1 theory Essential |
|
2 imports FirstStep |
|
3 begin |
|
4 |
|
5 ML {* |
|
6 fun pretty_helper aux env = |
|
7 env |> Vartab.dest |
|
8 |> map aux |
|
9 |> map (fn (s1, s2) => Pretty.block [s1, Pretty.str " := ", s2]) |
|
10 |> Pretty.enum "," "[" "]" |
|
11 |> pwriteln |
|
12 |
|
13 fun pretty_tyenv ctxt tyenv = |
|
14 let |
|
15 fun get_typs (v, (s, T)) = (TVar (v, s), T) |
|
16 val print = pairself (pretty_typ ctxt) |
|
17 in |
|
18 pretty_helper (print o get_typs) tyenv |
|
19 end |
|
20 |
|
21 fun pretty_env ctxt env = |
|
22 let |
|
23 fun get_trms (v, (T, t)) = (Var (v, T), t) |
|
24 val print = pairself (pretty_term ctxt) |
|
25 in |
|
26 pretty_helper (print o get_trms) env |
|
27 end |
|
28 |
|
29 fun prep_trm thy (x, (T, t)) = |
|
30 (cterm_of thy (Var (x, T)), cterm_of thy t) |
|
31 |
|
32 fun prep_ty thy (x, (S, ty)) = |
|
33 (ctyp_of thy (TVar (x, S)), ctyp_of thy ty) |
|
34 |
|
35 fun matcher_inst thy pat trm i = |
|
36 let |
|
37 val univ = Unify.matchers thy [(pat, trm)] |
|
38 val env = nth (Seq.list_of univ) i |
|
39 val tenv = Vartab.dest (Envir.term_env env) |
|
40 val tyenv = Vartab.dest (Envir.type_env env) |
|
41 in |
|
42 (map (prep_ty thy) tyenv, map (prep_trm thy) tenv) |
|
43 end |
|
44 *} |
|
45 |
|
46 ML {* |
|
47 let |
|
48 val pat = Logic.strip_imp_concl (prop_of @{thm spec}) |
|
49 val trm = @{term "Trueprop (Q True)"} |
|
50 val inst = matcher_inst @{theory} pat trm 1 |
|
51 in |
|
52 Drule.instantiate_normalize inst @{thm spec} |
|
53 end |
|
54 *} |
|
55 |
|
56 ML {* |
|
57 let |
|
58 val c = Const (@{const_name "plus"}, dummyT) |
|
59 val o = @{term "1::nat"} |
|
60 val v = Free ("x", dummyT) |
|
61 in |
|
62 Syntax.check_term @{context} (c $ o $ v) |
|
63 end |
|
64 *} |
|
65 |
|
66 ML {* |
|
67 val my_thm = |
|
68 let |
|
69 val assm1 = @{cprop "\<And> (x::nat). P x ==> Q x"} |
|
70 val assm2 = @{cprop "(P::nat => bool) t"} |
|
71 |
|
72 val Pt_implies_Qt = |
|
73 Thm.assume assm1 |
|
74 |> tap (fn x => pwriteln (Pretty.str (@{make_string} x))) |
|
75 |> Thm.forall_elim @{cterm "t::nat"} |
|
76 |> tap (fn x => pwriteln (Pretty.str (@{make_string} x))) |
|
77 |
|
78 val Qt = Thm.implies_elim Pt_implies_Qt (Thm.assume assm2) |
|
79 |> tap (fn x => pwriteln (Pretty.str (@{make_string} x))) |
|
80 in |
|
81 Qt |
|
82 |> Thm.implies_intr assm2 |
|
83 |> Thm.implies_intr assm1 |
|
84 end |
|
85 *} |
|
86 |
|
87 local_setup {* |
|
88 Local_Theory.note ((@{binding "my_thm"}, []), [my_thm]) #> snd |
|
89 *} |
|
90 |
|
91 local_setup {* |
|
92 Local_Theory.note ((@{binding "my_thm_simp"}, |
|
93 [Attrib.internal (K Simplifier.simp_add)]), [my_thm]) #> snd |
|
94 *} |
|
95 |
|
96 (* pp 62 *) |
|
97 |
|
98 lemma |
|
