thys/Hoare_tm.thy
changeset 0 1378b654acde
child 1 ed280ad05133
equal deleted inserted replaced
-1:000000000000 0:1378b654acde
       
     1 header {* 
       
     2   Separation logic for TM
       
     3 *}
       
     4 
       
     5 theory Hoare_tm
       
     6 imports Hoare_gen My_block Data_slot
       
     7 begin
       
     8 
       
     9 
       
    10 ML {*
       
    11 fun pretty_terms ctxt trms =
       
    12   Pretty.block (Pretty.commas (map (Syntax.pretty_term ctxt) trms))
       
    13 *}
       
    14 
       
    15 lemma int_add_C :"x + (y::int) = y + x"
       
    16   by simp
       
    17 
       
    18 lemma int_add_A : "(x + y) + z = x + (y + (z::int))"
       
    19   by simp
       
    20 
       
    21 lemma int_add_LC: "x + (y + (z::int)) = y + (x + z)"
       
    22   by simp
       
    23 
       
    24 lemmas int_add_ac = int_add_A int_add_C int_add_LC
       
    25 
       
    26 method_setup prune = {* Scan.succeed (SIMPLE_METHOD' o (K (K prune_params_tac))) *} 
       
    27                        "pruning parameters"
       
    28 
       
    29 ML {*
       
    30 structure StepRules = Named_Thms
       
    31   (val name = @{binding "step"}
       
    32    val description = "Theorems for hoare rules for every step")
       
    33 *}
       
    34 
       
    35 ML {*
       
    36 structure FwdRules = Named_Thms
       
    37   (val name = @{binding "fwd"}
       
    38    val description = "Theorems for fwd derivation of seperation implication")
       
    39 *}
       
    40 
       
    41 setup {* StepRules.setup *}
       
    42 
       
    43 setup {* FwdRules.setup *}
       
    44 
       
    45 section {* Operational Semantics of TM *}
       
    46 
       
    47 datatype taction = W0 | W1 | L | R
       
    48 
       
    49 type_synonym tstate = nat
       
    50 
       
    51 type_synonym tm_inst = "(taction \<times> tstate) \<times> (taction \<times> tstate)"
       
    52 
       
    53 datatype Block = Oc | Bk
       
    54 
       
    55 type_synonym tconf = "nat \<times> (nat \<rightharpoonup> tm_inst) \<times> nat \<times> int \<times> (int \<rightharpoonup> Block)"
       
    56 
       
    57 fun next_tape :: "taction \<Rightarrow> (int \<times>  (int \<rightharpoonup> Block)) \<Rightarrow> (int \<times>  (int \<rightharpoonup> Block))"
       
    58 where "next_tape W0 (pos, m) = (pos, m(pos \<mapsto> Bk))" |
       
    59       "next_tape W1 (pos, m) = (pos, m(pos \<mapsto> Oc))" |
       
    60       "next_tape L  (pos, m) = (pos - 1, m)" |
       
    61       "next_tape R  (pos, m) = (pos + 1, m)"
       
    62 
       
    63 fun tstep :: "tconf \<Rightarrow> tconf"
       
    64   where "tstep (faults, prog, pc, pos, m) = 
       
    65               (case (prog pc) of
       
    66                   Some ((action0, pc0), (action1, pc1)) \<Rightarrow> 
       
    67                      case (m pos) of
       
    68                        Some Bk \<Rightarrow> (faults, prog, pc0, next_tape action0 (pos, m)) |
       
    69                        Some Oc \<Rightarrow> (faults, prog, pc1, next_tape action1 (pos, m)) |
       
    70                        None \<Rightarrow> (faults + 1, prog, pc, pos, m)
       
    71                 | None \<Rightarrow> (faults + 1, prog, pc, pos, m))"
       
    72 
       
    73 lemma tstep_splits: 
       
    74   "(P (tstep s)) = ((\<forall> faults prog pc pos m action0 pc0 action1 pc1. 
       
    75                           s = (faults, prog, pc, pos, m) \<longrightarrow> 
       
    76                           prog pc = Some ((action0, pc0), (action1, pc1)) \<longrightarrow> 
       
    77                           m pos = Some Bk \<longrightarrow> P (faults, prog, pc0, next_tape action0 (pos, m))) \<and>
       
    78                     (\<forall> faults prog pc pos m action0 pc0 action1 pc1. 
       
    79                           s = (faults, prog, pc, pos, m) \<longrightarrow> 
       
    80                           prog pc = Some ((action0, pc0), (action1, pc1)) \<longrightarrow> 
       
    81                           m pos = Some Oc \<longrightarrow> P (faults, prog, pc1, next_tape action1 (pos, m))) \<and>
       
    82                     (\<forall> faults prog pc pos m action0 pc0 action1 pc1. 
       
    83                           s = (faults, prog, pc, pos, m) \<longrightarrow> 
       
    84                           prog pc = Some ((action0, pc0), (action1, pc1)) \<longrightarrow> 
       
    85                           m pos = None \<longrightarrow> P (faults + 1, prog, pc, pos, m)) \<and>
       
    86                     (\<forall> faults prog pc pos m . 
       
    87                           s =  (faults, prog, pc, pos, m) \<longrightarrow>
       
    88                           prog pc  = None \<longrightarrow> P (faults + 1, prog, pc, pos, m))
       
    89                    )"
       
    90   by (case_tac s, auto split:option.splits Block.splits)
       
    91 
       
    92 datatype tresource = 
       
    93     TM int Block
       
    94   | TC nat tm_inst
       
    95   | TAt nat
       
    96   | TPos int
       
    97   | TFaults nat
       
    98 
       
    99 definition "tprog_set prog = {TC i inst | i inst. prog i = Some inst}"
       
   100 definition "tpc_set pc = {TAt pc}"
       
   101 definition "tmem_set m = {TM i n | i n. m (i) = Some n}"
       
   102 definition "tpos_set pos = {TPos pos}"
       
   103 definition "tfaults_set faults = {TFaults faults}"
       
   104 
       
   105 lemmas tpn_set_def = tprog_set_def tpc_set_def tmem_set_def tfaults_set_def tpos_set_def
       
   106 
       
   107 fun trset_of :: "tconf \<Rightarrow> tresource set"
       
   108   where "trset_of (faults, prog, pc, pos, m) = 
       
   109                tprog_set prog \<union> tpc_set pc \<union> tpos_set pos \<union> tmem_set m \<union> tfaults_set faults"
       
   110 
       
   111 interpretation tm: sep_exec tstep trset_of .
       
   112 
       
   113 section {* Assembly language and its program logic *}
       
   114 
       
   115 subsection {* The assembly language *}
       
   116 
       
   117 datatype tpg = 
       
   118    TInstr tm_inst
       
   119  | TLabel nat
       
   120  | TSeq tpg tpg
       
   121  | TLocal "(nat \<Rightarrow> tpg)"
       
   122 
       
   123 notation TLocal (binder "TL " 10)
       
   124 
       
   125 abbreviation tprog_instr :: "tm_inst \<Rightarrow> tpg" ("\<guillemotright> _" [61] 61)
       
   126 where "\<guillemotright> i \<equiv> TInstr i"
       
   127 
       
   128 abbreviation tprog_seq :: "tpg \<Rightarrow> tpg \<Rightarrow> tpg" (infixr ";" 52)
       
   129 where "c1 ; c2 \<equiv> TSeq c1 c2"
       
   130 
       
   131 definition "sg e = (\<lambda> s. s = e)"
       
   132 
       
   133 type_synonym tassert = "tresource set \<Rightarrow> bool"
       
   134 
       
   135 abbreviation t_hoare :: 
       
   136   "tassert \<Rightarrow> tassert  \<Rightarrow> tassert \<Rightarrow> bool" ("(\<lbrace>(1_)\<rbrace> / (_)/ \<lbrace>(1_)\<rbrace>)" 50)
       
   137   where "\<lbrace> p \<rbrace> c \<lbrace> q \<rbrace> == sep_exec.Hoare_gen tstep trset_of p c q"
       
   138 
       
   139 abbreviation it_hoare ::
       
   140   "(('a::sep_algebra) \<Rightarrow> tresource set \<Rightarrow> bool) \<Rightarrow> 
       
   141       ('a \<Rightarrow> bool) \<Rightarrow> (tresource set \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool"
       
   142   ("(1_).(\<lbrace>(1_)\<rbrace> / (_)/ \<lbrace>(1_)\<rbrace>)" 50)
       
   143 where "I. \<lbrace>P\<rbrace> c \<lbrace>Q\<rbrace> == sep_exec.IHoare tstep trset_of I P c Q"
       
   144 
       
   145 (*
       
   146 primrec tpg_len :: "tpg \<Rightarrow> nat" where 
       
   147   "tpg_len (TInstr ai) = 1" |
       
   148   "tpg_len (TSeq p1 p2) = tpg_len p1 + tpg_len " |
       
   149   "tpg_len (TLocal fp) = tpg_len (fp 0)" |
       
   150   "tpg_len (TLabel l) = 0" *)
       
   151 
       
   152 primrec tassemble_to :: "tpg \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> tassert" 
       
   153   where 
       
   154   "tassemble_to (TInstr ai) i j = (sg ({TC i ai}) ** <(j = i + 1)>)" |
       
   155   "tassemble_to (TSeq p1 p2) i j = (EXS j'. (tassemble_to p1 i j') ** (tassemble_to p2 j' j))" |
       
   156   "tassemble_to (TLocal fp) i j  = (EXS l. (tassemble_to (fp l) i j))" | 
       
   157   "tassemble_to (TLabel l) i j = <(i = j \<and> j = l)>"
       
   158 
       
   159 declare tassemble_to.simps [simp del]
       
   160 
       
   161 lemmas tasmp = tassemble_to.simps (2, 3, 4)
       
   162 
       
   163 abbreviation tasmb_to :: "nat \<Rightarrow> tpg \<Rightarrow> nat \<Rightarrow> tassert" ("_ :[ _ ]: _" [60, 60, 60] 60)
       
   164   where "i :[ tpg ]: j \<equiv> tassemble_to tpg i j"
       
   165 
       
   166 lemma EXS_intro: 
       
   167   assumes h: "(P x) s"
       
   168   shows "((EXS x. P(x))) s"
       
   169   by (smt h pred_ex_def sep_conj_impl)
       
   170 
       
   171 lemma EXS_elim: 
       
   172   assumes "(EXS x. P x) s"
       
   173   obtains x where "P x s"
       
   174   by (metis assms pred_ex_def)
       
   175 
       
   176 lemma EXS_eq:
       
   177   fixes x
       
   178   assumes h: "Q (p x)" 
       
   179   and h1: "\<And> y s. \<lbrakk>p y s\<rbrakk> \<Longrightarrow> y = x"
       
   180   shows "p x = (EXS x. p x)"
       
   181 proof
       
   182   fix s
       
   183   show "p x s = (EXS x. p x) s"
       
   184   proof
       
   185     assume "p x s"
       
   186     thus "(EXS x. p x) s" by (auto simp:pred_ex_def)
       
   187   next
       
   188     assume "(EXS x. p x) s"
       
   189     thus "p x s"
       
   190     proof(rule EXS_elim)
       
   191       fix y
       
   192       assume "p y s"
       
   193       from this[unfolded h1[OF this]] show "p x s" .
       
   194     qed
       
   195   qed
       
   196 qed
       
   197 
       
   198 definition "tpg_fold tpgs = foldr TSeq (butlast tpgs) (last tpgs)"
       
   199 
       
   200 lemma tpg_fold_sg: "tpg_fold [tpg] = tpg"
       
   201   by (simp add:tpg_fold_def)
       
   202 
       
   203 lemma tpg_fold_cons: 
       
   204   assumes h: "tpgs \<noteq> []"
       
   205   shows "tpg_fold (tpg#tpgs) = (tpg; (tpg_fold tpgs))"
       
   206   using h
       
   207 proof(induct tpgs arbitrary:tpg)
       
   208   case (Cons tpg1 tpgs1)
       
   209   thus ?case
       
   210   proof(cases "tpgs1 = []")
       
   211     case True
       
   212     thus ?thesis by (simp add:tpg_fold_def)
       
   213   next
       
   214     case False
       
   215     show ?thesis
       
   216     proof -
       
   217       have eq_1: "butlast (tpg # tpg1 # tpgs1) = tpg # (butlast (tpg1 # tpgs1))"
       
   218         by simp
       
   219       from False have eq_2: "last (tpg # tpg1 # tpgs1) = last (tpg1 # tpgs1)"
       
   220         by simp
       
   221       have eq_3: "foldr (op ;) (tpg # butlast (tpg1 # tpgs1)) (last (tpg1 # tpgs1)) = 
       
   222             (tpg ; (foldr (op ;) (butlast (tpg1 # tpgs1)) (last (tpg1 # tpgs1))))"
       
   223         by simp
       
   224       show ?thesis
       
   225         apply (subst (1) tpg_fold_def, unfold eq_1 eq_2 eq_3)
       
   226         by (fold tpg_fold_def, simp)
       
   227     qed
       
   228   qed
       
   229 qed auto
       
   230 
       
   231 lemmas tpg_fold_simps = tpg_fold_sg tpg_fold_cons
       
   232 
       
   233 lemma tpg_fold_app:
       
   234   assumes h1: "tpgs1 \<noteq> []" 
       
   235   and h2: "tpgs2 \<noteq> []"
       
   236   shows "i:[(tpg_fold (tpgs1 @ tpgs2))]:j = i:[(tpg_fold (tpgs1); tpg_fold tpgs2)]:j"
       
   237   using h1 h2
       
   238 proof(induct tpgs1 arbitrary: i j tpgs2)
       
   239   case (Cons tpg1' tpgs1')
       
   240   thus ?case (is "?L = ?R")
       
   241   proof(cases "tpgs1' = []")
       
   242     case False
       
   243     from h2 have "(tpgs1' @ tpgs2) \<noteq> []"
       
   244       by (metis Cons.prems(2) Nil_is_append_conv) 
       
   245     have "?L = (i :[ tpg_fold (tpg1' # (tpgs1' @ tpgs2)) ]: j )" by simp
       
   246     also have "\<dots> =  (i:[(tpg1'; (tpg_fold (tpgs1' @ tpgs2)))]:j )"
       
   247       by (simp add:tpg_fold_cons[OF `(tpgs1' @ tpgs2) \<noteq> []`])
       
   248     also have "\<dots> = ?R"
       
   249     proof -
       
   250       have "(EXS j'. i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold (tpgs1' @ tpgs2) ]: j) =
       
   251               (EXS j'. (EXS j'a. i :[ tpg1' ]: j'a \<and>* j'a :[ tpg_fold tpgs1' ]: j') \<and>* 
       
   252                                j' :[ tpg_fold tpgs2 ]: j)"
       
   253       proof(default+)
       
   254         fix s
       
   255         assume "(EXS j'. i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold (tpgs1' @ tpgs2) ]: j) s"
       
   256         thus "(EXS j'. (EXS j'a. i :[ tpg1' ]: j'a \<and>* j'a :[ tpg_fold tpgs1' ]: j') \<and>*
       
   257                   j' :[ tpg_fold tpgs2 ]: j) s"
       
   258         proof(elim EXS_elim)
       
   259           fix j'
       
   260           assume "(i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold (tpgs1' @ tpgs2) ]: j) s"
       
   261           from this[unfolded Cons(1)[OF False Cons(3)] tassemble_to.simps]
       
   262           show "(EXS j'. (EXS j'a. i :[ tpg1' ]: j'a \<and>* j'a :[ tpg_fold tpgs1' ]: j') \<and>*
       
   263                            j' :[ tpg_fold tpgs2 ]: j) s"
       
   264           proof(elim sep_conjE EXS_elim)
       
   265             fix x y j'a xa ya
       
   266             assume h: "(i :[ tpg1' ]: j') x"
       
   267                       "x ## y" "s = x + y"
       
   268                       "(j' :[ tpg_fold tpgs1' ]: j'a) xa"
       
   269                       "(j'a :[ tpg_fold tpgs2 ]: j) ya"
       
   270                       " xa ## ya" "y = xa + ya"
       
   271             show "(EXS j'. (EXS j'a. i :[ tpg1' ]: j'a \<and>* 
       
   272                                 j'a :[ tpg_fold tpgs1' ]: j') \<and>* j' :[ tpg_fold tpgs2 ]: j) s"
       
   273                (is "(EXS j'. (?P j' \<and>* ?Q j')) s")
       
   274             proof(rule EXS_intro[where x = "j'a"])
       
   275               from `(j'a :[ tpg_fold tpgs2 ]: j) ya` have "(?Q j'a) ya" .
       
   276               moreover have "(?P j'a) (x + xa)" 
       
   277               proof(rule EXS_intro[where x = j'])
       
   278                 have "x + xa = x + xa" by simp
       
   279                 moreover from `x ## y` `y = xa + ya` `xa ## ya` 
       
   280                 have "x ## xa" by (metis sep_disj_addD) 
       
   281                 moreover note `(i :[ tpg1' ]: j') x` `(j' :[ tpg_fold tpgs1' ]: j'a) xa`
       
   282                 ultimately show "(i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold tpgs1' ]: j'a) (x + xa)"
       
   283                   by (auto intro!:sep_conjI)
       
   284               qed
       
   285               moreover from `x##y` `y = xa + ya` `xa ## ya` 
       
   286               have "(x + xa) ## ya"
       
   287                 by (metis sep_disj_addI1 sep_disj_commuteI)
       
   288               moreover from `s = x + y` `y = xa + ya`
       
   289               have "s = (x + xa) + ya"
       
   290                 by (metis h(2) h(6) sep_add_assoc sep_disj_addD1 sep_disj_addD2) 
       
   291               ultimately show "(?P j'a \<and>* ?Q j'a) s"
       
   292                 by (auto intro!:sep_conjI)
       
   293             qed
       
   294           qed
       
   295         qed
       
   296       next
       
   297         fix s
       
   298         assume "(EXS j'. (EXS j'a. i :[ tpg1' ]: j'a \<and>* j'a :[ tpg_fold tpgs1' ]: j') \<and>*
       
   299                                     j' :[ tpg_fold tpgs2 ]: j) s"
       
   300         thus "(EXS j'. i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold (tpgs1' @ tpgs2) ]: j) s"
       
   301         proof(elim EXS_elim sep_conjE)
       
   302           fix j' x y j'a xa ya
       
   303           assume h: "(j' :[ tpg_fold tpgs2 ]: j) y"
       
   304                     "x ## y" "s = x + y" "(i :[ tpg1' ]: j'a) xa"
       
   305                     "(j'a :[ tpg_fold tpgs1' ]: j') ya" "xa ## ya" "x = xa + ya"
       
   306           show "(EXS j'. i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold (tpgs1' @ tpgs2) ]: j) s"
       
   307           proof(rule EXS_intro[where x = j'a])
       
   308             from `(i :[ tpg1' ]: j'a) xa` have "(i :[ tpg1' ]: j'a) xa" .
       
   309             moreover have "(j'a :[ tpg_fold (tpgs1' @ tpgs2) ]: j) (ya + y)"
       
   310             proof(unfold Cons(1)[OF False Cons(3)] tassemble_to.simps)
       
   311               show "(EXS j'. j'a :[ tpg_fold tpgs1' ]: j' \<and>* j' :[ tpg_fold tpgs2 ]: j) (ya + y)"
       
   312               proof(rule EXS_intro[where x = "j'"])
       
   313                 from `x ## y` `x = xa + ya` `xa ## ya`
       
   314                 have "ya ## y" by (metis sep_add_disjD)
       
   315                 moreover have "ya + y = ya + y" by simp
       
   316                 moreover note `(j'a :[ tpg_fold tpgs1' ]: j') ya` 
       
   317                                `(j' :[ tpg_fold tpgs2 ]: j) y`
       
   318                 ultimately show "(j'a :[ tpg_fold tpgs1' ]: j' \<and>* 
       
   319                                  j' :[ tpg_fold tpgs2 ]: j) (ya + y)"
       
   320                   by (auto intro!:sep_conjI)
       
   321               qed
       
   322             qed
       
   323             moreover from `s = x + y` `x = xa + ya`
       
   324             have "s = xa + (ya + y)"
       
   325               by (metis h(2) h(6) sep_add_assoc sep_add_disjD)
       
   326             moreover from `xa ## ya` `x ## y` `x = xa + ya`
       
   327             have "xa ## (ya + y)" by (metis sep_disj_addI3) 
       
   328             ultimately show "(i :[ tpg1' ]: j'a \<and>* j'a :[ tpg_fold (tpgs1' @ tpgs2) ]: j) s"
       
   329               by (auto intro!:sep_conjI)
       
   330           qed
       
   331         qed
       
   332       qed
       
   333       thus ?thesis 
       
   334         by (simp add:tassemble_to.simps, unfold tpg_fold_cons[OF False], 
       
   335              unfold tassemble_to.simps, simp)
       
   336     qed
       
   337     finally show ?thesis . 
       
   338   next
       
   339     case True
       
   340     thus ?thesis
       
   341       by (simp add:tpg_fold_cons[OF Cons(3)] tpg_fold_sg)
       
   342   qed 
       
   343 qed auto
       
   344  
       
   345 
       
   346 subsection {* Assertions and program logic for this assembly language *}
       
   347 
       
   348 definition "st l = sg (tpc_set l)"
       
   349 definition "ps p = sg (tpos_set p)" 
       
   350 definition "tm a v =sg ({TM a v})"
       
   351 definition "one i = tm i Oc"
       
   352 definition "zero i= tm i Bk"
       
   353 definition "any i = (EXS v. tm i v)"
       
   354 
       
   355 declare trset_of.simps[simp del]
       
   356 
       
   357 lemma stimes_sgD: "(sg x ** q) s \<Longrightarrow> q (s - x) \<and> x \<subseteq> s"
       
   358   apply(erule_tac sep_conjE)
       
   359   apply(unfold set_ins_def sg_def)
       
   360   by (metis Diff_Int2 Diff_Int_distrib2 Diff_Un Diff_cancel 
       
   361     Diff_empty Diff_idemp Diff_triv Int_Diff Un_Diff 
       
   362     Un_Diff_cancel inf_commute inf_idem sup_bot_right sup_commute sup_ge2)
       
   363 
       
   364 lemma stD: "(st i ** r) (trset_of (ft, prog, i', pos, mem))
       
   365        \<Longrightarrow> i' = i"
       
   366 proof -
       
   367   assume "(st i ** r) (trset_of (ft, prog, i', pos, mem))"
       
   368   from stimes_sgD [OF this[unfolded st_def], unfolded trset_of.simps]
       
   369   have "tpc_set i \<subseteq> tprog_set prog \<union> tpc_set i' \<union> tpos_set pos \<union>  
       
   370             tmem_set mem \<union> tfaults_set ft" by auto
       
   371   thus ?thesis
       
   372     by (unfold tpn_set_def, auto)
       
   373 qed
       
   374 
       
   375 lemma psD: "(ps p ** r) (trset_of (ft, prog, i', pos, mem))
       
   376        \<Longrightarrow> pos = p"
       
   377 proof -
       
   378   assume "(ps p ** r) (trset_of (ft, prog, i', pos, mem))"
       
   379   from stimes_sgD [OF this[unfolded ps_def], unfolded trset_of.simps]
       
   380   have "tpos_set p \<subseteq> tprog_set prog \<union> tpc_set i' \<union> 
       
   381                        tpos_set pos \<union> tmem_set mem \<union> tfaults_set ft"
       
   382     by simp
       
   383   thus ?thesis
       
   384     by (unfold tpn_set_def, auto)
       
   385 qed
       
   386 
       
   387 lemma codeD: "(st i ** sg {TC i inst} ** r) (trset_of (ft, prog, i', pos, mem))
       
   388        \<Longrightarrow> prog i = Some inst"
       
   389 proof -
       
   390   assume "(st i ** sg {TC i inst} ** r) (trset_of (ft, prog, i', pos, mem))"
       
   391   thus ?thesis
       
   392     apply(unfold sep_conj_def set_ins_def sg_def trset_of.simps tpn_set_def)
       
   393     by auto
       
   394 qed
       
   395 
       
   396 lemma memD: "((tm a v) ** r) (trset_of (ft, prog, i, pos, mem))  \<Longrightarrow> mem a = Some v"
       
   397 proof -
       
   398   assume "((tm a v) ** r) (trset_of (ft, prog, i, pos, mem))"
       
   399   from stimes_sgD[OF this[unfolded trset_of.simps tpn_set_def tm_def]]
       
   400   have "{TM a v} \<subseteq> {TC i inst |i inst. prog i = Some inst} \<union> {TAt i} \<union> 
       
   401     {TPos pos} \<union> {TM i n |i n. mem i = Some n} \<union> {TFaults ft}" by simp
       
   402   thus ?thesis by auto
       
   403 qed
       
   404 
       
   405 lemma t_hoare_seq: 
       
   406   "\<lbrakk>\<And> i j. \<lbrace>st i ** p\<rbrace> i:[c1]:j \<lbrace>st j ** q\<rbrace>; 
       
   407     \<And> j k. \<lbrace>st j ** q\<rbrace> j:[c2]:k \<lbrace>st k ** r\<rbrace>\<rbrakk> \<Longrightarrow>  \<lbrace>st i ** p\<rbrace> i:[(c1 ; c2)]:k \<lbrace>st k ** r\<rbrace>"
       
   408 proof -
       
   409   assume h: "\<And> i j. \<lbrace>st i ** p\<rbrace> i:[c1]:j \<lbrace>st j ** q\<rbrace>" 
       
   410             "\<And> j k. \<lbrace>st j ** q\<rbrace> j:[c2]:k \<lbrace>st k ** r\<rbrace>"
       
   411   show "\<lbrace>st i ** p\<rbrace> i:[(c1 ; c2)]:k \<lbrace>st k ** r\<rbrace>"
       
   412   proof(subst tassemble_to.simps, rule tm.code_exI)
       
   413     fix j'
       
   414     show "\<lbrace>st i \<and>* p\<rbrace>  i :[ c1 ]: j' \<and>* j' :[ c2 ]: k \<lbrace>st k \<and>* r\<rbrace>"
       
   415     proof(rule tm.composition)
       
   416       from h(1) show "\<lbrace>st i \<and>* p\<rbrace>  i :[ c1 ]: j' \<lbrace> st j' \<and>* q \<rbrace>" by auto
       
   417     next
       
   418       from h(2) show "\<lbrace>st j' \<and>* q\<rbrace>  j' :[ c2 ]: k \<lbrace>st k \<and>* r\<rbrace>" by auto
       
   419     qed
       
   420   qed
       
   421 qed
       
   422 
       
   423 lemma t_hoare_seq1:
       
   424    "\<lbrakk>\<And>j'. \<lbrace>st i ** p\<rbrace> i:[c1]:j' \<lbrace>st j' ** q\<rbrace>;
       
   425     \<And>j'. \<lbrace>st j' ** q\<rbrace> j':[c2]:k \<lbrace>st k' ** r\<rbrace>\<rbrakk> \<Longrightarrow>  
       
   426            \<lbrace>st i ** p\<rbrace> i:[(c1 ; c2)]:k \<lbrace>st k' ** r\<rbrace>"
       
   427 proof -
       
   428   assume h: "\<And>j'. \<lbrace>st i \<and>* p\<rbrace>  i :[ c1 ]: j' \<lbrace>st j' \<and>* q\<rbrace>" 
       
   429             "\<And>j'. \<lbrace>st j' \<and>* q\<rbrace>  j' :[ c2 ]: k \<lbrace>st k' \<and>* r\<rbrace>"
       
   430   show "\<lbrace>st i \<and>* p\<rbrace>  i :[ (c1 ; c2) ]: k \<lbrace>st k' \<and>* r\<rbrace>"
       
   431   proof(subst tassemble_to.simps, rule tm.code_exI)
       
   432     fix j'
       
   433     show "\<lbrace>st i \<and>* p\<rbrace>  i :[ c1 ]: j' \<and>* j' :[ c2 ]: k \<lbrace>st k' \<and>* r\<rbrace>"
       
   434     proof(rule tm.composition)
       
   435       from h(1) show "\<lbrace>st i \<and>* p\<rbrace>  i :[ c1 ]: j' \<lbrace> st j' \<and>* q \<rbrace>" by auto
       
   436     next
       
   437       from h(2) show " \<lbrace>st j' \<and>* q\<rbrace>  j' :[ c2 ]: k \<lbrace>st k' \<and>* r\<rbrace>" by auto
       
   438     qed
       
   439   qed
       
   440 qed
       
   441 
       
   442 lemma t_hoare_seq2:
       
   443  assumes h: "\<And>j. \<lbrace>st i ** p\<rbrace> i:[c1]:j \<lbrace>st k' \<and>* r\<rbrace>"
       
   444  shows "\<lbrace>st i ** p\<rbrace> i:[(c1 ; c2)]:j \<lbrace>st k' ** r\<rbrace>"
       
   445   apply (unfold tassemble_to.simps, rule tm.code_exI)
       
   446   by (rule tm.code_extension, rule h)
       
   447 
       
   448 lemma t_hoare_local: 
       
   449   assumes h: "(\<And>l. \<lbrace>st i \<and>* p\<rbrace>  i :[ c l ]: j \<lbrace>st k \<and>* q\<rbrace>)"
       
   450   shows "\<lbrace>st i ** p\<rbrace> i:[TLocal c]:j \<lbrace>st k ** q\<rbrace>" using h
       
   451   by (unfold tassemble_to.simps, intro tm.code_exI, simp)
       
   452 
       
   453 lemma t_hoare_label: 
       
   454       "(\<And>l. l = i \<Longrightarrow> \<lbrace>st l \<and>* p\<rbrace>  l :[ c l ]: j \<lbrace>st k \<and>* q\<rbrace>) \<Longrightarrow>
       
   455              \<lbrace>st i \<and>* p \<rbrace> 
       
   456                i:[(TLabel l; c l)]:j
       
   457              \<lbrace>st k \<and>* q\<rbrace>"
       
   458 by (unfold tassemble_to.simps, intro tm.code_exI tm.code_condI, clarify, auto)
       
   459 
       
   460 primrec t_split_cmd :: "tpg \<Rightarrow> (tpg \<times> tpg option)"
       
   461   where "t_split_cmd (\<guillemotright>inst) = (\<guillemotright>inst, None)" |
       
   462         "t_split_cmd (TLabel l) = (TLabel l, None)" |
       
   463         "t_split_cmd (TSeq c1 c2) = (case (t_split_cmd c2) of
       
   464                                       (c21, Some c22) \<Rightarrow> (TSeq c1 c21, Some c22) |
       
   465                                       (c21, None) \<Rightarrow> (c1, Some c21))" |
       
   466         "t_split_cmd (TLocal c) = (TLocal c, None)"
       
   467 
       
   468 definition "t_last_cmd tpg = (snd (t_split_cmd tpg))"
       
   469 
       
   470 declare t_last_cmd_def [simp]
       
   471 
       
   472 definition "t_blast_cmd tpg = (fst (t_split_cmd tpg))"
       
   473 
       
   474 declare t_blast_cmd_def [simp]
       
   475 
       
   476 lemma "t_last_cmd (c1; c2; (TLabel l)) = (Some (TLabel l))"
       
   477   by simp
       
   478 
       
   479 lemma "t_blast_cmd (c1; c2; TLabel l) = (c1; c2)"
       
   480   by simp
       
   481 
       
   482 lemma t_split_cmd_eq:
       
   483   assumes "t_split_cmd c = (c1, Some c2)"
       
   484   shows "(i:[c]:j) = (i:[(c1; c2)]:j)"
       
   485   using assms
       
   486 proof(induct c arbitrary: c1 c2 i j)
       
   487   case (TSeq cx cy)
       
   488   from `t_split_cmd (cx ; cy) = (c1, Some c2)`
       
   489   show ?case
       
   490     apply (simp split:prod.splits option.splits)
       
   491     apply (cases cy, auto split:prod.splits option.splits)
       
   492     proof -
       
   493       fix a
       
   494       assume h: "t_split_cmd cy = (a, Some c2)"
       
   495       show "i :[ (cx ; cy) ]: j = i :[ ((cx ; a) ; c2) ]: j"
       
   496         apply (simp only: tassemble_to.simps(2) TSeq(2)[OF h] sep_conj_exists)
       
   497         apply (simp add:sep_conj_ac)
       
   498         by (simp add:pred_ex_def, default, auto)
       
   499     qed
       
   500 qed auto
       
   501 
       
   502 lemma t_hoare_label_last_pre: 
       
   503   fixes l
       
   504   assumes h1: "t_split_cmd c = (c', Some (TLabel l))"
       
   505   and h2: "l = j \<Longrightarrow> \<lbrace>p\<rbrace> i:[c']:j \<lbrace>q\<rbrace>"
       
   506   shows "\<lbrace>p\<rbrace> i:[c]:j \<lbrace>q\<rbrace>"
       
   507 by (unfold t_split_cmd_eq[OF h1], 
       
   508     simp only:tassemble_to.simps sep_conj_cond, 
       
   509     intro tm.code_exI tm.code_condI, insert h2, auto)
       
   510 
       
   511 lemma t_hoare_label_last: 
       
   512   fixes l
       
   513   assumes h1: "t_last_cmd c = Some (TLabel l)"
       
   514   and h2: "l = j \<Longrightarrow> \<lbrace>p\<rbrace> i:[t_blast_cmd c]:j \<lbrace>q\<rbrace>"
       
   515   shows "\<lbrace>p\<rbrace> i:[c]:j \<lbrace>q\<rbrace>"
       
   516 proof -
       
   517     have "t_split_cmd c = (t_blast_cmd c, t_last_cmd c)"
       
   518       by simp
       
   519   from t_hoare_label_last_pre[OF this[unfolded h1]] h2
       
   520   show ?thesis by auto
       
   521 qed
       
   522 
       
   523 subsection {* Basic assertions for TM *}
       
   524 
       
   525 function ones :: "int \<Rightarrow> int \<Rightarrow> tassert" where
       
   526   "ones i j = (if j < i then <(i = j + 1)> else
       
   527                 (one i) ** ones (i + 1) j)"
       
   528 by auto
       
   529 termination by (relation "measure(\<lambda> (i::int, j). nat (j - i + 1))") auto
       
   530 
       
   531 lemma ones_base_simp: "j < i \<Longrightarrow> ones i j = <(i = j + 1)>"
       
   532   by simp
       
   533 
       
   534 lemma ones_step_simp: "\<not> j < i \<Longrightarrow> ones i j =  ((one i) ** ones (i + 1) j)"
       
   535   by simp
       
   536 
       
   537 lemmas ones_simps = ones_base_simp ones_step_simp
       
   538 
       
   539 declare ones.simps [simp del] ones_simps [simp]
       
   540 
       
   541 lemma ones_induct [case_names Base Step]:
       
   542   fixes P i j
       
   543   assumes h1: "\<And> i j. j < i \<Longrightarrow> P i j (<(i = j + (1::int))>)"
       
   544   and h2: "\<And> i j. \<lbrakk>\<not> j < i; P (i + 1) j (ones (i + 1) j)\<rbrakk> \<Longrightarrow> P i j ((one i) ** ones (i + 1) j)"
       
   545   shows "P i j (ones i j)"
       
   546 proof(induct i j rule:ones.induct)
       
   547   fix i j 
       
   548   assume ih: "(\<not> j < i \<Longrightarrow> P (i + 1) j (ones (i + 1) j))"
       
   549   show "P i j (ones i j)"
       
   550   proof(cases "j < i")
       
   551     case True
       
   552     with h1 [OF True]
       
   553     show ?thesis by auto
       
   554   next
       
   555     case False
       
   556     from h2 [OF False] and ih[OF False]
       
   557     have "P i j (one i \<and>* ones (i + 1) j)" by blast
       
   558     with False show ?thesis by auto
       
   559   qed
       
   560 qed
       
   561 
       
   562 function ones' ::  "int \<Rightarrow> int \<Rightarrow> tassert" where
       
   563   "ones' i j = (if j < i then <(i = j + 1)> else
       
   564                 ones' i (j - 1) ** one j)"
       
   565 by auto
       
   566 termination by (relation "measure(\<lambda> (i::int, j). nat (j - i + 1))") auto
       
   567 
       
   568 lemma ones_rev: "\<not> j < i \<Longrightarrow> (ones i j) = ((ones i (j - 1)) ** one j)"
       
   569 proof(induct i j rule:ones_induct)
       
   570   case Base
       
   571   thus ?case by auto
       
   572 next
       
   573   case (Step i j)
       
   574   show ?case
       
   575   proof(cases "j < i + 1")
       
   576     case True
       
   577     with Step show ?thesis
       
   578       by simp
       
   579   next
       
   580     case False
       
   581     with Step show ?thesis 
       
   582       by (auto simp:sep_conj_ac)
       
   583   qed
       
   584 qed
       
   585 
       
   586 lemma ones_rev_induct [case_names Base Step]:
       
   587   fixes P i j
       
   588   assumes h1: "\<And> i j. j < i \<Longrightarrow> P i j (<(i = j + (1::int))>)"
       
   589   and h2: "\<And> i j. \<lbrakk>\<not> j < i; P i (j - 1) (ones i (j - 1))\<rbrakk> \<Longrightarrow> P i j ((ones i (j - 1)) ** one j)"
       
   590   shows "P i j (ones i j)"
       
   591 proof(induct i j rule:ones'.induct)
       
   592   fix i j 
       
   593   assume ih: "(\<not> j < i \<Longrightarrow> P i (j - 1) (ones i (j - 1)))"
       
   594   show "P i j (ones i j)"
       
   595   proof(cases "j < i")
       
   596     case True
       
   597     with h1 [OF True]
       
   598     show ?thesis by auto
       
   599   next
       
   600     case False
       
   601     from h2 [OF False] and ih[OF False]
       
   602     have "P i j (ones i (j - 1) \<and>* one j)" by blast
       
   603     with ones_rev and False
       
   604     show ?thesis
       
   605       by simp
       
   606   qed
       
   607 qed
       
   608 
       
   609 function zeros :: "int \<Rightarrow> int \<Rightarrow> tassert" where
       
   610   "zeros i j = (if j < i then <(i = j + 1)> else
       
   611                 (zero i) ** zeros (i + 1) j)"
       
   612 by auto
       
   613 termination by (relation "measure(\<lambda> (i::int, j). nat (j - i + 1))") auto
       
   614 
       
   615 lemma zeros_base_simp: "j < i \<Longrightarrow> zeros i j = <(i = j + 1)>"
       
   616   by simp
       
   617 
       
   618 lemma zeros_step_simp: "\<not> j < i \<Longrightarrow> zeros i j = ((zero i) ** zeros (i + 1) j)"
       
   619   by simp
       
   620 
       
   621 declare zeros.simps [simp del]
       
   622 lemmas zeros_simps [simp] = zeros_base_simp zeros_step_simp
       
   623 
       
   624 lemma zeros_induct [case_names Base Step]:
       
   625   fixes P i j
       
   626   assumes h1: "\<And> i j. j < i \<Longrightarrow> P i j (<(i = j + (1::int))>)"
       
   627   and h2: "\<And> i j. \<lbrakk>\<not> j < i; P (i + 1) j (zeros (i + 1) j)\<rbrakk> \<Longrightarrow> 
       
   628                                    P i j ((zero i) ** zeros (i + 1) j)"
       
   629   shows "P i j (zeros i j)"
       
   630 proof(induct i j rule:zeros.induct)
       
   631   fix i j 
       
   632   assume ih: "(\<not> j < i \<Longrightarrow> P (i + 1) j (zeros (i + 1) j))"
       
   633   show "P i j (zeros i j)"
       
   634   proof(cases "j < i")
       
   635     case True
       
   636     with h1 [OF True]
       
   637     show ?thesis by auto
       
   638   next
       
   639     case False
       
   640     from h2 [OF False] and ih[OF False]
       
   641     have "P i j (zero i \<and>* zeros (i + 1) j)" by blast
       
   642     with False show ?thesis by auto
       
   643   qed
       
   644 qed
       
   645 
       
   646 lemma zeros_rev: "\<not> j < i \<Longrightarrow> (zeros i j) = ((zeros i (j - 1)) ** zero j)"
       
   647 proof(induct i j rule:zeros_induct)
       
   648   case (Base i j)
       
   649   thus ?case by auto
       
   650 next
       
   651   case (Step i j)
       
   652   show ?case
       
   653   proof(cases "j < i + 1")
       
   654     case True
       
   655     with Step show ?thesis by auto
       
   656   next
       
   657     case False
       
   658     with Step show ?thesis by (auto simp:sep_conj_ac)
       
   659   qed
       
   660 qed
       
   661 
       
   662 lemma zeros_rev_induct [case_names Base Step]:
       
   663   fixes P i j
       
   664   assumes h1: "\<And> i j. j < i \<Longrightarrow> P i j (<(i = j + (1::int))>)"
       
   665   and h2: "\<And> i j. \<lbrakk>\<not> j < i; P i (j - 1) (zeros i (j - 1))\<rbrakk> \<Longrightarrow> 
       
   666                        P i j ((zeros i (j - 1)) ** zero j)"
       
   667   shows "P i j (zeros i j)"
       
   668 proof(induct i j rule:ones'.induct)
       
   669   fix i j 
       
   670   assume ih: "(\<not> j < i \<Longrightarrow> P i (j - 1) (zeros i (j - 1)))"
       
   671   show "P i j (zeros i j)"
       
   672   proof(cases "j < i")
       
   673     case True
       
   674     with h1 [OF True]
       
   675     show ?thesis by auto
       
   676   next
       
   677     case False
       
   678     from h2 [OF False] and ih[OF False]
       
   679     have "P i j (zeros i (j - 1) \<and>* zero j)" by blast
       
   680     with zeros_rev and False
       
   681     show ?thesis by simp
       
   682   qed
       
   683 qed
       
   684 
       
   685 definition "rep i j k = ((ones i (i + (int k))) ** <(j = i + int k)>)"
       
   686 
       
   687 fun reps :: "int \<Rightarrow> int \<Rightarrow> nat list\<Rightarrow> tassert"
       
   688   where
       
   689   "reps i j [] = <(i = j + 1)>" |
       
   690   "reps i j [k] = (ones i (i + int k) ** <(j = i + int k)>)" |
       
   691   "reps i j (k # ks) = (ones i (i + int k) ** zero (i + int k + 1) ** reps (i + int k + 2) j ks)"
       
   692 
       
   693 lemma reps_simp3: "ks \<noteq> [] \<Longrightarrow> 
       
   694   reps i j (k # ks) = (ones i (i + int k) ** zero (i + int k + 1) ** reps (i + int k + 2) j ks)"
       
   695   by (cases ks, auto)
       
   696 
       
   697 definition "reps_sep_len ks = (if length ks \<le> 1 then 0 else (length ks) - 1)"
       
   698 
       
   699 definition "reps_ctnt_len ks = (\<Sum> k \<leftarrow> ks. (1 + k))"
       
   700 
       
   701 definition "reps_len ks = (reps_sep_len ks) + (reps_ctnt_len ks)"
       
   702 
       
   703 definition "splited xs ys zs = ((xs = ys @ zs) \<and> (ys \<noteq> []) \<and> (zs \<noteq> []))"
       
   704 
       
   705 lemma list_split: 
       
   706   assumes h: "k # ks = ys @ zs"
       
   707       and h1: "ys \<noteq> []"
       
   708   shows "(ys = [k] \<and> zs = ks) \<or> (\<exists> ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> ks = ys' @ zs)"
       
   709 proof(cases ys)
       
   710   case Nil
       
   711   with h1 show ?thesis by auto
       
   712 next
       
   713   case (Cons y' ys')
       
   714   with h have "k#ks = y'#(ys' @ zs)" by simp
       
   715   hence hh: "y' = k" "ks = ys' @ zs" by auto
       
   716   show ?thesis
       
   717   proof(cases "ys' = []")
       
   718     case False
       
   719     show ?thesis
       
   720     proof(rule disjI2)
       
   721       show " \<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> ks = ys' @ zs"
       
   722       proof(rule exI[where x = ys'])
       
   723         from False hh Cons show "ys' \<noteq> [] \<and> ys = k # ys' \<and> ks = ys' @ zs" by auto
       
   724       qed
       
   725     qed
       
   726   next
       
   727     case True
       
   728     show ?thesis
       
   729     proof(rule disjI1)
       
   730       from hh True Cons
       
   731       show "ys = [k] \<and> zs = ks" by auto
       
   732     qed
       
   733   qed
       
   734 qed
       
   735 
       
   736 lemma splited_cons[elim_format]: 
       
   737   assumes h: "splited (k # ks) ys zs"
       
   738   shows "(ys = [k] \<and> zs = ks) \<or> (\<exists> ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> splited ks ys' zs)"
       
   739 proof -
       
   740   from h have "k # ks = ys @ zs" "ys \<noteq> [] " unfolding splited_def by auto
       
   741   from list_split[OF this]
       
   742   have "ys = [k] \<and> zs = ks \<or> (\<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> ks = ys' @ zs)" .
       
