|
1 theory StateMonad |
|
2 imports |
|
3 "~~/src/HOL/Library/Monad_Syntax" |
|
4 begin |
|
5 |
|
6 datatype ('result, 'state) SM = SM "'state => ('result \<times> 'state) option" |
|
7 |
|
8 fun execute :: "('result, 'state) SM \<Rightarrow> 'state \<Rightarrow> ('result \<times> 'state) option" where |
|
9 "execute (SM f) = f" |
|
10 |
|
11 lemma SM_cases [case_names succeed fail]: |
|
12 fixes f and s |
|
13 assumes succeed: "\<And>x s'. execute f h = Some (x, s') \<Longrightarrow> P" |
|
14 assumes fail: "execute f h = None \<Longrightarrow> P" |
|
15 shows P |
|
16 using assms by (cases "execute f h") auto |
|
17 |
|
18 lemma SM_execute [simp]: |
|
19 "SM (execute f) = f" by (cases f) simp_all |
|
20 |
|
21 lemma SM_eqI: |
|
22 "(\<And>h. execute f h = execute g h) \<Longrightarrow> f = g" |
|
23 by (cases f, cases g) (auto simp: fun_eq_iff) |
|
24 |
|
25 ML {* structure Execute_Simps = Named_Thms |
|
26 ( |
|
27 val name = @{binding execute_simps} |
|
28 val description = "simplification rules for execute" |
|
29 ) *} |
|
30 |
|
31 setup Execute_Simps.setup |
|
32 |
|
33 lemma execute_Let [execute_simps]: |
|
34 "execute (let x = t in f x) = (let x = t in execute (f x))" |
|
35 by (simp add: Let_def) |
|
36 |
|
37 |
|
38 subsubsection {* Specialised lifters *} |
|
39 |
|
40 definition sm :: "('state \<Rightarrow> 'a \<times> 'state) \<Rightarrow> ('a, 'state) SM" where |
|
41 "sm f = SM (Some \<circ> f)" |
|
42 |
|
43 definition tap :: "('state \<Rightarrow> 'a) \<Rightarrow> ('a, 'state) SM" where |
|
44 "tap f = SM (\<lambda>s. Some (f s, s))" |
|
45 |
|
46 definition "sm_get = tap id" |
|
47 |
|
48 definition "sm_map f = sm (\<lambda> s.((), f s))" |
|
49 |
|
50 definition "sm_set s' = sm_map (\<lambda> s. s)" |
|
51 |
|
52 lemma execute_tap [execute_simps]: |
|
53 "execute (tap f) h = Some (f h, h)" |
|
54 by (simp add: tap_def) |
|
55 |
|
56 |
|
57 lemma execute_heap [execute_simps]: |
|
58 "execute (sm f) = Some \<circ> f" |
|
59 by (simp add: sm_def) |
|
60 |
|
61 definition guard :: "('state \<Rightarrow> bool) \<Rightarrow> ('state \<Rightarrow> 'a \<times> 'state) |
|
62 \<Rightarrow> ('a, 'state) SM" where |
|
63 "guard P f = SM (\<lambda>h. if P h then Some (f h) else None)" |
|
64 |
|
65 lemma execute_guard [execute_simps]: |
|
66 "\<not> P h \<Longrightarrow> execute (guard P f) h = None" |
|
67 "P h \<Longrightarrow> execute (guard P f) h = Some (f h)" |
|
68 by (simp_all add: guard_def) |
|
69 |
|
70 |
|
71 subsubsection {* Predicate classifying successful computations *} |
|
72 |
|
73 definition success :: "('a, 'state) SM \<Rightarrow> 'state \<Rightarrow> bool" where |
|
74 "success f h = (execute f h \<noteq> None)" |
|
75 |
|
76 lemma successI: |
|
77 "execute f h \<noteq> None \<Longrightarrow> success f h" |
|
78 by (simp add: success_def) |
|
79 |
|
80 lemma successE: |
|
81 assumes "success f h" |
|
82 obtains r h' where "r = fst (the (execute c h))" |
|
83 and "h' = snd (the (execute c h))" |
|
84 and "execute f h \<noteq> None" |
|
85 using assms by (simp add: success_def) |
|
86 |
|
87 ML {* structure Success_Intros = Named_Thms |
|
88 ( |
|
89 val name = @{binding success_intros} |
|
90 val description = "introduction rules for success" |
|
91 ) *} |
|
92 |
|