99 shows foo_test1: "A \<Longrightarrow> B \<Longrightarrow> C" |
|
100 and foo_test2: "A \<longrightarrow> B \<longrightarrow> C" sorry |
|
101 |
|
102 ML {* |
|
103 Thm.reflexive @{cterm "True"} |
|
104 |> Simplifier.rewrite_rule [@{thm True_def}] |
|
105 |> pretty_thm @{context} |
|
106 |> pwriteln |
|
107 *} |
|
108 |
|
109 ML {* |
|
110 Object_Logic.rulify @{thm foo_test2} |
|
111 *} |
|
112 |
|
113 |
|
114 ML {* |
|
115 val thm = @{thm foo_test1}; |
|
116 thm |
|
117 |> cprop_of |
|
118 |> Object_Logic.atomize |
|
119 |> (fn x => Raw_Simplifier.rewrite_rule [x] thm) |
|
120 *} |
|
121 |
|
122 ML {* |
|
123 val thm = @{thm list.induct} |> forall_intr_vars; |
|
124 thm |> forall_intr_vars |> cprop_of |> Object_Logic.atomize |
|
125 |> (fn x => Raw_Simplifier.rewrite_rule [x] thm) |
|
126 *} |
|
127 |
|
128 ML {* |
|
129 fun atomize_thm thm = |
|
130 let |
|
131 val thm' = forall_intr_vars thm |
|
132 val thm'' = Object_Logic.atomize (cprop_of thm') |
|
133 in |
|
134 Raw_Simplifier.rewrite_rule [thm''] thm' |
|
135 end |
|
136 *} |
|
137 |
|
138 ML {* |
|
139 @{thm list.induct} |> atomize_thm |
|
140 *} |
|
141 |
|
142 ML {* |
|
143 Skip_Proof.make_thm @{theory} @{prop "True = False"} |
|
144 *} |
|
145 |
|
146 ML {* |
|
147 fun pthms_of (PBody {thms, ...}) = map #2 thms |
|
148 val get_names = map #1 o pthms_of |
|
149 val get_pbodies = map (Future.join o #3) o pthms_of |
|
150 *} |
|
151 |
|
152 lemma my_conjIa: |
|
153 shows "A \<and> B \<Longrightarrow> A \<and> B" |
|
154 apply(rule conjI) |
|
155 apply(drule conjunct1) |
|
156 apply(assumption) |
|
157 apply(drule conjunct2) |
|
158 apply(assumption) |
|
159 done |
|
160 |
|
161 lemma my_conjIb: |
|
162 shows "A \<and> B \<Longrightarrow> A \<and> B" |
|
163 apply(assumption) |
|
164 done |
|
165 |
|
166 lemma my_conjIc: |
|
167 shows "A \<and> B \<Longrightarrow> A \<and> B" |
|
168 apply(auto) |
|
169 done |
|
170 |
|
171 |
|
172 ML {* |
|
173 @{thm my_conjIa} |
|
174 |> Thm.proof_body_of |
|
175 |> get_names |
|
176 *} |
|
177 |
|
178 ML {* |
|
179 @{thm my_conjIa} |
|
180 |> Thm.proof_body_of |
|
181 |> get_pbodies |
|
182 |> map get_names |
|
183 |> List.concat |
|
184 *} |
|
185 |
|
186 ML {* |
|
187 @{thm my_conjIb} |
|
188 |> Thm.proof_body_of |
|
189 |> get_pbodies |
|
190 |> map get_names |
|
191 |> List.concat |
|
192 *} |
|
193 |
|
194 ML {* |
|
195 @{thm my_conjIc} |
|
196 |> Thm.proof_body_of |
|
197 |> get_pbodies |
|
198 |> map get_names |
|
199 |> List.concat |
|
200 *} |
|
201 |
|
202 ML {* |
|
203 @{thm my_conjIa} |
|
204 |> Thm.proof_body_of |
|
205 |> get_pbodies |
|
206 |> map get_pbodies |
|
207 |> (map o map) get_names |
|
208 |> List.concat |
|
209 |> List.concat |
|
210 |> duplicates (op=) |
|
211 *} |
|
212 |
|
213 end |
|