   743   thus ?thesis
       
   744   proof
       
   745     assume " ys = [k] \<and> zs = ks" thus ?thesis by auto
       
   746   next
       
   747     assume "\<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> ks = ys' @ zs"
       
   748     then obtain ys' where hh: "ys' \<noteq> []" "ys = k # ys'" "ks = ys' @ zs" by auto
       
   749     show ?thesis
       
   750     proof(rule disjI2)
       
   751       show "\<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> splited ks ys' zs"
       
   752       proof(rule exI[where x = ys'])
       
   753         from h have "zs \<noteq> []" by (unfold splited_def, simp)
       
   754         with hh(1) hh(3)
       
   755         have "splited ks ys' zs"
       
   756           by (unfold splited_def, auto)
       
   757         with hh(1) hh(2) show "ys' \<noteq> [] \<and> ys = k # ys' \<and> splited ks ys' zs" by auto
       
   758       qed
       
   759     qed
       
   760   qed
       
   761 qed
       
   762 
       
   763 lemma splited_cons_elim:
       
   764   assumes h: "splited (k # ks) ys zs"
       
   765   and h1: "\<lbrakk>ys = [k]; zs = ks\<rbrakk> \<Longrightarrow> P"
       
   766   and h2: "\<And> ys'. \<lbrakk>ys' \<noteq> []; ys = k#ys'; splited ks ys' zs\<rbrakk> \<Longrightarrow> P"
       
   767   shows P
       
   768 proof(rule splited_cons[OF h])
       
   769   assume "ys = [k] \<and> zs = ks \<or> (\<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> splited ks ys' zs)"
       
   770   thus P
       
   771   proof
       
   772     assume hh: "ys = [k] \<and> zs = ks"
       
   773     show P
       
   774     proof(rule h1)
       
   775       from hh show "ys = [k]" by simp
       
   776     next
       
   777       from hh show "zs = ks" by simp
       
   778     qed
       
   779   next
       
   780     assume "\<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> splited ks ys' zs"
       
   781     then obtain ys' where hh: "ys' \<noteq> []" "ys = k # ys'"  "splited ks ys' zs" by auto
       
   782     from h2[OF this]
       
   783     show P .
       
   784   qed
       
   785 qed
       
   786 
       
   787 lemma list_nth_expand:
       
   788   "i < length xs \<Longrightarrow> xs = take i xs @ [xs!i] @ drop (Suc i) xs"
       
   789   by (metis Cons_eq_appendI append_take_drop_id drop_Suc_conv_tl eq_Nil_appendI)
       
   790 
       
   791 lemma reps_len_nil: "reps_len [] = 0"
       
   792    by (auto simp:reps_len_def reps_sep_len_def reps_ctnt_len_def)
       
   793 
       
   794 lemma reps_len_sg: "reps_len [k] = 1 + k"
       
   795   by (auto simp:reps_len_def reps_sep_len_def reps_ctnt_len_def)
       
   796 
       
   797 lemma reps_len_cons: "ks \<noteq> [] \<Longrightarrow> (reps_len (k # ks)) = 2 + k + reps_len ks "
       
   798 proof(induct ks arbitrary:k)
       
   799   case (Cons n ns)
       
   800   thus ?case
       
   801     by(cases "ns = []", 
       
   802       auto simp:reps_len_def reps_sep_len_def reps_ctnt_len_def)
       
   803 qed auto
       
   804 
       
   805 lemma reps_len_correct:
       
   806   assumes h: "(reps i j ks) s"
       
   807   shows "j = i + int (reps_len ks) - 1"
       
   808   using h
       
   809 proof(induct ks arbitrary:i j s)
       
   810   case Nil
       
   811   thus ?case
       
   812     by (auto simp:reps_len_nil pasrt_def)
       
   813 next
       
   814   case (Cons n ns)
       
   815   thus ?case
       
   816   proof(cases "ns = []")
       
   817     case False
       
   818     from Cons(2)[unfolded reps_simp3[OF False]]
       
   819     obtain s' where "(reps (i + int n + 2) j ns) s'"
       
   820       by (auto elim!:sep_conjE)
       
   821     from Cons.hyps[OF this]
       
   822     show ?thesis
       
   823       by (unfold reps_len_cons[OF False], simp)
       
   824   next
       
   825     case True
       
   826     with Cons(2)
       
   827     show ?thesis
       
   828       by (auto simp:reps_len_sg pasrt_def)
       
   829   qed
       
   830 qed
       
   831 
       
   832 lemma reps_len_expand: 
       
   833   shows "(EXS j. (reps i j ks)) = (reps i (i + int (reps_len ks) - 1) ks)"
       
   834 proof(default+)
       
   835   fix s
       
   836   assume "(EXS j. reps i j ks) s"
       
   837   with reps_len_correct show "reps i (i + int (reps_len ks) - 1) ks s"
       
   838     by (auto simp:pred_ex_def)
       
   839 next
       
   840   fix s
       
   841   assume "reps i (i + int (reps_len ks) - 1) ks s"
       
   842   thus "(EXS j. reps i j ks) s"  by (auto simp:pred_ex_def)
       
   843 qed
       
   844 
       
   845 lemma reps_len_expand1: "(EXS j. (reps i j ks \<and>* r)) = (reps i (i + int (reps_len ks) - 1) ks \<and>* r)"
       
   846 by (metis reps_len_def reps_len_expand sep.mult_commute sep_conj_exists1)
       
   847 
       
   848 lemma reps_splited:
       
   849   assumes h: "splited xs ys zs"
       
   850   shows "reps i j xs = (reps i (i + int (reps_len ys) - 1) ys \<and>* 
       
   851                         zero (i + int (reps_len ys)) \<and>* 
       
   852                         reps (i + int (reps_len ys) + 1) j zs)"
       
   853   using h
       
   854 proof(induct xs arbitrary: i j ys zs)
       
   855   case Nil
       
   856   thus ?case
       
   857     by (unfold splited_def, auto)
       
   858 next
       
   859   case (Cons k ks)
       
   860   from Cons(2)
       
   861   show ?case
       
   862   proof(rule splited_cons_elim)
       
   863     assume h: "ys = [k]" "zs = ks"
       
   864     with Cons(2)
       
   865     show ?thesis
       
   866     proof(cases "ks = []")
       
   867       case True
       
   868       with Cons(2) have False
       
   869         by (simp add:splited_def, cases ys, auto)
       
   870       thus ?thesis by auto
       
   871     next
       
   872       case False
       
   873       have ss: "i + int k + 1 = i + (1 + int k)"
       
   874            "i + int k + 2 = 2 + (i + int k)" by auto
       
   875       show ?thesis
       
   876         by (unfold h(1), unfold reps_simp3[OF False] reps.simps(2) 
       
   877             reps_len_sg, auto simp:sep_conj_ac,
       
   878             unfold ss h(2), simp)
       
   879     qed
       
   880   next
       
   881     fix ys'
       
   882     assume h: "ys' \<noteq> []" "ys = k # ys'" "splited ks ys' zs"
       
   883     hence nnks: "ks \<noteq> []"
       
   884       by (unfold splited_def, auto)
       
   885     have ss: "i + int k + 2 + int (reps_len ys') = 
       
   886               i + (2 + (int k + int (reps_len ys')))" by auto
       
   887     show ?thesis
       
   888       by (simp add: reps_simp3[OF nnks] reps_simp3[OF h(1)] 
       
   889                     Cons(1)[OF h(3)] h(2) 
       
   890                     reps_len_cons[OF h(1)]
       
   891                     sep_conj_ac, subst ss, simp)
       
   892   qed
       
   893 qed
       
   894 
       
   895 subsection {* A theory of list extension *}
       
   896 
       
   897 definition "list_ext n xs = xs @ replicate ((Suc n) - length xs) 0"
       
   898 
       
   899 lemma list_ext_len_eq: "length (list_ext a xs) = length xs + (Suc a - length xs)"
       
   900   by (metis length_append length_replicate list_ext_def)
       
   901 
       
   902 lemma list_ext_len: "a < length (list_ext a xs)"
       
   903   by (unfold list_ext_len_eq, auto)
       
   904 
       
   905 lemma list_ext_lt: "a < length xs \<Longrightarrow> list_ext a xs = xs"
       
   906   by (smt append_Nil2 list_ext_def replicate_0)
       
   907 
       
   908 lemma list_ext_lt_get: 
       
   909   assumes h: "a' < length xs"
       
   910   shows "(list_ext a xs)!a' = xs!a'"
       
   911 proof(cases "a < length xs")
       
   912   case True
       
   913   with h
       
   914   show ?thesis by (auto simp:list_ext_lt)
       
   915 next
       
   916   case False
       
   917   with h show ?thesis
       
   918     apply (unfold list_ext_def)
       
   919     by (metis nth_append)
       
   920 qed
       
   921 
       
   922 lemma list_ext_get_upd: "((list_ext a xs)[a:=v])!a = v"
       
   923   by (metis list_ext_len nth_list_update_eq)
       
   924 
       
   925 lemma nth_app: "length xs \<le> a \<Longrightarrow> (xs @ ys)!a = ys!(a - length xs)"
       
   926   by (metis not_less nth_append)
       
   927 
       
   928 lemma pred_exI: 
       
   929   assumes "(P(x) \<and>* r) s"
       
   930   shows "((EXS x. P(x)) \<and>* r) s"
       
   931   by (metis assms pred_ex_def sep_globalise)
       
   932 
       
   933 lemma list_ext_tail:
       
   934   assumes h1: "length xs \<le> a"
       
   935   and h2: "length xs \<le> a'"
       
   936   and h3: "a' \<le> a"
       
   937   shows "(list_ext a xs)!a' = 0"
       
   938 proof -
       
   939   from h1 h2
       
   940   have "a' - length xs < length (replicate (Suc a - length xs) 0)"
       
   941     by (metis diff_less_mono h3 le_imp_less_Suc length_replicate)
       
   942   moreover from h1 have "replicate (Suc a - length xs) 0 \<noteq> []"
       
   943     by (smt empty_replicate)
       
   944   ultimately have "(replicate (Suc a - length xs) 0)!(a' - length xs) = 0"
       
   945     by (metis length_replicate nth_replicate)
       
   946   moreover have "(xs @ (replicate (Suc a - length xs) 0))!a' = 
       
   947             (replicate (Suc a - length xs) 0)!(a' - length xs)"
       
   948     by (rule nth_app[OF h2])
       
   949   ultimately show ?thesis
       
   950     by (auto simp:list_ext_def)
       
   951 qed
       
   952 
       
   953 lemmas list_ext_simps = list_ext_lt_get list_ext_lt list_ext_len list_ext_len_eq
       
   954 
       
   955 lemma listsum_upd_suc:
       
   956   "a < length ks \<Longrightarrow> listsum (map Suc (ks[a := Suc (ks ! a)]))= (Suc (listsum (map Suc ks)))"
       
   957 by (smt Ex_list_of_length Skolem_list_nth elem_le_listsum_nat 
       
   958      length_induct length_list_update length_map length_splice 
       
   959      list_eq_iff_nth_eq list_ext_get_upd list_ext_lt_get list_update_beyond 
       
   960      list_update_id list_update_overwrite list_update_same_conv list_update_swap 
       
   961      listsum_update_nat map_eq_imp_length_eq map_update neq_if_length_neq 
       
   962      nth_equalityI nth_list_update nth_list_update_eq nth_list_update_neq nth_map reps_sep_len_def)
       
   963 
       
   964 lemma reps_len_suc:
       
   965   assumes "a < length ks"
       
   966   shows "reps_len (ks[a:=Suc(ks!a)]) = 1 + reps_len ks"
       
   967 proof(cases "length ks \<le> 1")
       
   968   case True
       
   969   with `a < length ks` 
       
   970   obtain k where "ks = [k]" "a = 0"
       
   971     by (smt length_0_conv length_Suc_conv)
       
   972   thus ?thesis
       
   973       apply (unfold `ks = [k]` `a = 0`)
       
   974       by (unfold reps_len_def reps_sep_len_def reps_ctnt_len_def, auto)
       
   975 next
       
   976   case False
       
   977   have "Suc = (op + (Suc 0))"
       
   978     by (default, auto)
       
   979   with listsum_upd_suc[OF `a < length ks`] False
       
   980   show ?thesis
       
   981      by (unfold reps_len_def reps_sep_len_def reps_ctnt_len_def, simp)
       
   982 qed
       
   983   
       
   984 lemma ks_suc_len:
       
   985   assumes h1: "(reps i j ks) s"
       
   986   and h2: "ks!a = v"
       
   987   and h3: "a < length ks"
       
   988   and h4: "(reps i j' (ks[a:=Suc v])) s'"
       
   989   shows "j' = j + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1"
       
   990 proof -
       
   991   from reps_len_correct[OF h1, unfolded list_ext_len_eq]
       
   992        reps_len_correct[OF h4, unfolded list_ext_len_eq] 
       
   993        reps_len_suc[OF `a < length ks`] h2 h3
       
   994   show ?thesis
       
   995     by (unfold list_ext_lt[OF `a < length ks`], auto)
       
   996 qed
       
   997 
       
   998 lemma ks_ext_len:
       
   999   assumes h1: "(reps i j ks) s"
       
  1000   and h3: "length ks \<le> a"
       
  1001   and h4: "reps i j' (list_ext a ks) s'"
       
  1002   shows "j' = j + int (reps_len (list_ext a ks)) - int (reps_len ks)"
       
  1003 proof -
       
  1004   from reps_len_correct[OF h1, unfolded  list_ext_len_eq]
       
  1005     and reps_len_correct[OF h4, unfolded list_ext_len_eq]
       
  1006   h3
       
  1007   show ?thesis by auto
       
  1008 qed
       
  1009 
       
  1010 definition 
       
  1011   "reps' i j ks = 
       
  1012      (if ks = [] then (<(i = j + 1)>)  else (reps i (j - 1) ks \<and>* zero j))"
       
  1013 
       
  1014 lemma reps'_expand: 
       
  1015   assumes h: "ks \<noteq> []"
       
  1016   shows "(EXS j. reps' i j ks) = reps' i (i + int (reps_len ks)) ks"
       
  1017 proof -
       
  1018   show ?thesis
       
  1019   proof(default+)
       
  1020     fix s
       
  1021     assume "(EXS j. reps' i j ks) s"
       
  1022     with h have "(EXS j. reps i (j - 1) ks \<and>* zero j) s" 
       
  1023       by (simp add:reps'_def)
       
  1024     hence "(reps i (i + int (reps_len ks) - 1) ks \<and>* zero (i + int (reps_len ks))) s"
       
  1025     proof(elim EXS_elim)
       
  1026       fix j
       
  1027       assume "(reps i (j - 1) ks \<and>* zero j) s"
       
  1028       then obtain s1 s2 where "s = s1 + s2" "s1 ## s2" "reps i (j - 1) ks s1" "zero j s2"
       
  1029         by (auto elim!:sep_conjE)
       
  1030       from reps_len_correct[OF this(3)]
       
  1031       have "j = i + int (reps_len ks)" by auto
       
  1032       with `reps i (j - 1) ks s1` have "reps i (i + int (reps_len ks) - 1) ks s1"
       
  1033         by simp
       
  1034       moreover from `j = i + int (reps_len ks)` and `zero j s2`
       
  1035       have "zero (i + int (reps_len ks)) s2" by auto
       
  1036       ultimately show "(reps i (i + int (reps_len ks) - 1) ks \<and>* zero (i + int (reps_len ks))) s"
       
  1037         using `s = s1 + s2` `s1 ## s2` by (auto intro!:sep_conjI)
       
  1038     qed
       
  1039     thus "reps' i (i + int (reps_len ks)) ks s"
       
  1040       by (simp add:h reps'_def)
       
  1041   next
       
  1042     fix s 
       
  1043     assume "reps' i (i + int (reps_len ks)) ks s"
       
  1044     thus "(EXS j. reps' i j ks) s"
       
  1045       by (auto intro!:EXS_intro)
       
  1046   qed
       
  1047 qed
       
  1048 
       
  1049 lemma reps'_len_correct: 
       
  1050   assumes h: "(reps' i j ks) s"
       
  1051   and h1: "ks \<noteq> []"
       
  1052   shows "(j = i + int (reps_len ks))"
       
  1053 proof -
       
  1054   from h1 have "reps' i j ks s = (reps i (j - 1) ks \<and>* zero j) s" by (simp add:reps'_def)
       
  1055   from h[unfolded this]
       
  1056   obtain s' where "reps i (j - 1) ks s'"
       
  1057     by (auto elim!:sep_conjE)
       
  1058   from reps_len_correct[OF this]
       
  1059   show ?thesis by simp
       
  1060 qed
       
  1061 
       
  1062 lemma reps'_append:
       
  1063   "reps' i j (ks1 @ ks2) = (EXS m. (reps' i (m - 1) ks1 \<and>* reps' m j ks2))"
       
  1064 proof(cases "ks1 = []")
       
  1065   case True
       
  1066   thus ?thesis
       
  1067     by (auto simp:reps'_def pred_ex_def pasrt_def set_ins_def sep_conj_def)
       
  1068 next
       
  1069   case False
       
  1070   show ?thesis
       
  1071   proof(cases "ks2 = []")
       
  1072     case False
       
  1073     from `ks1 \<noteq> []` and `ks2 \<noteq> []` 
       
  1074     have "splited (ks1 @ ks2) ks1 ks2" by (auto simp:splited_def)
       
  1075     from reps_splited[OF this, of i "j - 1"]
       
  1076     have eq_1: "reps i (j - 1) (ks1 @ ks2) =
       
  1077            (reps i (i + int (reps_len ks1) - 1) ks1 \<and>*
       
  1078            zero (i + int (reps_len ks1)) \<and>* 
       
  1079            reps (i + int (reps_len ks1) + 1) (j - 1) ks2)" .
       
  1080     from `ks1 \<noteq> []`
       
  1081     have eq_2: "reps' i j (ks1 @ ks2) = (reps i (j - 1) (ks1 @ ks2) \<and>* zero j)"
       
  1082       by (unfold reps'_def, simp)
       
  1083     show ?thesis
       
  1084     proof(default+)
       
  1085       fix s
       
  1086       assume "reps' i j (ks1 @ ks2) s"
       
  1087       show "(EXS m. reps' i (m - 1) ks1 \<and>* reps' m j ks2) s"
       
  1088       proof(rule EXS_intro[where x = "i + int(reps_len ks1) + 1"])
       
  1089         from `reps' i j (ks1 @ ks2) s`[unfolded eq_2 eq_1]
       
  1090         and `ks1 \<noteq> []` `ks2 \<noteq> []`
       
  1091         show "(reps' i (i + int (reps_len ks1) + 1 - 1) ks1 \<and>* 
       
  1092                          reps' (i + int (reps_len ks1) + 1) j ks2) s"
       
  1093           by (unfold reps'_def, simp, sep_cancel+)
       
  1094       qed
       
  1095     next
       
  1096       fix s
       
  1097       assume "(EXS m. reps' i (m - 1) ks1 \<and>* reps' m j ks2) s"
       
  1098       thus "reps' i j (ks1 @ ks2) s"
       
  1099       proof(elim EXS_elim)
       
  1100         fix m
       
  1101         assume "(reps' i (m - 1) ks1 \<and>* reps' m j ks2) s"
       
  1102         then obtain s1 s2 where h: 
       
  1103           "s = s1 + s2" "s1 ## s2" "reps' i (m - 1) ks1 s1"
       
  1104           " reps' m j ks2 s2" by (auto elim!:sep_conjE)
       
  1105         from reps'_len_correct[OF this(3) `ks1 \<noteq> []`]
       
  1106         have eq_m: "m = i + int (reps_len ks1) + 1" by simp
       
  1107         have "((reps i (i + int (reps_len ks1) - 1) ks1 \<and>* zero (i + int (reps_len ks1))) \<and>* 
       
  1108                ((reps (i + int (reps_len ks1) + 1) (j - 1) ks2) \<and>* zero j)) s"
       
  1109           (is "(?P \<and>* ?Q) s") 
       
  1110         proof(rule sep_conjI)
       
  1111           from h(3) eq_m `ks1 \<noteq> []` show "?P s1"
       
  1112             by (simp add:reps'_def)
       
  1113         next
       
  1114           from h(4) eq_m `ks2 \<noteq> []` show "?Q s2"
       
  1115             by (simp add:reps'_def)
       
  1116         next
       
  1117           from h(2) show "s1 ## s2" .
       
  1118         next
       
  1119           from h(1) show "s = s1 + s2" .
       
  1120         qed
       
  1121         thus "reps' i j (ks1 @ ks2) s"
       
  1122           by (unfold eq_2 eq_1, auto simp:sep_conj_ac)
       
  1123       qed
       
  1124     qed
       
  1125   next
       
  1126     case True
       
  1127     have "-1 + j = j - 1" by auto
       
  1128     with `ks1 \<noteq> []` True
       
  1129     show ?thesis
       
  1130       apply (auto simp:reps'_def pred_ex_def pasrt_def)
       
  1131       apply (unfold `-1 + j = j - 1`)
       
  1132       by (fold sep_empty_def, simp only:sep_conj_empty)
       
  1133   qed
       
  1134 qed
       
  1135 
       
  1136 lemma reps'_sg: 
       
  1137   "reps' i j [k] = 
       
  1138        (<(j = i + int k + 1)> \<and>* ones i (i + int k) \<and>* zero j)"
       
  1139   apply (unfold reps'_def, default, auto simp:sep_conj_ac)
       
  1140   by (sep_cancel+, simp add:pasrt_def)+
       
  1141 
       
  1142 
       
  1143 section {* Basic macros for TM *}
       
  1144 
       
  1145 definition "write_zero = (TL exit. \<guillemotright>((W0, exit), (W0, exit)); TLabel exit)"
       
  1146 
       
  1147 lemma st_upd: 
       
  1148   assumes pre: "(st i' ** r) (trset_of (f, x, i, y, z))"
       
  1149   shows "(st i'' ** r) (trset_of (f, x,  i'', y, z))"
       
  1150 proof -
       
  1151   from stimes_sgD[OF pre[unfolded st_def], unfolded trset_of.simps, unfolded stD[OF pre]]
       
  1152   have "r (tprog_set x \<union> tpc_set i' \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f - tpc_set i')"
       
  1153     by blast
       
  1154   moreover have 
       
  1155     "(tprog_set x \<union> tpc_set i' \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f - tpc_set i') =
       
  1156      (tprog_set x \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f)"
       
  1157     by (unfold tpn_set_def, auto)
       
  1158   ultimately have r_rest: "r (tprog_set x \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f)"
       
  1159     by auto
       
  1160   show ?thesis
       
  1161   proof(rule sep_conjI[where Q = r, OF _ r_rest])
       
  1162     show "st i'' (tpc_set i'')" 
       
  1163       by (unfold st_def sg_def, simp)
       
  1164   next
       
  1165     show "tpc_set i'' ## tprog_set x \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f"
       
  1166       by (unfold tpn_set_def sep_disj_set_def, auto)
       
  1167   next
       
  1168     show "trset_of (f, x, i'', y, z) =
       
  1169              tpc_set i'' + (tprog_set x \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f)"
       
  1170       by (unfold trset_of.simps plus_set_def, auto)
       
  1171   qed
       
  1172 qed
       
  1173 
       
  1174 lemma pos_upd: 
       
  1175   assumes pre: "(ps i ** r) (trset_of (f, x, y, i', z))"
       
  1176   shows "(ps j ** r) (trset_of (f, x, y, j, z))"
       
  1177 proof -
       
  1178   from stimes_sgD[OF pre[unfolded ps_def], unfolded trset_of.simps, unfolded psD[OF pre]]
       
  1179   have "r (tprog_set x \<union> tpc_set y \<union> tpos_set i \<union> tmem_set z \<union> 
       
  1180               tfaults_set f - tpos_set i)" (is "r ?xs")
       
  1181     by blast
       
  1182   moreover have 
       
  1183     "?xs = tprog_set x \<union> tpc_set y  \<union> tmem_set z \<union> tfaults_set f"
       
  1184     by (unfold tpn_set_def, auto)
       
  1185   ultimately have r_rest: "r \<dots>"
       
  1186     by auto
       
  1187   show ?thesis
       
  1188   proof(rule sep_conjI[where Q = r, OF _ r_rest])
       
  1189     show "ps j (tpos_set j)" 
       
  1190       by (unfold ps_def sg_def, simp)
       
  1191   next
       
  1192     show "tpos_set j ## tprog_set x \<union> tpc_set y \<union> tmem_set z \<union> tfaults_set f"
       
  1193       by (unfold tpn_set_def sep_disj_set_def, auto)
       
  1194   next
       
  1195     show "trset_of (f, x, y, j, z) = 
       
  1196              tpos_set j + (tprog_set x \<union> tpc_set y \<union> tmem_set z \<union> tfaults_set f)"
       
  1197       by (unfold trset_of.simps plus_set_def, auto)
       
  1198   qed
       
  1199 qed
       
  1200 
       
  1201 lemma TM_in_simp: "({TM a v} \<subseteq> 
       
  1202                       tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tmem_set mem \<union> tfaults_set f) = 
       
  1203                              ({TM a v} \<subseteq> tmem_set mem)"
       
  1204   by (unfold tpn_set_def, auto)
       
  1205 
       
  1206 lemma tmem_set_upd: 
       
  1207   "{TM a v} \<subseteq> tmem_set mem \<Longrightarrow> 
       
  1208         tmem_set (mem(a:=Some v')) = ((tmem_set mem) - {TM a v}) \<union> {TM a v'}"
       
  1209   by (unfold tpn_set_def, auto)
       
  1210 
       
  1211 lemma tmem_set_disj: "{TM a v} \<subseteq> tmem_set mem \<Longrightarrow> 
       
  1212                             {TM a v'} \<inter>  (tmem_set mem - {TM a v}) = {}"
       
  1213   by (unfold tpn_set_def, auto)
       
  1214 
       
  1215 lemma smem_upd: "((tm a v) ** r) (trset_of (f, x, y, z, mem))  \<Longrightarrow> 
       
  1216                     ((tm a v') ** r) (trset_of (f, x, y, z, mem(a := Some v')))"
       
  1217 proof -
       
  1218   have eq_s: "(tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tmem_set mem \<union> tfaults_set f - {TM a v}) =
       
  1219     (tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> (tmem_set mem - {TM a v}) \<union> tfaults_set f)"
       
  1220     by (unfold tpn_set_def, auto)
       
  1221   assume g: "(tm a v \<and>* r) (trset_of (f, x, y, z, mem))"
       
  1222   from this[unfolded trset_of.simps tm_def]
       
  1223   have h: "(sg {TM a v} \<and>* r) (tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tmem_set mem \<union> tfaults_set f)" .
       
  1224   hence h0: "r (tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> (tmem_set mem - {TM a v}) \<union> tfaults_set f)"
       
  1225     by(sep_drule stimes_sgD, clarify, unfold eq_s, auto)
       
  1226   from h TM_in_simp have "{TM a v} \<subseteq> tmem_set mem"
       
  1227     by(sep_drule stimes_sgD, auto)
       
  1228   from tmem_set_upd [OF this] tmem_set_disj[OF this]
       
  1229   have h2: "tmem_set (mem(a \<mapsto> v')) = {TM a v'} \<union> (tmem_set mem - {TM a v})" 
       
  1230            "{TM a v'} \<inter> (tmem_set mem - {TM a v}) = {}" by auto
       
  1231   show ?thesis
       
  1232   proof -
       
  1233     have "(tm a v' ** r) (tmem_set (mem(a \<mapsto> v')) \<union> tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tfaults_set f)"
       
  1234     proof(rule sep_conjI)
       
  1235       show "tm a v' ({TM a v'})" by (unfold tm_def sg_def, simp)
       
  1236     next
       
  1237       from h0 show "r (tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> (tmem_set mem - {TM a v}) \<union> tfaults_set f)" .
       
  1238     next
       
  1239       show "{TM a v'} ## tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> (tmem_set mem - {TM a v}) \<union> tfaults_set f"
       
  1240       proof -
       
  1241         from g have " mem a = Some v"
       
  1242           by(sep_frule memD, simp)
       
  1243         thus "?thesis"
       
  1244           by(unfold tpn_set_def set_ins_def, auto)
       
  1245       qed
       
  1246     next
       
  1247       show "tmem_set (mem(a \<mapsto> v')) \<union> tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tfaults_set f =
       
  1248     {TM a v'} + (tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> (tmem_set mem - {TM a v}) \<union> tfaults_set f)"
       
  1249         by (unfold h2(1) set_ins_def eq_s, auto)
       
  1250     qed
       
  1251     thus ?thesis 
       
  1252       apply (unfold trset_of.simps)
       
  1253       by (metis sup_commute sup_left_commute)
       
  1254   qed
       
  1255 qed
       
  1256 
       
  1257 lemma hoare_write_zero: 
       
  1258   "\<lbrace>st i ** ps p ** tm p v\<rbrace> 
       
  1259      i:[write_zero]:j
       
  1260    \<lbrace>st j ** ps p ** tm p Bk\<rbrace>"
       
  1261 proof(unfold write_zero_def, intro t_hoare_local, rule t_hoare_label_last, simp, simp)
       
  1262   show "\<lbrace>st i \<and>* ps p \<and>* tm p v\<rbrace>  i :[ \<guillemotright> ((W0, j), W0, j) ]: j \<lbrace>st j \<and>* ps p \<and>* tm p Bk\<rbrace>"
       
  1263   proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
       
  1264         intro tm.code_condI, simp)
       
  1265     assume eq_j: "j = Suc i"
       
  1266     show "\<lbrace>st i \<and>* ps p \<and>* tm p v\<rbrace>  sg {TC i ((W0, Suc i), W0, Suc i)} 
       
  1267           \<lbrace>st (Suc i) \<and>* ps p \<and>* tm p Bk\<rbrace>"
       
  1268     proof(fold eq_j, unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
       
  1269       fix ft prog cs i' mem r
       
  1270       assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v \<and>* sg {TC i ((W0, j), W0, j)})
       
  1271               (trset_of (ft, prog, cs, i', mem))"
       
  1272       from h have "prog i = Some ((W0, j), W0, j)"
       
  1273         apply(rule_tac r = "r \<and>* ps p \<and>* tm p v" in codeD)
       
  1274         by(simp add: sep_conj_ac)
       
  1275       from h and this have stp:
       
  1276         "tm.run 1 (ft, prog, cs, i', mem) = (ft, prog, j, i', mem(i'\<mapsto> Bk))" (is "?x = ?y")
       
  1277         apply(sep_frule psD)
       
  1278         apply(sep_frule stD)
       
  1279         apply(sep_frule memD, simp)
       
  1280         by(cases v, unfold tm.run_def, auto)
       
  1281       from h have "i' = p"
       
  1282         by(sep_drule psD, simp)
       
  1283       with h
       
  1284       have "(r \<and>* ps p \<and>* st j \<and>* tm p Bk \<and>* sg {TC i ((W0, j), W0, j)}) (trset_of ?x)"
       
  1285         apply(unfold stp)
       
  1286         apply(sep_drule pos_upd, sep_drule st_upd, sep_drule smem_upd)
       
  1287         apply(auto simp: sep_conj_ac)
       
  1288         done
       
  1289       thus "\<exists>k. (r \<and>* ps p \<and>* st j \<and>* tm p Bk \<and>* sg {TC i ((W0, j), W0, j)}) 
       
  1290              (trset_of (tm.run (Suc k) (ft, prog, cs, i', mem)))"
       
  1291         apply (rule_tac x = 0 in exI)
       
  1292         by auto
       
  1293     qed
       
  1294   qed
       
  1295 qed
       
  1296 
       
  1297 lemma hoare_write_zero_gen[step]: 
       
  1298   assumes "p = q"
       
  1299   shows  "\<lbrace>st i ** ps p ** tm q v\<rbrace> 
       
  1300             i:[write_zero]:j
       
  1301           \<lbrace>st j ** ps p ** tm q Bk\<rbrace>"
       
  1302   by (unfold assms, rule hoare_write_zero)
       
  1303 
       
  1304 definition "write_one = (TL exit. \<guillemotright>((W1, exit), (W1, exit)); TLabel exit)"
       
  1305 
       
  1306 lemma hoare_write_one: 
       
  1307   "\<lbrace>st i ** ps p ** tm p v\<rbrace> 
       
  1308      i:[write_one]:j
       
  1309    \<lbrace>st j ** ps p ** tm p Oc\<rbrace>"
       
  1310 proof(unfold write_one_def, intro t_hoare_local, rule t_hoare_label_last, simp+)
       
  1311   fix l
       
  1312   show "\<lbrace>st i \<and>* ps p \<and>* tm p v\<rbrace>  i :[ \<guillemotright> ((W1, j), W1, j) ]: j \<lbrace>st j \<and>* ps p \<and>* tm p Oc\<rbrace>"
       
  1313   proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
       
  1314         rule_tac tm.code_condI, simp add: sep_conj_ac)
       
  1315     let ?j = "Suc i"
       
  1316     show "\<lbrace>ps p \<and>* st i \<and>* tm p v\<rbrace>  sg {TC i ((W1, ?j), W1, ?j)} 
       
  1317           \<lbrace>ps p \<and>* st ?j \<and>* tm p Oc\<rbrace>"
       
  1318     proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
       
  1319       fix ft prog cs i' mem r
       
  1320       assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v \<and>* sg {TC i ((W1, ?j), W1, ?j)})
       
  1321               (trset_of (ft, prog, cs, i', mem))"
       
  1322       from h have "prog i = Some ((W1, ?j), W1, ?j)"
       
  1323         apply(rule_tac r = "r \<and>* ps p \<and>* tm p v" in codeD)
       
  1324         by(simp add: sep_conj_ac)
       
  1325       from h and this have stp:
       
  1326         "tm.run 1 (ft, prog, cs, i', mem) = 
       
  1327                      (ft, prog, ?j, i', mem(i'\<mapsto> Oc))" (is "?x = ?y")
       
  1328         apply(sep_frule psD)
       
  1329         apply(sep_frule stD)
       
  1330         apply(sep_frule memD, simp)
       
  1331         by(cases v, unfold tm.run_def, auto)
       
  1332       from h have "i' = p"
       
  1333         by(sep_drule psD, simp)
       
  1334       with h
       
  1335       have "(r \<and>* ps p \<and>* st ?j \<and>* tm p Oc \<and>* sg {TC i ((W1, ?j), W1, ?j)}) (trset_of ?x)"
       
  1336         apply(unfold stp)
       
  1337         apply(sep_drule pos_upd, sep_drule st_upd, sep_drule smem_upd)
       
  1338         apply(auto simp: sep_conj_ac)
       
  1339         done
       
  1340       thus "\<exists>k. (r \<and>* ps p \<and>* st ?j \<and>* tm p Oc \<and>* sg {TC i ((W1, ?j), W1, ?j)}) 
       
  1341              (trset_of (tm.run (Suc k) (ft, prog, cs, i', mem)))"
       
  1342         apply (rule_tac x = 0 in exI)
       
  1343         by auto
       
  1344     qed
       
  1345   qed
       
  1346 qed
       
  1347 
       
  1348 lemma hoare_write_one_gen[step]: 
       
  1349   assumes "p = q"
       
  1350   shows  "\<lbrace>st i ** ps p ** tm q v\<rbrace> 
       
  1351               i:[write_one]:j
       
  1352           \<lbrace>st j ** ps p ** tm q Oc\<rbrace>"
       
  1353   by (unfold assms, rule hoare_write_one)
       
