks ) s" |
|
4007 proof(rule condI) |
|
4008 from reps_len_correct[OF assms] show "v = u + int (reps_len ks) - 1" . |
|
4009 next |
|
4010 from assms show "reps u v ks s" . |
|
4011 qed |
|
4012 |
|
4013 lemma condI1: |
|
4014 assumes "p s" "b" |
|
4015 shows "(<b> \<and>* p) s" |
|
4016 proof(rule condI[OF assms(2)]) |
|
4017 from assms(1) show "p s" . |
|
4018 qed |
|
4019 |
|
4020 lemma hoare_locate_set: |
|
4021 assumes "length ks \<le> n" |
|
4022 shows "\<lbrace>st i \<and>* zero (u - 1) \<and>* ps u \<and>* reps u v ks \<and>* fam_conj {v<..} zero\<rbrace> |
|
4023 i:[locate n]:j |
|
4024 \<lbrace>st j \<and>* zero (u - 1) \<and>* |
|
4025 (EXS m w. ps m \<and>* reps' u (m - 1) (take n (list_ext n ks)) \<and>* |
|
4026 reps m w [(list_ext n ks)!n] \<and>* fam_conj {w<..} zero)\<rbrace>" |
|
4027 proof(cases "take n (list_ext n ks) = []") |
|
4028 case False |
|
4029 show ?thesis |
|
4030 apply (unfold locate_def) |
|
4031 apply (hstep hoare_skip_or_sets_comb_gen) |
|
4032 apply (subst (3) list_ext_tail_expand[OF `length ks \<le> n`]) |
|
4033 apply (subst (1) reps'_append, simp add:sep_conj_exists) |
|
4034 apply (rule tm.precond_exI) |
|
4035 apply (subst (1) reps'_nn_expand[OF False]) |
|
4036 apply (rule_tac p = "st j' \<and>* <(m = u + int (reps_len (take n (list_ext n ks))) + 1)> \<and>* |
|
4037 ps (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 2) \<and>* |
|
4038 ((reps u (m - 1 - 1) (take n (list_ext n ks)) \<and>* zero (m - 1)) \<and>* |
|
4039 reps' m (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1) |
|
4040 [list_ext n ks ! n]) \<and>* |
|
4041 fam_conj |
|
4042 {v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1<..} |
|
4043 zero \<and>* |
|
4044 zero (u - 1)" |
|
4045 in tm.pre_stren) |
|
4046 my_block |
|
4047 have "[list_ext n ks ! n] \<noteq> []" by simp |
|
4048 from reps'_nn_expand[OF this] |
|
4049 have "(reps' m (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1) [list_ext n ks ! n]) = |
|
4050 (reps m (v + (int (reps_len (list_ext n ks)) - int (reps_len ks))) [list_ext n ks ! n] \<and>* |
|
4051 zero (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1))" |
|
4052 by simp |
|
4053 my_block_end |
|
4054 apply (subst this) |
|
4055 my_block |
|
4056 have "(fam_conj {v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1<..} zero) = |
|
4057 (zero (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 2) \<and>* |
|
4058 fam_conj {v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 2<..} zero)" |
|
4059 by (subst fam_conj_interv_simp, smt) |
|
4060 my_block_end |
|
4061 apply (unfold this) |
|
4062 apply (simp only:sep_conj_st) |
|
4063 apply hsteps |
|
4064 apply (auto simp:sep_conj_ac)[1] |
|
4065 apply (sep_cancel+) |
|
4066 apply (rule_tac x = m in EXS_intro) |
|
4067 apply (rule_tac x = "m + int (list_ext n ks ! n)" in EXS_intro) |
|
4068 apply (simp add:sep_conj_ac del:ones_simps, sep_cancel+) |
|
4069 apply (subst (asm) sep_conj_cond)+ |
|
4070 apply (erule_tac condE, clarsimp, simp add:sep_conj_ac int_add_ac) |
|
4071 apply (fwd abs_reps') |
|
4072 apply (fwd abs_reps') |
|
4073 apply (simp add:sep_conj_ac int_add_ac) |
|
4074 apply (sep_cancel+) |
|
4075 apply (subst (asm) reps'_def, subst fam_conj_interv_simp, subst fam_conj_interv_simp, |
|
4076 simp add:sep_conj_ac int_add_ac) |
|
4077 my_block |
|
4078 fix s |
|
4079 assume h: "(reps (1 + (u + int (reps_len (take n (list_ext n ks))))) |
|
4080 (v + (- int (reps_len ks) + int (reps_len (list_ext n ks)))) [list_ext n ks ! n]) s" |
|
4081 (is "?P s") |
|
4082 from reps_len_correct[OF this] list_ext_tail_expand[OF `length ks \<le> n`] |
|
4083 have hh: "v + (- int (reps_len ks) + |
|
4084 int (reps_len (take n (list_ext n ks) @ [list_ext n ks ! n]))) = |
|
4085 1 + (u + int (reps_len (take n (list_ext n ks)))) + |
|
4086 int (reps_len [list_ext n ks ! n]) - 1" |
|
4087 by metis |
|
4088 have "[list_ext n ks ! n] \<noteq> []" by simp |
|
4089 from hh[unfolded reps_len_split[OF False this]] |
|
4090 have "v = u + (int (reps_len ks)) - 1" |
|
4091 by simp |
|
4092 from condI1[where p = ?P, OF h this] |
|
4093 have "(<(v = u + int (reps_len ks) - 1)> \<and>* |
|
4094 reps (1 + (u + int (reps_len (take n (list_ext n ks))))) |
|
4095 (v + (- int (reps_len ks) + int (reps_len (list_ext n ks)))) [list_ext n ks ! n]) s" . |
|
4096 my_block_end |
|
4097 apply (fwd this, (subst (asm) sep_conj_cond)+, erule condE, simp add:sep_conj_ac int_add_ac |
|
4098 reps_len_sg) |
|
4099 apply (fwd reps_lenE, (subst (asm) sep_conj_cond)+, erule condE, simp add:sep_conj_ac int_add_ac |
|
4100 reps_len_sg) |
|
4101 by (fwd reps_lenE, (subst (asm) sep_conj_cond)+, erule condE, simp add:sep_conj_ac) |
|
4102 next |
|
4103 case True |
|
4104 show ?thesis |
|
4105 apply (unfold locate_def) |
|
4106 apply (hstep hoare_skip_or_sets_comb) |
|
4107 apply (subst (3) list_ext_tail_expand[OF `length ks \<le> n`]) |
|
4108 apply (subst (1) reps'_append, simp add:sep_conj_exists) |
|
4109 apply (rule tm.precond_exI) |
|
4110 my_block |
|
4111 from True `length ks \<le> n` |
|
4112 have "ks = []" "n = 0" |
|
4113 apply (metis le0 le_antisym length_0_conv less_nat_zero_code list_ext_len take_eq_Nil) |
|
4114 by (smt True length_take list.size(3) list_ext_len) |
|
4115 my_block_end |
|
4116 apply (unfold True this) |
|
4117 apply (simp add:reps'_def list_ext_def reps.simps reps_len_def reps_sep_len_def |
|
4118 reps_ctnt_len_def |
|
4119 del:ones_simps) |
|
4120 apply (subst sep_conj_cond)+ |
|
4121 apply (rule tm.pre_condI, simp del:ones_simps) |
|
4122 apply (subst fam_conj_interv_simp, simp add:sep_conj_st del:ones_simps) |
|
4123 apply (hsteps) |
|
4124 apply (auto simp:sep_conj_ac)[1] |
|
4125 apply (sep_cancel+) |
|
4126 apply (rule_tac x = "(v + int (listsum (replicate (Suc 0) (Suc 0))))" in EXS_intro)+ |
|
4127 apply (simp only:sep_conj_ac, sep_cancel+) |
|
4128 apply (auto) |
|
4129 apply (subst fam_conj_interv_simp) |
|
4130 apply (subst fam_conj_interv_simp) |
|
4131 by smt |
|
4132 qed |
|
4133 |
|
4134 lemma hoare_locate_set_gen[step]: |
|
4135 assumes "length ks \<le> n" |
|
4136 "u = v - 1" "v = w" "x = y" |
|
4137 shows "\<lbrace>st i \<and>* zero u \<and>* ps v \<and>* reps w x ks \<and>* fam_conj {y<..} zero\<rbrace> |
|
4138 i:[locate n]:j |
|
4139 \<lbrace>st j \<and>* zero u \<and>* |
|
4140 (EXS m w. ps m \<and>* reps' v (m - 1) (take n (list_ext n ks)) \<and>* |
|
4141 reps m w [(list_ext n ks)!n] \<and>* fam_conj {w<..} zero)\<rbrace>" |
|
4142 by (unfold assms, rule hoare_locate_set[OF `length ks \<le> n`]) |
|
4143 |
|
4144 lemma hoare_locate_skip: |
|
4145 assumes h: "n < length ks" |
|
4146 shows |
|
4147 "\<lbrace>st i \<and>* ps u \<and>* zero (u - 1) \<and>* reps' u (v - 1) (take n ks) \<and>* reps' v w [ks!n] \<and>* tm (w + 1) x\<rbrace> |
|
4148 i:[locate n]:j |
|
4149 \<lbrace>st j \<and>* ps v \<and>* zero (u - 1) \<and>* reps' u (v - 1) (take n ks) \<and>* reps' v w [ks!n] \<and>* tm (w + 1) x\<rbrace>" |
|
4150 proof - |
|
4151 show ?thesis |
|
4152 apply (unfold locate_def) |
|
4153 apply hsteps |
|
4154 apply (subst (2 4) reps'_def, simp add:reps.simps sep_conj_cond del:ones_simps) |
|
4155 apply (intro tm.pre_condI, simp del:ones_simps) |
|
4156 apply hsteps |
|
4157 apply (case_tac "(take n ks) = []", simp add:reps'_def sep_conj_cond del:ones_simps) |
|
4158 apply (rule tm.pre_condI, simp del:ones_simps) |
|
4159 apply hsteps |
|
4160 apply (simp del:ones_simps add:reps'_def) |
|
4161 by hsteps |
|
4162 qed |
|
4163 |
|
4164 |
|
4165 lemma hoare_locate_skip_gen[step]: |
|
4166 assumes "n < length ks" |
|
4167 "v = u - 1" "w = u" "x = y - 1" "z' = z + 1" |
|
4168 shows |
|
4169 "\<lbrace>st i \<and>* ps u \<and>* tm v Bk \<and>* reps' w x (take n ks) \<and>* reps' y z [ks!n] \<and>* tm z' vx\<rbrace> |
|
4170 i:[locate n]:j |
|
4171 \<lbrace>st j \<and>* ps y \<and>* tm v Bk \<and>* reps' w x (take n ks) \<and>* reps' y z [ks!n] \<and>* tm z' vx\<rbrace>" |
|
4172 by (unfold assms, fold zero_def, rule hoare_locate_skip[OF `n < length ks`]) |
|
4173 |
|
4174 lemma ones_int_expand: "(ones m (m + int k)) = (one m \<and>* ones (m + 1) (m + int k))" |
|
4175 by (simp add:ones_simps) |
|
4176 |
|
4177 lemma reps_splitedI: |