93 setup Success_Intros.setup |
|
94 |
|
95 lemma success_tapI [success_intros]: |
|
96 "success (tap f) h" |
|
97 by (rule successI) (simp add: execute_simps) |
|
98 |
|
99 lemma success_heapI [success_intros]: |
|
100 "success (sm f) h" |
|
101 by (rule successI) (simp add: execute_simps) |
|
102 |
|
103 lemma success_guardI [success_intros]: |
|
104 "P h \<Longrightarrow> success (guard P f) h" |
|
105 by (rule successI) (simp add: execute_guard) |
|
106 |
|
107 lemma success_LetI [success_intros]: |
|
108 "x = t \<Longrightarrow> success (f x) h \<Longrightarrow> success (let x = t in f x) h" |
|
109 by (simp add: Let_def) |
|
110 |
|
111 lemma success_ifI: |
|
112 "(c \<Longrightarrow> success t h) \<Longrightarrow> (\<not> c \<Longrightarrow> success e h) \<Longrightarrow> |
|
113 success (if c then t else e) h" |
|
114 by (simp add: success_def) |
|
115 |
|
116 subsubsection {* Predicate for a simple relational calculus *} |
|
117 |
|
118 text {* |
|
119 The @{text effect} predicate states that when a computation @{text c} |
|
120 runs with the state @{text h} will result in return value @{text r} |
|
121 and a state @{text "h'"}, i.e.~no exception occurs. |
|
122 *} |
|
123 |
|
124 definition effect :: "('a, 'state) SM \<Rightarrow> 'state \<Rightarrow> 'state \<Rightarrow> 'a \<Rightarrow> bool" where |
|
125 effect_def: "effect c h h' r = (execute c h = Some (r, h'))" |
|
126 |
|
127 lemma effectI: |
|
128 "execute c h = Some (r, h') \<Longrightarrow> effect c h h' r" |
|
129 by (simp add: effect_def) |
|
130 |
|
131 lemma effectE: |
|
132 assumes "effect c h h' r" |
|
133 obtains "r = fst (the (execute c h))" |
|
134 and "h' = snd (the (execute c h))" |
|
135 and "success c h" |
|
136 proof (rule that) |
|
137 from assms have *: "execute c h = Some (r, h')" by (simp add: effect_def) |
|
138 then show "success c h" by (simp add: success_def) |
|
139 from * have "fst (the (execute c h)) = r" and "snd (the (execute c h)) = h'" |
|
140 by simp_all |
|
141 then show "r = fst (the (execute c h))" |
|
142 and "h' = snd (the (execute c h))" by simp_all |
|
143 qed |
|
144 |
|
145 lemma effect_success: |
|
146 "effect c h h' r \<Longrightarrow> success c h" |
|
147 by (simp add: effect_def success_def) |
|
148 |
|
149 lemma success_effectE: |
|
150 assumes "success c h" |
|
151 obtains r h' where "effect c h h' r" |
|
152 using assms by (auto simp add: effect_def success_def) |
|
153 |
|
154 lemma effect_deterministic: |
|
155 assumes "effect f h h' a" |
|
156 and "effect f h h'' b" |
|
157 shows "a = b" and "h' = h''" |
|
158 using assms unfolding effect_def by auto |
|
159 |
|
160 ML {* structure Effect_Intros = Named_Thms |
|
161 ( |
|
162 val name = @{binding effect_intros} |
|
163 val description = "introduction rules for effect" |
|
164 ) *} |
|
165 |
|
166 ML {* structure Effect_Elims = Named_Thms |
|
167 ( |
|
168 val name = @{binding effect_elims} |
|
169 val description = "elimination rules for effect" |
|
170 ) *} |
|
171 |
|
172 setup "Effect_Intros.setup #> Effect_Elims.setup" |
|
173 |
|
174 lemma effect_LetI [effect_intros]: |
|
175 assumes "x = t" "effect (f x) h h' r" |
|
176 shows "effect (let x = t in f x) h h' r" |
|
177 using assms by simp |
|
178 |
|
179 lemma effect_LetE [effect_elims]: |
|