  1354 
       
  1355 definition "move_left = (TL exit . \<guillemotright>((L, exit), (L, exit)); TLabel exit)"
       
  1356 
       
  1357 lemma hoare_move_left: 
       
  1358   "\<lbrace>st i ** ps p ** tm p v2\<rbrace> 
       
  1359      i:[move_left]:j
       
  1360    \<lbrace>st j ** ps (p - 1) **  tm p v2\<rbrace>"
       
  1361 proof(unfold move_left_def, intro t_hoare_local, rule t_hoare_label_last, simp+)
       
  1362   fix l
       
  1363   show "\<lbrace>st i \<and>* ps p \<and>* tm p v2\<rbrace>  i :[ \<guillemotright> ((L, l), L, l) ]: l
       
  1364         \<lbrace>st l \<and>* ps (p - 1) \<and>* tm p v2\<rbrace>"
       
  1365   proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
       
  1366       intro tm.code_condI, simp add: sep_conj_ac)
       
  1367     let ?j = "Suc i"
       
  1368     show "\<lbrace>ps p \<and>* st i \<and>* tm p v2\<rbrace>  sg {TC i ((L, ?j), L, ?j)} 
       
  1369           \<lbrace>st ?j \<and>* tm p v2 \<and>* ps (p - 1)\<rbrace>"
       
  1370     proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
       
  1371       fix ft prog cs i' mem r
       
  1372       assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v2 \<and>* sg {TC i ((L, ?j), L, ?j)}) 
       
  1373                        (trset_of (ft, prog, cs, i',  mem))"
       
  1374       from h have "prog i = Some ((L, ?j), L, ?j)"
       
  1375         apply(rule_tac r = "r \<and>* ps p \<and>* tm p v2" in codeD)
       
  1376         by(simp add: sep_conj_ac)
       
  1377       from h and this have stp:
       
  1378         "tm.run 1 (ft, prog, cs, i', mem) = (ft, prog, ?j, i' - 1, mem)" (is "?x = ?y")
       
  1379         apply(sep_frule psD)
       
  1380         apply(sep_frule stD)
       
  1381         apply(sep_frule memD, simp)
       
  1382         apply(unfold tm.run_def, case_tac v2, auto)
       
  1383         done
       
  1384       from h have "i' = p"
       
  1385         by(sep_drule psD, simp)
       
  1386       with h
       
  1387       have "(r \<and>* st ?j \<and>* tm p v2 \<and>* ps (p - 1) \<and>* sg {TC i ((L, ?j), L, ?j)}) 
       
  1388                (trset_of ?x)"
       
  1389         apply(unfold stp)
       
  1390         apply(sep_drule pos_upd, sep_drule st_upd, simp)
       
  1391       proof -
       
  1392         assume "(st ?j \<and>* ps (p - 1) \<and>* r \<and>* tm p v2 \<and>* sg {TC i ((L, ?j), L, ?j)}) 
       
  1393                    (trset_of (ft, prog, ?j, p - 1, mem))"
       
  1394         thus "(r \<and>* st ?j \<and>* tm p v2 \<and>* ps (p - 1) \<and>* sg {TC i ((L, ?j), L, ?j)}) 
       
  1395                     (trset_of (ft, prog, ?j, p - 1, mem))"
       
  1396           by(simp add: sep_conj_ac)
       
  1397       qed
       
  1398       thus "\<exists>k. (r \<and>* st ?j \<and>* tm p v2 \<and>* ps (p - 1) \<and>* sg {TC i ((L, ?j), L, ?j)}) 
       
  1399              (trset_of (tm.run (Suc k) (ft, prog, cs, i', mem)))"
       
  1400         apply (rule_tac x = 0 in exI)
       
  1401         by auto
       
  1402     qed
       
  1403   qed
       
  1404 qed
       
  1405 
       
  1406 lemma hoare_move_left_gen[step]: 
       
  1407   assumes "p = q"
       
  1408   shows "\<lbrace>st i ** ps p ** tm q v2\<rbrace> 
       
  1409             i:[move_left]:j
       
  1410          \<lbrace>st j ** ps (p - 1) **  tm q v2\<rbrace>"
       
  1411   by (unfold assms, rule hoare_move_left)
       
  1412 
       
  1413 definition "move_right = (TL exit . \<guillemotright>((R, exit), (R, exit)); TLabel exit)"
       
  1414 
       
  1415 lemma hoare_move_right: 
       
  1416   "\<lbrace>st i ** ps p ** tm p v1 \<rbrace> 
       
  1417      i:[move_right]:j
       
  1418    \<lbrace>st j ** ps (p + 1) ** tm p v1 \<rbrace>"
       
  1419 proof(unfold move_right_def, intro t_hoare_local, rule t_hoare_label_last, simp+)
       
  1420   fix l
       
  1421   show "\<lbrace>st i \<and>* ps p \<and>* tm p v1\<rbrace>  i :[ \<guillemotright> ((R, l), R, l) ]: l
       
  1422         \<lbrace>st l \<and>* ps (p + 1) \<and>* tm p v1\<rbrace>"
       
  1423   proof(unfold tassemble_to.simps, simp only:sep_conj_cond, 
       
  1424       intro tm.code_condI, simp add: sep_conj_ac)
       
  1425     let ?j = "Suc i"
       
  1426     show "\<lbrace>ps p \<and>* st i \<and>* tm p v1\<rbrace>  sg {TC i ((R, ?j), R, ?j)} 
       
  1427           \<lbrace>st ?j \<and>* tm p v1 \<and>* ps (p + 1)\<rbrace>"
       
  1428     proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
       
  1429       fix ft prog cs i' mem r
       
  1430       assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v1 \<and>* sg {TC i ((R, ?j), R, ?j)}) 
       
  1431                        (trset_of (ft, prog, cs, i',  mem))"
       
  1432       from h have "prog i = Some ((R, ?j), R, ?j)"
       
  1433         apply(rule_tac r = "r \<and>* ps p \<and>* tm p v1" in codeD)
       
  1434         by(simp add: sep_conj_ac)
       
  1435       from h and this have stp:
       
  1436         "tm.run 1 (ft, prog, cs, i', mem) = (ft, prog, ?j, i'+ 1, mem)" (is "?x = ?y")
       
  1437         apply(sep_frule psD)
       
  1438         apply(sep_frule stD)
       
  1439         apply(sep_frule memD, simp)
       
  1440         apply(unfold tm.run_def, case_tac v1, auto)
       
  1441         done
       
  1442       from h have "i' = p"
       
  1443         by(sep_drule psD, simp)
       
  1444       with h
       
  1445       have "(r \<and>* st ?j \<and>* tm p v1 \<and>* ps (p + 1) \<and>* 
       
  1446                 sg {TC i ((R, ?j), R, ?j)}) (trset_of ?x)"
       
  1447         apply(unfold stp)
       
  1448         apply(sep_drule pos_upd, sep_drule st_upd, simp)
       
  1449       proof -
       
  1450         assume "(st ?j \<and>* ps (p + 1) \<and>* r \<and>* tm p v1 \<and>* sg {TC i ((R, ?j), R, ?j)}) 
       
  1451                    (trset_of (ft, prog, ?j, p + 1, mem))"
       
  1452         thus "(r \<and>* st ?j \<and>* tm p v1 \<and>* ps (p + 1) \<and>* sg {TC i ((R, ?j), R, ?j)}) 
       
  1453                     (trset_of (ft, prog, ?j, p + 1, mem))"
       
  1454           by (simp add: sep_conj_ac)
       
  1455       qed
       
  1456       thus "\<exists>k. (r \<and>* st ?j \<and>* tm p v1 \<and>* ps (p + 1) \<and>* sg {TC i ((R, ?j), R, ?j)}) 
       
  1457              (trset_of (tm.run (Suc k) (ft, prog, cs, i', mem)))"
       
  1458         apply (rule_tac x = 0 in exI)
       
  1459         by auto
       
  1460     qed
       
  1461   qed
       
  1462 qed
       
  1463 
       
  1464 lemma hoare_move_right_gen[step]: 
       
  1465   assumes "p = q"
       
  1466   shows "\<lbrace>st i ** ps p ** tm q v1 \<rbrace> 
       
  1467            i:[move_right]:j
       
  1468          \<lbrace>st j ** ps (p + 1) ** tm q v1 \<rbrace>"
       
  1469   by (unfold assms, rule hoare_move_right)
       
  1470 
       
  1471 definition "if_one e = (TL exit . \<guillemotright>((W0, exit), (W1, e)); TLabel exit)"
       
  1472 
       
  1473 lemma hoare_if_one_true: 
       
  1474   "\<lbrace>st i ** ps p ** one p\<rbrace> 
       
  1475      i:[if_one e]:j
       
  1476    \<lbrace>st e ** ps p ** one p\<rbrace>"
       
  1477 proof(unfold if_one_def, intro t_hoare_local, rule t_hoare_label_last, simp+)
       
  1478   fix l
       
  1479   show " \<lbrace>st i \<and>* ps p \<and>* one p\<rbrace>  i :[ \<guillemotright> ((W0, l), W1, e) ]: l \<lbrace>st e \<and>* ps p \<and>* one p\<rbrace>"
       
  1480   proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
       
  1481         intro tm.code_condI, simp add: sep_conj_ac)
       
  1482     let ?j = "Suc i"
       
  1483     show "\<lbrace>one p \<and>* ps p \<and>* st i\<rbrace>  sg {TC i ((W0, ?j), W1, e)} \<lbrace>one p \<and>* ps p \<and>* st e\<rbrace>"
       
  1484     proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
       
  1485       fix ft prog cs pc mem r
       
  1486       assume h: "(r \<and>* one p \<and>* ps p \<and>* st i \<and>* sg {TC i ((W0, ?j), W1, e)}) 
       
  1487         (trset_of (ft, prog, cs, pc, mem))"
       
  1488       from h have k1: "prog i = Some ((W0, ?j), W1, e)"
       
  1489         apply(rule_tac r = "r \<and>* one p \<and>* ps p" in codeD)
       
  1490         by(simp add: sep_conj_ac)
       
  1491       from h have k2: "pc = p"
       
  1492         by(sep_drule psD, simp)
       
  1493       from h and this have k3: "mem pc = Some Oc"
       
  1494         apply(unfold one_def)
       
  1495         by(sep_drule memD, simp)
       
  1496       from h k1 k2 k3 have stp:
       
  1497         "tm.run 1 (ft, prog, cs, pc, mem) = (ft, prog, e, pc, mem)" (is "?x = ?y")
       
  1498         apply(sep_drule stD)
       
  1499         by(unfold tm.run_def, auto)
       
  1500       from h k2 
       
  1501       have "(r \<and>* one p \<and>* ps p \<and>* st e \<and>* sg {TC i ((W0, ?j), W1, e)})  (trset_of ?x)"
       
  1502         apply(unfold stp)
       
  1503         by(sep_drule st_upd, simp add: sep_conj_ac)
       
  1504       thus "\<exists>k.(r \<and>* one p \<and>* ps p \<and>* st e \<and>* sg {TC i ((W0, ?j), W1, e)})
       
  1505              (trset_of (tm.run (Suc k) (ft, prog, cs, pc, mem)))"
       
  1506         apply (rule_tac x = 0 in exI)
       
  1507         by auto
       
  1508     qed
       
  1509   qed
       
  1510 qed
       
  1511 
       
  1512 text {*
       
  1513   The following problematic lemma is not provable now 
       
  1514   lemma hoare_self: "\<lbrace>p\<rbrace> i :[ap]: j \<lbrace>p\<rbrace>" 
       
  1515   apply(simp add: tm.Hoare_gen_def, clarify)
       
  1516   apply(rule_tac x = 0 in exI, simp add: tm.run_def)
       
  1517   done
       
  1518 *}
       
  1519 
       
  1520 lemma hoare_if_one_true_gen[step]: 
       
  1521   assumes "p = q"
       
  1522   shows
       
  1523   "\<lbrace>st i ** ps p ** one q\<rbrace> 
       
  1524      i:[if_one e]:j
       
  1525    \<lbrace>st e ** ps p ** one q\<rbrace>"
       
  1526   by (unfold assms, rule hoare_if_one_true)
       
  1527 
       
  1528 lemma hoare_if_one_true1: 
       
  1529   "\<lbrace>st i ** ps p ** one p\<rbrace> 
       
  1530      i:[(if_one e; c)]:j
       
  1531    \<lbrace>st e ** ps p ** one p\<rbrace>"
       
  1532 proof(unfold tassemble_to.simps, rule tm.code_exI, 
       
  1533        simp add: sep_conj_ac tm.Hoare_gen_def, clarify)  
       
  1534   fix j' ft prog cs pos mem r
       
  1535   assume h: "(r \<and>* one p \<and>* ps p \<and>* st i \<and>* j' :[ c ]: j \<and>* i :[ if_one e ]: j') 
       
  1536     (trset_of (ft, prog, cs, pos, mem))"
       
  1537   from tm.frame_rule[OF hoare_if_one_true]
       
  1538   have "\<And> r. \<lbrace>st i \<and>* ps p \<and>* one p \<and>* r\<rbrace>  i :[ if_one e ]: j' \<lbrace>st e \<and>* ps p \<and>* one p \<and>* r\<rbrace>"
       
  1539     by(simp add: sep_conj_ac)
       
  1540   from this[unfolded tm.Hoare_gen_def tassemble_to.simps, rule_format, of "j' :[ c ]: j"] h
       
  1541   have "\<exists> k. (r \<and>* one p \<and>* ps p \<and>* st e \<and>* i :[ if_one e ]: j' \<and>* j' :[ c ]: j)
       
  1542     (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
       
  1543     by(auto simp: sep_conj_ac)
       
  1544   thus "\<exists>k. (r \<and>* one p \<and>* ps p \<and>* st e \<and>* j' :[ c ]: j \<and>* i :[ if_one e ]: j') 
       
  1545     (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
       
  1546     by(simp add: sep_conj_ac)
       
  1547 qed
       
  1548 
       
  1549 lemma hoare_if_one_true1_gen[step]: 
       
  1550   assumes "p = q"
       
  1551   shows
       
  1552   "\<lbrace>st i ** ps p ** one q\<rbrace> 
       
  1553      i:[(if_one e; c)]:j
       
  1554    \<lbrace>st e ** ps p ** one q\<rbrace>"
       
  1555   by (unfold assms, rule hoare_if_one_true1)
       
  1556 
       
  1557 lemma hoare_if_one_false: 
       
  1558   "\<lbrace>st i ** ps p ** zero p\<rbrace> 
       
  1559        i:[if_one e]:j
       
  1560    \<lbrace>st j ** ps p ** zero p\<rbrace>"
       
  1561 proof(unfold if_one_def, intro t_hoare_local, rule t_hoare_label_last, simp+)
       
  1562   show "\<lbrace>st i \<and>* ps p \<and>* zero p\<rbrace>  i :[ (\<guillemotright> ((W0, j), W1, e)) ]: j
       
  1563         \<lbrace>st j \<and>* ps p \<and>* zero p\<rbrace>"
       
  1564   proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
       
  1565         intro tm.code_condI, simp add: sep_conj_ac)
       
  1566     let ?j = "Suc i"
       
  1567     show "\<lbrace>ps p \<and>* st i \<and>* zero p\<rbrace>  sg {TC i ((W0, ?j), W1, e)} \<lbrace>ps p \<and>*  zero p \<and>* st ?j \<rbrace>"
       
  1568     proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
       
  1569       fix ft prog cs pc mem r
       
  1570       assume h: "(r \<and>* ps p \<and>* st i \<and>* zero p \<and>* sg {TC i ((W0, ?j), W1, e)})
       
  1571         (trset_of (ft, prog, cs, pc, mem))"
       
  1572       from h have k1: "prog i = Some ((W0, ?j), W1, e)"
       
  1573         apply(rule_tac r = "r \<and>* zero p \<and>* ps p" in codeD)
       
  1574         by(simp add: sep_conj_ac)
       
  1575       from h have k2: "pc = p"
       
  1576         by(sep_drule psD, simp)
       
  1577       from h and this have k3: "mem pc = Some Bk"
       
  1578         apply(unfold zero_def)
       
  1579         by(sep_drule memD, simp)
       
  1580       from h k1 k2 k3 have stp:
       
  1581         "tm.run 1 (ft, prog, cs, pc, mem) = (ft, prog, ?j, pc, mem)" (is "?x = ?y")
       
  1582         apply(sep_drule stD)
       
  1583         by(unfold tm.run_def, auto)
       
  1584       from h k2 
       
  1585       have "(r \<and>* zero p \<and>* ps p \<and>* st ?j \<and>* sg {TC i ((W0, ?j), W1, e)})  (trset_of ?x)"
       
  1586         apply (unfold stp)
       
  1587         by (sep_drule st_upd[where i''="?j"], auto simp:sep_conj_ac)
       
  1588       thus "\<exists>k. (r \<and>* ps p \<and>* zero p \<and>* st ?j \<and>*  sg {TC i ((W0, ?j), W1, e)})
       
  1589              (trset_of (tm.run (Suc k) (ft, prog, cs, pc, mem)))"
       
  1590         by(auto simp: sep_conj_ac)
       
  1591     qed
       
  1592   qed
       
  1593 qed
       
  1594 
       
  1595 lemma hoare_if_one_false_gen[step]: 
       
  1596   assumes "p = q"
       
  1597   shows "\<lbrace>st i ** ps p ** zero q\<rbrace> 
       
  1598              i:[if_one e]:j
       
  1599          \<lbrace>st j ** ps p ** zero q\<rbrace>"
       
  1600   by (unfold assms, rule hoare_if_one_false)
       
  1601 
       
  1602 definition "if_zero e = (TL exit . \<guillemotright>((W0, e), (W1, exit)); TLabel exit)"
       
  1603 
       
  1604 lemma hoare_if_zero_true: 
       
  1605   "\<lbrace>st i ** ps p ** zero p\<rbrace> 
       
  1606      i:[if_zero e]:j
       
  1607    \<lbrace>st e ** ps p ** zero p\<rbrace>"
       
  1608 proof(unfold if_zero_def, intro t_hoare_local, rule t_hoare_label_last, simp+)
       
  1609   fix l
       
  1610   show "\<lbrace>st i \<and>* ps p \<and>* zero p\<rbrace>  i :[ \<guillemotright> ((W0, e), W1, l) ]: l \<lbrace>st e \<and>* ps p \<and>* zero p\<rbrace>"
       
  1611   proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
       
  1612         intro tm.code_condI, simp add: sep_conj_ac)
       
  1613     let ?j = "Suc i"
       
  1614     show "\<lbrace>ps p \<and>* st i \<and>* zero p\<rbrace>  sg {TC i ((W0, e), W1, ?j)} \<lbrace>ps p \<and>* st e \<and>* zero p\<rbrace>"
       
  1615     proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
       
  1616       fix ft prog cs pc mem r
       
  1617       assume h: "(r \<and>* ps p \<and>* st i \<and>* zero p \<and>* sg {TC i ((W0, e), W1, ?j)})
       
  1618         (trset_of (ft, prog, cs, pc, mem))"
       
  1619       from h have k1: "prog i = Some ((W0, e), W1, ?j)"
       
  1620         apply(rule_tac r = "r \<and>* zero p \<and>* ps p" in codeD)
       
  1621         by(simp add: sep_conj_ac)
       
  1622       from h have k2: "pc = p"
       
  1623         by(sep_drule psD, simp)
       
  1624       from h and this have k3: "mem pc = Some Bk"
       
  1625         apply(unfold zero_def)
       
  1626         by(sep_drule memD, simp)
       
  1627       from h k1 k2 k3 have stp:
       
  1628         "tm.run 1 (ft, prog, cs, pc, mem) = (ft, prog, e, pc, mem)" (is "?x = ?y")
       
  1629         apply(sep_drule stD)
       
  1630         by(unfold tm.run_def, auto)
       
  1631       from h k2 
       
  1632       have "(r \<and>* zero p \<and>* ps p \<and>* st e \<and>* sg {TC i ((W0, e), W1, ?j)})  (trset_of ?x)"
       
  1633         apply(unfold stp)
       
  1634         by(sep_drule st_upd, simp add: sep_conj_ac)
       
  1635       thus "\<exists>k. (r \<and>* ps p \<and>* st e \<and>* zero p \<and>* sg {TC i ((W0, e), W1, ?j)})
       
  1636              (trset_of (tm.run (Suc k) (ft, prog, cs, pc, mem)))"
       
  1637         by(auto simp: sep_conj_ac)
       
  1638     qed
       
  1639   qed
       
  1640 qed
       
  1641 
       
  1642 lemma hoare_if_zero_true_gen[step]: 
       
  1643   assumes "p = q"
       
  1644   shows
       
  1645   "\<lbrace>st i ** ps p ** zero q\<rbrace> 
       
  1646      i:[if_zero e]:j
       
  1647    \<lbrace>st e ** ps p ** zero q\<rbrace>"
       
  1648   by (unfold assms, rule hoare_if_zero_true)
       
  1649 
       
  1650 lemma hoare_if_zero_true1: 
       
  1651   "\<lbrace>st i ** ps p ** zero p\<rbrace> 
       
  1652      i:[(if_zero e; c)]:j
       
  1653    \<lbrace>st e ** ps p ** zero p\<rbrace>"
       
  1654  proof(unfold tassemble_to.simps, rule tm.code_exI, simp add: sep_conj_ac 
       
  1655         tm.Hoare_gen_def, clarify)  
       
  1656   fix j' ft prog cs pos mem r
       
  1657   assume h: "(r \<and>* ps p \<and>* st i \<and>* zero p \<and>* j' :[ c ]: j \<and>* i :[ if_zero e ]: j') 
       
  1658     (trset_of (ft, prog, cs, pos, mem))"
       
  1659   from tm.frame_rule[OF hoare_if_zero_true]
       
  1660   have "\<And> r. \<lbrace>st i \<and>* ps p \<and>* zero p \<and>* r\<rbrace>  i :[ if_zero e ]: j' \<lbrace>st e \<and>* ps p \<and>* zero p \<and>* r\<rbrace>"
       
  1661     by(simp add: sep_conj_ac)
       
  1662   from this[unfolded tm.Hoare_gen_def tassemble_to.simps, rule_format, of "j' :[ c ]: j"] h
       
  1663   have "\<exists> k. (r \<and>* zero p \<and>* ps p \<and>* st e \<and>* i :[ if_zero e ]: j' \<and>* j' :[ c ]: j)
       
  1664     (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
       
  1665     by(auto simp: sep_conj_ac)
       
  1666   thus "\<exists>k. (r \<and>* ps p \<and>* st e \<and>* zero p \<and>* j' :[ c ]: j \<and>* i :[ if_zero e ]: j')  
       
  1667     (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
       
  1668     by(simp add: sep_conj_ac)
       
  1669 qed
       
  1670 
       
  1671 lemma hoare_if_zero_true1_gen[step]: 
       
  1672   assumes "p = q"
       
  1673   shows
       
  1674   "\<lbrace>st i ** ps p ** zero q\<rbrace> 
       
  1675      i:[(if_zero e; c)]:j
       
  1676    \<lbrace>st e ** ps p ** zero q\<rbrace>"
       
  1677   by (unfold assms, rule hoare_if_zero_true1)
       
  1678 
       
  1679 lemma hoare_if_zero_false: 
       
  1680   "\<lbrace>st i ** ps p ** tm p Oc\<rbrace> 
       
  1681      i:[if_zero e]:j
       
  1682    \<lbrace>st j ** ps p ** tm p Oc\<rbrace>"
       
  1683 proof(unfold if_zero_def, intro t_hoare_local, rule t_hoare_label_last, simp, simp)
       
  1684   fix l
       
  1685   show "\<lbrace>st i \<and>* ps p \<and>* tm p Oc\<rbrace>  i :[ \<guillemotright> ((W0, e), W1, l) ]: l
       
  1686         \<lbrace>st l \<and>* ps p \<and>* tm p Oc\<rbrace>"
       
  1687   proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
       
  1688       intro tm.code_condI, simp add: sep_conj_ac)
       
  1689     let ?j = "Suc i"
       
  1690     show "\<lbrace>ps p \<and>* st i \<and>* tm p Oc\<rbrace>  sg {TC i ((W0, e), W1, ?j)} 
       
  1691           \<lbrace>ps p \<and>* st ?j \<and>* tm p Oc\<rbrace>"
       
  1692     proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
       
  1693       fix ft prog cs pc mem r
       
  1694       assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p Oc \<and>* sg {TC i ((W0, e), W1, ?j)})
       
  1695         (trset_of (ft, prog, cs, pc, mem))"
       
  1696       from h have k1: "prog i = Some ((W0, e), W1, ?j)"
       
  1697         apply(rule_tac r = "r \<and>* tm p Oc \<and>* ps p" in codeD)
       
  1698         by(simp add: sep_conj_ac)
       
  1699       from h have k2: "pc = p"
       
  1700         by(sep_drule psD, simp)
       
  1701       from h and this have k3: "mem pc = Some Oc"
       
  1702         by(sep_drule memD, simp)
       
  1703       from h k1 k2 k3 have stp:
       
  1704         "tm.run 1 (ft, prog, cs, pc, mem) = (ft, prog, ?j, pc, mem)" (is "?x = ?y")
       
  1705         apply(sep_drule stD)
       
  1706         by(unfold tm.run_def, auto)
       
  1707       from h k2 
       
  1708       have "(r \<and>* tm p Oc \<and>* ps p \<and>* st ?j \<and>* sg {TC i ((W0, e), W1, ?j)})  (trset_of ?x)"
       
  1709         apply(unfold stp)
       
  1710         by(sep_drule st_upd, simp add: sep_conj_ac)
       
  1711       thus "\<exists>k. (r \<and>* ps p \<and>* st ?j \<and>* tm p Oc \<and>* sg {TC i ((W0, e), W1, ?j)})
       
  1712              (trset_of (tm.run (Suc k) (ft, prog, cs, pc, mem)))"
       
  1713         by(auto simp: sep_conj_ac)
       
  1714     qed
       
  1715   qed
       
  1716 qed
       
  1717 
       
  1718 lemma hoare_if_zero_false_gen[step]: 
       
  1719   assumes "p = q"
       
  1720   shows
       
  1721   "\<lbrace>st i ** ps p ** tm q Oc\<rbrace> 
       
  1722      i:[if_zero e]:j
       
  1723    \<lbrace>st j ** ps p ** tm q Oc\<rbrace>"
       
  1724   by (unfold assms, rule hoare_if_zero_false)
       
  1725 
       
  1726 
       
  1727 definition "jmp e = \<guillemotright>((W0, e), (W1, e))"
       
  1728 
       
  1729 lemma hoare_jmp: 
       
  1730   "\<lbrace>st i \<and>* ps p \<and>* tm p v\<rbrace>  i:[jmp e]:j \<lbrace>st e \<and>* ps p \<and>* tm p v\<rbrace>"
       
  1731 proof(unfold jmp_def tm.Hoare_gen_def tassemble_to.simps sep_conj_ac, clarify)
       
  1732   fix ft prog cs pos mem r
       
  1733   assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v \<and>* <(j = i + 1)> \<and>* sg {TC i ((W0, e), W1, e)})
       
  1734     (trset_of (ft, prog, cs, pos, mem))"
       
  1735   from h have k1: "prog i = Some ((W0, e), W1, e)"
       
  1736     apply(rule_tac r = "r \<and>* <(j = i + 1)> \<and>* tm p v \<and>* ps p" in codeD)
       
  1737     by(simp add: sep_conj_ac)
       
  1738   from h have k2: "p = pos"
       
  1739     by(sep_drule psD, simp)
       
  1740   from h k2 have k3: "mem pos = Some v"
       
  1741     by(sep_drule memD, simp)
       
  1742   from h k1 k2 k3 have 
       
  1743     stp: "tm.run 1 (ft, prog, cs, pos, mem) = (ft, prog, e, pos, mem)" (is "?x = ?y")
       
  1744     apply(sep_drule stD)
       
  1745     by(unfold tm.run_def, cases "mem pos", simp, cases v, auto)
       
  1746   from h k2 
       
  1747   have "(r \<and>* ps p \<and>* st e \<and>* tm p v \<and>* <(j = i + 1)> \<and>* 
       
  1748            sg {TC i ((W0, e), W1, e)}) (trset_of ?x)"
       
  1749     apply(unfold stp)
       
  1750     by(sep_drule st_upd, simp add: sep_conj_ac)
       
  1751   thus "\<exists> k. (r \<and>* ps p \<and>* st e \<and>* tm p v \<and>* <(j = i + 1)> \<and>* sg {TC i ((W0, e), W1, e)})
       
  1752              (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
       
  1753     apply (rule_tac x = 0 in exI)
       
  1754     by auto
       
  1755 qed
       
  1756 
       
  1757 lemma hoare_jmp_gen[step]: 
       
  1758   assumes "p = q"
       
  1759   shows "\<lbrace>st i \<and>* ps p \<and>* tm q v\<rbrace>  i:[jmp e]:j \<lbrace>st e \<and>* ps p \<and>* tm q v\<rbrace>"
       
  1760   by (unfold assms, rule hoare_jmp)
       
  1761 
       
  1762 lemma hoare_jmp1: 
       
  1763   "\<lbrace>st i \<and>* ps p \<and>* tm p v\<rbrace> 
       
  1764      i:[(jmp e; c)]:j
       
  1765    \<lbrace>st e \<and>* ps p \<and>* tm p v\<rbrace>"
       
  1766 proof(unfold  tassemble_to.simps, rule tm.code_exI, simp 
       
  1767               add: sep_conj_ac tm.Hoare_gen_def, clarify)
       
  1768   fix j' ft prog cs pos mem r
       
  1769   assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v \<and>* j' :[ c ]: j \<and>* i :[ jmp e ]: j') 
       
  1770     (trset_of (ft, prog, cs, pos, mem))"
       
  1771   from tm.frame_rule[OF hoare_jmp]
       
  1772   have "\<And> r. \<lbrace>st i \<and>* ps p \<and>* tm p v \<and>* r\<rbrace>  i :[ jmp e ]: j' \<lbrace>st e \<and>* ps p \<and>* tm p v \<and>* r\<rbrace>"
       
  1773     by(simp add: sep_conj_ac)
       
  1774   from this[unfolded tm.Hoare_gen_def tassemble_to.simps, rule_format, of "j' :[ c ]: j"] h
       
  1775   have "\<exists> k. (r \<and>* tm p v \<and>* ps p \<and>* st e \<and>* i :[ jmp e ]: j' \<and>* j' :[ c ]: j)
       
  1776     (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
       
  1777     by(auto simp: sep_conj_ac)
       
  1778   thus "\<exists>k. (r \<and>* ps p \<and>* st e \<and>* tm p v \<and>* j' :[ c ]: j \<and>* i :[ jmp e ]: j')  
       
  1779     (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
       
  1780     by(simp add: sep_conj_ac)
       
  1781 qed
       
  1782 
       
  1783 
       
  1784 lemma hoare_jmp1_gen[step]: 
       
  1785   assumes "p = q"
       
  1786   shows "\<lbrace>st i \<and>* ps p \<and>* tm q v\<rbrace> 
       
  1787             i:[(jmp e; c)]:j
       
  1788          \<lbrace>st e \<and>* ps p \<and>* tm q v\<rbrace>"
       
  1789   by (unfold assms, rule hoare_jmp1)
       
  1790 
       
  1791 
       
  1792 lemma condI: 
       
  1793   assumes h1: b
       
  1794   and h2: "b \<Longrightarrow> p s"
       
  1795   shows "(<b> \<and>* p) s"
       
  1796   by (metis (full_types) cond_true_eq1 h1 h2)
       
  1797 
       
  1798 lemma condE:
       
  1799   assumes "(<b> \<and>* p) s"
       
  1800   obtains "b" and "p s"
       
  1801 proof(atomize_elim)
       
  1802   from condD[OF assms]
       
  1803   show "b \<and> p s" .
       
  1804 qed
       
  1805 
       
  1806 
       
  1807 section {* Tactics *}
       
  1808 
       
  1809 ML {*
       
  1810   val trace_step = Attrib.setup_config_bool @{binding trace_step} (K false)
       
  1811   val trace_fwd = Attrib.setup_config_bool @{binding trace_fwd} (K false)
       
  1812 *}
       
  1813 
       
  1814 
       
  1815 ML {*
       
  1816   val tracing  = (fn ctxt => fn str =>
       
  1817                    if (Config.get ctxt trace_step) then tracing str else ())
       
  1818   fun not_pred p = fn s => not (p s)
       
  1819   fun break_sep_conj (Const (@{const_name sep_conj},_) $ t1 $ t2 $ _) =
       
  1820          (break_sep_conj t1) @ (break_sep_conj t2)
       
  1821     | break_sep_conj (Const (@{const_name sep_conj},_) $ t1 $ t2) =
       
  1822             (break_sep_conj t1) @ (break_sep_conj t2)
       
  1823                    (* dig through eta exanded terms: *)
       
  1824     | break_sep_conj (Abs (_, _, t $ Bound 0)) = break_sep_conj t
       
  1825     | break_sep_conj t = [t];
       
  1826 
       
  1827   val empty_env = (Vartab.empty, Vartab.empty)
       
  1828 
       
  1829   fun match_env ctxt pat trm env = 
       
  1830             Pattern.match (ctxt |> Proof_Context.theory_of) (pat, trm) env
       
  1831 
       
  1832   fun match ctxt pat trm = match_env ctxt pat trm empty_env;
       
  1833 
       
  1834   val inst = Envir.subst_term;
       
  1835 
       
  1836   fun term_of_thm thm = thm |>  prop_of |> HOLogic.dest_Trueprop
       
  1837 
       
  1838   fun get_cmd ctxt code = 
       
  1839       let val pat = term_of @{cpat "_:[(?cmd)]:_"}
       
  1840           val pat1 = term_of @{cpat "?cmd::tpg"}
       
  1841           val env = match ctxt pat code
       
  1842       in inst env pat1 end
       
  1843 
       
  1844   fun is_seq_term (Const (@{const_name TSeq}, _) $ _ $ _) = true
       
  1845     | is_seq_term _ = false
       
  1846 
       
  1847   fun get_hcmd  (Const (@{const_name TSeq}, _) $ hcmd $ _) = hcmd
       
  1848     | get_hcmd hcmd = hcmd
       
  1849 
       
  1850   fun last [a]  = a |
       
  1851       last (a::b) = last b
       
  1852 
       
  1853   fun but_last [a] = [] |
       
  1854       but_last (a::b) = a::(but_last b)
       
  1855 
       
  1856   fun foldr f [] = (fn x => x) |
       
  1857       foldr f (x :: xs) = (f x) o  (foldr f xs)
       
  1858 
       
  1859   fun concat [] = [] |
       
  1860       concat (x :: xs) = x @ concat xs
       
  1861 
       
  1862   fun match_any ctxt pats tm = 
       
  1863               fold 
       
  1864                  (fn pat => fn b => (b orelse Pattern.matches 
       
  1865                           (ctxt |> Proof_Context.theory_of) (pat, tm))) 
       
  1866                  pats false
       
  1867 
       
  1868   fun is_ps_term (Const (@{const_name ps}, _) $ _) = true
       
  1869     | is_ps_term _ = false
       
  1870 
       
  1871   fun string_of_term ctxt t = t |> Syntax.pretty_term ctxt |> Pretty.str_of
       
  1872   fun string_of_cterm ctxt ct = ct |> term_of |> string_of_term ctxt
       
  1873   fun pterm ctxt t =
       
  1874           t |> string_of_term ctxt |> tracing ctxt
       
  1875   fun pcterm ctxt ct = ct |> string_of_cterm ctxt |> tracing ctxt
       
  1876   fun string_for_term ctxt t =
       
  1877        Print_Mode.setmp (filter (curry (op =) Symbol.xsymbolsN)
       
  1878                    (print_mode_value ())) (Syntax.string_of_term ctxt) t
       
  1879          |> String.translate (fn c => if Char.isPrint c then str c else "")
       
  1880          |> Sledgehammer_Util.simplify_spaces  
       
  1881   fun string_for_cterm ctxt ct = ct |> term_of |> string_for_term ctxt
       
  1882   fun attemp tac = fn i => fn st => (tac i st) handle exn => Seq.empty
       
  1883   fun try_tac tac = fn i => fn st => (tac i st) handle exn => (Seq.single st)       
       
  1884  (* aux end *) 
       
  1885 *}
       
  1886 
       
  1887 ML {* (* Functions specific to Hoare triples *)
       
  1888   fun get_pre ctxt t = 
       
  1889     let val pat = term_of @{cpat "\<lbrace>?P\<rbrace> ?c \<lbrace>?Q\<rbrace>"} 
       
  1890         val env = match ctxt pat t 
       
  1891     in inst env (term_of @{cpat "?P::tresource set \<Rightarrow> bool"}) end
       
  1892 
       
  1893   fun can_process ctxt t = ((get_pre ctxt t; true) handle _ => false)
       
  1894 
       
  1895   fun get_post ctxt t = 
       
  1896     let val pat = term_of @{cpat "\<lbrace>?P\<rbrace> ?c \<lbrace>?Q\<rbrace>"} 
       
  1897         val env = match ctxt pat t 
       
  1898     in inst env (term_of @{cpat "?Q::tresource set \<Rightarrow> bool"}) end;
       
  1899 
       
  1900   fun get_mid ctxt t = 
       
  1901     let val pat = term_of @{cpat "\<lbrace>?P\<rbrace> ?c \<lbrace>?Q\<rbrace>"} 
       
  1902         val env = match ctxt pat t 
       
  1903     in inst env (term_of @{cpat "?c::tresource set \<Rightarrow> bool"}) end;
       
  1904 
       
  1905   fun is_pc_term (Const (@{const_name st}, _) $ _) = true
       
  1906     | is_pc_term _ = false
       
  1907 
       
  1908   fun mk_pc_term x =
       
  1909      Const (@{const_name st}, @{typ "nat \<Rightarrow> tresource set \<Rightarrow> bool"}) $ Free (x, @{typ "nat"})
       
  1910 
       
  1911   val sconj_term = term_of @{cterm "sep_conj::tassert \<Rightarrow> tassert \<Rightarrow> tassert"}
       
  1912 
       
  1913   fun mk_ps_term x =
       
  1914      Const (@{const_name ps}, @{typ "int \<Rightarrow> tresource set \<Rightarrow> bool"}) $ Free (x, @{typ "int"})
       
  1915 
       
  1916   fun atomic tac  = ((SOLVED' tac) ORELSE' (K all_tac))
       
  1917 
       
  1918   fun pure_sep_conj_ac_tac ctxt = 
       
  1919          (auto_tac (ctxt |> Simplifier.map_simpset (fn ss => ss addsimps @{thms sep_conj_ac}))
       
  1920           |> SELECT_GOAL)
       
  1921 
       
  1922 
       
  1923   fun potential_facts ctxt prop = Facts.could_unify (Proof_Context.facts_of ctxt) 
       
  1924                                        ((Term.strip_all_body prop) |> Logic.strip_imp_concl);
       
  1925 
       
  1926   fun some_fact_tac ctxt = SUBGOAL (fn (goal, i) => 
       
  1927                                       (Method.insert_tac (potential_facts ctxt goal) i) THEN
       
  1928                                       (pure_sep_conj_ac_tac ctxt i));
       
  1929 
       
  1930   fun sep_conj_ac_tac ctxt = 
       
  1931      (SOLVED' (auto_tac (ctxt |> Simplifier.map_simpset (fn ss => ss addsimps @{thms sep_conj_ac}))
       
  1932        |> SELECT_GOAL)) ORELSE' (atomic (some_fact_tac ctxt))
       
  1933 *}
       
  1934 
       
  1935 ML {*
       
  1936 type HoareTriple = {
       
  1937   binding: binding,
       
  1938   can_process: Proof.context -> term -> bool,
       
  1939   get_pre: Proof.context -> term -> term,
       
  1940   get_mid: Proof.context -> term -> term,
       
  1941   get_post: Proof.context -> term -> term,
       
  1942   is_pc_term: term -> bool,
       
  1943   mk_pc_term: string -> term,
       
  1944   sconj_term: term,
       
  1945   sep_conj_ac_tac: Proof.context -> int -> tactic,
       
  1946   hoare_seq1: thm,
       
  1947   hoare_seq2: thm,
       
  1948   pre_stren: thm,
       
  1949   post_weaken: thm,
       
  1950   frame_rule: thm
       
  1951 }
       
  1952 
       
  1953   val tm_triple = {binding = @{binding "tm_triple"}, 
       
  1954                    can_process = can_process,
       
  1955                    get_pre = get_pre,
       
  1956                    get_mid = get_mid,
       
  1957                    get_post = get_post,
       
  1958                    is_pc_term = is_pc_term,
       
  1959                    mk_pc_term = mk_pc_term,
       
  1960                    sconj_term = sconj_term,
       
  1961                    sep_conj_ac_tac = sep_conj_ac_tac,
       
  1962                    hoare_seq1 = @{thm t_hoare_seq1},
       
  1963                    hoare_seq2 = @{thm t_hoare_seq2},
       
  1964                    pre_stren = @{thm tm.pre_stren},
       
  1965                    post_weaken = @{thm tm.post_weaken},
       
  1966                    frame_rule = @{thm tm.frame_rule}
       
  1967                   }:HoareTriple
       
  1968 *}
       
  1969 
       
  1970 ML {*
       
  1971   val _ = data_slot "HoareTriples" "HoareTriple list" "[]"
       
  1972 *}
       
  1973 
       
  1974 ML {*
       
  1975   val _ = HoareTriples_store [tm_triple]
       
  1976 *}
       
  1977 
       
  1978 ML {* (* aux1 functions *)
       
  1979 
       
  1980 fun focus_params t ctxt =
       
  1981   let
       
  1982     val (xs, Ts) =
       
  1983       split_list (Term.variant_frees t (Term.strip_all_vars t));  (*as they are printed :-*)
       
  1984     (* val (xs', ctxt') = variant_fixes xs ctxt; *)
       
  1985     (* val ps = xs' ~~ Ts; *)
       
  1986     val ps = xs ~~ Ts
       
  1987     val (_, ctxt'') = ctxt |> Variable.add_fixes xs
       
  1988   in ((xs, ps), ctxt'') end
       
  1989 
       
  1990 fun focus_concl ctxt t =
       
  1991   let
       
  1992     val ((xs, ps), ctxt') = focus_params t ctxt
       
  1993     val t' = Term.subst_bounds (rev (map Free ps), Term.strip_all_body t);
       
  1994   in (t' |> Logic.strip_imp_concl, ctxt') end
       
  1995 
       
  1996   fun get_concl ctxt (i, state) = 
       
  1997               nth (Thm.prems_of state) (i - 1) 
       
  1998                             |> focus_concl ctxt |> (fn (x, _) => x |> HOLogic.dest_Trueprop)
       
  1999  (* aux1 end *)
       
  2000 *}
       
  2001 
       
  2002 ML {*
       
  2003   fun indexing xs = upto (0, length xs - 1) ~~ xs
       
  2004   fun select_idxs idxs ps = 
       
  2005       map_index (fn (i, e) => if (member (op =) idxs i) then [e] else []) ps |> flat
       
  2006   fun select_out_idxs idxs ps = 
       
  2007       map_index (fn (i, e) => if (member (op =) idxs i) then [] else [e]) ps |> flat
       
  2008   fun match_pres ctxt mf env ps qs = 
       
  2009       let  fun sel_match mf env [] qs = [(env, [])]
       
  2010              | sel_match mf env (p::ps) qs = 
       
  2011                   let val pm = map (fn (i, q) => [(i, 
       
  2012                                       let val _ = tracing ctxt "Matching:"
       
  2013                                           val _ = [p, q] |>
       
  2014                                             (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
       
  2015                                           val r = mf p q env 
       
  2016                                       in r end)]
       
  2017                                       handle _ => (
       
  2018                                       let val _ = tracing ctxt "Failed matching:"
       
  2019                                           val _ = [p, q] |>
       
  2020                                             (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
       
  2021                                       in [] end)) qs |> flat
       
  2022                       val r = pm |> map (fn (i, env') => 
       
  2023                                 let val qs' = filter_out (fn (j, q) => j = i) qs
       
  2024                                 in  sel_match mf env' ps qs' |> 
       
  2025                                       map (fn (env'', idxs) => (env'', i::idxs)) end) 
       
  2026                         |> flat
       
  2027             in r end
       
  2028    in sel_match mf env ps (indexing qs) end
       
  2029 
       
  2030   fun provable tac ctxt goal = 
       
  2031           let 
       
  2032               val _ = tracing ctxt "Provable trying to prove:"
       
  2033               val _ = [goal] |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
       
  2034           in
       
  2035              (Goal.prove ctxt [] [] goal (fn {context, ...} => tac context 1); true)
       
  2036                         handle exn => false
       
  2037           end
       
  2038   fun make_sense tac ctxt thm_assms env  = 
       
  2039                 thm_assms |>  map (inst env) |> forall (provable tac ctxt)
       
  2040 *}
       
  2041 
       
  2042 ML {*
       
  2043   fun triple_for ctxt goal = 
       
  2044     filter (fn trpl => (#can_process trpl) ctxt goal) (HoareTriples.get (Proof_Context.theory_of ctxt)) |> hd
       
  2045 
       
  2046   fun step_terms_for thm goal ctxt = 
       
  2047     let
       
  2048        val _ = tracing ctxt "This is the new version of step_terms_for!"
       