|
4178 assumes h1: "(reps u v ks1 \<and>* zero (v + 1) \<and>* reps (v + 2) w ks2) s" |
|
4179 and h2: "ks1 \<noteq> []" |
|
4180 and h3: "ks2 \<noteq> []" |
|
4181 shows "(reps u w (ks1 @ ks2)) s" |
|
4182 proof - |
|
4183 from h2 h3 |
|
4184 have "splited (ks1 @ ks2) ks1 ks2" by (auto simp:splited_def) |
|
4185 from h1 obtain s1 where |
|
4186 "(reps u v ks1) s1" by (auto elim:sep_conjE) |
|
4187 from h1 obtain s2 where |
|
4188 "(reps (v + 2) w ks2) s2" by (auto elim:sep_conjE) |
|
4189 from reps_len_correct[OF `(reps u v ks1) s1`] |
|
4190 have eq_v: "v = u + int (reps_len ks1) - 1" . |
|
4191 from reps_len_correct[OF `(reps (v + 2) w ks2) s2`] |
|
4192 have eq_w: "w = v + 2 + int (reps_len ks2) - 1" . |
|
4193 from h1 |
|
4194 have "(reps u (u + int (reps_len ks1) - 1) ks1 \<and>* |
|
4195 zero (u + int (reps_len ks1)) \<and>* reps (u + int (reps_len ks1) + 1) w ks2) s" |
|
4196 apply (unfold eq_v eq_w[unfolded eq_v]) |
|
4197 by (sep_cancel+, smt) |
|
4198 thus ?thesis |
|
4199 by(unfold reps_splited[OF `splited (ks1 @ ks2) ks1 ks2`], simp) |
|
4200 qed |
|
4201 |
|
4202 lemma reps_sucI: |
|
4203 assumes h: "(reps u v (xs@[x]) \<and>* one (1 + v)) s" |
|
4204 shows "(reps u (1 + v) (xs@[Suc x])) s" |
|
4205 proof(cases "xs = []") |
|
4206 case True |
|
4207 from h obtain s' where "(reps u v (xs@[x])) s'" by (auto elim:sep_conjE) |
|
4208 from reps_len_correct[OF this] have " v = u + int (reps_len (xs @ [x])) - 1" . |
|
4209 with True have eq_v: "v = u + int x" by (simp add:reps_len_sg) |
|
4210 have eq_one1: "(one (1 + (u + int x)) \<and>* ones (u + 1) (u + int x)) = ones (u + 1) (1 + (u + int x))" |
|
4211 by (smt ones_rev sep.mult_commute) |
|
4212 from h show ?thesis |
|
4213 apply (unfold True, simp add:eq_v reps.simps sep_conj_cond sep_conj_ac ones_rev) |
|
4214 by (sep_cancel+, simp add: eq_one1, smt) |
|
4215 next |
|
4216 case False |
|
4217 from h obtain s1 s2 where hh: "(reps u v (xs@[x])) s1" "s = s1 + s2" "s1 ## s2" "one (1 + v) s2" |
|
4218 by (auto elim:sep_conjE) |
|
4219 from hh(1)[unfolded reps_rev[OF False]] |
|
4220 obtain s11 s12 s13 where hhh: |
|
4221 "(reps u (v - int (x + 1) - 1) xs) s11" |
|
4222 "(zero (v - int (x + 1))) s12" "(ones (v - int x) v) s13" |
|
4223 "s11 ## (s12 + s13)" "s12 ## s13" "s1 = s11 + s12 + s13" |
|
4224 apply (atomize_elim) |
|
4225 apply(elim sep_conjE)+ |
|
4226 apply (rule_tac x = xa in exI) |
|
4227 apply (rule_tac x = xaa in exI) |
|
4228 apply (rule_tac x = ya in exI) |
|
4229 apply (intro conjI, assumption+) |
|
4230 by (auto simp:set_ins_def) |
|
4231 show ?thesis |
|
4232 proof(rule reps_splitedI[where v = "(v - int (x + 1) - 1)"]) |
|
4233 show "(reps u (v - int (x + 1) - 1) xs \<and>* zero (v - int (x + 1) - 1 + 1) \<and>* |
|
4234 reps (v - int (x + 1) - 1 + 2) (1 + v) [Suc x]) s" |
|
4235 proof(rule sep_conjI) |
|
4236 from hhh(1) show "reps u (v - int (x + 1) - 1) xs s11" . |
|
4237 next |
|
4238 show "(zero (v - int (x + 1) - 1 + 1) \<and>* reps (v - int (x + 1) - 1 + 2) (1 + v) [Suc x]) (s12 + (s13 + s2))" |
|
4239 proof(rule sep_conjI) |
|
4240 from hhh(2) show "zero (v - int (x + 1) - 1 + 1) s12" by smt |
|
4241 next |
|
4242 from hh(4) hhh(3) |
|
4243 show "reps (v - int (x + 1) - 1 + 2) (1 + v) [Suc x] (s13 + s2)" |
|
4244 apply (simp add:reps.simps del:ones_simps add:ones_rev) |
|
4245 by (smt hh(3) hh(4) hhh(4) hhh(5) hhh(6) sep_add_disjD sep_conjI sep_disj_addI1) |
|
4246 next |
|
4247 show "s12 ## s13 + s2" |
|
4248 by (metis hh(3) hhh(4) hhh(5) hhh(6) sep_add_commute sep_add_disjD |
|
4249 sep_add_disjI2 sep_disj_addD sep_disj_addD1 sep_disj_addI1 sep_disj_commuteI) |
|
4250 next |
|
4251 show "s12 + (s13 + s2) = s12 + (s13 + s2)" by metis |
|
4252 qed |
|
4253 next |
|
4254 show "s11 ## s12 + (s13 + s2)" |
|
4255 by (metis hh(3) hhh(4) hhh(5) hhh(6) sep_disj_addD1 sep_disj_addI1 sep_disj_addI3) |
|
4256 next |
|
4257 show "s = s11 + (s12 + (s13 + s2))" |
|
4258 by (smt hh(2) hh(3) hhh(4) hhh(5) hhh(6) sep_add_assoc sep_add_commute |
|
4259 sep_add_disjD sep_add_disjI2 sep_disj_addD1 sep_disj_addD2 |
|
4260 sep_disj_addI1 sep_disj_addI3 sep_disj_commuteI) |
|
4261 qed |
|
4262 next |
|
4263 from False show "xs \<noteq> []" . |
|
4264 next |
|
4265 show "[Suc x] \<noteq> []" by simp |
|
4266 qed |
|
4267 qed |
|
4268 |
|
4269 lemma cond_expand: "(<cond> \<and>* p) s = (cond \<and> (p s))" |
|
4270 by (metis (full_types) condD pasrt_def sep_conj_commuteI |
|
4271 sep_conj_sep_emptyI sep_empty_def sep_globalise) |
|
4272 |
|
4273 lemma ones_rev1: |
|
4274 assumes "\<not> (1 + n) < m" |
|
4275 shows "(ones m n \<and>* one (1 + n)) = (ones m (1 + n))" |
|
4276 by (insert ones_rev[OF assms, simplified], simp) |
|
4277 |
|
4278 lemma reps_one_abs: |
|
4279 assumes "(reps u v [k] \<and>* one w) s" |
|
4280 "w = v + 1" |
|
4281 shows "(reps u w [Suc k]) s" |
|
4282 using assms unfolding assms |
|
4283 apply (simp add:reps.simps sep_conj_ac) |
|
4284 apply (subst (asm) sep_conj_cond)+ |
|
4285 apply (erule condE, simp) |
|
4286 by (simp add:ones_rev sep_conj_ac, sep_cancel+, smt) |
|
4287 |
|
4288 lemma reps'_reps_abs: |
|
4289 assumes "(reps' u v xs \<and>* reps w x ys) s" |
|
4290 "w = v + 1" "ys \<noteq> []" |
|
4291 shows "(reps u x (xs@ys)) s" |
|
4292 proof(cases "xs = []") |
|
4293 case False |
|
4294 with assms |
|
4295 have h: "splited (xs@ys) xs ys" by (simp add:splited_def) |
|
4296 from assms(1)[unfolded assms(2)] |
|
4297 show ?thesis |
|
4298 apply (unfold reps_splited[OF h]) |
|
4299 apply (insert False, unfold reps'_def, simp) |
|
4300 apply (fwd reps_lenE, (subst (asm) sep_conj_cond)+) |
|
4301 by (erule condE, simp) |
|
4302 next |
|
4303 case True |
|
4304 with assms |
|
4305 show ?thesis |
|
4306 apply (simp add:reps'_def) |
|
4307 by (erule condE, simp) |
|
4308 qed |
|
4309 |
|
4310 lemma reps_one_abs1: |
|
4311 assumes "(reps u v (xs@[k]) \<and>* one w) s" |
|
4312 "w = v + 1" |
|
4313 shows "(reps u w (xs@[Suc k])) s" |
|
4314 proof(cases "xs = []") |
|
4315 case True |
|
4316 with assms reps_one_abs |
|
4317 show ?thesis by simp |
|
4318 next |
|
4319 case False |
|
4320 hence "splited (xs@[k]) xs [k]" by (simp add:splited_def) |
|
4321 from assms(1)[unfolded reps_splited[OF this] assms(2)] |
|
4322 show ?thesis |
|
4323 apply (fwd reps_one_abs) |
|
4324 apply (fwd reps_reps'_abs) |
|
4325 apply (fwd reps'_reps_abs) |
|
4326 by (simp add:assms) |
|
4327 qed |
|
4328 |
|
4329 lemma tm_hoare_inc00: |
|
4330 assumes h: "a < length ks \<and> ks ! a = v" |
|
4331 shows "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace> |
|
4332 i :[ Inc a ]: j |
|
4333 \<lbrace>st j \<and>* |
|
4334 ps u \<and>* |
|
4335 zero (u - 2) \<and>* |
|
4336 zero (u - 1) \<and>* |
|
4337 reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1) (ks[a := Suc v]) \<and>* |
|
4338 fam_conj {(ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1)<..} zero\<rbrace>" |
|
4339 (is "\<lbrace> ?P \<rbrace> ?code \<lbrace> ?Q \<rbrace>") |
|
4340 proof - |
|
4341 from h have "a < length ks" "ks ! a = v" by auto |
|
4342 from list_nth_expand[OF `a < length ks`] |
|
4343 have eq_ks: "ks = take a ks @ [ks!a] @ drop (Suc a) ks" . |
|
4344 from `a < length ks` have "ks \<noteq> []" by auto |
|
4345 hence "(reps u ia ks \<and>* zero (ia + 1)) = reps' u (ia + 1) ks" |
|
4346 by (simp add:reps'_def) |
|
4347 also from eq_ks have "\<dots> = reps' u (ia + 1) (take a ks @ [ks!a] @ drop (Suc a) ks)" by simp |
|
4348 also have "\<dots> = (EXS m. reps' u (m - 1) (take a ks) \<and>* |
|
4349 reps' m (ia + 1) (ks ! a # drop (Suc a) ks))" |
|
4350 by (simp add:reps'_append) |
|
4351 also have "\<dots> = (EXS m. reps' u (m - 1) (take a ks) \<and>* |
|
4352 reps' m (ia + 1) ([ks ! a] @ drop (Suc a) ks))" |
|
4353 by simp |
|
4354 also have "\<dots> = (EXS m ma. reps' u (m - 1) (take a ks) \<and>* |
|
4355 reps' m (ma - 1) [ks ! a] \<and>* reps' ma (ia + 1) (drop (Suc a) ks))" |
|
4356 by (simp only:reps'_append sep_conj_exists) |
|
4357 finally have eq_s: "(reps u ia ks \<and>* zero (ia + 1)) = \<dots>" . |
|
4358 { fix m ma |
|
4359 have eq_u: "-1 + u = u - 1" by smt |
|
4360 have " \<lbrace>st i \<and>* |
|
4361 ps u \<and>* |
|
4362 zero (u - 2) \<and>* |
|