180 assumes "effect (let x = t in f x) h h' r" |
|
181 obtains "effect (f t) h h' r" |
|
182 using assms by simp |
|
183 |
|
184 lemma effect_ifI: |
|
185 assumes "c \<Longrightarrow> effect t h h' r" |
|
186 and "\<not> c \<Longrightarrow> effect e h h' r" |
|
187 shows "effect (if c then t else e) h h' r" |
|
188 by (cases c) (simp_all add: assms) |
|
189 |
|
190 lemma effect_ifE: |
|
191 assumes "effect (if c then t else e) h h' r" |
|
192 obtains "c" "effect t h h' r" |
|
193 | "\<not> c" "effect e h h' r" |
|
194 using assms by (cases c) simp_all |
|
195 |
|
196 lemma effect_tapI [effect_intros]: |
|
197 assumes "h' = h" "r = f h" |
|
198 shows "effect (tap f) h h' r" |
|
199 by (rule effectI) (simp add: assms execute_simps) |
|
200 |
|
201 lemma effect_tapE [effect_elims]: |
|
202 assumes "effect (tap f) h h' r" |
|
203 obtains "h' = h" and "r = f h" |
|
204 using assms by (rule effectE) (auto simp add: execute_simps) |
|
205 |
|
206 lemma effect_heapI [effect_intros]: |
|
207 assumes "h' = snd (f h)" "r = fst (f h)" |
|
208 shows "effect (sm f) h h' r" |
|
209 by (rule effectI) (simp add: assms execute_simps) |
|
210 |
|
211 lemma effect_heapE [effect_elims]: |
|
212 assumes "effect (sm f) h h' r" |
|
213 obtains "h' = snd (f h)" and "r = fst (f h)" |
|
214 using assms by (rule effectE) (simp add: execute_simps) |
|
215 |
|
216 lemma effect_guardI [effect_intros]: |
|
217 assumes "P h" "h' = snd (f h)" "r = fst (f h)" |
|
218 shows "effect (guard P f) h h' r" |
|
219 by (rule effectI) (simp add: assms execute_simps) |
|
220 |
|
221 lemma effect_guardE [effect_elims]: |
|
222 assumes "effect (guard P f) h h' r" |
|
223 obtains "h' = snd (f h)" "r = fst (f h)" "P h" |
|
224 using assms by (rule effectE) |
|
225 (auto simp add: execute_simps elim!: successE, |
|
226 cases "P h", auto simp add: execute_simps) |
|
227 |
|
228 |
|
229 subsubsection {* Monad combinators *} |
|
230 |
|
231 definition return :: "'a \<Rightarrow> ('a, 'state) SM" where |
|
232 "return x = sm (Pair x)" |
|
233 |
|
234 lemma execute_return [execute_simps]: |
|
235 "execute (return x) = Some \<circ> Pair x" |
|
236 by (simp add: return_def execute_simps) |
|
237 |
|
238 lemma success_returnI [success_intros]: |
|
239 "success (return x) h" |
|
240 by (rule successI) (simp add: execute_simps) |
|
241 |
|
242 lemma effect_returnI [effect_intros]: |
|
243 "h = h' \<Longrightarrow> effect (return x) h h' x" |
|
244 by (rule effectI) (simp add: execute_simps) |
|
245 |
|
246 lemma effect_returnE [effect_elims]: |
|
247 assumes "effect (return x) h h' r" |
|
248 obtains "r = x" "h' = h" |
|
249 using assms by (rule effectE) (simp add: execute_simps) |
|
250 |
|
251 definition raise :: "string \<Rightarrow> ('a, 'state) SM" where |
|
252 -- {* the string is just decoration *} |
|
253 "raise s = SM (\<lambda>_. None)" |
|
254 |
|
255 lemma execute_raise [execute_simps]: |
|
256 "execute (raise s) = (\<lambda>_. None)" |
|
257 by (simp add: raise_def) |
|
258 |
|
259 lemma effect_raiseE [effect_elims]: |
|
260 assumes "effect (raise x) h h' r" |
|
261 obtains "False" |
|
262 using assms by (rule effectE) (simp add: success_def execute_simps) |
|
263 |
|
264 definition bind :: "('a, 'state) SM \<Rightarrow> ('a \<Rightarrow> ('b, 'state) SM) \<Rightarrow> ('b, 'state) SM" where |