  2049        val _ = tracing ctxt "Tring to find triple processor: TP"
       
  2050        val TP = triple_for ctxt goal
       
  2051        val _ = #binding TP |> Binding.name_of |> tracing ctxt
       
  2052        fun mk_sep_conj tms = foldr (fn tm => fn rtm => 
       
  2053               ((#sconj_term TP)$tm$rtm)) (but_last tms) (last tms)
       
  2054        val thm_concl = thm |> prop_of 
       
  2055                  |> Logic.strip_imp_concl |> HOLogic.dest_Trueprop 
       
  2056        val thm_assms = thm |> prop_of 
       
  2057            |> Logic.strip_imp_prems 
       
  2058        val cmd_pat = thm_concl |> #get_mid TP ctxt |> get_cmd ctxt 
       
  2059        val cmd = goal |> #get_mid TP ctxt |> get_cmd ctxt
       
  2060        val _ = tracing ctxt "matching command ... "
       
  2061        val _ = tracing ctxt "cmd_pat = "
       
  2062        val _ = pterm ctxt cmd_pat
       
  2063        val (hcmd, env1, is_last) =  (cmd, match ctxt cmd_pat cmd, true)
       
  2064              handle exn => (cmd |> get_hcmd, match ctxt cmd_pat (cmd |> get_hcmd), false)
       
  2065        val _ = tracing ctxt "hcmd ="
       
  2066        val _ = pterm ctxt hcmd
       
  2067        val _ = tracing ctxt "match command succeed! "
       
  2068        val _ = tracing ctxt "pres ="
       
  2069        val pres = goal |> #get_pre TP ctxt |> break_sep_conj 
       
  2070        val _ = pres |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
       
  2071        val _ = tracing ctxt "pre_pats ="
       
  2072        val pre_pats = thm_concl |> #get_pre TP ctxt |> inst env1 |> break_sep_conj
       
  2073        val _ = pre_pats |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
       
  2074        val _ = tracing ctxt "post_pats ="
       
  2075        val post_pats = thm_concl |> #get_post TP ctxt |> inst env1 |> break_sep_conj
       
  2076        val _ = post_pats |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
       
  2077        val _ = tracing ctxt "Calculating sols"
       
  2078        val sols = match_pres ctxt (match_env ctxt) env1 pre_pats pres 
       
  2079        val _ = tracing ctxt "End calculating sols, sols ="
       
  2080        val _ = tracing ctxt (@{make_string} sols)
       
  2081        val _ = tracing ctxt "Calulating env2 and idxs"
       
  2082        val (env2, idxs) = filter (fn (env, idxs) => make_sense (#sep_conj_ac_tac TP) 
       
  2083                              ctxt thm_assms env) sols |> hd
       
  2084        val _ = tracing ctxt "End calculating env2 and idxs"
       
  2085        val _ = tracing ctxt "mterms ="
       
  2086        val mterms = select_idxs idxs pres |> map (inst env2) 
       
  2087        val _ = mterms |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
       
  2088        val _ = tracing ctxt "nmterms = "
       
  2089        val nmterms = select_out_idxs idxs pres |> map (inst env2) 
       
  2090        val _ = nmterms |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
       
  2091        val pre_cond = pre_pats |> map (inst env2) |> mk_sep_conj
       
  2092        val post_cond = post_pats |> map (inst env2) |> mk_sep_conj 
       
  2093        val post_cond_npc  = 
       
  2094                post_cond |> break_sep_conj |> filter (not_pred (#is_pc_term TP)) 
       
  2095                |> (fn x => x @ nmterms) |> mk_sep_conj |> cterm_of (Proof_Context.theory_of ctxt)
       
  2096        fun mk_frame cond rest  = 
       
  2097              if rest = [] then cond else ((#sconj_term TP)$ cond) $ (mk_sep_conj rest)
       
  2098        val pre_cond_frame = mk_frame pre_cond nmterms |> cterm_of (Proof_Context.theory_of ctxt)
       
  2099        fun post_cond_frame j' = post_cond |> break_sep_conj |> filter (not_pred (#is_pc_term TP)) 
       
  2100                |> (fn x => [#mk_pc_term TP j']@x) |> mk_sep_conj
       
  2101                |> (fn x => mk_frame x nmterms)
       
  2102                |> cterm_of (Proof_Context.theory_of ctxt)
       
  2103        val need_frame = (nmterms <> [])
       
  2104     in 
       
  2105          (post_cond_npc,
       
  2106           pre_cond_frame, 
       
  2107           post_cond_frame, need_frame, is_last)       
       
  2108     end
       
  2109 *}
       
  2110 
       
  2111 ML {*
       
  2112   fun step_tac ctxt thm i state = 
       
  2113      let  
       
  2114        val _ = tracing ctxt "This is the new version of step_tac"
       
  2115        val (goal, ctxt) = nth (Thm.prems_of state) (i - 1) 
       
  2116                   |> focus_concl ctxt 
       
  2117                   |> (apfst HOLogic.dest_Trueprop)
       
  2118        val _ = tracing ctxt "step_tac: goal = "
       
  2119        val _ = goal |> pterm ctxt
       
  2120        val _ = tracing ctxt "Start to calculate intermediate terms ... "
       
  2121        val (post_cond_npc, pre_cond_frame, post_cond_frame, need_frame, is_last) 
       
  2122                         = step_terms_for thm goal ctxt
       
  2123        val _ = tracing ctxt "Tring to find triple processor: TP"
       
  2124        val TP = triple_for ctxt goal
       
  2125        val _ = #binding TP |> Binding.name_of |> tracing ctxt
       
  2126        fun mk_sep_conj tms = foldr (fn tm => fn rtm => 
       
  2127               ((#sconj_term TP)$tm$rtm)) (but_last tms) (last tms)
       
  2128        val _ = tracing ctxt "Calculate intermediate terms finished! "
       
  2129        val post_cond_npc_str = post_cond_npc |> string_for_cterm ctxt
       
  2130        val pre_cond_frame_str = pre_cond_frame |> string_for_cterm ctxt
       
  2131        val _ = tracing ctxt "step_tac: post_cond_npc = "
       
  2132        val _ = post_cond_npc |> pcterm ctxt
       
  2133        val _ = tracing ctxt "step_tac: pre_cond_frame = "
       
  2134        val _ = pre_cond_frame |> pcterm ctxt
       
  2135        fun tac1 i state = 
       
  2136              if is_last then (K all_tac) i state else
       
  2137               res_inst_tac ctxt [(("q", 0), post_cond_npc_str)] 
       
  2138                                           (#hoare_seq1 TP) i state
       
  2139        fun tac2 i state = res_inst_tac ctxt [(("p", 0), pre_cond_frame_str)] 
       
  2140                                           (#pre_stren TP) i state
       
  2141        fun foc_tac post_cond_frame ctxt i state  =
       
  2142            let
       
  2143                val goal = get_concl ctxt (i, state)
       
  2144                val pc_term = goal |> #get_post TP ctxt |> break_sep_conj 
       
  2145                                 |> filter (#is_pc_term TP) |> hd
       
  2146                val (_$Free(j', _)) = pc_term
       
  2147                val psd = post_cond_frame j'
       
  2148                val str_psd = psd |> string_for_cterm ctxt
       
  2149                val _ = tracing ctxt "foc_tac: psd = "
       
  2150                val _ = psd |> pcterm ctxt
       
  2151            in 
       
  2152                res_inst_tac ctxt [(("q", 0), str_psd)] 
       
  2153                                           (#post_weaken TP) i state
       
  2154            end
       
  2155      val frame_tac = if need_frame then (rtac (#frame_rule TP)) else (K all_tac)
       
  2156      val print_tac = if (Config.get ctxt trace_step) then Tactical.print_tac else (K all_tac)
       
  2157      val tac = (tac1 THEN' (K (print_tac "tac1 success"))) THEN' 
       
  2158                (tac2 THEN' (K (print_tac "tac2 success"))) THEN' 
       
  2159                ((foc_tac post_cond_frame ctxt) THEN' (K (print_tac "foc_tac success"))) THEN' 
       
  2160                (frame_tac  THEN' (K (print_tac "frame_tac success"))) THEN' 
       
  2161                (((rtac thm) THEN_ALL_NEW (#sep_conj_ac_tac TP ctxt)) THEN' (K (print_tac "rtac thm success"))) THEN' 
       
  2162                (K (ALLGOALS (atomic (#sep_conj_ac_tac TP ctxt)))) THEN'
       
  2163                (* (#sep_conj_ac_tac TP ctxt) THEN' (#sep_conj_ac_tac TP ctxt) THEN'  *)
       
  2164                (K prune_params_tac)
       
  2165    in 
       
  2166         tac i state
       
  2167    end
       
  2168 
       
  2169   fun unfold_cell_tac ctxt = (Local_Defs.unfold_tac ctxt @{thms one_def zero_def})
       
  2170   fun fold_cell_tac ctxt = (Local_Defs.fold_tac ctxt @{thms one_def zero_def})
       
  2171 *}
       
  2172 
       
  2173 ML {*
       
  2174   fun sg_step_tac thms ctxt =
       
  2175      let val sg_step_tac' =  (map (fn thm  => attemp (step_tac ctxt thm)) thms)
       
  2176                                (* @ [attemp (goto_tac ctxt)]  *)
       
  2177                               |> FIRST'
       
  2178          val sg_step_tac'' = (K (unfold_cell_tac ctxt)) THEN' sg_step_tac' THEN' (K (fold_cell_tac ctxt))
       
  2179      in
       
  2180          sg_step_tac' ORELSE' sg_step_tac''
       
  2181      end
       
  2182   fun steps_tac thms ctxt i = REPEAT (sg_step_tac thms ctxt i) THEN (prune_params_tac)
       
  2183 *}
       
  2184 
       
  2185 method_setup hstep = {* 
       
  2186   Attrib.thms >> (fn thms => fn ctxt =>
       
  2187                     (SIMPLE_METHOD' (fn i => 
       
  2188                        sg_step_tac (thms@(StepRules.get ctxt)) ctxt i)))
       
  2189   *} 
       
  2190   "One step symbolic execution using step theorems."
       
  2191 
       
  2192 method_setup hsteps = {* 
       
  2193   Attrib.thms >> (fn thms => fn ctxt =>
       
  2194                     (SIMPLE_METHOD' (fn i => 
       
  2195                        steps_tac (thms@(StepRules.get ctxt)) ctxt i)))
       
  2196   *} 
       
  2197   "Sequential symbolic execution using step theorems."
       
  2198 
       
  2199 
       
  2200 ML {*
       
  2201   fun goto_tac ctxt thm i state = 
       
  2202      let  
       
  2203        val (goal, ctxt) = nth (Thm.prems_of state) (i - 1) 
       
  2204                              |> focus_concl ctxt |> (apfst HOLogic.dest_Trueprop)
       
  2205        val _ = tracing ctxt "goto_tac: goal = "
       
  2206        val _ = goal |> string_of_term ctxt |> tracing ctxt
       
  2207        val (post_cond_npc, pre_cond_frame, post_cond_frame, need_frame, is_last) 
       
  2208                         = step_terms_for thm goal ctxt
       
  2209        val _ = tracing ctxt "Tring to find triple processor: TP"
       
  2210        val TP = triple_for ctxt goal
       
  2211        val _ = #binding TP |> Binding.name_of |> tracing ctxt
       
  2212        val _ = tracing ctxt "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
       
  2213        val post_cond_npc_str = post_cond_npc |> string_for_cterm ctxt
       
  2214        val pre_cond_frame_str = pre_cond_frame |> string_for_cterm ctxt
       
  2215        val _ = tracing ctxt "goto_tac: post_cond_npc = "
       
  2216        val _ = post_cond_npc_str |> tracing ctxt
       
  2217        val _ = tracing ctxt "goto_tac: pre_cond_frame = "
       
  2218        val _ = pre_cond_frame_str |> tracing ctxt
       
  2219        fun tac1 i state = 
       
  2220              if is_last then (K all_tac) i state else
       
  2221               res_inst_tac ctxt [] 
       
  2222                                           (#hoare_seq2 TP) i state
       
  2223        fun tac2 i state = res_inst_tac ctxt [(("p", 0), pre_cond_frame_str)] 
       
  2224                                           (#pre_stren TP) i state
       
  2225        fun foc_tac post_cond_frame ctxt i state  =
       
  2226            let
       
  2227                val goal = get_concl ctxt (i, state)
       
  2228                val pc_term = goal |> #get_post TP ctxt |> break_sep_conj 
       
  2229                                 |> filter (#is_pc_term TP) |> hd
       
  2230                val (_$Free(j', _)) = pc_term
       
  2231                val psd = post_cond_frame j'
       
  2232                val str_psd = psd |> string_for_cterm ctxt
       
  2233                val _ = tracing ctxt "goto_tac: psd = "
       
  2234                val _ = str_psd |> tracing ctxt
       
  2235            in 
       
  2236                res_inst_tac ctxt [(("q", 0), str_psd)] 
       
  2237                                           (#post_weaken TP) i state
       
  2238            end
       
  2239      val frame_tac = if need_frame then (rtac (#frame_rule TP)) else (K all_tac)
       
  2240      val _ = tracing ctxt "goto_tac: starting to apply tacs"
       
  2241      val print_tac = if (Config.get ctxt trace_step) then Tactical.print_tac else (K all_tac)
       
  2242      val tac = (tac1 THEN' (K (print_tac "tac1 success"))) THEN' 
       
  2243                (tac2 THEN' (K (print_tac "tac2 success"))) THEN' 
       
  2244                ((foc_tac post_cond_frame ctxt) THEN' (K (print_tac "foc_tac success"))) THEN' 
       
  2245                (frame_tac THEN' (K (print_tac "frame_tac success"))) THEN' 
       
  2246                ((((rtac thm) THEN_ALL_NEW (#sep_conj_ac_tac TP ctxt))) THEN'
       
  2247                  (K (print_tac "rtac success"))
       
  2248                ) THEN' 
       
  2249                (K (ALLGOALS (atomic (#sep_conj_ac_tac TP ctxt)))) THEN'
       
  2250                (K prune_params_tac)
       
  2251    in 
       
  2252         tac i state
       
  2253    end
       
  2254 *}
       
  2255 
       
  2256 ML {*
       
  2257   fun sg_goto_tac thms ctxt =
       
  2258      let val sg_goto_tac' =  (map (fn thm  => attemp (goto_tac ctxt thm)) thms)
       
  2259                               |> FIRST'
       
  2260          val sg_goto_tac'' = (K (unfold_cell_tac ctxt)) THEN' sg_goto_tac' THEN' (K (fold_cell_tac ctxt))
       
  2261      in
       
  2262          sg_goto_tac' ORELSE' sg_goto_tac''
       
  2263      end
       
  2264   fun gotos_tac thms ctxt i = REPEAT (sg_goto_tac thms ctxt i) THEN (prune_params_tac)
       
  2265 *}
       
  2266 
       
  2267 method_setup hgoto = {* 
       
  2268   Attrib.thms >> (fn thms => fn ctxt =>
       
  2269                     (SIMPLE_METHOD' (fn i => 
       
  2270                        sg_goto_tac (thms@(StepRules.get ctxt)) ctxt i)))
       
  2271   *} 
       
  2272   "One step symbolic execution using goto theorems."
       
  2273 
       
  2274 subsection {* Tactic for forward reasoning *}
       
  2275 
       
  2276 ML {*
       
  2277 fun mk_msel_rule ctxt conclusion idx term =
       
  2278 let 
       
  2279   val cjt_count = term |> break_sep_conj |> length
       
  2280   fun variants nctxt names = fold_map Name.variant names nctxt;
       
  2281 
       
  2282   val (state, nctxt0) = Name.variant "s" (Variable.names_of ctxt);
       
  2283 
       
  2284   fun sep_conj_prop cjts =
       
  2285         FunApp.fun_app_free
       
  2286           (FunApp.fun_app_foldr SepConj.sep_conj_term cjts) state
       
  2287         |> HOLogic.mk_Trueprop;
       
  2288 
       
  2289   (* concatenate string and string of an int *)
       
  2290   fun conc_str_int str int = str ^ Int.toString int;
       
  2291 
       
  2292   (* make the conjunct names *)
       
  2293   val (cjts, _) = ListExtra.range 1 cjt_count
       
  2294                   |> map (conc_str_int "a") |> variants nctxt0;
       
  2295 
       
  2296  fun skel_sep_conj names (Const (@{const_name sep_conj}, _) $ t1 $ t2 $ y) =
       
  2297      (let val nm1 = take (length (break_sep_conj t1)) names 
       
  2298           val nm2 = drop (length (break_sep_conj t1)) names
       
  2299           val t1' = skel_sep_conj nm1 t1 
       
  2300           val t2' = skel_sep_conj nm2 t2 
       
  2301       in (SepConj.sep_conj_term $ t1' $ t2' $ y) end)
       
  2302   | skel_sep_conj names (Const (@{const_name sep_conj}, _) $ t1 $ t2) =
       
  2303      (let val nm1 = take (length (break_sep_conj t1)) names 
       
  2304           val nm2 = drop (length (break_sep_conj t1)) names
       
  2305           val t1' = skel_sep_conj nm1 t1 
       
  2306           val t2' = skel_sep_conj nm2 t2 
       
  2307      in (SepConj.sep_conj_term $ t1' $ t2') end)
       
  2308    | skel_sep_conj names (Abs (x, y, t $ Bound 0)) = 
       
  2309                   let val t' = (skel_sep_conj names t) 
       
  2310                       val ty' = t' |> type_of |> domain_type
       
  2311                   in (Abs (x, ty', (t' $ Bound 0))) end
       
  2312   | skel_sep_conj names t = Free (hd names, SepConj.sep_conj_term |> type_of |> domain_type);
       
  2313   val _ = tracing ctxt "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
       
  2314   val oskel = skel_sep_conj cjts term;
       
  2315   val _ = tracing ctxt "yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy"
       
  2316   val ttt = oskel |> type_of
       
  2317   val _ = tracing ctxt "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz"
       
  2318   val orig = FunApp.fun_app_free oskel state |> HOLogic.mk_Trueprop
       
  2319   val _ = tracing ctxt "uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu"
       
  2320   val is_selected = member (fn (x, y) => x = y) idx
       
  2321   val all_idx = ListExtra.range 0 cjt_count
       
  2322   val selected_idx = idx
       
  2323   val unselected_idx = filter_out is_selected all_idx
       
  2324   val selected = map (nth cjts) selected_idx
       
  2325   val unselected = map (nth cjts) unselected_idx
       
  2326 
       
  2327   fun fun_app_foldr f [a,b] = FunApp.fun_app_free (FunApp.fun_app_free f a) b
       
  2328   | fun_app_foldr f [a] = Free (a, SepConj.sep_conj_term |> type_of |> domain_type)
       
  2329   | fun_app_foldr f (x::xs) = (FunApp.fun_app_free f x) $ (fun_app_foldr f xs)
       
  2330   | fun_app_foldr _ _ = raise Fail "fun_app_foldr";
       
  2331 
       
  2332   val reordered_skel = 
       
  2333       if unselected = [] then (fun_app_foldr SepConj.sep_conj_term selected)
       
  2334           else (SepConj.sep_conj_term $ (fun_app_foldr SepConj.sep_conj_term selected)
       
  2335                         $ (fun_app_foldr SepConj.sep_conj_term unselected))
       
  2336 
       
  2337   val reordered =  FunApp.fun_app_free reordered_skel state  |> HOLogic.mk_Trueprop
       
  2338   val goal = Logic.mk_implies
       
  2339                (if conclusion then (orig, reordered) else (reordered, orig));
       
  2340   val rule =
       
  2341    Goal.prove ctxt [] [] goal (fn _ => 
       
  2342         auto_tac (ctxt |> Simplifier.map_simpset (fn ss => ss addsimps @{thms sep_conj_ac})))
       
  2343          |> Drule.export_without_context
       
  2344 in
       
  2345    rule
       
  2346 end
       
  2347 *}
       
  2348 
       
  2349 lemma fwd_rule: 
       
  2350   assumes "\<And> s . U s \<longrightarrow> V s"
       
  2351   shows "(U ** RR) s \<Longrightarrow> (V ** RR) s"
       
  2352   by (metis assms sep_globalise)
       
  2353 
       
  2354 ML {*
       
  2355   fun sg_sg_fwd_tac ctxt thm pos i state = 
       
  2356   let  
       
  2357 
       
  2358   val tracing  = (fn str =>
       
  2359                    if (Config.get ctxt trace_fwd) then Output.tracing str else ())
       
  2360   fun pterm t =
       
  2361           t |> string_of_term ctxt |> tracing
       
  2362   fun pcterm ct = ct |> string_of_cterm ctxt |> tracing
       
  2363 
       
  2364   fun atm thm = 
       
  2365   let
       
  2366   (* val thm = thm |> Drule.forall_intr_vars *)
       
  2367   val res =  thm |> cprop_of |> Object_Logic.atomize
       
  2368   val res' = Raw_Simplifier.rewrite_rule [res] thm
       
  2369   in res' end
       
  2370 
       
  2371   fun find_idx ctxt pats terms = 
       
  2372      let val result = 
       
  2373               map (fn pat => (find_index (fn trm => ((match ctxt pat trm; true)
       
  2374                                               handle _ => false)) terms)) pats
       
  2375      in (assert_all (fn x => x >= 0) result (K "match of precondition failed"));
       
  2376          result
       
  2377      end
       
  2378 
       
  2379   val goal = nth (Drule.cprems_of state) (i - 1) |> term_of
       
  2380   val _ = tracing "goal = "
       
  2381   val _ = goal |> pterm
       
  2382   
       
  2383   val ctxt_orig = ctxt
       
  2384 
       
  2385   val ((ps, goal), ctxt) = Variable.focus goal ctxt_orig
       
  2386   
       
  2387   val prems = goal |> Logic.strip_imp_prems 
       
  2388 
       
  2389   val cprem = nth prems (pos - 1)
       
  2390   val (_ $ (the_prem $ _)) = cprem
       
  2391   val cjts = the_prem |> break_sep_conj
       
  2392   val thm_prems = thm |> cprems_of |> hd |> Thm.dest_arg |> Thm.dest_fun
       
  2393   val thm_assms = thm |> cprems_of |> tl |> map term_of
       
  2394   val thm_cjts = thm_prems |> term_of |> break_sep_conj
       
  2395   val thm_trm = thm |> prop_of
       
  2396 
       
  2397   val _ = tracing "cjts = "
       
  2398   val _ = cjts |> map pterm
       
  2399   val _ = tracing "thm_cjts = "
       
  2400   val _ = thm_cjts |> map pterm
       
  2401 
       
  2402   val _ = tracing "Calculating sols"
       
  2403   val sols = match_pres ctxt (match_env ctxt) empty_env thm_cjts cjts
       
  2404   val _ = tracing "End calculating sols, sols ="
       
  2405   val _ = tracing (@{make_string} sols)
       
  2406   val _ = tracing "Calulating env2 and idxs"
       
  2407   val (env2, idx) = filter (fn (env, idxs) => make_sense sep_conj_ac_tac ctxt thm_assms env) sols |> hd
       
  2408   val ([thm'_trm], ctxt') = thm_trm |> inst env2 |> single 
       
  2409                             |> (fn trms => Variable.import_terms true trms ctxt)
       
  2410   val thm'_prem  = Logic.strip_imp_prems thm'_trm |> hd 
       
  2411   val thm'_concl = Logic.strip_imp_concl thm'_trm 
       
  2412   val thm'_prem = (Goal.prove ctxt' [] [thm'_prem] thm'_concl 
       
  2413                   (fn {context, prems = [prem]} =>  
       
  2414                       (rtac (prem RS thm)  THEN_ALL_NEW (sep_conj_ac_tac ctxt)) 1))
       
  2415   val [thm'] = Variable.export ctxt' ctxt_orig [thm'_prem]
       
  2416   val trans_rule = 
       
  2417        mk_msel_rule ctxt true idx the_prem
       
  2418   val _ = tracing "trans_rule = "
       
  2419   val _ = trans_rule |> cprop_of |> pcterm
       
  2420   val app_rule = 
       
  2421       if (length cjts = length thm_cjts) then thm' else
       
  2422        ((thm' |> atm) RS @{thm fwd_rule})
       
  2423   val _ = tracing "app_rule = "
       
  2424   val _ = app_rule |> cprop_of |> pcterm
       
  2425   val print_tac = if (Config.get ctxt trace_fwd) then Tactical.print_tac else (K all_tac)
       
  2426   val the_tac = (dtac trans_rule THEN' (K (print_tac "dtac1 success"))) THEN'
       
  2427                 ((dtac app_rule THEN' (K (print_tac "dtac2 success"))))
       
  2428 in
       
  2429   (the_tac i state) handle _ => no_tac state
       
  2430 end
       
  2431 *}
       
  2432 
       
  2433 ML {*
       
  2434   fun sg_fwd_tac ctxt thm i state = 
       
  2435   let  
       
  2436     val goal = nth (Drule.cprems_of state) (i - 1)          
       
  2437     val prems = goal |> term_of |> Term.strip_all_body |> Logic.strip_imp_prems 
       
  2438     val posx = ListExtra.range 1 (length prems)
       
  2439   in
       
  2440       ((map (fn pos => attemp (sg_sg_fwd_tac ctxt thm pos)) posx) |> FIRST') i state
       
  2441   end
       
  2442 
       
  2443   fun fwd_tac ctxt thms i state =
       
  2444        ((map (fn thm => sg_fwd_tac ctxt thm) thms) |> FIRST') i state
       
  2445 *}
       
  2446 
       
  2447 method_setup fwd = {* 
       
  2448   Attrib.thms >> (fn thms => fn ctxt =>
       
  2449                     (SIMPLE_METHOD' (fn i => 
       
  2450                        fwd_tac ctxt (thms@(FwdRules.get ctxt))  i)))
       
  2451   *} 
       
  2452   "Forward derivation of separation implication"
       
  2453 
       
  2454 text {* Testing the fwd tactic *}
       
  2455 
       
  2456 lemma ones_abs:
       
  2457   assumes "(ones u v \<and>* ones w x) s" "w = v + 1"
       
  2458   shows "ones u x s"
       
  2459   using assms(1) unfolding assms(2)
       
  2460 proof(induct u v arbitrary: x s rule:ones_induct)
       
  2461   case (Base i j x s)
       
  2462   thus ?case by (auto elim!:condE)
       
  2463 next
       
  2464   case (Step i j x s)
       
  2465   hence h: "\<And> x s. (ones (i + 1) j \<and>* ones (j + 1) x) s \<longrightarrow> ones (i + 1) x s"
       
  2466     by metis
       
  2467   hence "(ones (i + 1) x \<and>* one i) s"
       
  2468     by (rule fwd_rule, insert Step(3), auto simp:sep_conj_ac)
       
  2469   thus ?case
       
  2470     by (smt condD ones.simps sep_conj_commute)
       
  2471 qed
       
  2472 
       
  2473 lemma one_abs: "(one m) s \<Longrightarrow> (ones m m) s"
       
  2474  by (smt cond_true_eq2 ones.simps)
       
  2475 
       
  2476 lemma ones_reps_abs: 
       
  2477   assumes "ones m n s"
       
  2478           "m \<le> n"
       
  2479   shows "(reps m n [nat (n - m)]) s"
       
  2480   using assms
       
  2481   by simp
       
  2482 
       
  2483 lemma reps_reps'_abs: 
       
  2484   assumes "(reps m n xs \<and>* zero u) s" "u = n + 1" "xs \<noteq> []"
       
  2485   shows "(reps' m u xs) s"
       
  2486   unfolding assms using assms
       
  2487   by (unfold reps'_def, simp)
       
  2488 
       
  2489 lemma reps'_abs:
       
  2490   assumes "(reps' m n xs \<and>* reps' u v ys) s" "u = n + 1"
       
  2491   shows "(reps' m v (xs @ ys)) s"
       
  2492   apply (unfold reps'_append, rule_tac x = u in EXS_intro)
       
  2493   by (insert assms, simp)
       
  2494 
       
  2495 lemmas abs_ones = one_abs ones_abs
       
  2496 
       
  2497 lemmas abs_reps' = ones_reps_abs reps_reps'_abs reps'_abs
       
  2498 
       
  2499 
       
  2500 section {* Modular TM programming and verification *}
       
  2501 
       
  2502 definition "right_until_zero = 
       
  2503                  (TL start exit. 
       
  2504                   TLabel start;
       
  2505                      if_zero exit;
       
  2506                      move_right;
       
  2507                      jmp start;
       
  2508                   TLabel exit
       
  2509                  )"
       
  2510 
       
  2511 lemma ones_false [simp]: "j < i - 1 \<Longrightarrow> (ones i j) = sep_false"
       
  2512   by (simp add:pasrt_def)
       
  2513   
       
  2514 lemma hoare_right_until_zero: 
       
  2515   "\<lbrace>st i ** ps u ** ones u (v - 1) ** zero v \<rbrace> 
       
  2516      i:[right_until_zero]:j
       
  2517    \<lbrace>st j ** ps v ** ones u (v - 1) ** zero v \<rbrace>"
       
  2518 proof(unfold right_until_zero_def, 
       
  2519       intro t_hoare_local t_hoare_label, clarify, 
       
  2520       rule t_hoare_label_last, simp, simp)
       
  2521   fix la
       
  2522   let ?body = "i :[ (if_zero la ; move_right ; jmp i) ]: la"
       
  2523   let ?j = la
       
  2524   show "\<lbrace>st i \<and>* ps u \<and>* ones u (v - 1) \<and>* zero v\<rbrace>  ?body
       
  2525         \<lbrace>st ?j \<and>* ps v \<and>* ones u (v - 1) \<and>* zero v\<rbrace>" (is "?P u (v - 1) (ones u (v - 1))")
       
  2526   proof(induct "u" "v - 1" rule:ones_induct)
       
  2527     case (Base k)
       
  2528     moreover have "\<lbrace>st i \<and>* ps v \<and>* zero v\<rbrace> ?body
       
  2529                    \<lbrace>st ?j \<and>* ps v \<and>* zero v\<rbrace>" by hsteps
       
  2530     ultimately show ?case by (auto intro!:tm.pre_condI simp:sep_conj_cond)
       
  2531   next
       
  2532     case (Step k)
       
  2533     moreover have "\<lbrace>st i \<and>* ps k \<and>* (one k \<and>* ones (k + 1) (v - 1)) \<and>* zero v\<rbrace> 
       
  2534                      i :[ (if_zero ?j ; move_right ; jmp i) ]: ?j
       
  2535                    \<lbrace>st ?j \<and>* ps v \<and>* (one k \<and>* ones (k + 1) (v - 1)) \<and>* zero v\<rbrace>"
       
  2536     proof -
       
  2537       have s1: "\<lbrace>st i \<and>* ps k \<and>* (one k \<and>* ones (k + 1) (v - 1)) \<and>* zero v\<rbrace>
       
  2538                           ?body 
       
  2539                 \<lbrace>st i \<and>* ps (k + 1) \<and>* one k \<and>* ones (k + 1) (v - 1) \<and>* zero v\<rbrace>"
       
  2540       proof(cases "k + 1 \<ge> v")
       
  2541         case True
       
  2542         with Step(1) have "v = k + 1" by arith
       
  2543         thus ?thesis
       
  2544           apply(simp add: one_def)
       
  2545           by hsteps
       
  2546       next
       
  2547         case False
       
  2548         hence eq_ones: "ones (k + 1) (v - 1) = 
       
  2549                          (one (k + 1) \<and>* ones ((k + 1) + 1) (v - 1))"
       
  2550           by simp
       
  2551         show ?thesis
       
  2552           apply(simp only: eq_ones)
       
  2553           by hsteps
       
  2554       qed
       
  2555       note Step(2)[step]
       
  2556       have s2: "\<lbrace>st i \<and>* ps (k + 1) \<and>* one k \<and>* ones (k + 1) (v - 1) \<and>* zero v\<rbrace>
       
  2557                         ?body
       
  2558                 \<lbrace>st ?j \<and>* ps v \<and>* one k \<and>* ones (k + 1) (v - 1) \<and>* zero v\<rbrace>"
       
  2559         by hsteps
       
  2560       from tm.sequencing [OF s1 s2, step] 
       
  2561       show ?thesis 
       
  2562         by (auto simp:sep_conj_ac)
       
  2563     qed
       
  2564     ultimately show ?case by simp
       
  2565   qed
       
  2566 qed
       
  2567 
       
  2568 lemma hoare_right_until_zero_gen[step]: 
       
  2569   assumes "u = v" "w = x - 1"
       
  2570   shows  "\<lbrace>st i ** ps u ** ones v w ** zero x \<rbrace> 
       
  2571               i:[right_until_zero]:j
       
  2572           \<lbrace>st j ** ps x ** ones v w ** zero x \<rbrace>"
       
  2573   by (unfold assms, rule hoare_right_until_zero)
       
  2574 
       
  2575 definition "left_until_zero = 
       
  2576                  (TL start exit. 
       
  2577                   TLabel start;
       
  2578                     if_zero exit;
       
  2579                     move_left;
       
  2580                     jmp start;
       
  2581                   TLabel exit
       
  2582                  )"
       
  2583 
       
  2584 lemma hoare_left_until_zero: 
       
  2585   "\<lbrace>st i ** ps v ** zero u ** ones (u + 1) v \<rbrace> 
       
  2586      i:[left_until_zero]:j
       
  2587    \<lbrace>st j ** ps u ** zero u ** ones (u + 1) v \<rbrace>"
       
  2588 proof(unfold left_until_zero_def, 
       
  2589       intro t_hoare_local t_hoare_label, clarify, 
       
  2590       rule t_hoare_label_last, simp+)
       
  2591   fix la
       
  2592   let ?body = "i :[ (if_zero la ; move_left ; jmp i) ]: la"
       
  2593   let ?j = la
       
  2594   show "\<lbrace>st i \<and>* ps v \<and>* zero u \<and>* ones (u + 1) v\<rbrace> ?body
       
  2595         \<lbrace>st ?j \<and>* ps u \<and>* zero u \<and>* ones (u + 1) v\<rbrace>"
       
  2596   proof(induct "u+1" v  rule:ones_rev_induct)
       
  2597     case (Base k)
       
  2598     thus ?case
       
  2599       by (simp add:sep_conj_cond, intro tm.pre_condI, simp, hstep)
       
  2600   next
       
  2601     case (Step k)
       
  2602     have "\<lbrace>st i \<and>* ps k \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace> 
       
  2603                ?body
       
  2604           \<lbrace>st ?j \<and>* ps u \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace>"
       
  2605     proof(rule tm.sequencing[where q = 
       
  2606            "st i \<and>* ps (k - 1) \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k"])
       
  2607       show "\<lbrace>st i \<and>* ps k \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace> 
       
  2608                 ?body
       
  2609             \<lbrace>st i \<and>* ps (k - 1) \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace>"
       
  2610       proof(induct "u + 1" "k - 1" rule:ones_rev_induct)
       
  2611         case Base with Step(1) have "k = u + 1" by arith
       
  2612         thus ?thesis
       
  2613           by (simp, hsteps)
       
  2614       next
       
  2615         case Step
       
  2616         show ?thesis
       
  2617           apply (unfold ones_rev[OF Step(1)], simp)
       
  2618           apply (unfold one_def)
       
  2619           by hsteps
       
  2620       qed
       
  2621     next
       
  2622       note Step(2) [step]
       
  2623       show "\<lbrace>st i \<and>* ps (k - 1) \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace> 
       
  2624                 ?body
       
  2625             \<lbrace>st ?j \<and>* ps u \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace>" by hsteps
       
  2626     qed
       
  2627     thus ?case by (unfold ones_rev[OF Step(1)], simp)
       
  2628   qed
       
  2629 qed
       
  2630 
       
  2631 lemma hoare_left_until_zero_gen[step]: 
       
  2632   assumes "u = x" "w = v + 1"
       
  2633   shows  "\<lbrace>st i ** ps u ** zero v ** ones w x \<rbrace> 
       
  2634                i:[left_until_zero]:j
       
  2635           \<lbrace>st j ** ps v ** zero v ** ones w x \<rbrace>"
       
  2636   by (unfold assms, rule hoare_left_until_zero)
       
  2637 
       
  2638 definition "right_until_one = 
       
  2639                  (TL start exit. 
       