4363 zero (u - 1) \<and>* |
|
4364 (reps' u (m - 1) (take a ks) \<and>* |
|
4365 reps' m (ma - 1) [ks ! a] \<and>* reps' ma (ia + 1) (drop (Suc a) ks)) \<and>* |
|
4366 fam_conj {ia + 1<..} zero\<rbrace> |
|
4367 i :[ Inc a ]: j |
|
4368 \<lbrace>st j \<and>* |
|
4369 ps u \<and>* |
|
4370 zero (u - 2) \<and>* |
|
4371 zero (u - 1) \<and>* |
|
4372 reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1) (ks[a := Suc v]) \<and>* |
|
4373 fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1<..} zero\<rbrace>" |
|
4374 proof(cases "(drop (Suc a) ks) = []") |
|
4375 case True |
|
4376 { fix hc |
|
4377 have eq_1: "(1 + (m + int (ks ! a))) = (m + int (ks ! a) + 1)" by simp |
|
4378 have eq_2: "take a ks @ [Suc (ks ! a)] = ks[a := Suc v]" |
|
4379 apply (subst (3) eq_ks, unfold True, simp) |
|
4380 by (metis True append_Nil2 eq_ks h upd_conv_take_nth_drop) |
|
4381 assume h: "(fam_conj {1 + (m + int (ks ! a))<..} zero \<and>* |
|
4382 reps u (1 + (m + int (ks ! a))) (take a ks @ [Suc (ks ! a)])) hc" |
|
4383 hence "(fam_conj {m + int (ks ! a) + 1<..} zero \<and>* reps u (m + int (ks ! a) + 1) (ks[a := Suc v])) hc" |
|
4384 by (unfold eq_1 eq_2 , sep_cancel+) |
|
4385 } note eq_fam = this |
|
4386 show ?thesis |
|
4387 apply (unfold Inc_def, subst (3) reps'_def, simp add:True sep_conj_cond) |
|
4388 apply (intro tm.pre_condI, simp) |
|
4389 apply (subst fam_conj_interv_simp, simp, subst (3) zero_def) |
|
4390 apply hsteps |
|
4391 apply (subst reps'_sg, simp add:sep_conj_cond del:ones_simps) |
|
4392 apply (rule tm.pre_condI, simp del:ones_simps) |
|
4393 apply hsteps |
|
4394 apply (rule_tac p = " |
|
4395 st j' \<and>* ps (1 + (m + int (ks ! a))) \<and>* zero (u - 1) \<and>* zero (u - 2) \<and>* |
|
4396 reps u (1 + (m + int (ks ! a))) (take a ks @ [Suc (ks!a)]) |
|
4397 \<and>* fam_conj {1 + (m + int (ks ! a))<..} zero |
|
4398 " in tm.pre_stren) |
|
4399 apply (hsteps) |
|
4400 apply (simp add:sep_conj_ac list_ext_lt[OF `a < length ks`], sep_cancel+) |
|
4401 apply (fwd eq_fam, sep_cancel+) |
|
4402 apply (simp del:ones_simps add:sep_conj_ac) |
|
4403 apply (sep_cancel+, prune) |
|
4404 apply ((fwd abs_reps')+, simp) |
|
4405 apply (fwd reps_one_abs abs_reps')+ |
|
4406 apply (subst (asm) reps'_def, simp) |
|
4407 by (subst fam_conj_interv_simp, simp add:sep_conj_ac) |
|
4408 next |
|
4409 case False |
|
4410 then obtain k' ks' where eq_drop: "drop (Suc a) ks = [k']@ks'" |
|
4411 by (metis append_Cons append_Nil list.exhaust) |
|
4412 from `a < length ks` |
|
4413 have eq_ks: "ks[a := Suc v] = (take a ks @ [Suc (ks ! a)]) @ (drop (Suc a) ks)" |
|
4414 apply (fold `ks!a = v`) |
|
4415 by (metis append_Cons append_Nil append_assoc upd_conv_take_nth_drop) |
|
4416 show ?thesis |
|
4417 apply (unfold Inc_def) |
|
4418 apply (unfold Inc_def eq_drop reps'_append, simp add:sep_conj_exists del:ones_simps) |
|
4419 apply (rule tm.precond_exI, subst (2) reps'_sg) |
|
4420 apply (subst sep_conj_cond)+ |
|
4421 apply (subst (1) ones_int_expand) |
|
4422 apply (rule tm.pre_condI, simp del:ones_simps) |
|
4423 apply hsteps |
|
4424 (* apply (hsteps hoare_locate_skip_gen[OF `a < length ks`]) *) |
|
4425 apply (subst reps'_sg, simp add:sep_conj_cond del:ones_simps) |
|
4426 apply (rule tm.pre_condI, simp del:ones_simps) |
|
4427 apply hsteps |
|
4428 apply (rule_tac p = "st j' \<and>* |
|
4429 ps (2 + (m + int (ks ! a))) \<and>* |
|
4430 reps (2 + (m + int (ks ! a))) ia (drop (Suc a) ks) \<and>* zero (ia + 1) \<and>* zero (ia + 2) \<and>* |
|
4431 reps u (m + int (ks ! a)) (take a ks @ [ks!a]) \<and>* zero (1 + (m + int (ks ! a))) \<and>* |
|
4432 zero (u - 2) \<and>* zero (u - 1) \<and>* fam_conj {ia + 2<..} zero |
|
4433 " in tm.pre_stren) |
|
4434 apply (hsteps hoare_shift_right_cons_gen[OF False] |
|
4435 hoare_left_until_double_zero_gen[OF False]) |
|
4436 apply (rule_tac p = |
|
4437 "st j' \<and>* ps (1 + (m + int (ks ! a))) \<and>* |
|
4438 zero (u - 2) \<and>* zero (u - 1) \<and>* |
|
4439 reps u (1 + (m + int (ks ! a))) (take a ks @ [Suc (ks ! a)]) \<and>* |
|
4440 zero (2 + (m + int (ks ! a))) \<and>* |
|
4441 reps (3 + (m + int (ks ! a))) (ia + 1) (drop (Suc a) ks) \<and>* fam_conj {ia + 1<..} zero |
|
4442 " in tm.pre_stren) |
|
4443 apply (hsteps) |
|
4444 apply (simp add:sep_conj_ac, sep_cancel+) |
|
4445 apply (unfold list_ext_lt[OF `a < length ks`], simp) |
|
4446 apply (fwd abs_reps')+ |
|
4447 apply(fwd reps'_reps_abs) |
|
4448 apply (subst eq_ks, simp) |
|
4449 apply (sep_cancel+) |
|
4450 apply (thin_tac "mb = 4 + (m + (int (ks ! a) + int k'))") |
|
4451 apply (thin_tac "ma = 2 + (m + int (ks ! a))", prune) |
|
4452 apply (simp add: int_add_ac sep_conj_ac, sep_cancel+) |
|
4453 apply (fwd reps_one_abs1, subst fam_conj_interv_simp, simp, sep_cancel+, smt) |
|
4454 apply (fwd abs_ones)+ |
|
4455 apply (fwd abs_reps') |
|
4456 apply (fwd abs_reps') |
|
4457 apply (fwd abs_reps') |
|
4458 apply (fwd abs_reps') |
|
4459 apply (unfold eq_drop, simp add:int_add_ac sep_conj_ac) |
|
4460 apply (sep_cancel+) |
|
4461 apply (fwd reps'_abs[where xs = "take a ks"]) |
|
4462 apply (fwd reps'_abs[where xs = "[k']"]) |
|
4463 apply (unfold reps'_def, simp add:int_add_ac sep_conj_ac) |
|
4464 apply (sep_cancel+) |
|
4465 by (subst (asm) fam_conj_interv_simp, simp, smt) |
|
4466 qed |
|
4467 } note h = this |
|
4468 show ?thesis |
|
4469 apply (subst fam_conj_interv_simp) |
|
4470 apply (rule_tac p = "st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* |
|
4471 (reps u ia ks \<and>* zero (ia + 1)) \<and>* fam_conj {ia + 1<..} zero" |
|
4472 in tm.pre_stren) |
|
4473 apply (unfold eq_s, simp only:sep_conj_exists) |
|
4474 apply (intro tm.precond_exI h) |
|
4475 by (sep_cancel+, unfold eq_s, simp) |
|
4476 qed |
|
4477 |
|
4478 declare ones_simps [simp del] |
|
4479 |
|
4480 lemma tm_hoare_inc01: |
|
4481 assumes "length ks \<le> a \<and> v = 0" |
|
4482 shows |
|
4483 "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace> |
|
4484 i :[ Inc a ]: j |
|
4485 \<lbrace>st j \<and>* |
|
4486 ps u \<and>* |
|
4487 zero (u - 2) \<and>* |
|
4488 zero (u - 1) \<and>* |
|
4489 reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1) ((list_ext a ks)[a := Suc v]) \<and>* |
|
4490 fam_conj {(ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1)<..} zero\<rbrace>" |
|
4491 proof - |
|
4492 from assms have "length ks \<le> a" "v = 0" by auto |
|
4493 show ?thesis |
|
4494 apply (rule_tac p = " |
|
4495 st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* (reps u ia ks \<and>* <(ia = u + int (reps_len ks) - 1)>) \<and>* |
|
4496 fam_conj {ia<..} zero |
|
4497 " in tm.pre_stren) |
|
4498 apply (subst sep_conj_cond)+ |
|
4499 apply (rule tm.pre_condI, simp) |
|
4500 apply (unfold Inc_def) |
|
4501 apply hstep |
|
4502 (* apply (hstep hoare_locate_set_gen[OF `length ks \<le> a`]) *) |
|
4503 apply (simp only:sep_conj_exists) |
|
4504 apply (intro tm.precond_exI) |
|
4505 my_block |
|
4506 fix m w |
|
4507 have "reps m w [list_ext a ks ! a] = |
|
4508 (ones m (m + int (list_ext a ks ! a)) \<and>* <(w = m + int (list_ext a ks ! a))>)" |
|
4509 by (simp add:reps.simps) |
|
4510 my_block_end |
|
4511 apply (unfold this) |
|
4512 apply (subst sep_conj_cond)+ |
|
4513 apply (rule tm.pre_condI, simp) |
|
4514 apply (subst fam_conj_interv_simp) |
|
4515 apply (hsteps) |
|
4516 apply (subst fam_conj_interv_simp, simp) |
|
4517 apply (hsteps) |
|
4518 apply (rule_tac p = "st j' \<and>* ps (m + int (list_ext a ks ! a) + 1) \<and>* |
|
4519 zero (u - 2) \<and>* zero (u - 1) \<and>* |
|
4520 reps u (m + int (list_ext a ks ! a) + 1) |
|
4521 ((take a (list_ext a ks))@[Suc (list_ext a ks ! a)]) \<and>* |
|
4522 fam_conj {(m + int (list_ext a ks ! a) + 1)<..} zero |
|
4523 " in tm.pre_stren) |
|
4524 apply (hsteps) |
|
4525 apply (simp add:sep_conj_ac, sep_cancel+) |
|
4526 apply (unfold `v = 0`, prune) |
|
4527 my_block |
|
4528 from `length ks \<le> a` have "list_ext a ks ! a = 0" |
|
4529 by (metis le_refl list_ext_tail) |
|
4530 from `length ks \<le> a` have "a < length (list_ext a ks)" |
|
4531 by (metis list_ext_len) |
|
4532 from reps_len_suc[OF this] |
|
4533 have eq_len: "int (reps_len (list_ext a ks)) = |
|
4534 int (reps_len (list_ext a ks[a := Suc (list_ext a ks ! a)])) - 1" |