|
265 "bind f g = SM (\<lambda>h. case execute f h of |
|
266 Some (x, h') \<Rightarrow> execute (g x) h' |
|
267 | None \<Rightarrow> None)" |
|
268 |
|
269 adhoc_overloading |
|
270 Monad_Syntax.bind StateMonad.bind |
|
271 |
|
272 |
|
273 lemma execute_bind [execute_simps]: |
|
274 "execute f h = Some (x, h') \<Longrightarrow> execute (f \<guillemotright>= g) h = execute (g x) h'" |
|
275 "execute f h = None \<Longrightarrow> execute (f \<guillemotright>= g) h = None" |
|
276 by (simp_all add: bind_def) |
|
277 |
|
278 lemma execute_bind_case: |
|
279 "execute (f \<guillemotright>= g) h = (case (execute f h) of |
|
280 Some (x, h') \<Rightarrow> execute (g x) h' | None \<Rightarrow> None)" |
|
281 by (simp add: bind_def) |
|
282 |
|
283 lemma execute_bind_success: |
|
284 "success f h \<Longrightarrow> execute (f \<guillemotright>= g) h = execute (g (fst (the (execute f h)))) (snd (the (execute f h)))" |
|
285 by (cases f h rule: SM_cases) (auto elim!: successE simp add: bind_def) |
|
286 |
|
287 lemma success_bind_executeI: |
|
288 "execute f h = Some (x, h') \<Longrightarrow> success (g x) h' \<Longrightarrow> success (f \<guillemotright>= g) h" |
|
289 by (auto intro!: successI elim!: successE simp add: bind_def) |
|
290 |
|
291 lemma success_bind_effectI [success_intros]: |
|
292 "effect f h h' x \<Longrightarrow> success (g x) h' \<Longrightarrow> success (f \<guillemotright>= g) h" |
|
293 by (auto simp add: effect_def success_def bind_def) |
|
294 |
|
295 lemma effect_bindI [effect_intros]: |
|
296 assumes "effect f h h' r" "effect (g r) h' h'' r'" |
|
297 shows "effect (f \<guillemotright>= g) h h'' r'" |
|
298 using assms |
|
299 apply (auto intro!: effectI elim!: effectE successE) |
|
300 apply (subst execute_bind, simp_all) |
|
301 done |
|
302 |
|
303 lemma effect_bindE [effect_elims]: |
|
304 assumes "effect (f \<guillemotright>= g) h h'' r'" |
|
305 obtains h' r where "effect f h h' r" "effect (g r) h' h'' r'" |
|
306 using assms by (auto simp add: effect_def bind_def split: option.split_asm) |
|
307 |
|
308 lemma execute_bind_eq_SomeI: |
|
309 assumes "execute f h = Some (x, h')" |
|
310 and "execute (g x) h' = Some (y, h'')" |
|
311 shows "execute (f \<guillemotright>= g) h = Some (y, h'')" |
|
312 using assms by (simp add: bind_def) |
|
313 |
|
314 lemma return_bind [simp]: "return x \<guillemotright>= f = f x" |
|
315 by (rule SM_eqI) (simp add: execute_bind execute_simps) |
|
316 |
|
317 lemma bind_return [simp]: "f \<guillemotright>= return = f" |
|
318 by (rule SM_eqI) (simp add: bind_def execute_simps split: option.splits) |
|
319 |
|
320 lemma bind_bind [simp]: "(f \<guillemotright>= g) \<guillemotright>= k = (f :: ('a, 'state) SM) \<guillemotright>= (\<lambda>x. g x \<guillemotright>= k)" |
|
321 by (rule SM_eqI) (simp add: bind_def execute_simps split: option.splits) |
|
322 |
|
323 lemma raise_bind [simp]: "raise e \<guillemotright>= f = raise e" |
|
324 by (rule SM_eqI) (simp add: execute_simps) |
|
325 |
|
326 |
|
327 subsection {* Generic combinators *} |
|
328 |
|
329 subsubsection {* Assertions *} |
|
330 |
|
331 definition assert :: "('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> ('a, 'state) SM" where |
|