  2640                   TLabel start;
       
  2641                      if_one exit;
       
  2642                      move_right;
       
  2643                      jmp start;
       
  2644                   TLabel exit
       
  2645                  )"
       
  2646 
       
  2647 lemma hoare_right_until_one: 
       
  2648   "\<lbrace>st i ** ps u ** zeros u (v - 1) ** one v \<rbrace> 
       
  2649      i:[right_until_one]:j
       
  2650    \<lbrace>st j ** ps v ** zeros u (v - 1) ** one v \<rbrace>"
       
  2651 proof(unfold right_until_one_def, 
       
  2652       intro t_hoare_local t_hoare_label, clarify, 
       
  2653       rule t_hoare_label_last, simp+)
       
  2654   fix la
       
  2655   let ?body = "i :[ (if_one la ; move_right ; jmp i) ]: la"
       
  2656   let ?j = la
       
  2657   show "\<lbrace>st i \<and>* ps u \<and>* zeros u (v - 1) \<and>* one v\<rbrace> ?body
       
  2658        \<lbrace>st ?j \<and>* ps v \<and>* zeros u (v - 1) \<and>* one v\<rbrace>"
       
  2659   proof(induct u "v - 1" rule:zeros_induct)
       
  2660     case (Base k)
       
  2661     thus ?case
       
  2662       by (simp add:sep_conj_cond, intro tm.pre_condI, simp, hsteps)
       
  2663   next
       
  2664     case (Step k)
       
  2665     have "\<lbrace>st i \<and>* ps k \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace> 
       
  2666             ?body
       
  2667           \<lbrace>st ?j \<and>* ps v \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace>"
       
  2668     proof(rule tm.sequencing[where q = 
       
  2669            "st i \<and>* ps (k + 1) \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v"])
       
  2670       show "\<lbrace>st i \<and>* ps k \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace> 
       
  2671                ?body
       
  2672            \<lbrace>st i \<and>* ps (k + 1) \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace>"
       
  2673       proof(induct "k + 1" "v - 1" rule:zeros_induct)
       
  2674         case Base
       
  2675         with Step(1) have eq_v: "k + 1 = v" by arith
       
  2676         from Base show ?thesis
       
  2677           apply (simp add:sep_conj_cond, intro tm.pre_condI, simp)
       
  2678           apply (hstep, clarsimp)
       
  2679           by hsteps
       
  2680       next
       
  2681         case Step
       
  2682         thus ?thesis
       
  2683           by (simp, hsteps)
       
  2684       qed
       
  2685     next
       
  2686       note Step(2)[step]
       
  2687         show "\<lbrace>st i \<and>* ps (k + 1) \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace> 
       
  2688                 ?body
       
  2689               \<lbrace>st ?j \<and>* ps v \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace>"
       
  2690           by hsteps
       
  2691     qed
       
  2692     thus ?case by (auto simp: sep_conj_ac Step(1))
       
  2693   qed
       
  2694 qed
       
  2695 
       
  2696 lemma hoare_right_until_one_gen[step]: 
       
  2697   assumes "u = v" "w = x - 1"
       
  2698   shows
       
  2699   "\<lbrace>st i ** ps u ** zeros v w ** one x \<rbrace> 
       
  2700      i:[right_until_one]:j
       
  2701    \<lbrace>st j **  ps x ** zeros v w ** one x \<rbrace>"
       
  2702   by (unfold assms, rule hoare_right_until_one)
       
  2703 
       
  2704 definition "left_until_one = 
       
  2705                  (TL start exit. 
       
  2706                   TLabel start;
       
  2707                     if_one exit;
       
  2708                     move_left;
       
  2709                     jmp start;
       
  2710                   TLabel exit
       
  2711                  )"
       
  2712 
       
  2713 lemma hoare_left_until_one: 
       
  2714   "\<lbrace>st i ** ps v ** one u ** zeros (u + 1) v \<rbrace> 
       
  2715      i:[left_until_one]:j
       
  2716    \<lbrace>st j ** ps u ** one u ** zeros (u + 1) v \<rbrace>"
       
  2717 proof(unfold left_until_one_def, 
       
  2718       intro t_hoare_local t_hoare_label, clarify, 
       
  2719       rule t_hoare_label_last, simp+)
       
  2720   fix la
       
  2721   let ?body = "i :[ (if_one la ; move_left ; jmp i) ]: la"
       
  2722   let ?j = la
       
  2723   show "\<lbrace>st i \<and>* ps v \<and>* one u \<and>* zeros (u + 1) v\<rbrace> ?body
       
  2724         \<lbrace>st ?j \<and>* ps u \<and>* one u \<and>* zeros (u + 1) v\<rbrace>"
       
  2725   proof(induct u v rule: ones'.induct)
       
  2726     fix ia ja
       
  2727     assume h: "\<not> ja < ia \<Longrightarrow>
       
  2728              \<lbrace>st i \<and>* ps (ja - 1) \<and>* one ia \<and>* zeros (ia + 1) (ja - 1)\<rbrace> ?body
       
  2729              \<lbrace>st ?j \<and>* ps ia \<and>* one ia \<and>* zeros (ia + 1) (ja - 1)\<rbrace>"
       
  2730     show "\<lbrace>st i \<and>* ps ja \<and>* one ia \<and>* zeros (ia + 1) ja\<rbrace>  ?body
       
  2731       \<lbrace>st ?j \<and>* ps ia \<and>* one ia \<and>* zeros (ia + 1) ja\<rbrace>"
       
  2732     proof(cases "ja < ia")
       
  2733       case False
       
  2734       note lt = False
       
  2735       from h[OF this] have [step]: 
       
  2736         "\<lbrace>st i \<and>* ps (ja - 1) \<and>* one ia \<and>* zeros (ia + 1) (ja - 1)\<rbrace> ?body
       
  2737          \<lbrace>st ?j \<and>* ps ia \<and>* one ia \<and>* zeros (ia + 1) (ja - 1)\<rbrace>" .
       
  2738       show ?thesis
       
  2739       proof(cases "ja = ia")
       
  2740         case True 
       
  2741         moreover
       
  2742         have "\<lbrace>st i \<and>* ps ja \<and>* one ja\<rbrace> ?body \<lbrace>st ?j \<and>* ps ja \<and>* one ja\<rbrace>" 
       
  2743           by hsteps
       
  2744         ultimately show ?thesis by auto
       
  2745       next
       
  2746         case False
       
  2747         with lt have k1: "ia < ja" by auto       
       
  2748         from zeros_rev[of "ja" "ia + 1"] this
       
  2749         have eq_zeros: "zeros (ia + 1) ja = (zeros (ia + 1) (ja - 1) \<and>* zero ja)" 
       
  2750           by simp        
       
  2751         have s1: "\<lbrace>st i \<and>* ps ja \<and>* one ia \<and>* zeros (ia + 1) (ja - 1) \<and>* zero ja\<rbrace>
       
  2752                       ?body
       
  2753                   \<lbrace>st i \<and>* ps (ja - 1) \<and>* one ia \<and>* zeros (ia + 1) (ja - 1) \<and>* zero ja\<rbrace>"
       
  2754         proof(cases "ia + 1 \<ge> ja")
       
  2755           case True
       
  2756           from k1 True have "ja = ia + 1" by arith
       
  2757           moreover have "\<lbrace>st i \<and>* ps (ia + 1) \<and>* one (ia + 1 - 1) \<and>* zero (ia + 1)\<rbrace>  
       
  2758             i :[ (if_one ?j ; move_left ; jmp i) ]: ?j 
       
  2759                 \<lbrace>st i \<and>* ps (ia + 1 - 1) \<and>* one (ia + 1 - 1) \<and>* zero (ia + 1)\<rbrace>"
       
  2760             by (hsteps)
       
  2761           ultimately show ?thesis
       
  2762             by (simp)
       
  2763         next
       
  2764           case False
       
  2765           from zeros_rev[of "ja - 1" "ia + 1"] False
       
  2766           have k: "zeros (ia + 1) (ja - 1) = 
       
  2767                       (zeros (ia + 1) (ja - 1 - 1) \<and>* zero (ja - 1))"
       
  2768             by auto
       
  2769           show ?thesis
       
  2770             apply (unfold k, simp)
       
  2771             by hsteps
       
  2772         qed      
       
  2773         have s2: "\<lbrace>st i \<and>* ps (ja - 1) \<and>* one ia \<and>* zeros (ia + 1) (ja - 1) \<and>* zero ja\<rbrace>
       
  2774                       ?body
       
  2775                   \<lbrace>st ?j \<and>* ps ia \<and>* one ia \<and>* zeros (ia + 1) (ja - 1) \<and>* zero ja\<rbrace>"
       
  2776           by hsteps
       
  2777         from tm.sequencing[OF s1 s2, step]
       
  2778         show ?thesis 
       
  2779           apply (unfold eq_zeros)
       
  2780           by hstep
       
  2781       qed (* ccc *)
       
  2782     next
       
  2783       case True
       
  2784       thus ?thesis by (auto intro:tm.hoare_sep_false)
       
  2785     qed
       
  2786   qed
       
  2787 qed
       
  2788 
       
  2789 lemma hoare_left_until_one_gen[step]: 
       
  2790   assumes "u = x" "w = v + 1"
       
  2791   shows  "\<lbrace>st i ** ps u ** one v ** zeros w x \<rbrace> 
       
  2792               i:[left_until_one]:j
       
  2793           \<lbrace>st j ** ps v ** one v ** zeros w x \<rbrace>"
       
  2794   by (unfold assms, rule hoare_left_until_one)
       
  2795 
       
  2796 definition "left_until_double_zero = 
       
  2797             (TL start exit.
       
  2798               TLabel start;
       
  2799               if_zero exit;
       
  2800               left_until_zero;
       
  2801               move_left;
       
  2802               if_one start;
       
  2803               TLabel exit)"
       
  2804 
       
  2805 declare ones.simps[simp del]
       
  2806 
       
  2807 lemma reps_simps3: "ks \<noteq> [] \<Longrightarrow> 
       
  2808   reps i j (k # ks) = (ones i (i + int k) ** zero (i + int k + 1) ** reps (i + int k + 2) j ks)"
       
  2809 by(case_tac ks, simp, simp add: reps.simps)
       
  2810 
       
  2811 lemma cond_eqI:
       
  2812   assumes h: "b \<Longrightarrow> r = s"
       
  2813   shows "(<b> ** r) = (<b> ** s)"
       
  2814 proof(cases b)
       
  2815   case True
       
  2816   from h[OF this] show ?thesis by simp
       
  2817 next
       
  2818   case False
       
  2819   thus ?thesis
       
  2820     by (unfold sep_conj_def set_ins_def pasrt_def, auto)
       
  2821 qed
       
  2822 
       
  2823 lemma reps_rev: "ks \<noteq> [] 
       
  2824        \<Longrightarrow> reps i j (ks @ [k]) =  (reps i (j - int (k + 1) - 1 ) ks \<and>* 
       
  2825                                           zero (j - int (k + 1)) \<and>* ones (j - int k) j)"
       
  2826 proof(induct ks arbitrary: i j)
       
  2827   case Nil
       
  2828   thus ?case by simp
       
  2829 next
       
  2830   case (Cons a ks)
       
  2831   show ?case
       
  2832   proof(cases "ks = []")
       
  2833     case True
       
  2834     thus ?thesis
       
  2835     proof -
       
  2836       have eq_cond: "(j = i + int a + 2 + int k) = (-2 + (j - int k) = i + int a)" by auto
       
  2837       have "(<(-2 + (j - int k) = i + int a)> \<and>*
       
  2838             one i \<and>* ones (i + 1) (i + int a) \<and>*
       
  2839             zero (i + int a + 1) \<and>* one (i + int a + 2) \<and>* ones (3 + (i + int a)) (i + int a + 2 + int k))
       
  2840             =
       
  2841             (<(-2 + (j - int k) = i + int a)> \<and>* one i \<and>* ones (i + 1) (i + int a) \<and>*
       
  2842             zero (j - (1 + int k)) \<and>* one (j - int k) \<and>* ones (j - int k + 1) j)"
       
  2843         (is "(<?X> \<and>* ?L) = (<?X> \<and>* ?R)")
       
  2844       proof(rule cond_eqI)
       
  2845         assume h: "-2 + (j - int k) = i + int a"
       
  2846         hence eqs:  "i + int a + 1 = j - (1 + int k)" 
       
  2847                     "i + int a + 2 = j - int k"
       
  2848                     "3 + (i + int a) = j - int k + 1"
       
  2849                     "(i + int a + 2 + int k) = j"
       
  2850         by auto
       
  2851         show "?L = ?R"
       
  2852           by (unfold eqs, auto simp:sep_conj_ac)
       
  2853       qed
       
  2854       with True
       
  2855       show ?thesis
       
  2856         apply (simp del:ones_simps reps.simps)
       
  2857         apply (simp add:sep_conj_cond eq_cond)
       
  2858         by (auto simp:sep_conj_ac)
       
  2859     qed
       
  2860   next
       
  2861     case False
       
  2862     from Cons(1)[OF False, of "i + int a + 2" j] this
       
  2863     show ?thesis
       
  2864       by(simp add: reps_simps3 sep_conj_ac)
       
  2865   qed
       
  2866 qed
       
  2867 
       
  2868 lemma hoare_if_one_reps:
       
  2869   assumes nn: "ks \<noteq> []"
       
  2870   shows "\<lbrace>st i ** ps v ** reps u v ks\<rbrace> 
       
  2871            i:[if_one e]:j
       
  2872         \<lbrace>st e ** ps v ** reps u v ks\<rbrace>"
       
  2873 proof(rule rev_exhaust[of ks])
       
  2874   assume "ks = []" with nn show ?thesis by simp
       
  2875 next
       
  2876   fix y ys
       
  2877   assume eq_ks: "ks = ys @ [y]"
       
  2878   show " \<lbrace>st i \<and>* ps v \<and>* reps u v ks\<rbrace>  i :[ if_one e ]: j \<lbrace>st e \<and>* ps v \<and>* reps u v ks\<rbrace>"
       
  2879   proof(cases "ys = []")
       
  2880     case False
       
  2881     have "\<lbrace>st i \<and>* ps v \<and>* reps u v (ys @ [y])\<rbrace>  i :[ if_one e ]: j \<lbrace>st e \<and>* ps v \<and>* reps u v (ys @ [y])\<rbrace>"
       
  2882       apply(unfold reps_rev[OF False], simp del:ones_simps add:ones_rev)
       
  2883       by hstep
       
  2884     thus ?thesis
       
  2885       by (simp add:eq_ks)
       
  2886   next
       
  2887     case True
       
  2888     with eq_ks
       
  2889     show ?thesis
       
  2890       apply (simp del:ones_simps add:ones_rev sep_conj_cond, intro tm.pre_condI, simp)
       
  2891       by hstep
       
  2892   qed
       
  2893 qed
       
  2894 
       
  2895 lemma hoare_if_one_reps_gen[step]:
       
  2896   assumes nn: "ks \<noteq> []" "u = w"
       
  2897   shows "\<lbrace>st i ** ps u ** reps v w ks\<rbrace> 
       
  2898            i:[if_one e]:j
       
  2899         \<lbrace>st e ** ps u ** reps v w ks\<rbrace>"
       
  2900   by (unfold `u = w`, rule hoare_if_one_reps[OF `ks \<noteq> []`])
       
  2901 
       
  2902 lemma hoare_if_zero_ones_false[step]:
       
  2903   assumes "\<not> w < u" "v = w"
       
  2904   shows  "\<lbrace>st i \<and>* ps v \<and>* ones u w\<rbrace> 
       
  2905              i :[if_zero e]: j
       
  2906           \<lbrace>st j \<and>* ps v \<and>* ones u w\<rbrace>"
       
  2907   by (unfold `v = w` ones_rev[OF `\<not> w < u`], hstep)
       
  2908 
       
  2909 lemma hoare_left_until_double_zero_nil[step]:
       
  2910   assumes "u = v"
       
  2911   shows   "\<lbrace>st i ** ps u ** zero v\<rbrace> 
       
  2912                   i:[left_until_double_zero]:j
       
  2913            \<lbrace>st j ** ps u ** zero v\<rbrace>"
       
  2914   apply (unfold `u = v` left_until_double_zero_def, 
       
  2915       intro t_hoare_local t_hoare_label, clarsimp, 
       
  2916       rule t_hoare_label_last, simp+)
       
  2917   by (hsteps)
       
  2918 
       
  2919 lemma hoare_if_zero_reps_false:
       
  2920   assumes nn: "ks \<noteq> []"
       
  2921   shows "\<lbrace>st i ** ps v ** reps u v ks\<rbrace> 
       
  2922            i:[if_zero e]:j
       
  2923         \<lbrace>st j ** ps v ** reps u v ks\<rbrace>"
       
  2924 proof(rule rev_exhaust[of ks])
       
  2925   assume "ks = []" with nn show ?thesis by simp
       
  2926 next
       
  2927   fix y ys
       
  2928   assume eq_ks: "ks = ys @ [y]"
       
  2929   show " \<lbrace>st i \<and>* ps v \<and>* reps u v ks\<rbrace>  i :[ if_zero e ]: j \<lbrace>st j \<and>* ps v \<and>* reps u v ks\<rbrace>"
       
  2930   proof(cases "ys = []")
       
  2931     case False
       
  2932     have "\<lbrace>st i \<and>* ps v \<and>* reps u v (ys @ [y])\<rbrace>  i :[ if_zero e ]: j \<lbrace>st j \<and>* ps v \<and>* reps u v (ys @ [y])\<rbrace>"
       
  2933       apply(unfold reps_rev[OF False], simp del:ones_simps add:ones_rev)
       
  2934       by hstep
       
  2935     thus ?thesis
       
  2936       by (simp add:eq_ks)
       
  2937   next
       
  2938     case True
       
  2939     with eq_ks
       
  2940     show ?thesis
       
  2941       apply (simp del:ones_simps add:ones_rev sep_conj_cond, intro tm.pre_condI, simp)
       
  2942       by hstep
       
  2943   qed
       
  2944 qed
       
  2945 
       
  2946 lemma hoare_if_zero_reps_false_gen[step]:
       
  2947   assumes "ks \<noteq> []" "u = w"
       
  2948   shows "\<lbrace>st i ** ps u ** reps v w ks\<rbrace> 
       
  2949            i:[if_zero e]:j
       
  2950         \<lbrace>st j ** ps u ** reps v w ks\<rbrace>"
       
  2951   by (unfold `u = w`, rule hoare_if_zero_reps_false[OF `ks \<noteq> []`])
       
  2952 
       
  2953 
       
  2954 lemma hoare_if_zero_reps_false1:
       
  2955   assumes nn: "ks \<noteq> []"
       
  2956   shows "\<lbrace>st i ** ps u ** reps u v ks\<rbrace> 
       
  2957            i:[if_zero e]:j
       
  2958         \<lbrace>st j ** ps u ** reps u v ks\<rbrace>"
       
  2959 proof -
       
  2960   from nn obtain y ys where eq_ys: "ks = y#ys"
       
  2961     by (metis neq_Nil_conv)
       
  2962   show ?thesis
       
  2963     apply (unfold eq_ys)
       
  2964     by (case_tac ys, (simp, hsteps)+)
       
  2965 qed
       
  2966 
       
  2967 lemma hoare_if_zero_reps_false1_gen[step]:
       
  2968   assumes nn: "ks \<noteq> []"
       
  2969   and h: "u = w"
       
  2970   shows "\<lbrace>st i ** ps u ** reps w v ks\<rbrace> 
       
  2971            i:[if_zero e]:j
       
  2972         \<lbrace>st j ** ps u ** reps w v ks\<rbrace>"
       
  2973   by (unfold h, rule hoare_if_zero_reps_false1[OF `ks \<noteq> []`])
       
  2974 
       
  2975 lemma hoare_left_until_double_zero: 
       
  2976   assumes h: "ks \<noteq> []"
       
  2977   shows   "\<lbrace>st i ** ps v ** zero u ** zero (u + 1) ** reps (u+2) v ks\<rbrace> 
       
  2978                   i:[left_until_double_zero]:j
       
  2979            \<lbrace>st j ** ps u ** zero u ** zero (u + 1) ** reps (u+2) v ks\<rbrace>"
       
  2980 proof(unfold left_until_double_zero_def, 
       
  2981       intro t_hoare_local t_hoare_label, clarsimp, 
       
  2982       rule t_hoare_label_last, simp+)
       
  2983   fix la
       
  2984   let ?body = "i :[ (if_zero la ; left_until_zero ; move_left ; if_one i) ]: j"
       
  2985   let ?j = j
       
  2986   show "\<lbrace>st i \<and>* ps v \<and>* zero u \<and>* zero (u + 1) \<and>* reps (u + 2) v ks\<rbrace> 
       
  2987            ?body
       
  2988         \<lbrace>st ?j \<and>* ps u \<and>* zero u \<and>* zero (u + 1) \<and>* reps (u + 2) v ks\<rbrace>"
       
  2989     using h
       
  2990   proof(induct ks arbitrary: v rule:rev_induct)
       
  2991     case Nil
       
  2992     with h show ?case by auto
       
  2993   next
       
  2994     case (snoc k ks)
       
  2995     show ?case
       
  2996     proof(cases "ks = []")
       
  2997       case True
       
  2998       have eq_ones: 
       
  2999         "ones (u + 2) (u + 2 + int k) = (ones (u + 2) (u + 1 + int k) \<and>* one (u + 2 + int k))"
       
  3000         by (smt ones_rev)
       
  3001       have eq_ones': "(one (u + 2) \<and>* ones (3 + u) (u + 2 + int k)) = 
       
  3002             (one (u + 2 + int k) \<and>* ones (u + 2) (u + 1 + int k))"
       
  3003         by (smt eq_ones ones.simps sep.mult_commute)
       
  3004       thus ?thesis
       
  3005         apply (insert True, simp del:ones_simps add:sep_conj_cond)
       
  3006         apply (rule tm.pre_condI, simp del:ones_simps, unfold eq_ones)
       
  3007         apply hsteps
       
  3008         apply (rule_tac p = "st j' \<and>* ps (u + 2 + int k) \<and>* zero u \<and>* 
       
  3009                              zero (u + 1) \<and>* ones (u + 2) (u + 2 + int k)" 
       
  3010                   in tm.pre_stren)
       
  3011         by (hsteps)
       
  3012     next
       
  3013       case False
       
  3014       from False have spt: "splited (ks @ [k]) ks [k]" by (unfold splited_def, auto)
       
  3015       show ?thesis
       
  3016         apply (unfold reps_splited[OF spt], simp del:ones_simps add:sep_conj_cond)
       
  3017         apply (rule tm.pre_condI, simp del:ones_simps)
       
  3018         apply (rule_tac q = "st i \<and>*
       
  3019                ps (1 + (u + int (reps_len ks))) \<and>*
       
  3020                zero u \<and>*
       
  3021                zero (u + 1) \<and>*
       
  3022                reps (u + 2) (1 + (u + int (reps_len ks))) ks \<and>*
       
  3023                zero (u + 2 + int (reps_len ks)) \<and>*
       
  3024                ones (3 + (u + int (reps_len ks))) (3 + (u + int (reps_len ks)) + int k)" in
       
  3025                tm.sequencing)
       
  3026         apply hsteps[1]
       
  3027         by (hstep snoc(1))
       
  3028     qed 
       
  3029   qed
       
  3030 qed
       
  3031 
       
  3032 lemma hoare_left_until_double_zero_gen[step]: 
       
  3033   assumes h1: "ks \<noteq> []"
       
  3034       and h: "u = y" "w = v + 1" "x = v + 2"
       
  3035   shows   "\<lbrace>st i ** ps u ** zero v ** zero w ** reps x y ks\<rbrace> 
       
  3036                   i:[left_until_double_zero]:j
       
  3037            \<lbrace>st j ** ps v ** zero v ** zero w ** reps x y ks\<rbrace>"
       
  3038   by (unfold h, rule hoare_left_until_double_zero[OF h1])
       
  3039 
       
  3040 lemma hoare_jmp_reps1:
       
  3041   assumes "ks \<noteq> []"
       
  3042   shows  "\<lbrace> st i \<and>* ps u \<and>* reps u v ks\<rbrace>
       
  3043                  i:[jmp e]:j
       
  3044           \<lbrace> st e \<and>* ps u \<and>* reps u v ks\<rbrace>"
       
  3045 proof -
       
  3046   from assms obtain k ks' where Cons:"ks = k#ks'"
       
  3047     by (metis neq_Nil_conv)
       
  3048   thus ?thesis
       
  3049   proof(cases "ks' = []")
       
  3050     case True with Cons
       
  3051     show ?thesis
       
  3052       apply(simp add:sep_conj_cond reps.simps, intro tm.pre_condI, simp add:ones_simps)
       
  3053       by (hgoto hoare_jmp_gen)
       
  3054   next
       
  3055     case False
       
  3056     show ?thesis
       
  3057       apply (unfold `ks = k#ks'` reps_simp3[OF False], simp add:ones_simps)
       
  3058       by (hgoto hoare_jmp[where p = u])
       
  3059   qed
       
  3060 qed
       
  3061 
       
  3062 lemma hoare_jmp_reps1_gen[step]:
       
  3063   assumes "ks \<noteq> []" "u = v"
       
  3064   shows  "\<lbrace> st i \<and>* ps u \<and>* reps v w ks\<rbrace>
       
  3065                  i:[jmp e]:j
       
  3066           \<lbrace> st e \<and>* ps u \<and>* reps v w ks\<rbrace>"
       
  3067   by (unfold assms, rule hoare_jmp_reps1[OF `ks \<noteq> []`])
       
  3068 
       
  3069 lemma hoare_jmp_reps:
       
  3070       "\<lbrace> st i \<and>* ps u \<and>* reps u v ks \<and>* tm (v + 1) x \<rbrace>
       
  3071                  i:[(jmp e; c)]:j
       
  3072        \<lbrace> st e \<and>* ps u \<and>* reps u v ks \<and>* tm (v + 1) x \<rbrace>"
       
  3073 proof(cases "ks")
       
  3074   case Nil
       
  3075   thus ?thesis
       
  3076     by (simp add:sep_conj_cond, intro tm.pre_condI, simp, hsteps)
       
  3077 next
       
  3078   case (Cons k ks')
       
  3079   thus ?thesis
       
  3080   proof(cases "ks' = []")
       
  3081     case True with Cons
       
  3082     show ?thesis
       
  3083       apply(simp add:sep_conj_cond, intro tm.pre_condI, simp)
       
  3084       by (hgoto hoare_jmp[where p = u])
       
  3085   next
       
  3086     case False
       
  3087     show ?thesis
       
  3088       apply (unfold `ks = k#ks'` reps_simp3[OF False], simp)
       
  3089       by (hgoto hoare_jmp[where p = u])
       
  3090   qed
       
  3091 qed
       
  3092 
       
  3093 definition "shift_right =
       
  3094             (TL start exit.
       
  3095               TLabel start;
       
  3096                  if_zero exit;
       
  3097                  write_zero;
       
  3098                  move_right;
       
  3099                  right_until_zero;
       
  3100                  write_one;
       
  3101                  move_right;
       
  3102                  jmp start;
       
  3103               TLabel exit
       
  3104             )"
       
  3105 
       
  3106 lemma hoare_shift_right_cons:
       
  3107   assumes h: "ks \<noteq> []"
       
  3108   shows "\<lbrace>st i \<and>* ps u ** reps u v ks \<and>* zero (v + 1) \<and>* zero (v + 2) \<rbrace> 
       
  3109             i:[shift_right]:j
       
  3110          \<lbrace>st j ** ps (v + 2) ** zero u ** reps (u + 1) (v + 1) ks ** zero (v + 2) \<rbrace>"
       
  3111 proof(unfold shift_right_def, intro t_hoare_local t_hoare_label, clarify, 
       
  3112       rule t_hoare_label_last, auto)
       
  3113   fix la
       
  3114   have eq_ones: "\<And> u k. (one (u + int k + 1) \<and>* ones (u + 1) (u + int k)) = 
       
  3115                                    (one (u + 1) \<and>* ones (2 + u) (u + 1 + int k))"
       
  3116     by (smt cond_true_eq2 ones.simps ones_rev sep.mult_assoc sep.mult_commute 
       
  3117                sep.mult_left_commute sep_conj_assoc sep_conj_commute 
       
  3118                sep_conj_cond1 sep_conj_cond2 sep_conj_cond3 sep_conj_left_commute
       
  3119                sep_conj_trivial_strip2)
       
  3120   show "\<lbrace>st i \<and>* ps u \<and>* reps u v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace> 
       
  3121          i :[ (if_zero la ;
       
  3122                write_zero ; move_right ; right_until_zero ; write_one ; move_right ; jmp i) ]: la
       
  3123          \<lbrace>st la \<and>* ps (v + 2) \<and>* zero u \<and>* reps (u + 1) (v + 1) ks \<and>* zero (v + 2)\<rbrace>"
       
  3124     using h
       
  3125   proof(induct ks arbitrary:i u v)
       
  3126     case (Cons k ks)
       
  3127     thus ?case 
       
  3128     proof(cases "ks = []")
       
  3129       let ?j = la
       
  3130       case True
       
  3131       let ?body = "i :[ (if_zero ?j ;
       
  3132                       write_zero ;
       
  3133                       move_right ; 
       
  3134                       right_until_zero ; 
       
  3135                       write_one ; move_right ; jmp i) ]: ?j"
       
  3136       have first_interation: 
       
  3137            "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 1) \<and>* 
       
  3138                                                                              zero (u + int k + 2)\<rbrace> 
       
  3139                 ?body
       
  3140             \<lbrace>st i \<and>*
       
  3141              ps (u + int k + 2) \<and>*
       
  3142              one (u + int k + 1) \<and>* ones (u + 1) (u + int k) \<and>* zero u \<and>* zero (u + int k + 2)\<rbrace>"
       
  3143         apply (hsteps)
       
  3144         by (simp add:sep_conj_ac, sep_cancel+, smt)
       
  3145       hence "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 1) \<and>* 
       
  3146                                                                              zero (u + int k + 2)\<rbrace> 
       
  3147                    ?body
       
  3148              \<lbrace>st ?j \<and>* ps (u + int k + 2) \<and>* zero u \<and>* one (u + 1) \<and>* 
       
  3149                          ones (2 + u) (u + 1 + int k) \<and>* zero (u + int k + 2)\<rbrace>"
       
  3150       proof(rule tm.sequencing)
       
  3151         show "\<lbrace>st i \<and>*
       
  3152                ps (u + int k + 2) \<and>*
       
  3153                one (u + int k + 1) \<and>* ones (u + 1) (u + int k) \<and>* zero u \<and>* zero (u + int k + 2)\<rbrace> 
       
  3154                       ?body
       
  3155               \<lbrace>st ?j \<and>*
       
  3156                ps (u + int k + 2) \<and>*
       
  3157                zero u \<and>* one (u + 1) \<and>* ones (2 + u) (u + 1 + int k) \<and>* zero (u + int k + 2)\<rbrace>"
       
  3158           apply (hgoto hoare_if_zero_true_gen)
       
  3159           by (simp add:sep_conj_ac eq_ones)
       
  3160       qed
       
  3161       with True 
       
  3162       show ?thesis
       
  3163         by (simp, simp only:sep_conj_cond, intro tm.pre_condI, auto simp:sep_conj_ac)
       
  3164     next
       
  3165       case False
       
  3166       let ?j = la
       
  3167       let ?body = "i :[ (if_zero ?j ;
       
  3168                         write_zero ;
       
  3169                         move_right ; right_until_zero ; 
       
  3170                         write_one ; move_right ; jmp i) ]: ?j"
       
  3171       have eq_ones': 
       
  3172          "(one (u + int k + 1) \<and>*
       
  3173            ones (u + 1) (u + int k) \<and>*
       
  3174            zero u \<and>* reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2))
       
  3175                    =
       
  3176            (zero u \<and>*
       
  3177              ones (u + 1) (u + int k) \<and>*
       
  3178              one (u + int k + 1) \<and>* reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2))"
       
  3179         by (simp add:eq_ones sep_conj_ac)
       
  3180       have "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 1) \<and>* 
       
  3181                  reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace> 
       
  3182                     ?body
       
  3183             \<lbrace>st i \<and>* ps (u + int k + 2) \<and>* zero u \<and>* ones (u + 1) (u + int k) \<and>* 
       
  3184                  one (u + int k + 1) \<and>* reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace>"
       
  3185         apply (hsteps)
       
  3186         by (auto simp:sep_conj_ac, sep_cancel+, smt)
       
  3187       hence "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 1) \<and>* 
       
  3188                  reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace> 
       
  3189                      ?body
       
  3190             \<lbrace>st ?j \<and>* ps (v + 2) \<and>* zero u \<and>* one (u + 1) \<and>* ones (2 + u) (u + 1 + int k) \<and>*
       
  3191                  zero (2 + (u + int k)) \<and>* reps (3 + (u + int k)) (v + 1) ks \<and>* zero (v + 2)\<rbrace>"
       
  3192       proof(rule tm.sequencing)
       
  3193         have eq_ones': 
       
  3194           "\<And> u k. (one (u + int k + 1) \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 2)) =
       
  3195              (one (u + 1) \<and>* zero (2 + (u + int k)) \<and>* ones (2 + u) (u + 1 + int k))"
       
  3196           by (smt eq_ones sep.mult_assoc sep_conj_commute)
       
  3197         show "\<lbrace>st i \<and>* ps (u + int k + 2) \<and>* zero u \<and>*
       
  3198                     ones (u + 1) (u + int k) \<and>* one (u + int k + 1) \<and>* reps (u + int k + 2) v ks \<and>* 
       
  3199                     zero (v + 1) \<and>* zero (v + 2)\<rbrace> 
       
  3200                       ?body
       
  3201               \<lbrace>st ?j \<and>* ps (v + 2) \<and>* zero u \<and>* one (u + 1) \<and>* ones (2 + u) (u + 1 + int k) \<and>*
       
  3202                       zero (2 + (u + int k)) \<and>* reps (3 + (u + int k)) (v + 1) ks \<and>* zero (v + 2)\<rbrace>"
       
  3203           apply (hsteps Cons.hyps)
       
  3204           by (simp add:sep_conj_ac eq_ones, sep_cancel+, smt)
       
  3205       qed
       
  3206       thus ?thesis
       
  3207         by (unfold reps_simp3[OF False], auto simp:sep_conj_ac)
       
  3208     qed 
       
  3209   qed auto
       
  3210 qed
       
  3211 
       
  3212 lemma hoare_shift_right_cons_gen[step]:
       
  3213   assumes h: "ks \<noteq> []"
       
  3214   and h1: "u = v" "x = w + 1" "y = w + 2"
       
  3215   shows "\<lbrace>st i \<and>* ps u ** reps v w ks \<and>* zero x \<and>* zero y \<rbrace> 
       
  3216             i:[shift_right]:j
       
  3217          \<lbrace>st j ** ps y ** zero v ** reps (v + 1) x ks ** zero y\<rbrace>"
       
  3218   by (unfold h1, rule hoare_shift_right_cons[OF h])
       
  3219 
       
  3220 lemma shift_right_nil [step]: 
       
  3221   assumes "u = v"
       
  3222   shows
       
  3223        "\<lbrace> st i \<and>* ps u \<and>* zero v \<rbrace>
       
  3224                i:[shift_right]:j
       
  3225         \<lbrace> st j \<and>* ps u \<and>* zero v \<rbrace>"
       
  3226   by (unfold assms shift_right_def, intro t_hoare_local t_hoare_label, clarify, 
       
  3227           rule t_hoare_label_last, simp+, hstep)
       
  3228 
       
  3229 
       
  3230 text {*
       
  3231   @{text "clear_until_zero"} is useful to implement @{text "drag"}.
       
  3232 *}
       
  3233 
       
  3234 definition "clear_until_zero = 
       
  3235              (TL start exit.
       
  3236               TLabel start;
       
  3237                  if_zero exit;
       
  3238                  write_zero;
       
  3239                  move_right;
       
  3240                  jmp start;
       
  3241               TLabel exit)"
       
  3242 
       
  3243 lemma  hoare_clear_until_zero[step]: 
       
  3244          "\<lbrace>st i ** ps u ** ones u v ** zero (v + 1)\<rbrace>
       
  3245               i :[clear_until_zero]: j
       
  3246           \<lbrace>st j ** ps (v + 1) ** zeros u v ** zero (v + 1)\<rbrace> "
       
  3247 proof(unfold clear_until_zero_def, intro t_hoare_local, rule t_hoare_label,
       
  3248     rule t_hoare_label_last, simp+)
       
  3249   let ?body = "i :[ (if_zero j ; write_zero ; move_right ; jmp i) ]: j"
       
  3250   show "\<lbrace>st i \<and>* ps u \<and>* ones u v \<and>* zero (v + 1)\<rbrace> ?body 
       
  3251         \<lbrace>st j \<and>* ps (v + 1) \<and>* zeros u v \<and>* zero (v + 1)\<rbrace>"
       
  3252   proof(induct u v rule: zeros.induct)
       
  3253     fix ia ja
       
  3254     assume h: "\<not> ja < ia \<Longrightarrow>
       
  3255              \<lbrace>st i \<and>* ps (ia + 1) \<and>* ones (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>  ?body
       
  3256              \<lbrace>st j \<and>* ps (ja + 1) \<and>* zeros (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>"
       
  3257     show "\<lbrace>st i \<and>* ps ia \<and>* ones ia ja \<and>* zero (ja + 1)\<rbrace> ?body
       
  3258            \<lbrace>st j \<and>* ps (ja + 1) \<and>* zeros ia ja \<and>* zero (ja + 1)\<rbrace>"
       
  3259     proof(cases "ja < ia")
       
  3260       case True
       
  3261       thus ?thesis
       
  3262         by (simp add: ones.simps zeros.simps sep_conj_ac, simp only:sep_conj_cond,
       
  3263                intro tm.pre_condI, simp, hsteps)
       
  3264     next
       
  3265       case False
       
  3266       note h[OF False, step]
       
  3267       from False have ones_eq: "ones ia ja = (one ia \<and>* ones (ia + 1) ja)"
       
  3268         by(simp add: ones.simps)
       
  3269       from False have zeros_eq: "zeros ia ja = (zero ia \<and>* zeros (ia + 1) ja)"
       
  3270         by(simp add: zeros.simps)
       
  3271       have s1: "\<lbrace>st i \<and>* ps ia \<and>* one ia \<and>* ones (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>  ?body 
       
  3272                  \<lbrace>st i \<and>* ps (ia + 1) \<and>* zero ia \<and>* ones (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>"
       
  3273       proof(cases "ja < ia + 1")
       
  3274         case True
       
  3275         from True False have "ja = ia" by auto
       
  3276         thus ?thesis
       
  3277           apply(simp add: ones.simps)
       
  3278           by (hsteps)
       
  3279       next
       
  3280         case False
       
  3281         from False have "ones (ia + 1) ja = (one (ia + 1) \<and>* ones (ia + 1 + 1) ja)"
       
  3282           by(simp add: ones.simps)
       
  3283         thus ?thesis
       
  3284           by (simp, hsteps)
       
  3285       qed
       
  3286       have s2: "\<lbrace>st i \<and>* ps (ia + 1) \<and>* zero ia \<and>* ones (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>
       
  3287                 ?body
       
  3288                 \<lbrace>st j \<and>* ps (ja + 1) \<and>* zero ia \<and>* zeros (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>"
       
  3289         by hsteps
       
  3290       from tm.sequencing[OF s1 s2] have 
       
  3291         "\<lbrace>st i \<and>* ps ia \<and>* one ia \<and>* ones (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>  ?body
       
  3292         \<lbrace>st j \<and>* ps (ja + 1) \<and>* zero ia \<and>* zeros (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>" .
       