|
4535 by smt |
|
4536 fix m w hc |
|
4537 assume h: "(fam_conj {m + int (list_ext a ks ! a) + 1<..} zero \<and>* |
|
4538 reps u (m + int (list_ext a ks ! a) + 1) (take a (list_ext a ks) @ [Suc (list_ext a ks ! a)])) |
|
4539 hc" |
|
4540 then obtain s where |
|
4541 "(reps u (m + int (list_ext a ks ! a) + 1) (take a (list_ext a ks) @ [Suc (list_ext a ks ! a)])) s" |
|
4542 by (auto dest!:sep_conjD) |
|
4543 from reps_len_correct[OF this] |
|
4544 have "m = u + int (reps_len (take a (list_ext a ks) @ [Suc (list_ext a ks ! a)])) |
|
4545 - int (list_ext a ks ! a) - 2" by smt |
|
4546 from h [unfolded this] |
|
4547 have "(fam_conj {u + int (reps_len (list_ext a ks))<..} zero \<and>* |
|
4548 reps u (u + int (reps_len (list_ext a ks))) (list_ext a ks[a := Suc 0])) |
|
4549 hc" |
|
4550 apply (unfold eq_len, simp) |
|
4551 my_block |
|
4552 from `a < length (list_ext a ks)` |
|
4553 have "take a (list_ext a ks) @ [Suc (list_ext a ks ! a)] = |
|
4554 list_ext a ks[a := Suc (list_ext a ks ! a)]" |
|
4555 by (smt `list_ext a ks ! a = 0` assms length_take list_ext_tail_expand list_update_length) |
|
4556 my_block_end |
|
4557 apply (unfold this) |
|
4558 my_block |
|
4559 have "-1 + (u + int (reps_len (list_ext a ks[a := Suc (list_ext a ks ! a)]))) = |
|
4560 u + (int (reps_len (list_ext a ks[a := Suc (list_ext a ks ! a)])) - 1)" by simp |
|
4561 my_block_end |
|
4562 apply (unfold this) |
|
4563 apply (sep_cancel+) |
|
4564 by (unfold `(list_ext a ks ! a) = 0`, simp) |
|
4565 my_block_end |
|
4566 apply (rule this, assumption) |
|
4567 apply (simp only:sep_conj_ac, sep_cancel+)+ |
|
4568 apply (fwd abs_reps')+ |
|
4569 apply (fwd reps_one_abs) |
|
4570 apply (fwd reps'_reps_abs) |
|
4571 apply (simp add:int_add_ac sep_conj_ac) |
|
4572 apply (sep_cancel+) |
|
4573 apply (subst fam_conj_interv_simp, simp add:sep_conj_ac, smt) |
|
4574 apply (fwd reps_lenE, (subst (asm) sep_conj_cond)+, erule condE, simp) |
|
4575 by (sep_cancel+) |
|
4576 qed |
|
4577 |
|
4578 lemma cond_eq: "((<b> \<and>* p) s) = (b \<and> (p s))" |
|
4579 proof |
|
4580 assume "(<b> \<and>* p) s" |
|
4581 from condD[OF this] show " b \<and> p s" . |
|
4582 next |
|
4583 assume "b \<and> p s" |
|
4584 hence b and "p s" by auto |
|
4585 from `b` have "(<b>) 0" by (auto simp:pasrt_def) |
|
4586 moreover have "s = 0 + s" by auto |
|
4587 moreover have "0 ## s" by auto |
|
4588 moreover note `p s` |
|
4589 ultimately show "(<b> \<and>* p) s" by (auto intro!:sep_conjI) |
|
4590 qed |
|
4591 |
|
4592 lemma tm_hoare_dec_fail00: |
|
4593 assumes "a < length ks \<and> ks ! a = 0" |
|
4594 shows "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace> |
|
4595 i :[ Dec a e ]: j |
|
4596 \<lbrace>st e \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* |
|
4597 reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks)) (list_ext a ks[a := 0]) \<and>* |
|
4598 fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks) <..} zero\<rbrace>" |
|
4599 proof - |
|
4600 from assms have "a < length ks" "ks!a = 0" by auto |
|
4601 from list_nth_expand[OF `a < length ks`] |
|
4602 have eq_ks: "ks = take a ks @ [ks ! a] @ drop (Suc a) ks" . |
|
4603 show ?thesis |
|
4604 proof(cases " drop (Suc a) ks = []") |
|
4605 case False |
|
4606 then obtain k' ks' where eq_drop: "drop (Suc a) ks = [k']@ks'" |
|
4607 by (metis append_Cons append_Nil list.exhaust) |
|
4608 show ?thesis |
|
4609 apply (unfold Dec_def, intro t_hoare_local) |
|
4610 apply (subst tassemble_to.simps(2), rule tm.code_exI, rule tm.code_extension) |
|
4611 apply (subst (1) eq_ks) |
|
4612 my_block |
|
4613 have "(reps u ia (take a ks @ [ks ! a] @ drop (Suc a) ks) \<and>* fam_conj {ia<..} zero) = |
|
4614 (reps' u (ia + 1) ((take a ks @ [ks ! a]) @ drop (Suc a) ks) \<and>* fam_conj {ia + 1<..} zero)" |
|
4615 apply (subst fam_conj_interv_simp) |
|
4616 by (unfold reps'_def, simp add:sep_conj_ac) |
|
4617 my_block_end |
|
4618 apply (unfold this) |
|
4619 apply (subst reps'_append) |
|
4620 apply (unfold eq_drop) |
|
4621 apply (subst (2) reps'_append) |
|
4622 apply (simp only:sep_conj_exists, intro tm.precond_exI) |
|
4623 apply (subst (2) reps'_def, simp add:reps.simps ones_simps) |
|
4624 apply (subst reps'_append, simp only:sep_conj_exists, intro tm.precond_exI) |
|
4625 apply hstep |
|
4626 (* apply (hstep hoare_locate_skip_gen[OF `a < length ks`]) *) |
|
4627 my_block |
|
4628 fix m mb |
|
4629 have "(reps' mb (m - 1) [ks ! a]) = (reps mb (m - 2) [ks!a] \<and>* zero (m - 1))" |
|
4630 by (simp add:reps'_def, smt) |
|
4631 my_block_end |
|
4632 apply (unfold this) |
|
4633 apply hstep |
|
4634 (* apply (hstep hoare_if_reps_nz_false_gen[OF `ks!a = 0`]) *) |
|
4635 apply (simp only:reps.simps(2), simp add:`ks!a = 0`) |
|
4636 apply (rule_tac p = "st j'b \<and>* |
|
4637 ps mb \<and>* |
|
4638 reps u mb ((take a ks)@[ks ! a]) \<and>* <(m - 2 = mb)> \<and>* |
|
4639 zero (m - 1) \<and>* |
|
4640 zero (u - 1) \<and>* |
|
4641 one m \<and>* |
|
4642 zero (u - 2) \<and>* |
|
4643 ones (m + 1) (m + int k') \<and>* |
|
4644 <(-2 + ma = m + int k')> \<and>* zero (ma - 1) \<and>* reps' ma (ia + 1) ks' \<and>* fam_conj {ia + 1<..} zero" |
|
4645 in tm.pre_stren) |
|
4646 apply hsteps |
|
4647 apply (simp add:sep_conj_ac, sep_cancel+) |
|
4648 apply (subgoal_tac "m + int k' = ma - 2", simp) |
|
4649 apply (fwd abs_ones)+ |
|
4650 apply (subst (asm) sep_conj_cond)+ |
|
4651 apply (erule condE, auto) |
|
4652 apply (fwd abs_reps')+ |
|
4653 apply (subgoal_tac "ma = m + int k' + 2", simp) |
|
4654 apply (fwd abs_reps')+ |
|
4655 my_block |
|
4656 from `a < length ks` |
|
4657 have "list_ext a ks = ks" by (auto simp:list_ext_def) |
|
4658 my_block_end |
|
4659 apply (simp add:this) |
|
4660 apply (subst eq_ks, simp add:eq_drop `ks!a = 0`) |
|
4661 apply (subst (asm) reps'_def, simp) |
|
4662 apply (subst fam_conj_interv_simp, simp add:sep_conj_ac, sep_cancel+) |
|
4663 apply (metis append_Cons assms eq_Nil_appendI eq_drop eq_ks list_update_id) |
|
4664 apply (clarsimp) |
|
4665 apply (subst (asm) sep_conj_cond)+ |
|
4666 apply (erule condE, clarsimp) |
|
4667 apply (subst (asm) sep_conj_cond)+ |
|
4668 apply (erule condE, clarsimp) |
|
4669 apply (simp add:sep_conj_ac, sep_cancel+) |
|
4670 apply (fwd abs_reps')+ |
|
4671 by (fwd reps'_reps_abs, simp add:`ks!a = 0`) |
|
4672 next |
|
4673 case True |
|
4674 show ?thesis |
|
4675 apply (unfold Dec_def, intro t_hoare_local) |
|
4676 apply (subst tassemble_to.simps(2), rule tm.code_exI, rule tm.code_extension) |
|
4677 apply (subst (1) eq_ks, unfold True, simp) |
|
4678 my_block |
|
4679 have "(reps u ia (take a ks @ [ks ! a]) \<and>* fam_conj {ia<..} zero) = |
|
4680 (reps' u (ia + 1) (take a ks @ [ks ! a]) \<and>* fam_conj {ia + 1<..} zero)" |
|
4681 apply (unfold reps'_def, subst fam_conj_interv_simp) |
|
4682 by (simp add:sep_conj_ac) |
|
4683 my_block_end |
|
4684 apply (subst (1) this) |
|
4685 apply (subst reps'_append) |
|
4686 apply (simp only:sep_conj_exists, intro tm.precond_exI) |
|
4687 apply (subst fam_conj_interv_simp, simp) |
|
4688 my_block |
|
4689 have "(zero (2 + ia)) = (tm (2 + ia) Bk)" |
|
4690 by (simp add:zero_def) |
|
4691 my_block_end my_note eq_z = this |
|
4692 apply hstep |
|
4693 (* apply (hstep hoare_locate_skip_gen[OF `a < length ks`]) *) |
|
4694 my_block |
|
4695 fix m |
|
4696 have "(reps' m (ia + 1) [ks ! a]) = (reps m ia [ks!a] \<and>* zero (ia + 1))" |
|
4697 by (simp add:reps'_def) |
|
4698 my_block_end |
|
4699 apply (unfold this, prune) |
|
4700 apply hstep |
|
4701 (* apply (hstep hoare_if_reps_nz_false_gen[OF `ks!a = 0`]) *) |
|
4702 apply (simp only:reps.simps(2), simp add:`ks!a = 0`) |
|
4703 apply (rule_tac p = "st j'b \<and>* ps m \<and>* (reps u m ((take a ks)@[ks!a]) \<and>* <(ia = m)>) |
|
4704 \<and>* zero (ia + 1) \<and>* zero (u - 1) \<and>* |
|
4705 zero (2 + ia) \<and>* zero (u - 2) \<and>* fam_conj {2 + ia<..} zero" |
|
4706 in tm.pre_stren) |
|
4707 apply hsteps |
|
4708 apply (simp add:sep_conj_ac) |
|
4709 apply ((subst (asm) sep_conj_cond)+, erule condE, simp) |
|
4710 my_block |
|
4711 from `a < length ks` have "list_ext a ks = ks" by (metis list_ext_lt) |
|
4712 my_block_end |
|
4713 apply (unfold this, simp) |