332 "assert P x = (if P x then return x else raise ''assert'')" |
|
333 |
|
334 lemma execute_assert [execute_simps]: |
|
335 "P x \<Longrightarrow> execute (assert P x) h = Some (x, h)" |
|
336 "\<not> P x \<Longrightarrow> execute (assert P x) h = None" |
|
337 by (simp_all add: assert_def execute_simps) |
|
338 |
|
339 lemma success_assertI [success_intros]: |
|
340 "P x \<Longrightarrow> success (assert P x) h" |
|
341 by (rule successI) (simp add: execute_assert) |
|
342 |
|
343 lemma effect_assertI [effect_intros]: |
|
344 "P x \<Longrightarrow> h' = h \<Longrightarrow> r = x \<Longrightarrow> effect (assert P x) h h' r" |
|
345 by (rule effectI) (simp add: execute_assert) |
|
346 |
|
347 lemma effect_assertE [effect_elims]: |
|
348 assumes "effect (assert P x) h h' r" |
|
349 obtains "P x" "r = x" "h' = h" |
|
350 using assms by (rule effectE) (cases "P x", simp_all add: execute_assert success_def) |
|
351 |
|
352 lemma assert_cong [fundef_cong]: |
|
353 assumes "P = P'" |
|
354 assumes "\<And>x. P' x \<Longrightarrow> f x = f' x" |
|
355 shows "(assert P x >>= f) = (assert P' x >>= f')" |
|
356 by (rule SM_eqI) (insert assms, simp add: assert_def) |
|
357 |
|
358 |
|
359 subsubsection {* Plain lifting *} |
|
360 |
|
361 definition lift :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> ('b, 'state) SM" where |
|
362 "lift f = return o f" |
|
363 |
|
364 lemma lift_collapse [simp]: |
|
365 "lift f x = return (f x)" |
|
366 by (simp add: lift_def) |
|
367 |
|
368 lemma bind_lift: |
|
369 "(f \<guillemotright>= lift g) = (f \<guillemotright>= (\<lambda>x. return (g x)))" |
|
370 by (simp add: lift_def comp_def) |
|
371 |
|
372 |
|
373 subsubsection {* Iteration -- warning: this is rarely useful! *} |
|
374 |
|
375 primrec fold_map :: "('a \<Rightarrow> ('b, 'state) SM) \<Rightarrow> 'a list \<Rightarrow> ('b list, 'state) SM" where |
|
376 "fold_map f [] = return []" |
|
377 | "fold_map f (x # xs) = do { |
|
378 y \<leftarrow> f x; |
|
379 ys \<leftarrow> fold_map f xs; |
|
380 return (y # ys) |
|
381 }" |
|
382 |
|
383 lemma fold_map_append: |
|
384 "fold_map f (xs @ ys) = fold_map f xs \<guillemotright>= (\<lambda>xs. fold_map f ys \<guillemotright>= (\<lambda>ys. return (xs @ ys)))" |
|
385 by (induct xs) simp_all |
|
386 |
|
387 lemma execute_fold_map_unchanged_heap [execute_simps]: |
|
388 assumes "\<And>x. x \<in> set xs \<Longrightarrow> \<exists>y. execute (f x) h = Some (y, h)" |
|
389 shows "execute (fold_map f xs) h = |
|
390 Some (List.map (\<lambda>x. fst (the (execute (f x) h))) xs, h)" |
|
391 using assms proof (induct xs) |
|
392 case Nil show ?case by (simp add: execute_simps) |
|
393 next |
|
394 case (Cons x xs) |
|
395 from Cons.prems obtain y |
|
396 where y: "execute (f x) h = Some (y, h)" by auto |
|
397 moreover from Cons.prems Cons.hyps have "execute (fold_map f xs) h = |
|
398 Some (map (\<lambda>x. fst (the (execute (f x) h))) xs, h)" by auto |
|
399 ultimately show ?case by (simp, simp only: execute_bind(1), simp add: execute_simps) |
|
400 qed |
|
401 |
|
402 |
|
403 subsection {* Partial function definition setup *} |
|
404 |
|
405 definition SM_ord :: "('a, 'state) SM \<Rightarrow> ('a, 'state) SM \<Rightarrow> bool" where |
|
406 "SM_ord = img_ord execute (fun_ord option_ord)" |
|
407 |
|