  3293       thus ?thesis
       
  3294         unfolding ones_eq zeros_eq by(simp add: sep_conj_ac)
       
  3295     qed
       
  3296   qed
       
  3297 qed
       
  3298 
       
  3299 lemma  hoare_clear_until_zero_gen[step]: 
       
  3300   assumes "u = v" "x = w + 1"
       
  3301   shows "\<lbrace>st i ** ps u ** ones v w ** zero x\<rbrace>
       
  3302               i :[clear_until_zero]: j
       
  3303         \<lbrace>st j ** ps x ** zeros v w ** zero x\<rbrace>"
       
  3304   by (unfold assms, rule hoare_clear_until_zero)
       
  3305 
       
  3306 definition "shift_left = 
       
  3307             (TL start exit.
       
  3308               TLabel start;
       
  3309                  if_zero exit;
       
  3310                  move_left;
       
  3311                  write_one;
       
  3312                  right_until_zero;
       
  3313                  move_left;
       
  3314                  write_zero;
       
  3315                  move_right;
       
  3316                  move_right;
       
  3317                  jmp start;
       
  3318               TLabel exit)
       
  3319            "
       
  3320 
       
  3321 declare ones_simps[simp del]
       
  3322 
       
  3323 lemma hoare_move_left_reps[step]:
       
  3324   assumes "ks \<noteq> []" "u = v"
       
  3325   shows 
       
  3326     "\<lbrace>st i ** ps u ** reps v w ks\<rbrace> 
       
  3327          i:[move_left]:j
       
  3328      \<lbrace>st j ** ps (u - 1) **  reps v w ks\<rbrace>"
       
  3329 proof -
       
  3330   from `ks \<noteq> []` obtain y ys where eq_ks: "ks = y#ys"
       
  3331     by (metis neq_Nil_conv)
       
  3332   show ?thesis
       
  3333     apply (unfold assms eq_ks)
       
  3334     apply (case_tac ys, simp)
       
  3335     my_block
       
  3336       have "(ones v (v + int y)) = (one v \<and>* ones (v + 1) (v + int y))"
       
  3337         by (smt ones_step_simp)
       
  3338     my_block_end
       
  3339     apply (unfold this, hsteps)
       
  3340     by (simp add:this, hsteps)
       
  3341 qed
       
  3342 
       
  3343 lemma hoare_shift_left_cons:
       
  3344   assumes h: "ks \<noteq> []"
       
  3345   shows "\<lbrace>st i \<and>* ps u \<and>* tm (u - 1) x \<and>* reps u v ks \<and>* zero (v + 1) \<and>* zero (v + 2) \<rbrace> 
       
  3346                                    i:[shift_left]:j
       
  3347          \<lbrace>st j \<and>* ps (v + 2) \<and>* reps (u - 1) (v - 1) ks \<and>* zero v \<and>* zero (v + 1) \<and>* zero (v + 2) \<rbrace>"
       
  3348 proof(unfold shift_left_def, intro t_hoare_local t_hoare_label, clarify, 
       
  3349       rule t_hoare_label_last, simp+, clarify, prune)
       
  3350   show " \<lbrace>st i \<and>* ps u \<and>* tm (u - 1) x \<and>* reps u v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace> 
       
  3351              i :[ (if_zero j ;
       
  3352                    move_left ;
       
  3353                    write_one ;
       
  3354                    right_until_zero ;
       
  3355                    move_left ; write_zero ; 
       
  3356                    move_right ; move_right ; jmp i) ]: j
       
  3357          \<lbrace>st j \<and>* ps (v + 2) \<and>* reps (u - 1) (v - 1) ks \<and>* zero v \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace>"
       
  3358     using h
       
  3359   proof(induct ks arbitrary:i u v x)
       
  3360     case (Cons k ks)
       
  3361     thus ?case 
       
  3362     proof(cases "ks = []")
       
  3363       let ?body = "i :[ (if_zero j ;  move_left ; write_one ; right_until_zero ;
       
  3364                    move_left ; write_zero ; move_right ; move_right ; jmp i) ]: j"
       
  3365       case True 
       
  3366       have "\<lbrace>st i \<and>* ps u \<and>* tm (u - 1) x \<and>* (one u \<and>* ones (u + 1) (u + int k)) \<and>* 
       
  3367                                           zero (u + int k + 1) \<and>* zero (u + int k + 2)\<rbrace> 
       
  3368                          ?body
       
  3369             \<lbrace>st j \<and>* ps (u + int k + 2) \<and>* (one (u - 1) \<and>* ones u (u - 1 + int k)) \<and>*
       
  3370                        zero (u + int k) \<and>* zero (u + int k + 1) \<and>* zero (u + int k + 2)\<rbrace>"
       
  3371       apply(rule tm.sequencing [where q = "st i \<and>* ps (u + int k + 2) \<and>*
       
  3372                 (one (u - 1) \<and>* ones u (u - 1 + int k)) \<and>*
       
  3373                 zero (u + int k) \<and>* zero (u + int k + 1) \<and>* zero (u + int k + 2)"])
       
  3374           apply (hsteps)
       
  3375           apply (rule_tac p = "st j' \<and>* ps (u - 1) \<and>* ones (u - 1) (u + int k) \<and>*
       
  3376                                 zero (u + int k + 1) \<and>* zero (u + int k + 2)" 
       
  3377             in tm.pre_stren)
       
  3378           apply (hsteps)
       
  3379           my_block
       
  3380             have "(ones (u - 1) (u + int k)) = (ones (u - 1) (u + int k - 1) \<and>* one (u + int k))"
       
  3381               by (smt ones_rev)
       
  3382           my_block_end
       
  3383           apply (unfold this)
       
  3384           apply hsteps
       
  3385           apply (simp add:sep_conj_ac, sep_cancel+)
       
  3386           apply (smt ones.simps sep.mult_assoc sep_conj_commuteI)
       
  3387           apply (simp add:sep_conj_ac)+
       
  3388           apply (sep_cancel+)
       
  3389           apply (smt ones.simps sep.mult_left_commute sep_conj_commuteI this)
       
  3390           by hstep
       
  3391         with True show ?thesis
       
  3392         by (simp add:ones_simps, simp only:sep_conj_cond, intro tm.pre_condI, simp)
       
  3393     next 
       
  3394       case False
       
  3395       let ?body = "i :[ (if_zero j ; move_left ; write_one ;right_until_zero ; move_left ; 
       
  3396                                 write_zero ; move_right ; move_right ; jmp i) ]: j"
       
  3397       have "\<lbrace>st i \<and>* ps u \<and>* tm (u - 1) x \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>* 
       
  3398                 zero (u + int k + 1) \<and>* reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace> 
       
  3399                 ?body
       
  3400             \<lbrace>st j \<and>* ps (v + 2) \<and>* one (u - 1) \<and>* ones u (u - 1 + int k) \<and>*
       
  3401                         zero (u + int k) \<and>* reps (1 + (u + int k)) (v - 1) ks \<and>*
       
  3402                                               zero v \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace>"
       
  3403         apply (rule tm.sequencing[where q = "st i \<and>* ps (u + int k + 2) \<and>* 
       
  3404                   zero (u + int k + 1) \<and>* reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* 
       
  3405                   zero (v + 2) \<and>* one (u - 1) \<and>* ones u (u - 1 + int k) \<and>* zero (u + int k)"])
       
  3406         apply (hsteps)
       
  3407         apply (rule_tac p = "st j' \<and>* ps (u - 1) \<and>* 
       
  3408                                ones (u - 1) (u + int k) \<and>*
       
  3409                                zero (u + int k + 1) \<and>* 
       
  3410                                reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)
       
  3411             " in tm.pre_stren)
       
  3412         apply hsteps
       
  3413         my_block
       
  3414           have "(ones (u - 1) (u + int k)) = 
       
  3415             (ones (u - 1) (u + int k - 1) \<and>* one (u + int k))"
       
  3416             by (smt ones_rev)
       
  3417         my_block_end
       
  3418         apply (unfold this)
       
  3419         apply (hsteps)
       
  3420         apply (sep_cancel+)
       
  3421         apply (smt ones.simps sep.mult_assoc sep_conj_commuteI)
       
  3422         apply (sep_cancel+)
       
  3423         apply (smt ones.simps this)
       
  3424         my_block
       
  3425           have eq_u: "1 + (u + int k) = u + int k + 1" by simp
       
  3426           from Cons.hyps[OF `ks \<noteq> []`, of i "u + int k + 2" Bk v, folded zero_def] 
       
  3427           have "\<lbrace>st i \<and>* ps (u + int k + 2) \<and>* zero (u + int k + 1) \<and>*
       
  3428                             reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace> 
       
  3429                                ?body
       
  3430                       \<lbrace>st j \<and>* ps (v + 2) \<and>*  reps (1 + (u + int k)) (v - 1) ks \<and>* 
       
  3431                                                 zero v \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace>"
       
  3432           by (simp add:eq_u)
       
  3433         my_block_end my_note hh[step] = this 
       
  3434         by hsteps
       
  3435       thus ?thesis
       
  3436         by (unfold reps_simp3[OF False], auto simp:sep_conj_ac ones_simps)
       
  3437     qed
       
  3438   qed auto
       
  3439 qed
       
  3440 
       
  3441 lemma hoare_shift_left_cons_gen[step]:
       
  3442   assumes h: "ks \<noteq> []"
       
  3443           "v = u - 1" "w = u" "y = x + 1" "z = x + 2"
       
  3444   shows "\<lbrace>st i \<and>* ps u \<and>* tm v vv \<and>* reps w x ks \<and>* tm y Bk \<and>* tm z Bk\<rbrace> 
       
  3445                                    i:[shift_left]:j
       
  3446          \<lbrace>st j \<and>* ps z \<and>* reps v (x - 1) ks \<and>* zero x \<and>* zero y \<and>* zero z \<rbrace>"
       
  3447   by (unfold assms, fold zero_def, rule hoare_shift_left_cons[OF `ks \<noteq> []`])
       
  3448 
       
  3449 definition "bone c1 c2 = (TL exit l_one.
       
  3450                                 if_one l_one;
       
  3451                                   (c1;
       
  3452                                    jmp exit);
       
  3453                                 TLabel l_one;
       
  3454                                       c2;
       
  3455                                 TLabel exit
       
  3456                               )"
       
  3457 
       
  3458 lemma hoare_bone_1_out:
       
  3459   assumes h: 
       
  3460         "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
       
  3461                          i:[c1]:j
       
  3462                   \<lbrace>st e \<and>* q \<rbrace>
       
  3463         "
       
  3464   shows "\<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
       
  3465               i:[(bone c1 c2)]:j
       
  3466          \<lbrace>st e \<and>* q \<rbrace>
       
  3467         "
       
  3468 apply (unfold bone_def, intro t_hoare_local)
       
  3469 apply hsteps
       
  3470 apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
       
  3471 apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
       
  3472 by (rule h)
       
  3473 
       
  3474 lemma hoare_bone_1:
       
  3475   assumes h: 
       
  3476         "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
       
  3477                          i:[c1]:j
       
  3478                   \<lbrace>st j \<and>* ps v \<and>* tm v x \<and>* q \<rbrace>
       
  3479         "
       
  3480   shows "\<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
       
  3481               i:[(bone c1 c2)]:j
       
  3482          \<lbrace>st j \<and>* ps v \<and>* tm v x \<and>* q \<rbrace>
       
  3483         "
       
  3484 proof -
       
  3485   note h[step]
       
  3486   show ?thesis
       
  3487     apply (unfold bone_def, intro t_hoare_local)
       
  3488     apply (rule t_hoare_label_last, auto)
       
  3489     apply hsteps
       
  3490     apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
       
  3491     by hsteps
       
  3492 qed
       
  3493 
       
  3494 lemma hoare_bone_2:
       
  3495   assumes h: 
       
  3496         "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
       
  3497                          i:[c2]:j
       
  3498                   \<lbrace>st j \<and>* q \<rbrace>
       
  3499         "
       
  3500   shows "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
       
  3501               i:[(bone c1 c2)]:j
       
  3502          \<lbrace>st j \<and>* q \<rbrace>
       
  3503         "
       
  3504 apply (unfold bone_def, intro t_hoare_local)
       
  3505 apply (rule_tac q = "st la \<and>* ps u \<and>* one u \<and>* p" in tm.sequencing)
       
  3506 apply hsteps
       
  3507 apply (subst tassemble_to.simps(2), intro tm.code_exI, intro tm.code_extension1)
       
  3508 apply (subst tassemble_to.simps(2), intro tm.code_exI, intro tm.code_extension1)
       
  3509 apply (subst tassemble_to.simps(2), intro tm.code_exI)
       
  3510 apply (subst tassemble_to.simps(4), intro tm.code_condI, simp)
       
  3511 apply (subst tassemble_to.simps(2), intro tm.code_exI)
       
  3512 apply (subst tassemble_to.simps(4), simp add:sep_conj_cond, rule tm.code_condI, simp)
       
  3513 by (rule h)
       
  3514 
       
  3515 lemma hoare_bone_2_out:
       
  3516   assumes h: 
       
  3517         "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
       
  3518                          i:[c2]:j
       
  3519                   \<lbrace>st e \<and>* q \<rbrace>
       
  3520         "
       
  3521   shows "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
       
  3522               i:[(bone c1 c2)]:j
       
  3523          \<lbrace>st e \<and>* q \<rbrace>
       
  3524         "
       
  3525 apply (unfold bone_def, intro t_hoare_local)
       
  3526 apply (rule_tac q = "st la \<and>* ps u \<and>* one u \<and>* p" in tm.sequencing)
       
  3527 apply hsteps
       
  3528 apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension1)
       
  3529 apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension1)
       
  3530 apply (subst tassemble_to.simps(2), intro tm.code_exI)
       
  3531 apply (subst tassemble_to.simps(4), rule tm.code_condI, simp)
       
  3532 apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
       
  3533 by (rule h)
       
  3534 
       
  3535 definition "bzero c1 c2 = (TL exit l_zero.
       
  3536                                 if_zero l_zero;
       
  3537                                   (c1;
       
  3538                                    jmp exit);
       
  3539                                 TLabel l_zero;
       
  3540                                       c2;
       
  3541                                 TLabel exit
       
  3542                               )"
       
  3543 
       
  3544 lemma hoare_bzero_1:
       
  3545   assumes h[step]: 
       
  3546         "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
       
  3547                          i:[c1]:j
       
  3548                  \<lbrace>st j \<and>* ps v \<and>* tm v x \<and>* q \<rbrace>
       
  3549         "
       
  3550   shows "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
       
  3551               i:[(bzero c1 c2)]:j
       
  3552          \<lbrace>st j \<and>* ps v \<and>* tm v x \<and>* q \<rbrace>
       
  3553         "
       
  3554 apply (unfold bzero_def, intro t_hoare_local)
       
  3555 apply hsteps
       
  3556 apply (rule_tac c = " ((c1 ; jmp l) ; TLabel la ; c2 ; TLabel l)" in t_hoare_label_last, auto)
       
  3557 apply (subst tassemble_to.simps(2), intro tm.code_exI, intro tm.code_extension)
       
  3558 by hsteps
       
  3559 
       
  3560 lemma hoare_bzero_1_out:
       
  3561   assumes h[step]: 
       
  3562         "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
       
  3563                          i:[c1]:j
       
  3564                  \<lbrace>st e \<and>* q \<rbrace>
       
  3565         "
       
  3566   shows "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
       
  3567               i:[(bzero c1 c2)]:j
       
  3568          \<lbrace>st e \<and>* q \<rbrace>
       
  3569         "
       
  3570 apply (unfold bzero_def, intro t_hoare_local)
       
  3571 apply hsteps
       
  3572 apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
       
  3573 apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
       
  3574 by (rule h)
       
  3575 
       
  3576 lemma hoare_bzero_2:
       
  3577   assumes h: 
       
  3578         "\<And> i j. \<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
       
  3579                          i:[c2]:j
       
  3580                  \<lbrace>st j \<and>* q \<rbrace>
       
  3581         "
       
  3582   shows "\<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
       
  3583               i:[(bzero c1 c2)]:j
       
  3584          \<lbrace>st j \<and>* q \<rbrace>
       
  3585         "
       
  3586   apply (unfold bzero_def, intro t_hoare_local)
       
  3587   apply (rule_tac q = "st la \<and>* ps u \<and>* zero u \<and>* p" in tm.sequencing)
       
  3588   apply hsteps
       
  3589   apply (subst tassemble_to.simps(2), intro tm.code_exI, intro tm.code_extension1)
       
  3590   apply (subst tassemble_to.simps(2), intro tm.code_exI, intro tm.code_extension1)
       
  3591   apply (subst tassemble_to.simps(2), intro tm.code_exI)
       
  3592   apply (subst tassemble_to.simps(4))
       
  3593   apply (rule tm.code_condI, simp)
       
  3594   apply (subst tassemble_to.simps(2))
       
  3595   apply (rule tm.code_exI)
       
  3596   apply (subst tassemble_to.simps(4), simp add:sep_conj_cond)
       
  3597   apply (rule tm.code_condI, simp)
       
  3598   by (rule h)
       
  3599 
       
  3600 lemma hoare_bzero_2_out:
       
  3601   assumes h: 
       
  3602         "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
       
  3603                          i:[c2]:j
       
  3604                   \<lbrace>st e \<and>* q \<rbrace>
       
  3605         "
       
  3606   shows "\<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p\<rbrace>
       
  3607               i:[(bzero c1 c2)]:j
       
  3608          \<lbrace>st e \<and>* q \<rbrace>
       
  3609         "
       
  3610 apply (unfold bzero_def, intro t_hoare_local)
       
  3611 apply (rule_tac q = "st la \<and>* ps u \<and>* zero u \<and>* p" in tm.sequencing)
       
  3612 apply hsteps
       
  3613 apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension1)
       
  3614 apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension1)
       
  3615 apply (subst tassemble_to.simps(2), intro tm.code_exI)
       
  3616 apply (subst tassemble_to.simps(4), rule tm.code_condI, simp)
       
  3617 apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
       
  3618 by (rule h)
       
  3619 
       
  3620 definition "skip_or_set = bone (write_one; move_right; move_right)
       
  3621                                (right_until_zero; move_right)"
       
  3622 
       
  3623 lemma reps_len_split: 
       
  3624   assumes "xs \<noteq> []" "ys \<noteq> []"
       
  3625   shows "reps_len (xs @ ys) = reps_len xs + reps_len ys + 1"
       
  3626   using assms
       
  3627 proof(induct xs arbitrary:ys)
       
  3628   case (Cons x1 xs1)
       
  3629   show ?case
       
  3630   proof(cases "xs1 = []")
       
  3631     case True
       
  3632     thus ?thesis
       
  3633       by (simp add:reps_len_cons[OF `ys \<noteq> []`] reps_len_sg)
       
  3634   next
       
  3635     case False
       
  3636     hence " xs1 @ ys \<noteq> []" by simp
       
  3637     thus ?thesis
       
  3638       apply (simp add:reps_len_cons[OF `xs1@ys \<noteq> []`] reps_len_cons[OF `xs1 \<noteq> []`])
       
  3639       by (simp add: Cons.hyps[OF `xs1 \<noteq> []` `ys \<noteq> []`])
       
  3640   qed
       
  3641 qed auto
       
  3642 
       
  3643 lemma hoare_skip_or_set_set:
       
  3644   "\<lbrace> st i \<and>* ps u \<and>* zero u \<and>* zero (u + 1) \<and>* tm (u + 2) x\<rbrace>
       
  3645          i:[skip_or_set]:j
       
  3646    \<lbrace> st j \<and>* ps (u + 2) \<and>* one u \<and>* zero (u + 1) \<and>* tm (u + 2) x\<rbrace>"
       
  3647   apply(unfold skip_or_set_def)
       
  3648   apply(rule_tac q = "st j \<and>* ps (u + 2) \<and>* tm (u + 2) x \<and>* one u \<and>* zero (u + 1)" 
       
  3649     in tm.post_weaken)
       
  3650   apply(rule hoare_bone_1)
       
  3651   apply hsteps
       
  3652   by (auto simp:sep_conj_ac, sep_cancel+, smt)
       
  3653 
       
  3654 lemma hoare_skip_or_set_set_gen[step]:
       
  3655   assumes "u = v" "w = v + 1" "x = v + 2"
       
  3656   shows "\<lbrace>st i \<and>* ps u \<and>* zero v \<and>* zero w \<and>* tm x xv\<rbrace>
       
  3657                    i:[skip_or_set]:j
       
  3658          \<lbrace>st j \<and>* ps x \<and>* one v \<and>* zero w \<and>* tm x xv\<rbrace>"
       
  3659   by (unfold assms, rule hoare_skip_or_set_set)
       
  3660 
       
  3661 lemma hoare_skip_or_set_skip:
       
  3662   "\<lbrace> st i \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace>
       
  3663          i:[skip_or_set]:j
       
  3664    \<lbrace> st j \<and>*  ps (v + 2) \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace>"
       
  3665 proof -
       
  3666    show ?thesis
       
  3667      apply(unfold skip_or_set_def, unfold reps.simps, simp add:sep_conj_cond)
       
  3668      apply(rule tm.pre_condI, simp)
       
  3669      apply(rule_tac p = "st i \<and>* ps u \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>* 
       
  3670                              zero (u + int k + 1)" 
       
  3671                    in tm.pre_stren)
       
  3672      apply (rule_tac q = "st j \<and>* ps (u + int k + 2) \<and>* 
       
  3673                           one u \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 1)
       
  3674               " in tm.post_weaken)
       
  3675      apply (rule hoare_bone_2)
       
  3676      apply (rule_tac p = " st i \<and>* ps u \<and>* ones u (u + int k) \<and>* zero (u + int k + 1) 
       
  3677        " in tm.pre_stren)
       
  3678      apply hsteps
       
  3679      apply (simp add:sep_conj_ac, sep_cancel+, auto simp:sep_conj_ac ones_simps)
       
  3680      by (sep_cancel+, smt)
       
  3681  qed
       
  3682 
       
  3683 lemma hoare_skip_or_set_skip_gen[step]:
       
  3684   assumes "u = v" "x = w + 1"
       
  3685   shows  "\<lbrace> st i \<and>* ps u \<and>* reps v w [k] \<and>* zero x\<rbrace>
       
  3686                   i:[skip_or_set]:j
       
  3687           \<lbrace> st j \<and>*  ps (w + 2) \<and>* reps v w [k] \<and>* zero x\<rbrace>"
       
  3688   by (unfold assms, rule hoare_skip_or_set_skip)
       
  3689 
       
  3690 
       
  3691 definition "if_reps_z e = (move_right;
       
  3692                               bone (move_left; jmp e) (move_left)
       
  3693                              )"
       
  3694 
       
  3695 lemma hoare_if_reps_z_true:
       
  3696   assumes h: "k = 0"
       
  3697   shows 
       
  3698    "\<lbrace>st i \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace> 
       
  3699       i:[if_reps_z e]:j 
       
  3700     \<lbrace>st e \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace>"
       
  3701   apply (unfold reps.simps, simp add:sep_conj_cond)
       
  3702   apply (rule tm.pre_condI, simp add:h)
       
  3703   apply (unfold if_reps_z_def)
       
  3704   apply (simp add:ones_simps)
       
  3705   apply (hsteps)
       
  3706   apply (rule_tac p = "st j' \<and>* ps (u + 1) \<and>* zero (u + 1) \<and>* one u" in tm.pre_stren)
       
  3707   apply (rule hoare_bone_1_out)
       
  3708   by (hsteps)
       
  3709 
       
  3710 lemma hoare_if_reps_z_true_gen[step]:
       
  3711   assumes "k = 0" "u = v" "x = w + 1"
       
  3712   shows "\<lbrace>st i \<and>* ps u \<and>* reps v w [k] \<and>* zero x\<rbrace> 
       
  3713                   i:[if_reps_z e]:j 
       
  3714          \<lbrace>st e \<and>* ps u \<and>* reps v w [k] \<and>* zero x\<rbrace>"
       
  3715   by (unfold assms, rule hoare_if_reps_z_true, simp)
       
  3716 
       
  3717 lemma hoare_if_reps_z_false:
       
  3718   assumes h: "k \<noteq> 0"
       
  3719   shows 
       
  3720    "\<lbrace>st i \<and>* ps u \<and>* reps u v [k]\<rbrace> 
       
  3721       i:[if_reps_z e]:j 
       
  3722     \<lbrace>st j \<and>* ps u \<and>* reps u v [k]\<rbrace>"
       
  3723 proof -
       
  3724   from h obtain k' where "k = Suc k'" by (metis not0_implies_Suc)
       
  3725   show ?thesis
       
  3726     apply (unfold `k = Suc k'`)
       
  3727     apply (simp add:sep_conj_cond, rule tm.pre_condI, simp)
       
  3728     apply (unfold if_reps_z_def)
       
  3729     apply (simp add:ones_simps)
       
  3730     apply hsteps
       
  3731     apply (rule_tac p = "st j' \<and>* ps (u + 1) \<and>* one (u + 1) \<and>* one u \<and>* 
       
  3732                           ones (2 + u) (u + (1 + int k'))" in tm.pre_stren)
       
  3733     apply (rule_tac hoare_bone_2)
       
  3734     by (hsteps)
       
  3735 qed
       
  3736 
       
  3737 lemma hoare_if_reps_z_false_gen[step]:
       
  3738   assumes h: "k \<noteq> 0" "u = v"
       
  3739   shows 
       
  3740    "\<lbrace>st i \<and>* ps u \<and>* reps v w [k]\<rbrace> 
       
  3741       i:[if_reps_z e]:j 
       
  3742     \<lbrace>st j \<and>* ps u \<and>* reps v w [k]\<rbrace>"
       
  3743   by (unfold assms, rule hoare_if_reps_z_false[OF `k \<noteq> 0`])
       
  3744 
       
  3745 definition "if_reps_nz e = (move_right;
       
  3746                               bzero (move_left; jmp e) (move_left)
       
  3747                            )"
       
  3748 
       
  3749 lemma EXS_postI: 
       
  3750   assumes "\<lbrace>P\<rbrace> 
       
  3751             c
       
  3752            \<lbrace>Q x\<rbrace>"
       
  3753   shows "\<lbrace>P\<rbrace> 
       
  3754           c
       
  3755         \<lbrace>EXS x. Q x\<rbrace>"
       
  3756 by (metis EXS_intro assms tm.hoare_adjust)
       
  3757 
       
  3758 lemma hoare_if_reps_nz_true:
       
  3759   assumes h: "k \<noteq> 0"
       
  3760   shows 
       
  3761    "\<lbrace>st i \<and>* ps u \<and>* reps u v [k]\<rbrace> 
       
  3762       i:[if_reps_nz e]:j 
       
  3763     \<lbrace>st e \<and>* ps u \<and>* reps u v [k]\<rbrace>"
       
  3764 proof -
       
  3765   from h obtain k' where "k = Suc k'" by (metis not0_implies_Suc)
       
  3766   show ?thesis
       
  3767     apply (unfold `k = Suc k'`)
       
  3768     apply (unfold reps.simps, simp add:sep_conj_cond, rule tm.pre_condI, simp)
       
  3769     apply (unfold if_reps_nz_def)
       
  3770     apply (simp add:ones_simps)
       
  3771     apply hsteps
       
  3772     apply (rule_tac p = "st j' \<and>* ps (u + 1) \<and>* one (u + 1) \<and>* one u \<and>*
       
  3773                             ones (2 + u) (u + (1 + int k'))" in tm.pre_stren)
       
  3774     apply (rule hoare_bzero_1_out)
       
  3775     by hsteps
       
  3776 qed
       
  3777 
       
  3778 
       
  3779 lemma hoare_if_reps_nz_true_gen[step]:
       
  3780   assumes h: "k \<noteq> 0" "u = v"
       
  3781   shows 
       
  3782    "\<lbrace>st i \<and>* ps u \<and>* reps v w [k]\<rbrace> 
       
  3783       i:[if_reps_nz e]:j 
       
  3784     \<lbrace>st e \<and>* ps u \<and>* reps v w [k]\<rbrace>"
       
  3785   by (unfold assms, rule hoare_if_reps_nz_true[OF `k\<noteq> 0`])
       
  3786 
       
  3787 lemma hoare_if_reps_nz_false:
       
  3788   assumes h: "k = 0"
       
  3789   shows 
       
  3790    "\<lbrace>st i \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace> 
       
  3791       i:[if_reps_nz e]:j 
       
  3792     \<lbrace>st j \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace>"
       
  3793   apply (simp add:h sep_conj_cond)
       
  3794   apply (rule tm.pre_condI, simp)
       
  3795   apply (unfold if_reps_nz_def)
       
  3796   apply (simp add:ones_simps)
       
  3797   apply (hsteps)
       
  3798   apply (rule_tac p = "st j' \<and>* ps (u + 1) \<and>*  zero (u + 1) \<and>* one u" in tm.pre_stren)
       
  3799   apply (rule hoare_bzero_2)
       
  3800   by (hsteps)
       
  3801 
       
  3802 lemma hoare_if_reps_nz_false_gen[step]:
       
  3803   assumes h: "k = 0" "u = v" "x = w + 1"
       
  3804   shows 
       
  3805    "\<lbrace>st i \<and>* ps u \<and>* reps v w [k] \<and>* zero x\<rbrace> 
       
  3806       i:[if_reps_nz e]:j 
       
  3807     \<lbrace>st j \<and>* ps u \<and>* reps v w [k] \<and>* zero x\<rbrace>"
       
  3808   by (unfold assms, rule hoare_if_reps_nz_false, simp)
       
  3809 
       
  3810 definition "skip_or_sets n = tpg_fold (replicate n skip_or_set)"
       
  3811 
       
  3812 
       
  3813 
       
  3814 lemma hoare_skip_or_sets_set:
       
  3815   shows "\<lbrace>st i \<and>* ps u \<and>* zeros u (u + int (reps_len (replicate (Suc n) 0))) \<and>* 
       
  3816                                   tm (u + int (reps_len (replicate (Suc n) 0)) + 1) x\<rbrace> 
       
  3817             i:[skip_or_sets (Suc n)]:j 
       
  3818          \<lbrace>st j \<and>* ps (u + int (reps_len (replicate (Suc n) 0)) + 1) \<and>* 
       
  3819                      reps' u  (u + int (reps_len (replicate (Suc n) 0))) (replicate (Suc n) 0) \<and>*
       
  3820                                  tm (u + int (reps_len (replicate (Suc n) 0)) + 1) x \<rbrace>"
       
  3821 proof(induct n arbitrary:i j u x)
       
  3822   case 0
       
  3823   from 0 show ?case
       
  3824     apply (simp add:reps'_def reps_len_def reps_ctnt_len_def reps_sep_len_def reps.simps)
       
  3825     apply (unfold skip_or_sets_def, simp add:tpg_fold_sg)
       
  3826     apply hsteps
       
  3827     by (auto simp:sep_conj_ac, smt cond_true_eq2 ones.simps sep_conj_left_commute)
       
  3828 next
       
  3829     case (Suc n)
       
  3830     { fix n
       
  3831       have "listsum (replicate n (Suc 0)) = n"
       
  3832         by (induct n, auto)
       
  3833     } note eq_sum = this
       
  3834     have eq_len: "\<And>n. n \<noteq> 0 \<Longrightarrow> reps_len (replicate (Suc n) 0) = reps_len (replicate n 0) + 2"
       
  3835       by (simp add:reps_len_def reps_sep_len_def reps_ctnt_len_def)
       
  3836     have eq_zero: "\<And> u v. (zeros u (u + int (v + 2))) = 
       
  3837            (zeros u (u + (int v)) \<and>* zero (u + (int v) + 1) \<and>* zero (u + (int v) + 2))"
       
  3838       by (smt sep.mult_assoc zeros_rev)
       
  3839     hence eq_z: 
       
  3840       "zeros u (u + int (reps_len (replicate (Suc (Suc n)) 0)))  = 
       
  3841        (zeros u (u + int (reps_len (replicate (Suc n) 0))) \<and>*
       
  3842        zero ((u + int (reps_len (replicate (Suc n) 0))) + 1) \<and>* 
       
  3843        zero ((u + int (reps_len (replicate (Suc n) 0))) + 2))
       
  3844       " by (simp only:eq_len)
       
  3845     have hh: "\<And>x. (replicate (Suc (Suc n)) x) = (replicate (Suc n) x) @ [x]"
       
  3846       by (metis replicate_Suc replicate_append_same)
       
  3847     have hhh: "replicate (Suc n) skip_or_set \<noteq> []" "[skip_or_set] \<noteq> []" by auto
       
  3848     have eq_code: 
       
  3849           "(i :[ skip_or_sets (Suc (Suc n)) ]: j) = 
       
  3850            (i :[ (skip_or_sets (Suc n); skip_or_set) ]: j)"
       
  3851     proof(unfold skip_or_sets_def)
       
  3852       show "i :[ tpg_fold (replicate (Suc (Suc n)) skip_or_set) ]: j =
       
  3853                i :[ (tpg_fold (replicate (Suc n) skip_or_set) ; skip_or_set) ]: j"
       
  3854         apply (insert tpg_fold_app[OF hhh, of i j], unfold hh)
       
  3855         by (simp only:tpg_fold_sg)
       
  3856     qed
       
  3857     have "Suc n \<noteq> 0" by simp
       
  3858     show ?case 
       
  3859       apply (unfold eq_z eq_code)
       
  3860       apply (hstep Suc(1))
       
  3861       apply (unfold eq_len[OF `Suc n \<noteq> 0`])
       
  3862       apply hstep
       
  3863       apply (auto simp:sep_conj_ac)[1]
       
  3864       apply (sep_cancel+, prune) 
       
  3865       apply (fwd abs_ones)
       
  3866       apply ((fwd abs_reps')+, simp add:int_add_ac)
       
  3867       by (metis replicate_append_same)
       
  3868   qed
       
  3869 
       
  3870 lemma hoare_skip_or_sets_set_gen[step]:
       
  3871   assumes h: "p2 = p1" 
       
  3872              "p3 = p1 + int (reps_len (replicate (Suc n) 0))"
       
  3873              "p4 = p3 + 1"
       
  3874   shows "\<lbrace>st i \<and>* ps p1 \<and>* zeros p2 p3 \<and>* tm p4 x\<rbrace> 
       
  3875             i:[skip_or_sets (Suc n)]:j 
       
  3876          \<lbrace>st j \<and>* ps p4 \<and>* reps' p2  p3 (replicate (Suc n) 0) \<and>* tm p4 x\<rbrace>"
       
  3877   apply (unfold h)
       
  3878   by (rule hoare_skip_or_sets_set)
       
  3879 
       
  3880 declare reps.simps[simp del]
       
  3881 
       
  3882 lemma hoare_skip_or_sets_skip:
       
  3883   assumes h: "n < length ks"
       
  3884   shows "\<lbrace>st i \<and>* ps u \<and>* reps' u v (take n ks) \<and>* reps' (v + 1) w [ks!n] \<rbrace> 
       
  3885             i:[skip_or_sets (Suc n)]:j 
       
  3886          \<lbrace>st j \<and>* ps (w+1) \<and>* reps' u v (take n ks) \<and>* reps' (v + 1) w [ks!n]\<rbrace>"
       
  3887   using h
       
  3888 proof(induct n arbitrary: i j u v w ks)
       
  3889   case 0
       
  3890   show ?case 
       
  3891     apply (subst (1 5) reps'_def, simp add:sep_conj_cond, intro tm.pre_condI, simp)
       
  3892     apply (unfold skip_or_sets_def, simp add:tpg_fold_sg)
       
  3893     apply (unfold reps'_def, simp del:reps.simps)
       
  3894     apply hsteps
       
  3895     by (sep_cancel+, smt+)
       
  3896 next
       
  3897   case (Suc n)
       
  3898   from `Suc n < length ks` have "n < length ks" by auto
       
  3899   note h =  Suc(1) [OF this]
       
  3900   show ?case 
       
  3901     my_block
       
  3902       from `Suc n < length ks` 
       
  3903       have eq_take: "take (Suc n) ks = take n ks @ [ks!n]"
       
  3904         by (metis not_less_eq not_less_iff_gr_or_eq take_Suc_conv_app_nth)
       
  3905     my_block_end
       
  3906     apply (unfold this)
       
  3907     apply (subst reps'_append, simp add:sep_conj_exists, rule tm.precond_exI)
       
  3908     my_block
       
  3909       have "(i :[ skip_or_sets (Suc (Suc n)) ]: j) = 
       
  3910                  (i :[ (skip_or_sets (Suc n); skip_or_set )]: j)"
       
  3911       proof -
       
  3912         have eq_rep: 
       
  3913           "(replicate (Suc (Suc n)) skip_or_set) = ((replicate (Suc n) skip_or_set) @ [skip_or_set])"
       
  3914           by (metis replicate_Suc replicate_append_same)
       
  3915         have "replicate (Suc n) skip_or_set \<noteq> []" "[skip_or_set] \<noteq> []" by auto
       
  3916         from tpg_fold_app[OF this]
       
  3917         show ?thesis
       
  3918           by (unfold skip_or_sets_def eq_rep, simp del:replicate.simps add:tpg_fold_sg)
       
  3919       qed
       
  3920     my_block_end
       
  3921     apply (unfold this)
       
  3922     my_block
       
  3923        fix i j m 
       
  3924        have "\<lbrace>st i \<and>* ps u \<and>* (reps' u (m - 1) (take n ks) \<and>* reps' m v [ks ! n])\<rbrace> 
       
  3925                             i :[ (skip_or_sets (Suc n)) ]: j
       
  3926              \<lbrace>st j \<and>* ps (v + 1) \<and>* (reps' u (m - 1) (take n ks) \<and>* reps' m v [ks ! n])\<rbrace>"
       
  3927                   apply (rule h[THEN tm.hoare_adjust])
       
  3928                   by (sep_cancel+, auto)
       
  3929     my_block_end my_note h_c1 = this
       
  3930     my_block
       
  3931       fix j' j m 
       
  3932       have "\<lbrace>st j' \<and>* ps (v + 1) \<and>* reps' (v + 1) w [ks ! Suc n]\<rbrace> 
       
  3933                           j' :[ skip_or_set ]: j
       
  3934             \<lbrace>st j \<and>* ps (w + 1) \<and>* reps' (v + 1) w [ks ! Suc n]\<rbrace>"
       
  3935         apply (unfold reps'_def, simp)
       
  3936         apply (rule hoare_skip_or_set_skip[THEN tm.hoare_adjust])
       
  3937         by (sep_cancel+, smt)+
       
  3938     my_block_end
       
  3939     apply (hstep h_c1 this)+ 
       
  3940     by ((fwd abs_reps'), simp, sep_cancel+)
       
  3941 qed
       
  3942 
       
  3943 lemma hoare_skip_or_sets_skip_gen[step]:
       
  3944   assumes h: "n < length ks" "u = v" "x = w + 1"
       
  3945   shows "\<lbrace>st i \<and>* ps u \<and>* reps' v w (take n ks) \<and>* reps' x y [ks!n] \<rbrace> 
       
  3946             i:[skip_or_sets (Suc n)]:j 
       
  3947          \<lbrace>st j \<and>* ps (y+1) \<and>* reps' v w (take n ks) \<and>* reps' x y [ks!n]\<rbrace>"
       
  3948   by (unfold assms, rule hoare_skip_or_sets_skip[OF `n < length ks`])
       
  3949 
       
  3950 lemma fam_conj_interv_simp:
       
  3951     "(fam_conj {(ia::int)<..} p) = ((p (ia + 1)) \<and>* fam_conj {ia + 1 <..} p)"
       
  3952 by (smt Collect_cong fam_conj_insert_simp greaterThan_def 
       
  3953         greaterThan_eq_iff greaterThan_iff insertI1 
       
  3954         insert_compr lessThan_iff mem_Collect_eq)
       
  3955 
       
  3956 lemma zeros_fam_conj:
       
  3957   assumes "u \<le> v"
       
  3958   shows "(zeros u v \<and>* fam_conj {v<..} zero) = fam_conj {u - 1<..} zero"
       
  3959 proof -
       
  3960   have "{u - 1<..v} ## {v <..}" by (auto simp:set_ins_def)
       
  3961   from fam_conj_disj_simp[OF this, symmetric]
       
  3962   have "(fam_conj {u - 1<..v} zero \<and>* fam_conj {v<..} zero) = fam_conj ({u - 1<..v} + {v<..}) zero" .
       