|
4714 apply (subst fam_conj_interv_simp) |
|
4715 apply (subst fam_conj_interv_simp, simp) |
|
4716 apply (simp only:sep_conj_ac, sep_cancel+) |
|
4717 apply (subst eq_ks, unfold True `ks!a = 0`, simp) |
|
4718 apply (metis True append_Nil2 assms eq_ks list_update_same_conv) |
|
4719 apply (simp add:sep_conj_ac) |
|
4720 apply (subst (asm) sep_conj_cond)+ |
|
4721 apply (erule condE, simp, thin_tac "ia = m") |
|
4722 apply (fwd abs_reps')+ |
|
4723 apply (simp add:sep_conj_ac int_add_ac, sep_cancel+) |
|
4724 apply (unfold reps'_def, simp) |
|
4725 by (metis sep.mult_commute) |
|
4726 qed |
|
4727 qed |
|
4728 |
|
4729 lemma tm_hoare_dec_fail01: |
|
4730 assumes "length ks \<le> a" |
|
4731 shows "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace> |
|
4732 i :[ Dec a e ]: j |
|
4733 \<lbrace>st e \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* |
|
4734 reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks)) (list_ext a ks[a := 0]) \<and>* |
|
4735 fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks) <..} zero\<rbrace>" |
|
4736 apply (unfold Dec_def, intro t_hoare_local) |
|
4737 apply (subst tassemble_to.simps(2), rule tm.code_exI, rule tm.code_extension) |
|
4738 apply (rule_tac p = "st i \<and>* ps u \<and>* zero (u - 2) \<and>* |
|
4739 zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero \<and>* |
|
4740 <(ia = u + int (reps_len ks) - 1)>" in tm.pre_stren) |
|
4741 apply hstep |
|
4742 (* apply (hstep hoare_locate_set_gen[OF `length ks \<le> a`]) *) |
|
4743 apply (simp only:sep_conj_exists, intro tm.precond_exI) |
|
4744 my_block |
|
4745 from assms |
|
4746 have "list_ext a ks ! a = 0" by (metis le_refl list_ext_tail) |
|
4747 my_block_end my_note is_z = this |
|
4748 apply (subst fam_conj_interv_simp) |
|
4749 apply hstep |
|
4750 (* apply (hstep hoare_if_reps_nz_false_gen[OF is_z]) *) |
|
4751 apply (unfold is_z) |
|
4752 apply (subst (1) reps.simps) |
|
4753 apply (rule_tac p = "st j'b \<and>* ps m \<and>* reps u m (take a (list_ext a ks) @ [0]) \<and>* zero (w + 1) \<and>* |
|
4754 <(w = m + int 0)> \<and>* zero (u - 1) \<and>* |
|
4755 fam_conj {w + 1<..} zero \<and>* zero (u - 2) \<and>* |
|
4756 <(ia = u + int (reps_len ks) - 1)>" in tm.pre_stren) |
|
4757 my_block |
|
4758 have "(take a (list_ext a ks)) @ [0] \<noteq> []" by simp |
|
4759 my_block_end |
|
4760 apply hsteps |
|
4761 (* apply (hsteps hoare_left_until_double_zero_gen[OF this]) *) |
|
4762 apply (simp add:sep_conj_ac) |
|
4763 apply prune |
|
4764 apply (subst (asm) sep_conj_cond)+ |
|
4765 apply (elim condE, simp add:sep_conj_ac, prune) |
|
4766 my_block |
|
4767 fix m w ha |
|
4768 assume h1: "w = m \<and> ia = u + int (reps_len ks) - 1" |
|
4769 and h: "(ps u \<and>* |
|
4770 st e \<and>* |
|
4771 zero (u - 1) \<and>* |
|
4772 zero (m + 1) \<and>* |
|
4773 fam_conj {m + 1<..} zero \<and>* zero (u - 2) \<and>* reps u m (take a (list_ext a ks) @ [0])) ha" |
|
4774 from h1 have eq_w: "w = m" and eq_ia: "ia = u + int (reps_len ks) - 1" by auto |
|
4775 from h obtain s' where "reps u m (take a (list_ext a ks) @ [0]) s'" |
|
4776 by (auto dest!:sep_conjD) |
|
4777 from reps_len_correct[OF this] |
|
4778 have eq_m: "m = u + int (reps_len (take a (list_ext a ks) @ [0])) - 1" . |
|
4779 from h[unfolded eq_m, simplified] |
|
4780 have "(ps u \<and>* |
|
4781 st e \<and>* |
|
4782 zero (u - 1) \<and>* |
|
4783 zero (u - 2) \<and>* |
|
4784 fam_conj {u + (-1 + int (reps_len (list_ext a ks)))<..} zero \<and>* |
|
4785 reps u (u + (-1 + int (reps_len (list_ext a ks)))) (list_ext a ks[a := 0])) ha" |
|
4786 apply (sep_cancel+) |
|
4787 apply (subst fam_conj_interv_simp, simp) |
|
4788 my_block |
|
4789 from `length ks \<le> a` have "list_ext a ks[a := 0] = list_ext a ks" |
|
4790 by (metis is_z list_update_id) |
|
4791 my_block_end |
|
4792 apply (unfold this) |
|
4793 my_block |
|
4794 from `length ks \<le> a` is_z |
|
4795 have "take a (list_ext a ks) @ [0] = list_ext a ks" |
|
4796 by (metis list_ext_tail_expand) |
|
4797 my_block_end |
|
4798 apply (unfold this) |
|
4799 by (simp add:sep_conj_ac, sep_cancel+, smt) |
|
4800 my_block_end |
|
4801 apply (rule this, assumption) |
|
4802 apply (sep_cancel+)[1] |
|
4803 apply (subst (asm) sep_conj_cond)+ |
|
4804 apply (erule condE, prune, simp) |
|
4805 my_block |
|
4806 fix s m |
|
4807 assume "(reps' u (m - 1) (take a (list_ext a ks)) \<and>* ones m m \<and>* zero (m + 1)) s" |
|
4808 hence "reps' u (m + 1) (take a (list_ext a ks) @ [0]) s" |
|
4809 apply (unfold reps'_append) |
|
4810 apply (rule_tac x = m in EXS_intro) |
|
4811 by (subst (2) reps'_def, simp add:reps.simps) |
|
4812 my_block_end |
|
4813 apply (rotate_tac 1, fwd this) |
|
4814 apply (subst (asm) reps'_def, simp add:sep_conj_ac) |
|
4815 my_block |
|
4816 fix s |
|
4817 assume h: "(st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* |
|
4818 reps u ia ks \<and>* fam_conj {ia<..} zero) s" |
|
4819 then obtain s' where "reps u ia ks s'" by (auto dest!:sep_conjD) |
|
4820 from reps_len_correct[OF this] have eq_ia: "ia = u + int (reps_len ks) - 1" . |
|
4821 from h |
|
4822 have "(st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* |
|
4823 fam_conj {ia<..} zero \<and>* <(ia = u + int (reps_len ks) - 1)>) s" |
|
4824 by (unfold eq_ia, simp) |
|
4825 my_block_end |
|
4826 by (rule this, assumption) |
|
4827 |
|
4828 lemma t_hoare_label1: |
|
4829 "(\<And>l. l = i \<Longrightarrow> \<lbrace>st l \<and>* p\<rbrace> l :[ c l ]: j \<lbrace>st k \<and>* q\<rbrace>) \<Longrightarrow> |
|
4830 \<lbrace>st l \<and>* p \<rbrace> |
|
4831 i:[(TLabel l; c l)]:j |
|
4832 \<lbrace>st k \<and>* q\<rbrace>" |
|
4833 by (unfold tassemble_to.simps, intro tm.code_exI tm.code_condI, clarify, auto) |
|
4834 |
|
4835 lemma tm_hoare_dec_fail1: |
|
4836 assumes "a < length ks \<and> ks ! a = 0 \<or> length ks \<le> a" |
|
4837 shows "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace> |
|
4838 i :[ Dec a e ]: j |
|
4839 \<lbrace>st e \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* |
|
4840 reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks)) (list_ext a ks[a := 0]) \<and>* |
|
4841 fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks) <..} zero\<rbrace>" |
|
4842 using assms |
|
4843 proof |
|
4844 assume "a < length ks \<and> ks ! a = 0" |
|
4845 thus ?thesis |
|
4846 by (rule tm_hoare_dec_fail00) |
|
4847 next |
|
4848 assume "length ks \<le> a" |
|
4849 thus ?thesis |
|
4850 by (rule tm_hoare_dec_fail01) |
|
4851 qed |
|
4852 |
|
4853 lemma shift_left_nil_gen[step]: |
|
4854 assumes "u = v" |
|
4855 shows "\<lbrace>st i \<and>* ps u \<and>* zero v\<rbrace> |
|
4856 i :[shift_left]:j |
|
4857 \<lbrace>st j \<and>* ps u \<and>* zero v\<rbrace>" |
|
4858 apply(unfold assms shift_left_def, intro t_hoare_local t_hoare_label, clarify, |
|
4859 rule t_hoare_label_last, simp, clarify, prune, simp) |
|
4860 by hstep |
|
4861 |
|
4862 lemma tm_hoare_dec_suc1: |
|
4863 assumes "a < length ks \<and> ks ! a = Suc v" |
|
4864 shows "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace> |
|
4865 i :[ Dec a e ]: j |
|
4866 \<lbrace>st j \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* |
|
4867 reps u (ia - 1) (list_ext a ks[a := v]) \<and>* |
|
4868 fam_conj {ia - 1<..} zero\<rbrace>" |
|
4869 proof - |
|
4870 from assms have "a < length ks" " ks ! a = Suc v" by auto |
|
4871 from list_nth_expand[OF `a < length ks`] |
|
4872 have eq_ks: "ks = take a ks @ [ks ! a] @ drop (Suc a) ks" . |
|
4873 show ?thesis |
|
4874 proof(cases " drop (Suc a) ks = []") |
|
4875 case False |
|
4876 then obtain k' ks' where eq_drop: "drop (Suc a) ks = [k']@ks'" |
|
4877 by (metis append_Cons append_Nil list.exhaust) |
|
4878 show ?thesis |
|
4879 apply (unfold Dec_def, intro t_hoare_local) |
|
4880 apply (subst tassemble_to.simps(2), rule tm.code_exI) |
|
4881 apply (subst (1) eq_ks) |
|
4882 my_block |
|
4883 have "(reps u ia (take a ks @ [ks ! a] @ drop (Suc a) ks) \<and>* fam_conj {ia<..} zero) = |
|
4884 (reps' u (ia + 1) ((take a ks @ [ks ! a]) @ drop (Suc a) ks) \<and>* fam_conj {ia + 1<..} zero)" |
|
4885 apply (subst fam_conj_interv_simp) |
|
4886 by (unfold reps'_def, simp add:sep_conj_ac) |
|
4887 my_block_end |