408 definition SM_lub :: "('a , 'state) SM set \<Rightarrow> ('a, 'state) SM" where |
|
409 "SM_lub = img_lub execute SM (fun_lub (flat_lub None))" |
|
410 |
|
411 interpretation sm!: partial_function_definitions SM_ord SM_lub |
|
412 proof - |
|
413 have "partial_function_definitions (fun_ord option_ord) (fun_lub (flat_lub None))" |
|
414 by (rule partial_function_lift) (rule flat_interpretation) |
|
415 then have "partial_function_definitions (img_ord execute (fun_ord option_ord)) |
|
416 (img_lub execute SM (fun_lub (flat_lub None)))" |
|
417 by (rule partial_function_image) (auto intro: SM_eqI) |
|
418 then show "partial_function_definitions SM_ord SM_lub" |
|
419 by (simp only: SM_ord_def SM_lub_def) |
|
420 qed |
|
421 |
|
422 declaration {* Partial_Function.init "sm" @{term sm.fixp_fun} |
|
423 @{term sm.mono_body} @{thm sm.fixp_rule_uc} @{thm sm.fixp_induct_uc} NONE *} |
|
424 |
|
425 |
|
426 abbreviation "mono_SM \<equiv> monotone (fun_ord SM_ord) SM_ord" |
|
427 |
|
428 lemma SM_ordI: |
|
429 assumes "\<And>h. execute x h = None \<or> execute x h = execute y h" |
|
430 shows "SM_ord x y" |
|
431 using assms unfolding SM_ord_def img_ord_def fun_ord_def flat_ord_def |
|
432 by blast |
|
433 |
|
434 lemma SM_ordE: |
|
435 assumes "SM_ord x y" |
|
436 obtains "execute x h = None" | "execute x h = execute y h" |
|
437 using assms unfolding SM_ord_def img_ord_def fun_ord_def flat_ord_def |
|
438 by atomize_elim blast |
|
439 |
|
440 lemma bind_mono [partial_function_mono]: |
|
441 assumes mf: "mono_SM B" and mg: "\<And>y. mono_SM (\<lambda>f. C y f)" |
|
442 shows "mono_SM (\<lambda>f. B f \<guillemotright>= (\<lambda>y. C y f))" |
|
443 proof (rule monotoneI) |
|
444 fix f g :: "'a \<Rightarrow> ('b, 'c) SM" assume fg: "fun_ord SM_ord f g" |
|
445 from mf |
|
446 have 1: "SM_ord (B f) (B g)" by (rule monotoneD) (rule fg) |
|
447 from mg |
|
448 have 2: "\<And>y'. SM_ord (C y' f) (C y' g)" by (rule monotoneD) (rule fg) |
|
449 |
|
450 have "SM_ord (B f \<guillemotright>= (\<lambda>y. C y f)) (B g \<guillemotright>= (\<lambda>y. C y f))" |
|
451 (is "SM_ord ?L ?R") |
|
452 proof (rule SM_ordI) |
|
453 fix h |
|
454 from 1 show "execute ?L h = None \<or> execute ?L h = execute ?R h" |
|
455 by (rule SM_ordE[where h = h]) (auto simp: execute_bind_case) |
|
456 qed |
|
457 also |
|
458 have "SM_ord (B g \<guillemotright>= (\<lambda>y'. C y' f)) (B g \<guillemotright>= (\<lambda>y'. C y' g))" |
|
459 (is "SM_ord ?L ?R") |
|
460 proof (rule SM_ordI) |
|
461 fix h |
|
462 show "execute ?L h = None \<or> execute ?L h = execute ?R h" |
|
463 proof (cases "execute (B g) h") |
|
464 case None |
|
465 then have "execute ?L h = None" by (auto simp: execute_bind_case) |
|
466 thus ?thesis .. |
|
467 next |
|
468 case Some |
|
469 then obtain r h' where "execute (B g) h = Some (r, h')" |
|
470 by (metis surjective_pairing) |
|
471 then have "execute ?L h = execute (C r f) h'" |
|
472 "execute ?R h = execute (C r g) h'" |
|
473 by (auto simp: execute_bind_case) |
|
474 with 2[of r] show ?thesis by (auto elim: SM_ordE) |
|
475 qed |
|
476 qed |
|
477 finally (sm.leq_trans) |
|
478 show "SM_ord (B f \<guillemotright>= (\<lambda>y. C y f)) (B g \<guillemotright>= (\<lambda>y'. C y' g))" . |
|
479 qed |
|
480 |
|
481 end |