  3963   moreover 
       
  3964   from `u \<le> v` have eq_set: "{u - 1 <..} = {u - 1 <..v} + {v <..}" by (auto simp:set_ins_def)
       
  3965   moreover have "fam_conj {u - 1<..v} zero = zeros u v"
       
  3966   proof -
       
  3967     have "({u - 1<..v}) = ({u .. v})" by auto
       
  3968     moreover {
       
  3969       fix u v 
       
  3970       assume "u  \<le> (v::int)"
       
  3971       hence "fam_conj {u .. v} zero = zeros u v"
       
  3972       proof(induct rule:ones_induct)
       
  3973         case (Base i j)
       
  3974         thus ?case by auto
       
  3975       next
       
  3976         case (Step i j)
       
  3977         thus ?case
       
  3978         proof(cases "i = j") 
       
  3979           case True
       
  3980           show ?thesis
       
  3981             by (unfold True, simp add:fam_conj_simps)
       
  3982         next
       
  3983           case False 
       
  3984           with `i \<le> j` have hh: "i + 1 \<le> j" by auto
       
  3985           hence eq_set: "{i..j} = (insert i {i + 1 .. j})"
       
  3986             by (smt simp_from_to)
       
  3987           have "i \<notin> {i + 1 .. j}" by simp
       
  3988           from fam_conj_insert_simp[OF this, folded eq_set]
       
  3989           have "fam_conj {i..j} zero = (zero i \<and>* fam_conj {i + 1..j} zero)" .
       
  3990           with Step(2)[OF hh] Step
       
  3991           show ?thesis by simp
       
  3992         qed
       
  3993       qed
       
  3994     } 
       
  3995     moreover note this[OF `u  \<le> v`]
       
  3996     ultimately show ?thesis by simp
       
  3997   qed
       
  3998   ultimately show ?thesis by smt
       
  3999 qed
       
  4000 
       
  4001 declare replicate.simps [simp del]
       
  4002 
       
  4003 lemma hoare_skip_or_sets_comb:
       
  4004   assumes "length ks \<le> n"
       
  4005   shows "\<lbrace>st i \<and>* ps u \<and>* reps u v ks \<and>* fam_conj {v<..} zero\<rbrace> 
       
  4006                 i:[skip_or_sets (Suc n)]:j 
       
  4007          \<lbrace>st j \<and>* ps ((v + int (reps_len (list_ext n ks)) - int (reps_len ks))+ 2) \<and>* 
       
  4008           reps' u (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1) (list_ext n ks) \<and>*
       
  4009           fam_conj {(v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1)<..} zero \<rbrace>"
       
  4010 proof(cases "ks = []")
       
  4011   case True
       
  4012   show ?thesis
       
  4013     apply (subst True, simp only:reps.simps sep_conj_cond)
       
  4014     apply (rule tm.pre_condI, simp)
       
  4015     apply (rule_tac p = "st i \<and>* ps (v + 1) \<and>*
       
  4016             zeros (v + 1) (v + 1 + int (reps_len (replicate (Suc n) 0))) \<and>*
       
  4017             tm (v + 2 + int (reps_len (replicate (Suc n) 0))) Bk \<and>* 
       
  4018             fam_conj {(v + 2 + int (reps_len (replicate (Suc n) 0)))<..} zero
       
  4019       " in tm.pre_stren)
       
  4020     apply hsteps
       
  4021     apply (auto simp:sep_conj_ac)[1]
       
  4022     apply (auto simp:sep_conj_ac)[2]
       
  4023     my_block
       
  4024       from True have "(list_ext n ks) = (replicate (Suc n) 0)"
       
  4025         by (metis append_Nil diff_zero list.size(3) list_ext_def)
       
  4026     my_block_end my_note le_red = this
       
  4027     my_block
       
  4028       from True have "(reps_len ks) = 0"
       
  4029         by (metis reps_len_nil)
       
  4030     my_block_end
       
  4031     apply (unfold this le_red, simp)
       
  4032     my_block
       
  4033       have "v + 2 + int (reps_len (replicate (Suc n) 0)) = 
       
  4034             v + int (reps_len (replicate (Suc n) 0)) + 2" by smt
       
  4035     my_block_end my_note eq_len = this
       
  4036     apply (unfold this)
       
  4037     apply (sep_cancel+)
       
  4038     apply (fold zero_def)
       
  4039     apply (subst fam_conj_interv_simp, simp)
       
  4040     apply (simp only:int_add_ac)
       
  4041     apply (simp only:sep_conj_ac, sep_cancel+)
       
  4042     my_block
       
  4043       have "v + 1 \<le> (2 + (v + int (reps_len (replicate (Suc n) 0))))" by simp
       
  4044       from zeros_fam_conj[OF this]
       
  4045       have "(fam_conj {v<..} zero) = (zeros (v + 1) (2 + (v + int (reps_len (replicate (Suc n) 0)))) \<and>*
       
  4046                                         fam_conj {2 + (v + int (reps_len (replicate (Suc n) 0)))<..} zero)"
       
  4047         by simp
       
  4048     my_block_end
       
  4049     apply (subst (asm) this, simp only:int_add_ac, sep_cancel+)
       
  4050     by (smt cond_true_eq2 sep.mult_assoc sep.mult_commute 
       
  4051             sep.mult_left_commute sep_conj_assoc sep_conj_commute 
       
  4052          sep_conj_left_commute zeros.simps zeros_rev)
       
  4053 next 
       
  4054   case False
       
  4055   show ?thesis
       
  4056     my_block
       
  4057       have "(i:[skip_or_sets (Suc n)]:j) = 
       
  4058               (i:[(skip_or_sets (length ks);  skip_or_sets (Suc n - length ks))]:j)"
       
  4059         apply (unfold skip_or_sets_def)
       
  4060         my_block
       
  4061           have "(replicate (Suc n) skip_or_set) = 
       
  4062                    (replicate (length ks) skip_or_set @ (replicate (Suc n - length ks) skip_or_set))"
       
  4063             by (smt assms replicate_add)
       
  4064         my_block_end
       
  4065         apply (unfold this, rule tpg_fold_app, simp add:False)
       
  4066         by (insert `length ks \<le> n`, simp)
       
  4067     my_block_end
       
  4068     apply (unfold this)
       
  4069     my_block
       
  4070       from False have "length ks = (Suc (length ks - 1))" by simp
       
  4071     my_block_end
       
  4072     apply (subst (1) this)
       
  4073     my_block
       
  4074       from False
       
  4075       have "(reps u v ks \<and>* fam_conj {v<..} zero) =
       
  4076             (reps' u (v + 1) ks \<and>* fam_conj {v+1<..} zero)"
       
  4077         apply (unfold reps'_def, simp)
       
  4078         by (subst fam_conj_interv_simp, simp add:sep_conj_ac)
       
  4079     my_block_end
       
  4080     apply (unfold this) 
       
  4081     my_block
       
  4082       fix i j
       
  4083       have "\<lbrace>st i \<and>* ps u \<and>* reps' u (v + 1) ks \<rbrace> 
       
  4084                 i :[ skip_or_sets (Suc (length ks - 1))]: j
       
  4085             \<lbrace>st j \<and>* ps (v + 2) \<and>* reps' u (v + 1) ks \<rbrace>"
       
  4086         my_block
       
  4087           have "ks = take (length ks - 1) ks @ [ks!(length ks - 1)]"
       
  4088             by (smt False drop_0 drop_eq_Nil id_take_nth_drop)  
       
  4089         my_block_end my_note eq_ks = this
       
  4090         apply (subst (1) this)
       
  4091         apply (unfold reps'_append, simp add:sep_conj_exists, rule tm.precond_exI)
       
  4092         my_block
       
  4093           from False have "(length ks - Suc 0) < length ks"
       
  4094             by (smt `length ks = Suc (length ks - 1)`)
       
  4095         my_block_end
       
  4096         apply hsteps
       
  4097         apply (subst eq_ks, unfold reps'_append, simp only:sep_conj_exists)
       
  4098         by (rule_tac x = m in EXS_intro, simp add:sep_conj_ac, sep_cancel+, smt)
       
  4099     my_block_end
       
  4100     apply (hstep this)
       
  4101     my_block
       
  4102       fix u n
       
  4103       have "(fam_conj {u <..} zero) = 
       
  4104          (zeros (u + 1) (u + int n + 1) \<and>* tm (u + int n + 2) Bk \<and>* fam_conj {(u + int n + 2)<..} zero)"
       
  4105         my_block
       
  4106           have "u + 1 \<le> (u + int n + 2)" by auto
       
  4107           from zeros_fam_conj[OF this, symmetric]
       
  4108           have "fam_conj {u<..} zero = (zeros (u + 1) (u + int n + 2) \<and>* fam_conj {u + int n + 2<..} zero)"
       
  4109             by simp
       
  4110         my_block_end
       
  4111         apply (subst this)
       
  4112         my_block
       
  4113           have "(zeros (u + 1) (u + int n + 2)) = 
       
  4114                    ((zeros (u + 1) (u + int n + 1) \<and>* tm (u + int n + 2) Bk))"
       
  4115             by (smt zero_def zeros_rev)
       
  4116         my_block_end
       
  4117         by (unfold this, auto simp:sep_conj_ac)
       
  4118     my_block_end
       
  4119     apply (subst (1) this[of _ "(reps_len (replicate (Suc (n - length ks)) 0))"])
       
  4120     my_block
       
  4121       from `length ks \<le> n`
       
  4122       have "Suc n - length ks = Suc (n - length ks)" by auto 
       
  4123     my_block_end my_note eq_suc = this
       
  4124     apply (subst this)
       
  4125     apply hsteps
       
  4126     apply (simp add: sep_conj_ac this, sep_cancel+)
       
  4127     apply (fwd abs_reps')+
       
  4128     my_block
       
  4129       have "(int (reps_len (replicate (Suc (n - length ks)) 0))) =
       
  4130             (int (reps_len (list_ext n ks)) - int (reps_len ks) - 1)"
       
  4131         apply (unfold list_ext_def eq_suc)
       
  4132         my_block
       
  4133           have "replicate (Suc (n - length ks)) 0 \<noteq> []" by simp
       
  4134         my_block_end
       
  4135         by (unfold reps_len_split[OF False this], simp)
       
  4136     my_block_end
       
  4137     apply (unfold this)
       
  4138     my_block
       
  4139       from `length ks \<le> n`
       
  4140       have "(ks @ replicate (Suc (n - length ks)) 0) =  (list_ext n ks)"
       
  4141         by (unfold list_ext_def, simp)
       
  4142     my_block_end
       
  4143     apply (unfold this, simp)
       
  4144     apply (subst fam_conj_interv_simp, unfold zero_def, simp, simp add:int_add_ac sep_conj_ac)
       
  4145     by (sep_cancel+, smt)
       
  4146 qed
       
  4147 
       
  4148 lemma hoare_skip_or_sets_comb_gen:
       
  4149   assumes "length ks \<le> n" "u = v" "w = x"
       
  4150   shows "\<lbrace>st i \<and>* ps u \<and>* reps v w ks \<and>* fam_conj {x<..} zero\<rbrace> 
       
  4151                 i:[skip_or_sets (Suc n)]:j 
       
  4152          \<lbrace>st j \<and>* ps ((x + int (reps_len (list_ext n ks)) - int (reps_len ks))+ 2) \<and>* 
       
  4153           reps' u (x + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1) (list_ext n ks) \<and>*
       
  4154           fam_conj {(x + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1)<..} zero \<rbrace>"
       
  4155   by (unfold assms, rule hoare_skip_or_sets_comb[OF `length ks \<le> n`])
       
  4156 
       
  4157 definition "locate n = (skip_or_sets (Suc n);
       
  4158                         move_left;
       
  4159                         move_left;
       
  4160                         left_until_zero;
       
  4161                         move_right
       
  4162                        )"
       
  4163 
       
  4164 lemma list_ext_tail_expand:
       
  4165   assumes h: "length ks \<le> a"
       
  4166   shows "list_ext a ks = take a (list_ext a ks) @ [(list_ext a ks)!a]"
       
  4167 proof -
       
  4168   let ?l = "list_ext a ks"
       
  4169   from h have eq_len: "length ?l = Suc a"
       
  4170     by (smt list_ext_len_eq)
       
  4171   hence "?l \<noteq> []" by auto
       
  4172   hence "?l = take (length ?l - 1) ?l @ [?l!(length ?l - 1)]"
       
  4173     by (metis `length (list_ext a ks) = Suc a` diff_Suc_1 le_refl 
       
  4174                     lessI take_Suc_conv_app_nth take_all)
       
  4175   from this[unfolded eq_len]
       
  4176   show ?thesis by simp
       
  4177 qed
       
  4178 
       
  4179 lemma reps'_nn_expand:
       
  4180   assumes "xs \<noteq> []"
       
  4181   shows "(reps' u v xs) = (reps u (v - 1) xs \<and>* zero v)"
       
  4182   by (metis assms reps'_def)
       
  4183 
       
  4184 lemma sep_conj_st1: "(p \<and>* st t \<and>* q) = (st t \<and>* p \<and>* q)"
       
  4185   by (simp only:sep_conj_ac)
       
  4186 
       
  4187 lemma sep_conj_st2: "(p \<and>* st t) = (st t \<and>* p)"
       
  4188   by (simp only:sep_conj_ac)
       
  4189 
       
  4190 lemma sep_conj_st3: "((st t \<and>* p) \<and>* r) = (st t \<and>* p \<and>* r)"
       
  4191   by (simp only:sep_conj_ac)
       
  4192 
       
  4193 lemma sep_conj_st4: "(EXS x. (st t \<and>* r x)) = ((st t) \<and>* (EXS x. r x))"
       
  4194   apply (unfold pred_ex_def, default+)
       
  4195   apply (safe)
       
  4196   apply (sep_cancel, auto)
       
  4197   by (auto elim!: sep_conjE intro!:sep_conjI)
       
  4198 
       
  4199 lemmas sep_conj_st = sep_conj_st1 sep_conj_st2 sep_conj_st3 sep_conj_st4
       
  4200 
       
  4201 lemma sep_conj_cond3 : "(<cond1> \<and>* <cond2>) = <(cond1 \<and> cond2)>"
       
  4202   by (smt cond_eqI cond_true_eq sep_conj_commute sep_conj_empty)
       
  4203 
       
  4204 lemma sep_conj_cond4 : "(<cond1> \<and>* <cond2> \<and>* r) = (<(cond1 \<and> cond2)> \<and>* r)"
       
  4205   by (metis Hoare_gen.sep_conj_cond3 Hoare_tm.sep_conj_cond3)
       
  4206 
       
  4207 lemmas sep_conj_cond = sep_conj_cond3 sep_conj_cond4 sep_conj_cond 
       
  4208 
       
  4209 lemma hoare_left_until_zero_reps: 
       
  4210   "\<lbrace>st i ** ps v ** zero u ** reps (u + 1) v [k]\<rbrace> 
       
  4211         i:[left_until_zero]:j
       
  4212    \<lbrace>st j ** ps u ** zero u ** reps (u + 1) v [k]\<rbrace>"
       
  4213   apply (unfold reps.simps, simp only:sep_conj_cond)
       
  4214   apply (rule tm.pre_condI, simp)
       
  4215   by hstep
       
  4216 
       
  4217 lemma hoare_left_until_zero_reps_gen[step]: 
       
  4218   assumes "u = x" "w = v + 1"
       
  4219   shows "\<lbrace>st i ** ps u ** zero v ** reps w x [k]\<rbrace> 
       
  4220                 i:[left_until_zero]:j
       
  4221          \<lbrace>st j ** ps v ** zero v ** reps w x [k]\<rbrace>"
       
  4222   by (unfold assms, rule hoare_left_until_zero_reps)
       
  4223 
       
  4224 lemma reps_lenE:
       
  4225   assumes "reps u v ks s"
       
  4226   shows "( <(v = u + int (reps_len ks) - 1)> \<and>* reps u v ks ) s"
       
  4227 proof(rule condI)
       
  4228   from reps_len_correct[OF assms] show "v = u + int (reps_len ks) - 1" .
       
  4229 next
       
  4230   from assms show "reps u v ks s" .
       
  4231 qed
       
  4232 
       
  4233 lemma condI1: 
       
  4234   assumes "p s" "b"
       
  4235   shows "(<b> \<and>* p) s"
       
  4236 proof(rule condI[OF assms(2)])
       
  4237   from  assms(1) show "p s" .
       
  4238 qed
       
  4239 
       
  4240 lemma hoare_locate_set:
       
  4241   assumes "length ks \<le> n"
       
  4242   shows "\<lbrace>st i \<and>* zero (u - 1) \<and>* ps u \<and>* reps u v ks \<and>* fam_conj {v<..} zero\<rbrace> 
       
  4243                 i:[locate n]:j 
       
  4244          \<lbrace>st j \<and>* zero (u - 1) \<and>* 
       
  4245              (EXS m w. ps m \<and>* reps' u (m - 1) (take n (list_ext n ks)) \<and>* 
       
  4246                          reps m w [(list_ext n ks)!n] \<and>* fam_conj {w<..} zero)\<rbrace>"
       
  4247 proof(cases "take n (list_ext n ks) = []")
       
  4248   case False
       
  4249   show ?thesis
       
  4250     apply (unfold locate_def)
       
  4251     apply (hstep hoare_skip_or_sets_comb_gen)
       
  4252     apply (subst (3) list_ext_tail_expand[OF `length ks \<le> n`])
       
  4253     apply (subst (1) reps'_append, simp add:sep_conj_exists)
       
  4254     apply (rule tm.precond_exI)
       
  4255     apply (subst (1) reps'_nn_expand[OF False]) 
       
  4256     apply (rule_tac p = "st j' \<and>* <(m = u + int (reps_len (take n (list_ext n ks))) + 1)> \<and>*
       
  4257             ps (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 2) \<and>*
       
  4258             ((reps u (m - 1 - 1) (take n (list_ext n ks)) \<and>* zero (m - 1)) \<and>*
       
  4259              reps' m (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1)
       
  4260               [list_ext n ks ! n]) \<and>*
       
  4261             fam_conj
       
  4262              {v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1<..}
       
  4263              zero \<and>*
       
  4264             zero (u - 1)" 
       
  4265       in tm.pre_stren)
       
  4266     my_block
       
  4267       have "[list_ext n ks ! n] \<noteq> []" by simp
       
  4268       from reps'_nn_expand[OF this]
       
  4269       have "(reps' m (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1) [list_ext n ks ! n]) =
       
  4270                 (reps m (v + (int (reps_len (list_ext n ks)) - int (reps_len ks))) [list_ext n ks ! n] \<and>*
       
  4271                    zero (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1))" 
       
  4272         by simp
       
  4273     my_block_end 
       
  4274     apply (subst this)
       
  4275     my_block
       
  4276       have "(fam_conj {v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1<..} zero) =
       
  4277              (zero (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 2) \<and>* 
       
  4278               fam_conj {v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 2<..} zero)"
       
  4279         by (subst fam_conj_interv_simp, smt)
       
  4280     my_block_end
       
  4281     apply (unfold this) 
       
  4282     apply (simp only:sep_conj_st)
       
  4283     apply hsteps
       
  4284     apply (auto simp:sep_conj_ac)[1]
       
  4285     apply (sep_cancel+)
       
  4286     apply (rule_tac x = m in EXS_intro)
       
  4287     apply (rule_tac x = "m + int (list_ext n ks ! n)" in EXS_intro)
       
  4288     apply (simp add:sep_conj_ac del:ones_simps, sep_cancel+)
       
  4289     apply (subst (asm) sep_conj_cond)+
       
  4290     apply (erule_tac condE, clarsimp, simp add:sep_conj_ac int_add_ac)
       
  4291     apply (fwd abs_reps')
       
  4292     apply (fwd abs_reps')
       
  4293     apply (simp add:sep_conj_ac int_add_ac)
       
  4294     apply (sep_cancel+)
       
  4295     apply (subst (asm) reps'_def, subst fam_conj_interv_simp, subst fam_conj_interv_simp, 
       
  4296            simp add:sep_conj_ac int_add_ac)
       
  4297     my_block
       
  4298       fix s
       
  4299       assume h: "(reps (1 + (u + int (reps_len (take n (list_ext n ks)))))
       
  4300              (v + (- int (reps_len ks) + int (reps_len (list_ext n ks)))) [list_ext n ks ! n]) s"
       
  4301       (is "?P s")
       
  4302       from reps_len_correct[OF this] list_ext_tail_expand[OF `length ks \<le> n`]
       
  4303       have hh: "v + (- int (reps_len ks) + 
       
  4304                     int (reps_len (take n (list_ext n ks) @ [list_ext n ks ! n]))) =
       
  4305                   1 + (u + int (reps_len (take n (list_ext n ks)))) + 
       
  4306                        int (reps_len [list_ext n ks ! n]) - 1"
       
  4307         by metis
       
  4308       have "[list_ext n ks ! n] \<noteq> []" by simp
       
  4309       from hh[unfolded reps_len_split[OF False this]]
       
  4310       have "v  =  u + (int (reps_len ks)) - 1"
       
  4311         by simp
       
  4312       from condI1[where p = ?P, OF h this]
       
  4313       have "(<(v = u + int (reps_len ks) - 1)> \<and>*
       
  4314              reps (1 + (u + int (reps_len (take n (list_ext n ks)))))
       
  4315              (v + (- int (reps_len ks) + int (reps_len (list_ext n ks)))) [list_ext n ks ! n]) s" .
       
  4316     my_block_end
       
  4317     apply (fwd this, (subst (asm) sep_conj_cond)+, erule condE, simp add:sep_conj_ac int_add_ac
       
  4318               reps_len_sg)
       
  4319     apply (fwd reps_lenE, (subst (asm) sep_conj_cond)+, erule condE, simp add:sep_conj_ac int_add_ac
       
  4320             reps_len_sg)
       
  4321     by (fwd reps_lenE, (subst (asm) sep_conj_cond)+, erule condE, simp add:sep_conj_ac)
       
  4322 next
       
  4323   case True
       
  4324   show ?thesis
       
  4325     apply (unfold locate_def)
       
  4326     apply (hstep hoare_skip_or_sets_comb)
       
  4327     apply (subst (3) list_ext_tail_expand[OF `length ks \<le> n`])
       
  4328     apply (subst (1) reps'_append, simp add:sep_conj_exists)
       
  4329     apply (rule tm.precond_exI)
       
  4330     my_block
       
  4331       from True `length ks \<le> n`
       
  4332       have "ks = []" "n = 0"
       
  4333         apply (metis le0 le_antisym length_0_conv less_nat_zero_code list_ext_len take_eq_Nil)
       
  4334         by (smt True length_take list.size(3) list_ext_len)
       
  4335     my_block_end
       
  4336     apply (unfold True this)
       
  4337     apply (simp add:reps'_def list_ext_def reps.simps reps_len_def reps_sep_len_def 
       
  4338                  reps_ctnt_len_def
       
  4339       del:ones_simps)
       
  4340     apply (subst sep_conj_cond)+
       
  4341     apply (rule tm.pre_condI, simp del:ones_simps)
       
  4342     apply (subst fam_conj_interv_simp, simp add:sep_conj_st del:ones_simps)
       
  4343     apply (hsteps)
       
  4344     apply (auto simp:sep_conj_ac)[1]
       
  4345     apply (sep_cancel+)
       
  4346     apply (rule_tac x = "(v + int (listsum (replicate (Suc 0) (Suc 0))))" in EXS_intro)+
       
  4347     apply (simp only:sep_conj_ac, sep_cancel+)
       
  4348     apply (auto)
       
  4349     apply (subst fam_conj_interv_simp)
       
  4350     apply (subst fam_conj_interv_simp)
       
  4351     by smt
       
  4352 qed
       
  4353 
       
  4354 lemma hoare_locate_set_gen[step]:
       
  4355   assumes "length ks \<le> n" 
       
  4356            "u = v - 1" "v = w" "x = y"
       
  4357   shows "\<lbrace>st i \<and>* zero u \<and>* ps v \<and>* reps w x ks \<and>* fam_conj {y<..} zero\<rbrace> 
       
  4358                 i:[locate n]:j 
       
  4359          \<lbrace>st j \<and>* zero u \<and>* 
       
  4360              (EXS m w. ps m \<and>* reps' v (m - 1) (take n (list_ext n ks)) \<and>* 
       
  4361                          reps m w [(list_ext n ks)!n] \<and>* fam_conj {w<..} zero)\<rbrace>"
       
  4362   by (unfold assms, rule hoare_locate_set[OF `length ks \<le> n`])
       
  4363 
       
  4364 lemma hoare_locate_skip: 
       
  4365   assumes h: "n < length ks"
       
  4366   shows 
       
  4367    "\<lbrace>st i \<and>* ps u \<and>* zero (u - 1) \<and>* reps' u (v - 1) (take n ks) \<and>* reps' v w [ks!n] \<and>* tm (w + 1) x\<rbrace> 
       
  4368       i:[locate n]:j 
       
  4369     \<lbrace>st j \<and>* ps v \<and>* zero (u - 1) \<and>* reps' u (v - 1) (take n ks) \<and>* reps' v w [ks!n] \<and>* tm (w + 1) x\<rbrace>"
       
  4370 proof -
       
  4371   show ?thesis
       
  4372     apply (unfold locate_def)
       
  4373     apply hsteps
       
  4374     apply (subst (2 4) reps'_def, simp add:reps.simps sep_conj_cond del:ones_simps)
       
  4375     apply (intro tm.pre_condI, simp del:ones_simps)
       
  4376     apply hsteps
       
  4377     apply (case_tac "(take n ks) = []", simp add:reps'_def sep_conj_cond del:ones_simps)
       
  4378     apply (rule tm.pre_condI, simp del:ones_simps)
       
  4379     apply hsteps
       
  4380     apply (simp del:ones_simps add:reps'_def)
       
  4381     by hsteps
       
  4382 qed
       
  4383 
       
  4384 
       
  4385 lemma hoare_locate_skip_gen[step]: 
       
  4386   assumes "n < length ks"
       
  4387           "v = u - 1" "w = u" "x = y - 1" "z' = z + 1"
       
  4388   shows 
       
  4389    "\<lbrace>st i \<and>* ps u \<and>* tm v Bk \<and>* reps' w x (take n ks) \<and>* reps' y z [ks!n] \<and>* tm z' vx\<rbrace> 
       
  4390       i:[locate n]:j 
       
  4391     \<lbrace>st j \<and>* ps y \<and>* tm v Bk \<and>* reps' w x (take n ks) \<and>* reps' y z [ks!n] \<and>* tm z' vx\<rbrace>"
       
  4392   by (unfold assms, fold zero_def, rule hoare_locate_skip[OF `n < length ks`])
       
  4393 
       
  4394 definition "Inc a = locate a; 
       
  4395                     right_until_zero; 
       
  4396                     move_right;
       
  4397                     shift_right;
       
  4398                     move_left;
       
  4399                     left_until_double_zero;
       
  4400                     write_one;
       
  4401                     left_until_double_zero;
       
  4402                     move_right;
       
  4403                     move_right
       
  4404                     "
       
  4405 
       
  4406 lemma ones_int_expand: "(ones m (m + int k)) = (one m \<and>* ones (m + 1) (m + int k))"
       
  4407   by (simp add:ones_simps)
       
  4408 
       
  4409 lemma reps_splitedI:
       
  4410   assumes h1: "(reps u v ks1 \<and>* zero (v + 1) \<and>* reps (v + 2) w ks2) s"
       
  4411   and h2: "ks1 \<noteq> []"
       
  4412   and h3: "ks2 \<noteq> []"
       
  4413   shows "(reps u w (ks1 @ ks2)) s"
       
  4414 proof - 
       
  4415   from h2 h3
       
  4416   have "splited (ks1 @ ks2) ks1 ks2" by (auto simp:splited_def)
       
  4417   from h1 obtain s1 where 
       
  4418     "(reps u v ks1) s1" by (auto elim:sep_conjE)
       
  4419   from h1 obtain s2 where 
       
  4420     "(reps (v + 2) w ks2) s2" by (auto elim:sep_conjE)
       
  4421   from reps_len_correct[OF `(reps u v ks1) s1`] 
       
  4422   have eq_v: "v = u + int (reps_len ks1) - 1" .
       
  4423   from reps_len_correct[OF `(reps (v + 2) w ks2) s2`]
       
  4424   have eq_w: "w = v + 2 + int (reps_len ks2) - 1" .
       
  4425   from h1
       
  4426   have "(reps u (u + int (reps_len ks1) - 1) ks1 \<and>*
       
  4427          zero (u + int (reps_len ks1)) \<and>* reps (u + int (reps_len ks1) + 1) w ks2) s"
       
  4428     apply (unfold eq_v eq_w[unfolded eq_v])
       
  4429     by (sep_cancel+, smt)
       
  4430   thus ?thesis
       
  4431     by(unfold reps_splited[OF `splited (ks1 @ ks2) ks1 ks2`], simp)
       
  4432 qed
       
  4433 
       
  4434 lemma reps_sucI:
       
  4435   assumes h: "(reps u v (xs@[x]) \<and>* one (1 + v)) s"
       
  4436   shows "(reps u (1 + v) (xs@[Suc x])) s"
       
  4437 proof(cases "xs = []")
       
  4438   case True
       
  4439   from h obtain s' where "(reps u v (xs@[x])) s'" by (auto elim:sep_conjE)
       
  4440   from reps_len_correct[OF this] have " v = u + int (reps_len (xs @ [x])) - 1" .
       
  4441   with True have eq_v: "v = u + int x" by (simp add:reps_len_sg)
       
  4442   have eq_one1: "(one (1 + (u + int x)) \<and>* ones (u + 1) (u + int x)) = ones (u + 1) (1 + (u + int x))"
       
  4443     by (smt ones_rev sep.mult_commute)
       
  4444   from h show ?thesis
       
  4445     apply (unfold True, simp add:eq_v reps.simps sep_conj_cond sep_conj_ac ones_rev)
       
  4446     by (sep_cancel+, simp add: eq_one1, smt)
       
  4447 next
       
  4448   case False
       
  4449   from h obtain s1 s2 where hh: "(reps u v (xs@[x])) s1" "s = s1 + s2" "s1 ## s2" "one (1 + v) s2"
       
  4450     by (auto elim:sep_conjE)
       
  4451   from hh(1)[unfolded reps_rev[OF False]]
       
  4452   obtain s11 s12 s13 where hhh:
       
  4453     "(reps u (v - int (x + 1) - 1) xs) s11"
       
  4454     "(zero (v - int (x + 1))) s12" "(ones (v - int x) v) s13"
       
  4455     "s11 ## (s12 + s13)" "s12 ## s13" "s1 = s11 + s12 + s13"
       
  4456     apply (atomize_elim)
       
  4457     apply(elim sep_conjE)+
       
  4458     apply (rule_tac x = xa in exI)
       
  4459     apply (rule_tac x = xaa in exI)
       
  4460     apply (rule_tac x = ya in exI)
       
  4461     apply (intro conjI, assumption+)
       
  4462     by (auto simp:set_ins_def)
       
  4463   show ?thesis
       
  4464   proof(rule reps_splitedI[where v = "(v - int (x + 1) - 1)"])
       
  4465     show "(reps u (v - int (x + 1) - 1) xs \<and>* zero (v - int (x + 1) - 1 + 1) \<and>* 
       
  4466                                     reps (v - int (x + 1) - 1 + 2) (1 + v) [Suc x]) s"
       
  4467     proof(rule sep_conjI)
       
  4468       from hhh(1) show "reps u (v - int (x + 1) - 1) xs s11" .
       
  4469     next
       
  4470       show "(zero (v - int (x + 1) - 1 + 1) \<and>* reps (v - int (x + 1) - 1 + 2) (1 + v) [Suc x]) (s12 + (s13 + s2))"
       
  4471       proof(rule sep_conjI)
       
  4472         from hhh(2) show "zero (v - int (x + 1) - 1 + 1) s12" by smt
       
  4473       next
       
  4474         from hh(4) hhh(3)
       
  4475         show "reps (v - int (x + 1) - 1 + 2) (1 + v) [Suc x] (s13 + s2)"
       
  4476           apply (simp add:reps.simps del:ones_simps add:ones_rev)
       
  4477           by (smt hh(3) hh(4) hhh(4) hhh(5) hhh(6) sep_add_disjD sep_conjI sep_disj_addI1)
       
  4478       next
       
  4479         show "s12 ## s13 + s2" 
       
  4480           by (metis hh(3) hhh(4) hhh(5) hhh(6) sep_add_commute sep_add_disjD 
       
  4481               sep_add_disjI2 sep_disj_addD sep_disj_addD1 sep_disj_addI1 sep_disj_commuteI)
       
  4482       next
       
  4483         show "s12 + (s13 + s2) = s12 + (s13 + s2)" by metis 
       
  4484       qed
       
  4485     next
       
  4486       show "s11 ## s12 + (s13 + s2)"
       
  4487         by (metis hh(3) hhh(4) hhh(5) hhh(6) sep_disj_addD1 sep_disj_addI1 sep_disj_addI3)
       
  4488     next
       
  4489       show "s = s11 + (s12 + (s13 + s2))"
       
  4490         by (smt hh(2) hh(3) hhh(4) hhh(5) hhh(6) sep_add_assoc sep_add_commute 
       
  4491              sep_add_disjD sep_add_disjI2 sep_disj_addD1 sep_disj_addD2 
       
  4492               sep_disj_addI1 sep_disj_addI3 sep_disj_commuteI)
       
  4493     qed
       
  4494   next
       
  4495     from False show "xs \<noteq> []" .
       
  4496   next
       
  4497     show "[Suc x] \<noteq> []" by simp
       
  4498   qed
       
  4499 qed
       
  4500 
       
  4501 lemma cond_expand: "(<cond> \<and>* p) s = (cond \<and> (p s))"
       
  4502   by (metis (full_types) condD pasrt_def sep_conj_commuteI 
       
  4503              sep_conj_sep_emptyI sep_empty_def sep_globalise)
       
  4504 
       
  4505 lemma ones_rev1:
       
  4506   assumes "\<not> (1 + n) < m"
       
  4507   shows "(ones m n \<and>* one (1 + n)) = (ones m (1 + n))"
       
  4508   by (insert ones_rev[OF assms, simplified], simp)
       
  4509 
       
  4510 lemma reps_one_abs:
       
  4511   assumes "(reps u v [k] \<and>* one w) s"
       
  4512           "w = v + 1"
       
  4513   shows "(reps u w [Suc k]) s"
       
  4514   using assms unfolding assms
       
  4515   apply (simp add:reps.simps sep_conj_ac)
       
  4516   apply (subst (asm) sep_conj_cond)+
       
  4517   apply (erule condE, simp)
       
  4518   by (simp add:ones_rev sep_conj_ac, sep_cancel+, smt)
       
  4519 
       
  4520 lemma reps'_reps_abs:
       
  4521   assumes "(reps' u v xs \<and>* reps w x ys) s"
       
  4522           "w = v + 1"  "ys \<noteq> []"
       
  4523   shows "(reps u x (xs@ys)) s"
       
  4524 proof(cases "xs = []")
       
  4525   case False
       
  4526   with assms
       
  4527   have h: "splited (xs@ys) xs ys" by (simp add:splited_def)
       
  4528   from assms(1)[unfolded assms(2)]
       
  4529   show ?thesis
       
  4530     apply (unfold reps_splited[OF h])
       
  4531     apply (insert False, unfold reps'_def, simp)
       
  4532     apply (fwd reps_lenE, (subst (asm) sep_conj_cond)+)
       
  4533     by (erule condE, simp)
       
  4534 next
       
  4535   case True
       
  4536   with assms
       
  4537   show ?thesis
       
  4538     apply (simp add:reps'_def)
       
  4539     by (erule condE, simp)
       
  4540 qed
       
  4541 
       
  4542 lemma reps_one_abs1:
       
  4543   assumes "(reps u v (xs@[k]) \<and>* one w) s"
       
  4544           "w = v + 1"
       
  4545   shows "(reps u w (xs@[Suc k])) s"
       
  4546 proof(cases "xs = []")
       
  4547   case True
       
  4548   with assms reps_one_abs
       
  4549   show ?thesis by simp
       
  4550 next
       
  4551   case False
       
  4552   hence "splited (xs@[k]) xs [k]" by (simp add:splited_def)
       
  4553   from assms(1)[unfolded reps_splited[OF this] assms(2)]
       
  4554   show ?thesis
       
  4555     apply (fwd reps_one_abs)
       
  4556     apply (fwd reps_reps'_abs) 
       
  4557     apply (fwd reps'_reps_abs)
       
  4558     by (simp add:assms)
       
  4559 qed
       
  4560   
       
  4561 lemma tm_hoare_inc00: 
       
  4562   assumes h: "a < length ks \<and> ks ! a = v"
       
  4563   shows "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace> 
       
  4564     i :[ Inc a ]: j
       
  4565     \<lbrace>st j \<and>*
       
  4566      ps u \<and>*
       
  4567      zero (u - 2) \<and>*
       
  4568      zero (u - 1) \<and>*
       
  4569      reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1) (ks[a := Suc v]) \<and>*
       
  4570      fam_conj {(ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1)<..} zero\<rbrace>"
       
  4571   (is "\<lbrace> ?P \<rbrace> ?code \<lbrace> ?Q \<rbrace>")
       
  4572 proof -
       
  4573   from h have "a < length ks" "ks ! a = v" by auto
       
  4574   from list_nth_expand[OF `a < length ks`]
       
  4575   have eq_ks: "ks = take a ks @ [ks!a] @ drop (Suc a) ks" .
       
  4576   from `a < length ks` have "ks \<noteq> []" by auto
       
  4577   hence "(reps u ia ks \<and>* zero (ia + 1)) = reps' u (ia + 1) ks"
       
  4578     by (simp add:reps'_def)
       
  4579   also from eq_ks have "\<dots> = reps' u (ia + 1) (take a ks @ [ks!a] @ drop (Suc a) ks)" by simp
       
  4580   also have "\<dots>  = (EXS m. reps' u (m - 1) (take a ks) \<and>* 
       
  4581                      reps' m (ia + 1) (ks ! a # drop (Suc a) ks))"
       
  4582     by (simp add:reps'_append)
       
  4583   also have "\<dots> = (EXS m. reps' u (m - 1) (take a ks) \<and>* 
       
  4584                      reps' m (ia + 1) ([ks ! a] @ drop (Suc a) ks))"
       
  4585     by simp
       
  4586   also have "\<dots> = (EXS m ma. reps' u (m - 1) (take a ks) \<and>*
       
  4587                        reps' m (ma - 1) [ks ! a] \<and>* reps' ma (ia + 1) (drop (Suc a) ks))"
       
  4588     by (simp only:reps'_append sep_conj_exists)
       
  4589   finally have eq_s: "(reps u ia ks \<and>* zero (ia + 1)) = \<dots>" .
       