|
4888 apply (unfold this) |
|
4889 apply (subst reps'_append) |
|
4890 apply (unfold eq_drop) |
|
4891 apply (subst (2) reps'_append) |
|
4892 apply (simp only:sep_conj_exists, intro tm.precond_exI) |
|
4893 apply (subst (2) reps'_def, simp add:reps.simps ones_simps) |
|
4894 apply (subst reps'_append, simp only:sep_conj_exists, intro tm.precond_exI) |
|
4895 apply (rule_tac q = |
|
4896 "st l \<and>* |
|
4897 ps mb \<and>* |
|
4898 zero (u - 1) \<and>* |
|
4899 reps' u (mb - 1) (take a ks) \<and>* |
|
4900 reps' mb (m - 1) [ks ! a] \<and>* |
|
4901 one m \<and>* |
|
4902 zero (u - 2) \<and>* |
|
4903 ones (m + 1) (m + int k') \<and>* |
|
4904 <(-2 + ma = m + int k')> \<and>* zero (ma - 1) \<and>* reps' ma (ia + 1) ks' \<and>* fam_conj {ia + 1<..} zero" |
|
4905 in tm.sequencing) |
|
4906 apply (rule tm.code_extension) |
|
4907 apply hstep |
|
4908 (* apply (hstep hoare_locate_skip_gen[OF `a < length ks`]) *) |
|
4909 apply (subst (2) reps'_def, simp) |
|
4910 my_block |
|
4911 fix i j l m mb |
|
4912 from `ks!a = (Suc v)` have "ks!a \<noteq> 0" by simp |
|
4913 from hoare_if_reps_nz_true[OF this, where u = mb and v = "m - 2"] |
|
4914 have "\<lbrace>st i \<and>* ps mb \<and>* reps mb (-2 + m) [ks ! a]\<rbrace> |
|
4915 i :[ if_reps_nz l ]: j |
|
4916 \<lbrace>st l \<and>* ps mb \<and>* reps mb (-2 + m) [ks ! a]\<rbrace>" |
|
4917 by smt |
|
4918 my_block_end |
|
4919 apply (hgoto this) |
|
4920 apply (simp add:sep_conj_ac, sep_cancel+) |
|
4921 apply (subst reps'_def, simp add:sep_conj_ac) |
|
4922 apply (rule tm.code_extension1) |
|
4923 apply (rule t_hoare_label1, simp, prune) |
|
4924 apply (subst (2) reps'_def, simp add:reps.simps) |
|
4925 apply (rule_tac p = "st j' \<and>* ps mb \<and>* zero (u - 1) \<and>* reps' u (mb - 1) (take a ks) \<and>* |
|
4926 ((ones mb (mb + int (ks ! a)) \<and>* <(-2 + m = mb + int (ks ! a))>) \<and>* zero (mb + int (ks ! a) + 1)) \<and>* |
|
4927 one (mb + int (ks ! a) + 2) \<and>* zero (u - 2) \<and>* |
|
4928 ones (mb + int (ks ! a) + 3) (mb + int (ks ! a) + int k' + 2) \<and>* |
|
4929 <(-2 + ma = m + int k')> \<and>* zero (ma - 1) \<and>* reps' ma (ia + 1) ks' \<and>* fam_conj {ia + 1<..} zero |
|
4930 " in tm.pre_stren) |
|
4931 apply hsteps |
|
4932 (* apply (simp add:sep_conj_ac) *) |
|
4933 apply (unfold `ks!a = Suc v`) |
|
4934 my_block |
|
4935 fix mb |
|
4936 have "(ones mb (mb + int (Suc v))) = (ones mb (mb + int v) \<and>* one (mb + int (Suc v)))" |
|
4937 by (simp add:ones_rev) |
|
4938 my_block_end |
|
4939 apply (unfold this, prune) |
|
4940 apply hsteps |
|
4941 apply (rule_tac p = "st j'a \<and>* |
|
4942 ps (mb + int (Suc v) + 2) \<and>* zero (mb + int (Suc v) + 1) \<and>* |
|
4943 reps (mb + int (Suc v) + 2) ia (drop (Suc a) ks) \<and>* zero (ia + 1) \<and>* zero (ia + 2) \<and>* |
|
4944 zero (mb + int (Suc v)) \<and>* |
|
4945 ones mb (mb + int v) \<and>* |
|
4946 zero (u - 1) \<and>* |
|
4947 reps' u (mb - 1) (take a ks) \<and>* |
|
4948 zero (u - 2) \<and>* fam_conj {ia + 2<..} zero |
|
4949 " in tm.pre_stren) |
|
4950 apply hsteps |
|
4951 (* apply (hsteps hoare_shift_left_cons_gen[OF False]) *) |
|
4952 apply (rule_tac p = "st j'a \<and>* ps (ia - 1) \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* |
|
4953 reps u (ia - 1) (take a ks @ [v] @ drop (Suc a) ks) \<and>* |
|
4954 zero ia \<and>* zero (ia + 1) \<and>* zero (ia + 2) \<and>* |
|
4955 fam_conj {ia + 2<..} zero |
|
4956 " in tm.pre_stren) |
|
4957 apply hsteps |
|
4958 apply (simp add:sep_conj_ac) |
|
4959 apply (subst fam_conj_interv_simp) |
|
4960 apply (subst fam_conj_interv_simp) |
|
4961 apply (subst fam_conj_interv_simp) |
|
4962 apply (simp add:sep_conj_ac) |
|
4963 apply (sep_cancel+) |
|
4964 my_block |
|
4965 have "take a ks @ v # drop (Suc a) ks = list_ext a ks[a := v]" |
|
4966 proof - |
|
4967 from `a < length ks` have "list_ext a ks = ks" by (metis list_ext_lt) |
|
4968 hence "list_ext a ks[a:=v] = ks[a:=v]" by simp |
|
4969 moreover from `a < length ks` have "ks[a:=v] = take a ks @ v # drop (Suc a) ks" |
|
4970 by (metis upd_conv_take_nth_drop) |
|
4971 ultimately show ?thesis by metis |
|
4972 qed |
|
4973 my_block_end |
|
4974 apply (unfold this, sep_cancel+, smt) |
|
4975 apply (simp add:sep_conj_ac) |
|
4976 apply (fwd abs_reps')+ |
|
4977 apply (simp add:sep_conj_ac int_add_ac) |
|
4978 apply (sep_cancel+) |
|
4979 apply (subst (asm) reps'_def, simp add:sep_conj_ac) |
|
4980 apply (subst (asm) sep_conj_cond)+ |
|
4981 apply (erule condE, clarsimp) |
|
4982 apply (simp add:sep_conj_ac, sep_cancel+) |
|
4983 apply (fwd abs_ones)+ |
|
4984 apply (fwd abs_reps')+ |
|
4985 apply (subst (asm) reps'_def, simp) |
|
4986 apply (subst (asm) fam_conj_interv_simp) |
|
4987 apply (simp add:sep_conj_ac int_add_ac eq_drop reps'_def) |
|
4988 apply (subst (asm) sep_conj_cond)+ |
|
4989 apply (erule condE, clarsimp) |
|
4990 by (simp add:sep_conj_ac int_add_ac) |
|
4991 next |
|
4992 case True |
|
4993 show ?thesis |
|
4994 apply (unfold Dec_def, intro t_hoare_local) |
|
4995 apply (subst tassemble_to.simps(2), rule tm.code_exI) |
|
4996 apply (subst (1) eq_ks, simp add:True) |
|
4997 my_block |
|
4998 have "(reps u ia (take a ks @ [ks ! a]) \<and>* fam_conj {ia<..} zero) = |
|
4999 (reps' u (ia + 1) (take a ks @ [ks ! a]) \<and>* fam_conj {ia + 1<..} zero)" |
|
5000 apply (subst fam_conj_interv_simp) |
|
5001 by (unfold reps'_def, simp add:sep_conj_ac) |
|
5002 my_block_end |
|
5003 apply (unfold this) |
|
5004 apply (subst reps'_append) |
|
5005 apply (simp only:sep_conj_exists, intro tm.precond_exI) |
|
5006 apply (rule_tac q = "st l \<and>* ps m \<and>* zero (u - 1) \<and>* reps' u (m - 1) (take a ks) \<and>* |
|
5007 reps' m (ia + 1) [ks ! a] \<and>* zero (2 + ia) \<and>* zero (u - 2) \<and>* fam_conj {2 + ia<..} zero" |
|
5008 in tm.sequencing) |
|
5009 apply (rule tm.code_extension) |
|
5010 apply (subst fam_conj_interv_simp, simp) |
|
5011 apply hsteps |
|
5012 (* apply (hstep hoare_locate_skip_gen[OF `a < length ks`]) *) |
|
5013 my_block |
|
5014 fix m |
|
5015 have "(reps' m (ia + 1) [ks ! a]) = |
|
5016 (reps m ia [ks!a] \<and>* zero (ia + 1))" |
|
5017 by (unfold reps'_def, simp) |
|
5018 my_block_end |
|
5019 apply (unfold this) |
|
5020 my_block |
|
5021 fix i j l m |
|
5022 from `ks!a = (Suc v)` have "ks!a \<noteq> 0" by simp |
|
5023 my_block_end |
|
5024 apply (hgoto hoare_if_reps_nz_true_gen) |
|
5025 apply (rule tm.code_extension1) |
|
5026 apply (rule t_hoare_label1, simp) |
|
5027 apply (thin_tac "la = j'", prune) |
|
5028 apply (subst (1) reps.simps) |
|
5029 apply (subst sep_conj_cond)+ |
|
5030 apply (rule tm.pre_condI, simp) |
|
5031 apply hsteps |
|
5032 apply (unfold `ks!a = Suc v`) |
|
5033 my_block |
|
5034 fix m |
|
5035 have "(ones m (m + int (Suc v))) = (ones m (m + int v) \<and>* one (m + int (Suc v)))" |
|
5036 by (simp add:ones_rev) |
|
5037 my_block_end |
|
5038 apply (unfold this) |
|
5039 apply hsteps |
|
5040 apply (rule_tac p = "st j'a \<and>* ps (m + int v) \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* |
|
5041 reps u (m + int v) (take a ks @ [v]) \<and>* zero (m + (1 + int v)) \<and>* |
|
5042 zero (2 + (m + int v)) \<and>* zero (3 + (m + int v)) \<and>* |
|
5043 fam_conj {3 + (m + int v)<..} zero |
|
5044 " in tm.pre_stren) |
|
5045 apply hsteps |
|
5046 apply (simp add:sep_conj_ac, sep_cancel+) |
|
5047 my_block |
|
5048 have "take a ks @ [v] = list_ext a ks[a := v]" |
|
5049 proof - |
|
5050 from True `a < length ks` have "ks = take a ks @ [ks!a]" |
|
5051 by (metis append_Nil2 eq_ks) |
|
5052 hence "ks[a:=v] = take a ks @ [v]" |
|
5053 by (metis True `a < length ks` upd_conv_take_nth_drop) |
|
5054 moreover from `a < length ks` have "list_ext a ks = ks" |
|
5055 by (metis list_ext_lt) |
|
5056 ultimately show ?thesis by simp |
|
5057 qed |
|
5058 my_block_end my_note eq_l = this |
|
5059 apply (unfold this) |
|
5060 apply (subst fam_conj_interv_simp) |
|
5061 apply (subst fam_conj_interv_simp) |
|
5062 apply (subst fam_conj_interv_simp) |
|
5063 apply (simp add:sep_conj_ac, sep_cancel, smt) |
|
5064 apply (simp add:sep_conj_ac int_add_ac)+ |
|
5065 apply (sep_cancel+) |
|
5066 apply (fwd abs_reps')+ |
|
5067 apply (fwd reps'_reps_abs) |
|
5068 by (simp add:eq_l) |
|
5069 qed |
|
5070 qed |
|
5071 |
|
5072 lemma hoare_cfill_until_one: |
|
5073 "\<lbrace>st i \<and>* ps v \<and>* one (u - 1) \<and>* zeros u v\<rbrace> |
|
5074 i :[ cfill_until_one ]: j |
|
5075 \<lbrace>st j \<and>* ps (u - 1) \<and>* ones (u - 1) v \<rbrace>" |
|
5076 proof(induct u v rule:zeros_rev_induct) |
|
5077 case (Base x y) |
|
5078 thus ?case |
|
5079 apply (subst sep_conj_cond)+ |
|
5080 apply (rule tm.pre_condI, simp add:ones_simps) |
|
5081 apply (unfold cfill_until_one_def, intro t_hoare_local t_hoare_label, rule t_hoare_label_last, simp+) |
|
5082 by hstep |
|
5083 next |
|
5084 case (Step x y) |
|
5085 show ?case |
|
5086 apply (rule_tac q = "st i \<and>* ps (y - 1) \<and>* one (x - 1) \<and>* zeros x (y - 1) \<and>* one y" in tm.sequencing) |
|
5087 apply (subst cfill_until_one_def, intro t_hoare_local t_hoare_label, rule t_hoare_label_last, simp+) |
|
5088 apply hsteps |
|
5089 my_block |
|
5090 fix i j l |
|
5091 have "\<lbrace>st i \<and>* ps (y - 1) \<and>* one (x - 1) \<and>* zeros x (y - 1)\<rbrace> |
|
5092 i :[ jmp l ]: j |
|
5093 \<lbrace>st l \<and>* ps (y - 1) \<and>* one (x - 1) \<and>* zeros x (y - 1)\<rbrace>" |
|
5094 apply (case_tac "(y - 1) < x", simp add:zeros_simps) |
|
5095 apply (subst sep_conj_cond)+ |
|
5096 apply (rule tm.pre_condI, simp) |
|
5097 apply hstep |
|
5098 apply (drule_tac zeros_rev, simp) |
|
5099 by hstep |
|
5100 my_block_end |
|
5101 apply (hstep this) |
|
5102 (* The next half *) |
|
5103 apply (hstep Step(2), simp add:sep_conj_ac, sep_cancel+) |
|
5104 by (insert Step(1), simp add:ones_rev sep_conj_ac) |
|
5105 qed |
|
5106 |
|
5107 declare zeros.simps [simp del] zeros_simps[simp del] |
|
5108 |
|
5109 lemma hoare_cmove: |
|
5110 assumes "w \<le> k" |
|
5111 shows "\<lbrace>st i \<and>* ps (v + 2 + int w) \<and>* zero (u - 1) \<and>* |
|
5112 reps u (v - int w) [k - w] \<and>* zeros (v - int w + 1) (v + 1) \<and>* |
|
5113 one (v + 2) \<and>* ones (v + 3) (v + 2 + int w) \<and>* zeros (v + 3 + int w) (v + int(reps_len [k]) + 1)\<rbrace> |
|
5114 i :[cmove]: j |
|
5115 \<lbrace>st j \<and>* ps (u - 1) \<and>* zero (u - 1) \<and>* reps u u [0] \<and>* zeros (u + 1) (v + 1) \<and>* |
|
5116 reps (v + 2) (v + int (reps_len [k]) + 1) [k]\<rbrace>" |
|
5117 using assms |
|
5118 proof(induct "k - w" arbitrary: w) |
|
5119 case (0 w) |
|
5120 hence "w = k" by auto |
|
5121 show ?case |
|
5122 apply (simp add: `w = k` del:zeros.simps zeros_simps) |
|
5123 apply (unfold cmove_def, intro t_hoare_local t_hoare_label, rule t_hoare_label_last, simp+) |
|
5124 apply (simp add:reps_len_def reps_sep_len_def reps_ctnt_len_def del:zeros_simps zeros.simps) |
|
5125 apply (rule_tac p = "st i \<and>* ps (v + 2 + int k) \<and>* zero (u - 1) \<and>* |
|
5126 reps u u [0] \<and>* zeros (u + 1) (v + 1) \<and>* |
|
5127 ones (v + 2) (v + 2 + int k) \<and>* zeros (v + 3 + int k) (2 + (v + int k)) \<and>* |
|
5128 <(u = v - int k)>" |
|
5129 in tm.pre_stren) |
|
5130 my_block |
|
5131 fix i j |
|
5132 have "\<lbrace>st i \<and>* ps (v + 2 + int k) \<and>* zeros (u + 1) (v + 1) \<and>* ones (v + 2) (v + 2 + int k) |
|
5133 \<and>* <(u = v - int k)>\<rbrace> |
|
5134 i :[ left_until_zero ]: j |
|
5135 \<lbrace>st j \<and>* ps (v + 1) \<and>* zeros (u + 1) (v + 1) \<and>* ones (v + 2) (v + 2 + int k) |
|
5136 \<and>* <(u = v - int k)>\<rbrace>" |
|
5137 apply (subst sep_conj_cond)+ |
|
5138 apply (rule tm.pre_condI, simp) |
|
5139 my_block |
|
5140 have "(zeros (v - int k + 1) (v + 1)) = (zeros (v - int k + 1) v \<and>* zero (v + 1))" |
|
5141 by (simp only:zeros_rev, smt) |
|
5142 my_block_end |
|
5143 apply (unfold this) |
|
5144 by hsteps |
|
5145 my_block_end |
|
5146 apply (hstep this) |
|
5147 my_block |
|
5148 fix i j |
|
5149 have "\<lbrace>st i \<and>* ps (v + 1) \<and>* reps u u [0] \<and>* zeros (u + 1) (v + 1)\<rbrace> |
|
5150 i :[left_until_one]:j |
|
5151 \<lbrace>st j \<and>* ps u \<and>* reps u u [0] \<and>* zeros (u + 1) (v + 1)\<rbrace>" |
|
5152 apply (simp add:reps.simps ones_simps) |
|
5153 by hsteps |
|
5154 my_block_end |
|
5155 apply (hsteps this) |
|
5156 apply ((subst (asm) sep_conj_cond)+, erule condE, clarsimp) |
|
5157 apply (fwd abs_reps')+ |
|
5158 apply (simp only:sep_conj_ac int_add_ac, sep_cancel+) |
|
5159 apply (simp add:int_add_ac sep_conj_ac zeros_simps) |
|
5160 apply (simp add:sep_conj_ac int_add_ac, sep_cancel+) |
|
5161 apply (fwd reps_lenE) |
|
5162 apply (subst (asm) sep_conj_cond)+ |
|
5163 apply (erule condE, clarsimp) |
|
5164 apply (subgoal_tac "v = u + int k + int (reps_len [0]) - 1", clarsimp) |
|
5165 apply (simp add:reps_len_sg) |
|
5166 apply (fwd abs_ones)+ |
|
5167 apply (fwd abs_reps')+ |
|
5168 apply (simp add:sep_conj_ac int_add_ac) |
|
5169 apply (sep_cancel+) |
|
5170 apply (simp add:reps.simps, smt) |
|
5171 by (clarsimp) |
|
5172 next |
|
5173 case (Suc k' w) |
|
5174 from `Suc k' = k - w` `w \<le> k` |
|
5175 have h: "k' = k - (Suc w)" "Suc w \<le> k" by auto |
|
5176 show ?case |
|
5177 apply (rule tm.sequencing[OF _ Suc(1)[OF h(1, 2)]]) |
|
5178 apply (unfold cmove_def, intro t_hoare_local t_hoare_label, rule t_hoare_label_last, simp+) |
|
5179 apply (simp add:reps_len_def reps_sep_len_def reps_ctnt_len_def del:zeros_simps zeros.simps) |
|
5180 my_block |
|
5181 fix i j |
|
5182 have "\<lbrace>st i \<and>* ps (v + 2 + int w) \<and>* zeros (v - int w + 1) (v + 1) \<and>* |
|
5183 one (v + 2) \<and>* ones (v + 3) (v + 2 + int w) \<rbrace> |
|
5184 i :[left_until_zero]: j |
|
5185 \<lbrace>st j \<and>* ps (v + 1) \<and>* zeros (v - int w + 1) (v + 1) \<and>* |
|
5186 one (v + 2) \<and>* ones (v + 3) (v + 2 + int w) \<rbrace>" |
|
5187 my_block |
|
5188 have "(one (v + 2) \<and>* ones (v + 3) (v + 2 + int w)) = |
|
5189 ones (v + 2) (v + 2 + int w)" |
|
5190 by (simp only:ones_simps, smt) |
|
5191 my_block_end |
|
5192 apply (unfold this) |
|
5193 my_block |
|
5194 have "(zeros (v - int w + 1) (v + 1)) = (zeros (v - int w + 1) v \<and>* zero (v + 1))" |
|
5195 by (simp only:zeros_rev, simp) |
|
5196 my_block_end |
|
5197 apply (unfold this) |
|
5198 by hsteps |
|
5199 my_block_end |
|
5200 apply (hstep this) |
|
5201 my_block |
|
5202 fix i j |
|
5203 have "\<lbrace>st i \<and>* ps (v + 1) \<and>* reps u (v - int w) [k - w] \<and>* zeros (v - int w + 1) (v + 1)\<rbrace> |
|
5204 i :[left_until_one]: j |
|
5205 \<lbrace>st j \<and>* ps (v - int w) \<and>* reps u (v - int w) [k - w] \<and>* zeros (v - int w + 1) (v + 1)\<rbrace>" |
|
5206 apply (simp add:reps.simps ones_rev) |
|
5207 apply (subst sep_conj_cond)+ |
|
5208 apply (rule tm.pre_condI, clarsimp) |
|
5209 apply (subgoal_tac "u + int (k - w) = v - int w", simp) |
|
5210 defer |
|
5211 apply simp |
|
5212 by hsteps |
|
5213 my_block_end |
|
5214 apply (hstep this) |
|
5215 my_block |
|
5216 have "(reps u (v - int w) [k - w]) = (reps u (v - (1 + int w)) [k - Suc w] \<and>* one (v - int w))" |
|
5217 apply (subst (1 2) reps.simps) |
|
5218 apply (subst sep_conj_cond)+ |
|
5219 my_block |
|
5220 have "((v - int w = u + int (k - w))) = |
|
5221 (v - (1 + int w) = u + int (k - Suc w))" |
|
5222 apply auto |
|
5223 apply (smt Suc.prems h(2)) |
|
5224 by (smt Suc.prems h(2)) |
|
5225 my_block_end |
|
5226 apply (simp add:this) |
|
5227 my_block |
|
5228 fix b p q |
|
5229 assume "(b \<Longrightarrow> (p::tassert) = q)" |
|
5230 have "(<b> \<and>* p) = (<b> \<and>* q)" |
|
5231 by (metis `b \<Longrightarrow> p = q` cond_eqI) |
|
5232 my_block_end |
|
5233 apply (rule this) |
|
5234 my_block |
|
5235 assume "v - (1 + int w) = u + int (k - Suc w)" |
|
5236 hence "v = 1 + int w + u + int (k - Suc w)" by auto |
|
5237 my_block_end |
|
5238 apply (simp add:this) |
|
5239 my_block |
|
5240 have "\<not> (u + int (k - w)) < u" by auto |
|
5241 my_block_end |
|
5242 apply (unfold ones_rev[OF this]) |
|
5243 my_block |
|
5244 from Suc (2, 3) have "(u + int (k - w) - 1) = (u + int (k - Suc w))" |
|
5245 by auto |
|
5246 my_block_end |
|
5247 apply (unfold this) |
|
5248 my_block |
|
5249 from Suc (2, 3) have "(u + int (k - w)) = (1 + (u + int (k - Suc w)))" |
|
5250 by auto |
|
5251 my_block_end |
|
5252 by (unfold this, simp) |
|
5253 my_block_end |
|
5254 apply (unfold this) |
|
5255 my_block |
|
5256 fix i j |
|
5257 have "\<lbrace>st i \<and>* ps (v - int w) \<and>* |
|
5258 (reps u (v - (1 + int w)) [k - Suc w] \<and>* one (v - int w))\<rbrace> |
|
5259 i :[ move_left]: j |
|
5260 \<lbrace>st j \<and>* ps (v - (1 + int w)) \<and>* |
|
5261 (reps u (v - (1 + int w)) [k - Suc w] \<and>* one (v - int w))\<rbrace>" |
|
5262 apply (simp add:reps.simps ones_rev) |
|
5263 apply (subst sep_conj_cond)+ |
|
5264 apply (rule tm.pre_condI, clarsimp) |
|
5265 apply (subgoal_tac " u + int (k - Suc w) = v - (1 + int w)", simp) |
|
5266 defer |
|
5267 apply simp |
|
5268 apply hsteps |
|
5269 by (simp add:sep_conj_ac, sep_cancel+, smt) |
|
5270 my_block_end |
|
5271 apply (hstep this) |
|
5272 my_block |
|
5273 fix i' j' |
|
5274 have "\<lbrace>st i' \<and>* ps (v - (1 + int w)) \<and>* reps u (v - (1 + int w)) [k - Suc w]\<rbrace> |
|
5275 i' :[ if_zero j ]: j' |
|
5276 \<lbrace>st j' \<and>* ps (v - (1 + int w)) \<and>* reps u (v - (1 + int w)) [k - Suc w]\<rbrace>" |
|
5277 apply (simp add:reps.simps ones_rev) |
|
5278 apply (subst sep_conj_cond)+ |
|
5279 apply (rule tm.pre_condI, clarsimp) |
|
5280 apply (subgoal_tac " u + int (k - Suc w) = v - (1 + int w)", simp) |
|
5281 defer |
|
5282 apply simp |
|
5283 by hstep |
|
5284 my_block_end |
|
5285 apply (hstep this) |
|
5286 my_block |
|
5287 fix i j |
|
5288 have "\<lbrace>st i \<and>* ps (v - (1 + int w)) \<and>* reps u (v - (1 + int w)) [k - Suc w]\<rbrace> |
|
5289 i :[ move_right ]: j |
|
5290 \<lbrace>st j \<and>* ps (v - int w) \<and>* reps u (v - (1 + int w)) [k - Suc w] \<rbrace>" |
|
5291 apply (simp add:reps.simps ones_rev) |
|
5292 apply (subst sep_conj_cond)+ |
|
5293 apply (rule tm.pre_condI, clarsimp) |
|
5294 apply (subgoal_tac " u + int (k - Suc w) = v - (1 + int w)", simp) |
|
5295 defer |
|
5296 apply simp |
|
5297 by hstep |
|
5298 my_block_end |
|
5299 apply (hsteps this) |
|
5300 my_block |
|
5301 fix i j |
|
5302 have "\<lbrace>st i \<and>* ps (v - int w) \<and>* one (v + 2) \<and>* |
|
5303 zero (v - int w) \<and>* zeros (v - int w + 1) (v + 1)\<rbrace> |
|
5304 i :[right_until_one]: j |
|
5305 \<lbrace>st j \<and>* ps (v + 2) \<and>* one (v + 2) \<and>* zero (v - int w) \<and>* zeros (v - int w + 1) (v + 1)\<rbrace>" |
|
5306 my_block |
|
5307 have "(zero (v - int w) \<and>* zeros (v - int w + 1) (v + 1)) = |
|
5308 (zeros (v - int w) (v + 1))" |
|
5309 by (simp add:zeros_simps) |
|
5310 my_block_end |
|
5311 apply (unfold this) |
|
5312 by hsteps |
|
5313 my_block_end |
|
5314 apply (hstep this) |
|
5315 my_block |
|
5316 from Suc(2, 3) have "w < k" by auto |
|
5317 hence "(zeros (v + 3 + int w) (2 + (v + int k))) = |
|
5318 (zero (v + 3 + int w) \<and>* zeros (4 + (v + int w)) (2 + (v + int k)))" |
|
5319 by (simp add:zeros_simps) |
|
5320 my_block_end |
|
5321 apply (unfold this) |
|
5322 my_block |
|
5323 fix i j |
|
5324 have "\<lbrace>st i \<and>* ps (v + 2) \<and>* zero (v + 3 + int w) \<and>* zeros (4 + (v + int w)) (2 + (v + int k)) \<and>* |
|
5325 one (v + 2) \<and>* ones (v + 3) (v + 2 + int w)\<rbrace> |
|
5326 i :[right_until_zero]: j |
|
5327 \<lbrace>st j \<and>* ps (v + 3 + int w) \<and>* zero (v + 3 + int w) \<and>* zeros (4 + (v + int w)) (2 + (v + int k)) \<and>* |
|
5328 one (v + 2) \<and>* ones (v + 3) (v + 2 + int w)\<rbrace>" |
|
5329 my_block |
|
5330 have "(one (v + 2) \<and>* ones (v + 3) (v + 2 + int w)) = |
|
5331 (ones (v + 2) (v + 2 + int w))" |
|
5332 by (simp add:ones_simps, smt) |
|
5333 my_block_end |
|
5334 apply (unfold this) |
|
5335 by hsteps |
|
5336 my_block_end |
|
5337 apply (hsteps this, simp only:sep_conj_ac) |
|
5338 apply (sep_cancel+, simp add:sep_conj_ac) |
|
5339 my_block |
|
5340 fix s |
|
5341 assume "(zero (v - int w) \<and>* zeros (v - int w + 1) (v + 1)) s" |
|
5342 hence "zeros (v - int w) (v + 1) s" |
|
5343 by (simp add:zeros_simps) |
|
5344 my_block_end |
|
5345 apply (fwd this) |
|
5346 my_block |
|
5347 fix s |
|
5348 assume "(one (v + 3 + int w) \<and>* ones (v + 3) (v + 2 + int w)) s" |
|
5349 hence "ones (v + 3) (3 + (v + int w)) s" |
|
5350 by (simp add:ones_rev sep_conj_ac, smt) |
|
5351 my_block_end |
|
5352 apply (fwd this) |
|
5353 by (simp add:sep_conj_ac, smt) |
|
5354 qed |
|
5355 |
|
5356 lemma hoare_copy: |
|
5357 shows |
|
5358 "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u v [k] \<and>* zero (v + 1) \<and>* |
|
5359 zeros (v + 2) (v + int(reps_len [k]) + 1)\<rbrace> |
|
5360 i :[copy]: j |
|
5361 \<lbrace>st j \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u v [k] \<and>* zero (v + 1) \<and>* |
|
5362 reps (v + 2) (v + int (reps_len [k]) + 1) [k]\<rbrace>" |
|
5363 apply (unfold copy_def) |
|
5364 my_block |
|
5365 fix i j |
|
5366 have |
|
5367 "\<lbrace>st i \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1) \<and>* zeros (v + 2) (v + int(reps_len [k]) + 1)\<rbrace> |
|
5368 i :[cinit]: j |
|
5369 \<lbrace>st j \<and>* ps (v + 2) \<and>* reps u v [k] \<and>* zero (v + 1) \<and>* |
|
5370 one (v + 2) \<and>* zeros (v + 3) (v + int(reps_len [k]) + 1)\<rbrace>" |
|
5371 apply (unfold cinit_def) |
|
5372 apply (simp add:reps.simps) |
|
5373 apply (subst sep_conj_cond)+ |
|
5374 apply (rule tm.pre_condI, simp) |
|
5375 apply hsteps |
|
5376 apply (simp add:sep_conj_ac) |
|
5377 my_block |
|
5378 have "(zeros (u + int k + 2) (u + int k + int (reps_len [k]) + 1)) = |
|
5379 (zero (u + int k + 2) \<and>* zeros (u + int k + 3) (u + int k + int (reps_len [k]) + 1))" |
|
5380 by (smt reps_len_sg zeros_step_simp) |
|
5381 my_block_end |
|
5382 apply (unfold this) |
|
5383 apply hstep |
|
5384 by (simp add:sep_conj_ac, sep_cancel+, smt) |
|
5385 my_block_end |
|
5386 apply (hstep this) |
|
5387 apply (rule_tac p = "st j' \<and>* ps (v + 2) \<and>* reps u v [k] \<and>* zero (v + 1) \<and>* |
|
5388 one (v + 2) \<and>* zeros (v + 3) (v + int (reps_len [k]) + 1) \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* |
|
5389 <(v = u + int (reps_len [k]) - 1)> |
|
5390 " in tm.pre_stren) |
|
5391 my_block |
|
5392 fix i j |
|
5393 from hoare_cmove[where w = 0 and k = k and i = i and j = j and v = v and u = u] |
|
5394 have "\<lbrace>st i \<and>* ps (v + 2) \<and>* zero (u - 1) \<and>* reps u v [k] \<and>* zero (v + 1) \<and>* |
|
5395 one (v + 2) \<and>* zeros (v + 3) (v + int(reps_len [k]) + 1)\<rbrace> |
|
5396 i :[cmove]: j |
|
5397 \<lbrace>st j \<and>* ps (u - 1) \<and>* zero (u - 1) \<and>* reps u u [0] \<and>* zeros (u + 1) (v + 1) \<and>* |
|
5398 reps (v + 2) (v + int (reps_len [k]) + 1) [k]\<rbrace>" |
|
5399 by (auto simp:ones_simps zeros_simps) |
|
5400 my_block_end |
|
5401 apply (hstep this) |
|
5402 apply (hstep, simp) |
|
5403 my_block |
|
5404 have "reps u u [0] = one u" by (simp add:reps.simps ones_simps) |
|
5405 my_block_end my_note eq_repsz = this |
|
5406 apply (unfold this) |
|
5407 apply (hstep) |
|
5408 apply (subst reps.simps, simp add: ones_simps) |
|
5409 apply hsteps |
|
5410 apply (subst sep_conj_cond)+ |
|
5411 apply (rule tm.pre_condI, simp del:zeros.simps zeros_simps) |
|
5412 apply (thin_tac "int (reps_len [k]) = 1 + int k \<and> v = u + int (reps_len [k]) - 1") |
|
5413 my_block |
|
5414 have "(zeros (u + 1) (u + int k + 1)) = (zeros (u + 1) (u + int k) \<and>* zero (u + int k + 1))" |
|
5415 by (simp only:zeros_rev, smt) |
|
5416 my_block_end |
|
5417 apply (unfold this) |
|
5418 apply (hstep, simp) |
|
5419 my_block |
|
5420 fix i j |
|
5421 from hoare_cfill_until_one[where v = "u + int k" and u = "u + 1"] |
|
5422 have "\<lbrace>st i \<and>* ps (u + int k) \<and>* one u \<and>* zeros (u + 1) (u + int k)\<rbrace> |
|
5423 i :[ cfill_until_one ]: j |
|
5424 \<lbrace>st j \<and>* ps u \<and>* ones u (u + int k) \<rbrace>" |
|
5425 by simp |
|
5426 my_block_end |
|
5427 apply (hstep this, simp add:sep_conj_ac reps.simps ones_simps) |
|
5428 apply (simp add:sep_conj_ac reps.simps ones_simps) |
|
5429 apply (subst sep_conj_cond)+ |
|
5430 apply (subst (asm) sep_conj_cond)+ |
|
5431 apply (rule condI) |
|
5432 apply (erule condE, simp) |
|
5433 apply (simp add: reps_len_def reps_sep_len_def reps_ctnt_len_def) |
|
5434 apply (sep_cancel+) |
|
5435 by (erule condE, simp) |
|
5436 |
|
5437 end |
|
5438 |