  4590   { fix m ma
       
  4591     have eq_u: "-1 + u = u - 1" by smt
       
  4592     have " \<lbrace>st i \<and>*
       
  4593             ps u \<and>*
       
  4594             zero (u - 2) \<and>*
       
  4595             zero (u - 1) \<and>*
       
  4596             (reps' u (m - 1) (take a ks) \<and>*
       
  4597              reps' m (ma - 1) [ks ! a] \<and>* reps' ma (ia + 1) (drop (Suc a) ks)) \<and>*
       
  4598             fam_conj {ia + 1<..} zero\<rbrace> 
       
  4599            i :[ Inc a ]: j
       
  4600            \<lbrace>st j \<and>*
       
  4601             ps u \<and>*
       
  4602             zero (u - 2) \<and>*
       
  4603             zero (u - 1) \<and>*
       
  4604             reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1) (ks[a := Suc v]) \<and>*
       
  4605             fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1<..} zero\<rbrace>"
       
  4606     proof(cases "(drop (Suc a) ks) = []")
       
  4607       case True
       
  4608       { fix hc
       
  4609         have eq_1: "(1 + (m + int (ks ! a))) = (m + int (ks ! a) + 1)" by simp
       
  4610         have eq_2: "take a ks @ [Suc (ks ! a)] = ks[a := Suc v]"
       
  4611           apply (subst (3) eq_ks, unfold True, simp)
       
  4612           by (metis True append_Nil2 eq_ks h upd_conv_take_nth_drop)
       
  4613         assume h: "(fam_conj {1 + (m + int (ks ! a))<..} zero \<and>* 
       
  4614                       reps u (1 + (m + int (ks ! a))) (take a ks @ [Suc (ks ! a)])) hc"
       
  4615         hence "(fam_conj {m + int (ks ! a) + 1<..} zero \<and>* reps u (m + int (ks ! a) + 1) (ks[a := Suc v])) hc"
       
  4616           by (unfold eq_1 eq_2 , sep_cancel+)
       
  4617       } note eq_fam = this
       
  4618       show ?thesis
       
  4619         apply (unfold Inc_def, subst (3) reps'_def, simp add:True sep_conj_cond)
       
  4620         apply (intro tm.pre_condI, simp)
       
  4621         apply (subst fam_conj_interv_simp, simp, subst (3) zero_def)
       
  4622         apply hsteps
       
  4623         apply (subst reps'_sg, simp add:sep_conj_cond del:ones_simps)
       
  4624         apply (rule tm.pre_condI, simp del:ones_simps)
       
  4625         apply hsteps
       
  4626         apply (rule_tac p = "
       
  4627           st j' \<and>* ps (1 + (m + int (ks ! a))) \<and>* zero (u - 1) \<and>* zero (u - 2) \<and>*
       
  4628                    reps u (1 + (m + int (ks ! a))) (take a ks @ [Suc (ks!a)]) 
       
  4629                             \<and>* fam_conj {1 + (m + int (ks ! a))<..} zero
       
  4630           " in tm.pre_stren)
       
  4631         apply (hsteps)
       
  4632         apply (simp add:sep_conj_ac list_ext_lt[OF `a < length ks`], sep_cancel+)
       
  4633         apply (fwd eq_fam, sep_cancel+)
       
  4634         apply (simp del:ones_simps add:sep_conj_ac)
       
  4635         apply (sep_cancel+, prune)
       
  4636         apply ((fwd abs_reps')+, simp)
       
  4637         apply (fwd reps_one_abs abs_reps')+
       
  4638         apply (subst (asm) reps'_def, simp)
       
  4639         by (subst fam_conj_interv_simp, simp add:sep_conj_ac)
       
  4640     next 
       
  4641       case False
       
  4642       then obtain k' ks' where eq_drop: "drop (Suc a) ks = [k']@ks'"
       
  4643         by (metis append_Cons append_Nil list.exhaust)
       
  4644       from `a < length ks`
       
  4645       have eq_ks: "ks[a := Suc v] = (take a ks @ [Suc (ks ! a)]) @ (drop (Suc a) ks)"
       
  4646         apply (fold `ks!a = v`)
       
  4647         by (metis append_Cons append_Nil append_assoc upd_conv_take_nth_drop)
       
  4648       show ?thesis
       
  4649         apply (unfold Inc_def)
       
  4650         apply (unfold Inc_def eq_drop reps'_append, simp add:sep_conj_exists del:ones_simps)
       
  4651         apply (rule tm.precond_exI, subst (2) reps'_sg)
       
  4652         apply (subst sep_conj_cond)+
       
  4653         apply (subst (1) ones_int_expand)
       
  4654         apply (rule tm.pre_condI, simp del:ones_simps)
       
  4655         apply hsteps
       
  4656         (* apply (hsteps hoare_locate_skip_gen[OF `a < length ks`]) *)
       
  4657         apply (subst reps'_sg, simp add:sep_conj_cond del:ones_simps)
       
  4658         apply (rule tm.pre_condI, simp del:ones_simps)
       
  4659         apply hsteps
       
  4660         apply (rule_tac p = "st j' \<and>*
       
  4661                 ps (2 + (m + int (ks ! a))) \<and>*
       
  4662                 reps (2 + (m + int (ks ! a))) ia (drop (Suc a) ks) \<and>* zero (ia + 1) \<and>* zero (ia + 2) \<and>*
       
  4663                 reps u (m + int (ks ! a)) (take a ks @ [ks!a]) \<and>* zero (1 + (m + int (ks ! a))) \<and>*
       
  4664                 zero (u - 2) \<and>* zero (u - 1) \<and>* fam_conj {ia + 2<..} zero
       
  4665           " in tm.pre_stren)
       
  4666         apply (hsteps hoare_shift_right_cons_gen[OF False]
       
  4667                 hoare_left_until_double_zero_gen[OF False])
       
  4668         apply (rule_tac p = 
       
  4669           "st j' \<and>* ps (1 + (m + int (ks ! a))) \<and>*
       
  4670           zero (u - 2) \<and>* zero (u - 1) \<and>* 
       
  4671           reps u (1 + (m + int (ks ! a))) (take a ks @ [Suc (ks ! a)]) \<and>*
       
  4672           zero (2 + (m + int (ks ! a))) \<and>*
       
  4673           reps (3 + (m + int (ks ! a))) (ia + 1) (drop (Suc a) ks) \<and>* fam_conj {ia + 1<..} zero
       
  4674           " in tm.pre_stren)
       
  4675         apply (hsteps)
       
  4676         apply (simp add:sep_conj_ac, sep_cancel+)
       
  4677         apply (unfold list_ext_lt[OF `a < length ks`], simp)
       
  4678         apply (fwd abs_reps')+ 
       
  4679         apply(fwd reps'_reps_abs)
       
  4680         apply (subst eq_ks, simp)
       
  4681         apply (sep_cancel+) 
       
  4682         apply (thin_tac "mb = 4 + (m + (int (ks ! a) + int k'))")
       
  4683         apply (thin_tac "ma = 2 + (m + int (ks ! a))", prune)
       
  4684         apply (simp add: int_add_ac sep_conj_ac, sep_cancel+)
       
  4685         apply (fwd reps_one_abs1, subst fam_conj_interv_simp, simp, sep_cancel+, smt)
       
  4686         apply (fwd abs_ones)+
       
  4687         apply (fwd abs_reps')
       
  4688         apply (fwd abs_reps')
       
  4689         apply (fwd abs_reps')
       
  4690         apply (fwd abs_reps')
       
  4691         apply (unfold eq_drop, simp add:int_add_ac sep_conj_ac)
       
  4692         apply (sep_cancel+)
       
  4693         apply (fwd  reps'_abs[where xs = "take a ks"])
       
  4694         apply (fwd reps'_abs[where xs = "[k']"])
       
  4695         apply (unfold reps'_def, simp add:int_add_ac sep_conj_ac)
       
  4696         apply (sep_cancel+)
       
  4697         by (subst (asm) fam_conj_interv_simp, simp, smt)
       
  4698       qed
       
  4699   } note h = this
       
  4700   show ?thesis
       
  4701     apply (subst fam_conj_interv_simp)
       
  4702     apply (rule_tac p = "st i \<and>*  ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* 
       
  4703                               (reps u ia ks \<and>* zero (ia + 1)) \<and>* fam_conj {ia + 1<..} zero" 
       
  4704       in tm.pre_stren)
       
  4705     apply (unfold eq_s, simp only:sep_conj_exists)
       
  4706     apply (intro tm.precond_exI h)
       
  4707     by (sep_cancel+, unfold eq_s, simp)
       
  4708 qed
       
  4709 
       
  4710 declare ones_simps [simp del]
       
  4711 
       
  4712 lemma tm_hoare_inc01:
       
  4713   assumes "length ks \<le> a \<and> v = 0"
       
  4714   shows 
       
  4715    "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace> 
       
  4716        i :[ Inc a ]: j
       
  4717     \<lbrace>st j \<and>*
       
  4718      ps u \<and>*
       
  4719      zero (u - 2) \<and>*
       
  4720      zero (u - 1) \<and>*
       
  4721      reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1) ((list_ext a ks)[a := Suc v]) \<and>*
       
  4722      fam_conj {(ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1)<..} zero\<rbrace>"
       
  4723 proof -
       
  4724   from assms have "length ks \<le> a" "v = 0" by auto
       
  4725   show ?thesis
       
  4726     apply (rule_tac p = "
       
  4727       st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* (reps u ia ks \<and>* <(ia = u + int (reps_len ks) - 1)>) \<and>* 
       
  4728              fam_conj {ia<..} zero
       
  4729       " in tm.pre_stren)
       
  4730     apply (subst sep_conj_cond)+
       
  4731     apply (rule tm.pre_condI, simp)
       
  4732     apply (unfold Inc_def)
       
  4733     apply hstep
       
  4734     (* apply (hstep hoare_locate_set_gen[OF `length ks \<le> a`]) *)
       
  4735     apply (simp only:sep_conj_exists)
       
  4736     apply (intro tm.precond_exI)
       
  4737     my_block
       
  4738       fix m w
       
  4739       have "reps m w [list_ext a ks ! a] =
       
  4740             (ones m (m + int (list_ext a ks ! a)) \<and>* <(w = m + int (list_ext a ks ! a))>)"
       
  4741         by (simp add:reps.simps)
       
  4742     my_block_end
       
  4743     apply (unfold this)
       
  4744     apply (subst sep_conj_cond)+
       
  4745     apply (rule tm.pre_condI, simp)
       
  4746     apply (subst fam_conj_interv_simp)
       
  4747     apply (hsteps)
       
  4748     apply (subst fam_conj_interv_simp, simp)
       
  4749     apply (hsteps)
       
  4750     apply (rule_tac p = "st j' \<and>* ps (m + int (list_ext a ks ! a) + 1) \<and>*
       
  4751                            zero (u - 2) \<and>* zero (u - 1) \<and>* 
       
  4752                            reps u (m + int (list_ext a ks ! a) + 1) 
       
  4753                                 ((take a (list_ext a ks))@[Suc (list_ext a ks ! a)]) \<and>*
       
  4754                            fam_conj {(m + int (list_ext a ks ! a) + 1)<..} zero
       
  4755                          " in tm.pre_stren)
       
  4756     apply (hsteps)
       
  4757     apply (simp add:sep_conj_ac, sep_cancel+)
       
  4758     apply (unfold `v = 0`, prune)
       
  4759     my_block
       
  4760       from `length ks \<le> a` have "list_ext a ks ! a = 0"
       
  4761         by (metis le_refl list_ext_tail)
       
  4762       from `length ks \<le> a` have "a < length (list_ext a ks)"
       
  4763         by (metis list_ext_len)
       
  4764       from reps_len_suc[OF this] 
       
  4765       have eq_len: "int (reps_len (list_ext a ks)) = 
       
  4766                         int (reps_len (list_ext a ks[a := Suc (list_ext a ks ! a)])) - 1" 
       
  4767         by smt
       
  4768       fix m w hc
       
  4769       assume h: "(fam_conj {m + int (list_ext a ks ! a) + 1<..} zero \<and>*
       
  4770                  reps u (m + int (list_ext a ks ! a) + 1) (take a (list_ext a ks) @ [Suc (list_ext a ks ! a)]))
       
  4771                  hc"
       
  4772       then obtain s where 
       
  4773         "(reps u (m + int (list_ext a ks ! a) + 1) (take a (list_ext a ks) @ [Suc (list_ext a ks ! a)])) s"
       
  4774         by (auto dest!:sep_conjD)
       
  4775       from reps_len_correct[OF this]
       
  4776       have "m  = u + int (reps_len (take a (list_ext a ks) @ [Suc (list_ext a ks ! a)])) 
       
  4777                         - int (list_ext a ks ! a) - 2" by smt
       
  4778       from h [unfolded this]
       
  4779       have "(fam_conj {u + int (reps_len (list_ext a ks))<..} zero \<and>*
       
  4780            reps u (u + int (reps_len (list_ext a ks))) (list_ext a ks[a := Suc 0]))
       
  4781            hc"
       
  4782         apply (unfold eq_len, simp)
       
  4783         my_block
       
  4784           from `a < length (list_ext a ks)`
       
  4785           have "take a (list_ext a ks) @ [Suc (list_ext a ks ! a)] = 
       
  4786                 list_ext a ks[a := Suc (list_ext a ks ! a)]"
       
  4787             by (smt `list_ext a ks ! a = 0` assms length_take list_ext_tail_expand list_update_length)
       
  4788         my_block_end
       
  4789         apply (unfold this)
       
  4790         my_block
       
  4791           have "-1 + (u + int (reps_len (list_ext a ks[a := Suc (list_ext a ks ! a)]))) = 
       
  4792                 u + (int (reps_len (list_ext a ks[a := Suc (list_ext a ks ! a)])) - 1)" by simp
       
  4793         my_block_end
       
  4794         apply (unfold this)
       
  4795         apply (sep_cancel+)
       
  4796         by (unfold `(list_ext a ks ! a) = 0`, simp)
       
  4797     my_block_end
       
  4798     apply (rule this, assumption)
       
  4799     apply (simp only:sep_conj_ac, sep_cancel+)+
       
  4800     apply (fwd abs_reps')+
       
  4801     apply (fwd reps_one_abs) 
       
  4802     apply (fwd reps'_reps_abs)
       
  4803     apply (simp add:int_add_ac sep_conj_ac)
       
  4804     apply (sep_cancel+)
       
  4805     apply (subst fam_conj_interv_simp, simp add:sep_conj_ac, smt)
       
  4806     apply (fwd reps_lenE, (subst (asm) sep_conj_cond)+, erule condE, simp)
       
  4807     by (sep_cancel+)
       
  4808 qed
       
  4809 
       
  4810 definition "Dec a e  = (TL continue. 
       
  4811                           (locate a; 
       
  4812                            if_reps_nz continue;
       
  4813                            left_until_double_zero;
       
  4814                            move_right;
       
  4815                            move_right;
       
  4816                            jmp e);
       
  4817                           (TLabel continue;
       
  4818                            right_until_zero; 
       
  4819                            move_left;
       
  4820                            write_zero;
       
  4821                            move_right;
       
  4822                            move_right;
       
  4823                            shift_left;
       
  4824                            move_left;
       
  4825                            move_left;
       
  4826                            move_left;
       
  4827                            left_until_double_zero;
       
  4828                            move_right;
       
  4829                            move_right))"
       
  4830 
       
  4831 lemma cond_eq: "((<b> \<and>* p) s) = (b \<and> (p s))"
       
  4832 proof
       
  4833   assume "(<b> \<and>* p) s"
       
  4834   from condD[OF this] show " b \<and> p s" .
       
  4835 next
       
  4836   assume "b \<and> p s"
       
  4837   hence b and "p s" by auto
       
  4838   from `b` have "(<b>) 0" by (auto simp:pasrt_def)
       
  4839   moreover have "s = 0 + s" by auto
       
  4840   moreover have "0 ## s" by auto
       
  4841   moreover note `p s`
       
  4842   ultimately show "(<b> \<and>* p) s" by (auto intro!:sep_conjI)
       
  4843 qed
       
  4844 
       
  4845 lemma tm_hoare_dec_fail00:
       
  4846   assumes "a < length ks \<and> ks ! a = 0"
       
  4847   shows "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace>  
       
  4848              i :[ Dec a e ]: j
       
  4849          \<lbrace>st e \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>*
       
  4850           reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks)) (list_ext a ks[a := 0]) \<and>*
       
  4851           fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks) <..} zero\<rbrace>"
       
  4852 proof -
       
  4853   from assms have "a < length ks" "ks!a = 0" by auto
       
  4854   from list_nth_expand[OF `a < length ks`]
       
  4855   have eq_ks: "ks = take a ks @ [ks ! a] @ drop (Suc a) ks" .
       
  4856   show ?thesis
       
  4857   proof(cases " drop (Suc a) ks = []")
       
  4858     case False
       
  4859     then obtain k' ks' where eq_drop: "drop (Suc a) ks = [k']@ks'"
       
  4860       by (metis append_Cons append_Nil list.exhaust)
       
  4861     show ?thesis
       
  4862       apply (unfold Dec_def, intro t_hoare_local)
       
  4863       apply (subst tassemble_to.simps(2), rule tm.code_exI, rule tm.code_extension)
       
  4864       apply (subst (1) eq_ks)
       
  4865       my_block
       
  4866         have "(reps u ia (take a ks @ [ks ! a] @ drop (Suc a) ks) \<and>* fam_conj {ia<..} zero) = 
       
  4867               (reps' u (ia + 1) ((take a ks @ [ks ! a]) @ drop (Suc a) ks) \<and>* fam_conj {ia + 1<..} zero)"
       
  4868           apply (subst fam_conj_interv_simp)
       
  4869           by (unfold reps'_def, simp add:sep_conj_ac)
       
  4870       my_block_end
       
  4871       apply (unfold this)
       
  4872       apply (subst reps'_append)
       
  4873       apply (unfold eq_drop)
       
  4874       apply (subst (2) reps'_append)
       
  4875       apply (simp only:sep_conj_exists, intro tm.precond_exI)
       
  4876       apply (subst (2) reps'_def, simp add:reps.simps ones_simps)
       
  4877       apply (subst reps'_append, simp only:sep_conj_exists, intro tm.precond_exI)
       
  4878       apply hstep
       
  4879       (* apply (hstep hoare_locate_skip_gen[OF `a < length ks`]) *)
       
  4880       my_block
       
  4881         fix m mb
       
  4882         have "(reps' mb (m - 1) [ks ! a]) = (reps mb (m - 2) [ks!a] \<and>* zero (m - 1))"
       
  4883           by (simp add:reps'_def, smt)
       
  4884       my_block_end
       
  4885       apply (unfold this)
       
  4886       apply hstep
       
  4887       (* apply (hstep hoare_if_reps_nz_false_gen[OF `ks!a = 0`]) *)
       
  4888       apply (simp only:reps.simps(2), simp add:`ks!a = 0`)
       
  4889       apply (rule_tac p = "st j'b \<and>*
       
  4890         ps mb \<and>*
       
  4891         reps u mb ((take a ks)@[ks ! a]) \<and>* <(m - 2 = mb)> \<and>*
       
  4892         zero (m - 1) \<and>*
       
  4893         zero (u - 1) \<and>*
       
  4894         one m \<and>*
       
  4895         zero (u - 2) \<and>*
       
  4896         ones (m + 1) (m + int k') \<and>*
       
  4897         <(-2 + ma = m + int k')> \<and>* zero (ma - 1) \<and>* reps' ma (ia + 1) ks' \<and>* fam_conj {ia + 1<..} zero"
       
  4898         in tm.pre_stren)
       
  4899       apply hsteps
       
  4900       apply (simp add:sep_conj_ac, sep_cancel+) 
       
  4901       apply (subgoal_tac "m + int k' = ma - 2", simp)
       
  4902       apply (fwd abs_ones)+
       
  4903       apply (subst (asm) sep_conj_cond)+
       
  4904       apply (erule condE, auto)
       
  4905       apply (fwd abs_reps')+
       
  4906       apply (subgoal_tac "ma = m + int k' + 2", simp)
       
  4907       apply (fwd abs_reps')+
       
  4908       my_block
       
  4909         from `a < length ks`
       
  4910         have "list_ext a ks = ks" by (auto simp:list_ext_def)
       
  4911       my_block_end
       
  4912       apply (simp add:this)
       
  4913       apply (subst eq_ks, simp add:eq_drop `ks!a = 0`)
       
  4914       apply (subst (asm) reps'_def, simp)
       
  4915       apply (subst fam_conj_interv_simp, simp add:sep_conj_ac, sep_cancel+)
       
  4916       apply (metis append_Cons assms eq_Nil_appendI eq_drop eq_ks list_update_id)
       
  4917       apply (clarsimp)
       
  4918       apply (subst (asm) sep_conj_cond)+
       
  4919       apply (erule condE, clarsimp)
       
  4920       apply (subst (asm) sep_conj_cond)+
       
  4921       apply (erule condE, clarsimp)
       
  4922       apply (simp add:sep_conj_ac, sep_cancel+)
       
  4923       apply (fwd abs_reps')+
       
  4924       by (fwd reps'_reps_abs, simp add:`ks!a = 0`)
       
  4925   next 
       
  4926     case True
       
  4927     show ?thesis
       
  4928       apply (unfold Dec_def, intro t_hoare_local)
       
  4929       apply (subst tassemble_to.simps(2), rule tm.code_exI, rule tm.code_extension)
       
  4930       apply (subst (1) eq_ks, unfold True, simp)
       
  4931       my_block
       
  4932         have "(reps u ia (take a ks @ [ks ! a]) \<and>* fam_conj {ia<..} zero) = 
       
  4933               (reps' u (ia + 1) (take a ks @ [ks ! a]) \<and>* fam_conj {ia + 1<..} zero)"
       
  4934           apply (unfold reps'_def, subst fam_conj_interv_simp)
       
  4935           by (simp add:sep_conj_ac)
       
  4936       my_block_end
       
  4937       apply (subst (1) this)
       
  4938       apply (subst reps'_append)
       
  4939       apply (simp only:sep_conj_exists, intro tm.precond_exI)
       
  4940       apply (subst fam_conj_interv_simp, simp) 
       
  4941       my_block
       
  4942         have "(zero (2 + ia)) = (tm (2 + ia) Bk)"
       
  4943           by (simp add:zero_def)
       
  4944       my_block_end my_note eq_z = this
       
  4945       apply hstep
       
  4946       (* apply (hstep hoare_locate_skip_gen[OF `a < length ks`]) *)
       
  4947       my_block
       
  4948         fix m 
       
  4949         have "(reps' m (ia + 1) [ks ! a]) = (reps m ia [ks!a] \<and>* zero (ia + 1))"
       
  4950           by (simp add:reps'_def)
       
  4951       my_block_end
       
  4952       apply (unfold this, prune)
       
  4953       apply hstep
       
  4954       (* apply (hstep hoare_if_reps_nz_false_gen[OF `ks!a = 0`]) *)
       
  4955       apply (simp only:reps.simps(2), simp add:`ks!a = 0`)
       
  4956       apply (rule_tac p = "st j'b \<and>* ps m \<and>* (reps u m ((take a ks)@[ks!a]) \<and>* <(ia = m)>) 
       
  4957                               \<and>* zero (ia + 1) \<and>* zero (u - 1) \<and>*  
       
  4958                               zero (2 + ia) \<and>* zero (u - 2) \<and>* fam_conj {2 + ia<..} zero"
       
  4959         in tm.pre_stren)
       
  4960       apply hsteps
       
  4961       apply (simp add:sep_conj_ac)
       
  4962       apply ((subst (asm) sep_conj_cond)+, erule condE, simp)
       
  4963       my_block
       
  4964         from `a < length ks`  have "list_ext a ks = ks" by (metis list_ext_lt) 
       
  4965       my_block_end
       
  4966       apply (unfold this, simp)
       
  4967       apply (subst fam_conj_interv_simp)
       
  4968       apply (subst fam_conj_interv_simp, simp)
       
  4969       apply (simp only:sep_conj_ac, sep_cancel+)
       
  4970       apply (subst eq_ks, unfold True `ks!a = 0`, simp)
       
  4971       apply (metis True append_Nil2 assms eq_ks list_update_same_conv) 
       
  4972       apply (simp add:sep_conj_ac)
       
  4973       apply (subst (asm) sep_conj_cond)+
       
  4974       apply (erule condE, simp, thin_tac "ia = m")
       
  4975       apply (fwd abs_reps')+
       
  4976       apply (simp add:sep_conj_ac int_add_ac, sep_cancel+)
       
  4977       apply (unfold reps'_def, simp)
       
  4978       by (metis sep.mult_commute)
       
  4979   qed
       
  4980 qed
       
  4981 
       
  4982 lemma tm_hoare_dec_fail01:
       
  4983   assumes "length ks \<le> a"
       
  4984   shows "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace>  
       
  4985                        i :[ Dec a e ]: j
       
  4986          \<lbrace>st e \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>*
       
  4987           reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks)) (list_ext a ks[a := 0]) \<and>*
       
  4988           fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks) <..} zero\<rbrace>"
       
  4989   apply (unfold Dec_def, intro t_hoare_local)
       
  4990   apply (subst tassemble_to.simps(2), rule tm.code_exI, rule tm.code_extension)
       
  4991   apply (rule_tac p = "st i \<and>* ps u \<and>* zero (u - 2) \<and>*
       
  4992                        zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero \<and>* 
       
  4993                        <(ia = u + int (reps_len ks) - 1)>" in tm.pre_stren)
       
  4994   apply hstep
       
  4995   (* apply (hstep hoare_locate_set_gen[OF `length ks \<le> a`]) *)
       
  4996   apply (simp only:sep_conj_exists, intro tm.precond_exI)
       
  4997   my_block
       
  4998     from assms
       
  4999     have "list_ext a ks ! a = 0" by (metis le_refl list_ext_tail) 
       
  5000   my_block_end my_note is_z = this
       
  5001   apply (subst fam_conj_interv_simp)
       
  5002   apply hstep
       
  5003   (* apply (hstep hoare_if_reps_nz_false_gen[OF is_z]) *)
       
  5004   apply (unfold is_z)
       
  5005   apply (subst (1) reps.simps)
       
  5006   apply (rule_tac p = "st j'b \<and>* ps m \<and>*  reps u m (take a (list_ext a ks) @ [0]) \<and>* zero (w + 1) \<and>*
       
  5007                          <(w = m + int 0)> \<and>* zero (u - 1) \<and>* 
       
  5008                          fam_conj {w + 1<..} zero \<and>* zero (u - 2) \<and>* 
       
  5009                          <(ia = u + int (reps_len ks) - 1)>" in tm.pre_stren)
       
  5010   my_block
       
  5011     have "(take a (list_ext a ks)) @ [0] \<noteq> []" by simp
       
  5012   my_block_end
       
  5013   apply hsteps
       
  5014   (* apply (hsteps hoare_left_until_double_zero_gen[OF this]) *)
       
  5015   apply (simp add:sep_conj_ac)
       
  5016   apply prune
       
  5017   apply (subst (asm) sep_conj_cond)+
       
  5018   apply (elim condE, simp add:sep_conj_ac, prune)
       
  5019   my_block
       
  5020     fix m w ha
       
  5021     assume h1: "w = m \<and> ia = u + int (reps_len ks) - 1"
       
  5022       and  h: "(ps u \<and>*
       
  5023               st e \<and>*
       
  5024               zero (u - 1) \<and>*
       
  5025               zero (m + 1) \<and>*
       
  5026               fam_conj {m + 1<..} zero \<and>* zero (u - 2) \<and>* reps u m (take a (list_ext a ks) @ [0])) ha"
       
  5027     from h1 have eq_w: "w = m" and eq_ia: "ia = u + int (reps_len ks) - 1" by auto
       
  5028     from h obtain s' where "reps u m (take a (list_ext a ks) @ [0]) s'"
       
  5029       by (auto dest!:sep_conjD)
       
  5030     from reps_len_correct[OF this] 
       
  5031     have eq_m: "m = u + int (reps_len (take a (list_ext a ks) @ [0])) - 1" .
       
  5032     from h[unfolded eq_m, simplified]
       
  5033     have "(ps u \<and>*
       
  5034                 st e \<and>*
       
  5035                 zero (u - 1) \<and>*
       
  5036                 zero (u - 2) \<and>*
       
  5037                 fam_conj {u + (-1 + int (reps_len (list_ext a ks)))<..} zero \<and>*
       
  5038                 reps u (u + (-1 + int (reps_len (list_ext a ks)))) (list_ext a ks[a := 0])) ha"
       
  5039       apply (sep_cancel+)
       
  5040       apply (subst fam_conj_interv_simp, simp)
       
  5041       my_block
       
  5042         from `length ks \<le> a` have "list_ext a ks[a := 0] = list_ext a ks"
       
  5043           by (metis is_z list_update_id)
       
  5044       my_block_end
       
  5045       apply (unfold this)
       
  5046       my_block
       
  5047         from `length ks \<le> a` is_z 
       
  5048         have "take a (list_ext a ks) @ [0] = list_ext a ks"
       
  5049           by (metis list_ext_tail_expand)
       
  5050       my_block_end
       
  5051       apply (unfold this)
       
  5052       by (simp add:sep_conj_ac, sep_cancel+, smt)
       
  5053   my_block_end
       
  5054   apply (rule this, assumption)
       
  5055   apply (sep_cancel+)[1]
       
  5056   apply (subst (asm) sep_conj_cond)+
       
  5057   apply (erule condE, prune, simp)
       
  5058   my_block
       
  5059     fix s m
       
  5060     assume "(reps' u (m - 1) (take a (list_ext a ks)) \<and>* ones m m \<and>* zero (m + 1)) s"
       
  5061     hence "reps' u (m + 1) (take a (list_ext a ks) @ [0]) s"
       
  5062       apply (unfold reps'_append)
       
  5063       apply (rule_tac x = m in EXS_intro)
       
  5064       by (subst (2) reps'_def, simp add:reps.simps)
       
  5065   my_block_end
       
  5066   apply (rotate_tac 1, fwd this)
       
  5067   apply (subst (asm) reps'_def, simp add:sep_conj_ac)
       
  5068   my_block
       
  5069     fix s
       
  5070     assume h: "(st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* 
       
  5071                    reps u ia ks \<and>* fam_conj {ia<..} zero) s"
       
  5072     then obtain s' where "reps u ia ks s'" by (auto dest!:sep_conjD)
       
  5073     from reps_len_correct[OF this] have eq_ia: "ia = u + int (reps_len ks) - 1" .
       
  5074     from h
       
  5075     have "(st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>*
       
  5076            fam_conj {ia<..} zero \<and>* <(ia = u + int (reps_len ks) - 1)>) s"
       
  5077       by (unfold eq_ia, simp)
       
  5078   my_block_end
       
  5079   by (rule this, assumption)
       
  5080 
       
  5081 lemma t_hoare_label1: 
       
  5082       "(\<And>l. l = i \<Longrightarrow> \<lbrace>st l \<and>* p\<rbrace>  l :[ c l ]: j \<lbrace>st k \<and>* q\<rbrace>) \<Longrightarrow>
       
  5083              \<lbrace>st l \<and>* p \<rbrace> 
       
  5084                i:[(TLabel l; c l)]:j
       
  5085              \<lbrace>st k \<and>* q\<rbrace>"
       
  5086 by (unfold tassemble_to.simps, intro tm.code_exI tm.code_condI, clarify, auto)
       
  5087 
       
  5088 lemma tm_hoare_dec_fail1:
       
  5089   assumes "a < length ks \<and> ks ! a = 0 \<or> length ks \<le> a"
       
  5090   shows "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace>  
       
  5091                       i :[ Dec a e ]: j
       
  5092          \<lbrace>st e \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>*
       
  5093           reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks)) (list_ext a ks[a := 0]) \<and>*
       
  5094          fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks) <..} zero\<rbrace>"
       
  5095   using assms
       
  5096 proof
       
  5097   assume "a < length ks \<and> ks ! a = 0"
       
  5098   thus ?thesis
       
  5099     by (rule tm_hoare_dec_fail00)
       
  5100 next
       
  5101   assume "length ks \<le> a"
       
  5102   thus ?thesis
       
  5103     by (rule tm_hoare_dec_fail01)
       
  5104 qed
       
  5105 
       
  5106 lemma shift_left_nil_gen[step]:
       
  5107   assumes "u = v"
       
  5108   shows "\<lbrace>st i \<and>* ps u \<and>* zero v\<rbrace> 
       
  5109               i :[shift_left]:j
       
  5110          \<lbrace>st j \<and>* ps u \<and>* zero v\<rbrace>"
       
  5111  apply(unfold assms shift_left_def, intro t_hoare_local t_hoare_label, clarify, 
       
  5112                  rule t_hoare_label_last, simp, clarify, prune, simp)
       
  5113  by hstep
       
  5114 
       
  5115 lemma tm_hoare_dec_suc1: 
       
  5116   assumes "a < length ks \<and> ks ! a = Suc v"
       
  5117   shows "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace> 
       
  5118                     i :[ Dec a e ]: j
       
  5119          \<lbrace>st j \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>*
       
  5120              reps u (ia - 1) (list_ext a ks[a := v]) \<and>*
       
  5121              fam_conj {ia - 1<..} zero\<rbrace>"
       
  5122 proof -
       
  5123   from assms have "a < length ks" " ks ! a = Suc v" by auto
       
  5124   from list_nth_expand[OF `a < length ks`]
       
  5125   have eq_ks: "ks = take a ks @ [ks ! a] @ drop (Suc a) ks" .
       
  5126   show ?thesis
       
  5127   proof(cases " drop (Suc a) ks = []")
       
  5128     case False
       
  5129     then obtain k' ks' where eq_drop: "drop (Suc a) ks = [k']@ks'"
       
  5130       by (metis append_Cons append_Nil list.exhaust)
       
  5131     show ?thesis
       
  5132       apply (unfold Dec_def, intro t_hoare_local)
       
  5133       apply (subst tassemble_to.simps(2), rule tm.code_exI)
       
  5134       apply (subst (1) eq_ks)
       
  5135       my_block
       
  5136         have "(reps u ia (take a ks @ [ks ! a] @ drop (Suc a) ks) \<and>* fam_conj {ia<..} zero) = 
       
  5137               (reps' u (ia + 1) ((take a ks @ [ks ! a]) @ drop (Suc a) ks) \<and>* fam_conj {ia + 1<..} zero)"
       
  5138           apply (subst fam_conj_interv_simp)
       
  5139           by (unfold reps'_def, simp add:sep_conj_ac)
       
  5140       my_block_end
       
  5141       apply (unfold this)
       
  5142       apply (subst reps'_append)
       
  5143       apply (unfold eq_drop)
       
  5144       apply (subst (2) reps'_append)
       
  5145       apply (simp only:sep_conj_exists, intro tm.precond_exI)
       
  5146       apply (subst (2) reps'_def, simp add:reps.simps ones_simps)
       
  5147       apply (subst reps'_append, simp only:sep_conj_exists, intro tm.precond_exI)
       
  5148       apply (rule_tac q =
       
  5149        "st l \<and>*
       
  5150         ps mb \<and>*
       
  5151         zero (u - 1) \<and>*
       
  5152         reps' u (mb - 1) (take a ks) \<and>*
       
  5153         reps' mb (m - 1) [ks ! a] \<and>*
       
  5154         one m \<and>*
       
  5155         zero (u - 2) \<and>*
       
  5156         ones (m + 1) (m + int k') \<and>*
       
  5157         <(-2 + ma = m + int k')> \<and>* zero (ma - 1) \<and>* reps' ma (ia + 1) ks' \<and>* fam_conj {ia + 1<..} zero"
       
  5158       in tm.sequencing)
       
  5159       apply (rule tm.code_extension)
       
  5160       apply hstep
       
  5161       (* apply (hstep hoare_locate_skip_gen[OF `a < length ks`]) *)
       
  5162       apply (subst (2) reps'_def, simp)
       
  5163       my_block
       
  5164         fix i j l m mb
       
  5165         from `ks!a = (Suc v)` have "ks!a \<noteq> 0" by simp
       
  5166         from hoare_if_reps_nz_true[OF this, where u = mb and v = "m - 2"]
       
  5167         have "\<lbrace>st i \<and>* ps mb \<and>* reps mb (-2 + m) [ks ! a]\<rbrace>  
       
  5168                         i :[ if_reps_nz l ]: j
       
  5169               \<lbrace>st l \<and>* ps mb \<and>* reps mb (-2 + m) [ks ! a]\<rbrace>"
       
  5170           by smt
       
  5171       my_block_end
       
  5172       apply (hgoto this)
       
  5173       apply (simp add:sep_conj_ac, sep_cancel+)
       
  5174       apply (subst reps'_def, simp add:sep_conj_ac)
       
  5175       apply (rule tm.code_extension1)
       
  5176       apply (rule t_hoare_label1, simp, prune)
       
  5177       apply (subst (2) reps'_def, simp add:reps.simps)
       
  5178       apply (rule_tac p = "st j' \<and>* ps mb \<and>* zero (u - 1) \<and>* reps' u (mb - 1) (take a ks) \<and>*
       
  5179         ((ones mb (mb + int (ks ! a)) \<and>* <(-2 + m = mb + int (ks ! a))>) \<and>* zero (mb + int (ks ! a) + 1)) \<and>*
       
  5180           one (mb + int (ks ! a) + 2) \<and>* zero (u - 2) \<and>* 
       
  5181           ones (mb + int (ks ! a) + 3) (mb + int (ks ! a) + int k' + 2) \<and>*
       
  5182         <(-2 + ma = m + int k')> \<and>* zero (ma - 1) \<and>* reps' ma (ia + 1) ks' \<and>* fam_conj {ia + 1<..} zero
       
  5183         " in tm.pre_stren)
       
  5184       apply hsteps 
       
  5185       (* apply (simp add:sep_conj_ac) *)
       
  5186       apply (unfold `ks!a = Suc v`)
       
  5187       my_block
       
  5188         fix mb
       
  5189         have "(ones mb (mb + int (Suc v))) = (ones mb (mb + int v) \<and>* one (mb + int (Suc v)))"
       
  5190           by (simp add:ones_rev)
       
  5191       my_block_end
       
  5192       apply (unfold this, prune)
       
  5193       apply hsteps
       
  5194       apply (rule_tac p = "st j'a \<and>* 
       
  5195                ps (mb + int (Suc v) + 2) \<and>* zero (mb + int (Suc v) + 1) \<and>*
       
  5196                reps (mb + int (Suc v) + 2) ia (drop (Suc a) ks) \<and>* zero (ia + 1) \<and>* zero (ia + 2) \<and>*
       
  5197         zero (mb + int (Suc v)) \<and>*
       
  5198         ones mb (mb + int v) \<and>*
       
  5199         zero (u - 1) \<and>*
       
  5200         reps' u (mb - 1) (take a ks) \<and>*
       
  5201         zero (u - 2) \<and>* fam_conj {ia + 2<..} zero
       
  5202         " in tm.pre_stren) 
       
  5203       apply hsteps
       
  5204       (* apply (hsteps hoare_shift_left_cons_gen[OF False]) *)
       
  5205       apply (rule_tac p = "st j'a \<and>* ps (ia - 1) \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* 
       
  5206                            reps u (ia - 1) (take a ks @ [v] @ drop (Suc a) ks) \<and>*
       
  5207                            zero ia \<and>* zero (ia + 1) \<and>* zero (ia + 2) \<and>*
       
  5208                            fam_conj {ia + 2<..} zero
       
  5209         " in tm.pre_stren)
       
  5210       apply hsteps
       
  5211       apply (simp add:sep_conj_ac)
       
  5212       apply (subst fam_conj_interv_simp)
       
  5213       apply (subst fam_conj_interv_simp)
       
  5214       apply (subst fam_conj_interv_simp)
       
  5215       apply (simp add:sep_conj_ac)
       
  5216       apply (sep_cancel+)
       
  5217       my_block
       
  5218         have "take a ks @ v # drop (Suc a) ks = list_ext a ks[a := v]"
       
  5219         proof -
       
  5220           from `a < length ks` have "list_ext a ks = ks" by (metis list_ext_lt)
       
  5221           hence "list_ext a ks[a:=v] = ks[a:=v]" by simp
       
  5222           moreover from `a < length ks` have "ks[a:=v] = take a ks @ v # drop (Suc a) ks"
       
  5223             by (metis upd_conv_take_nth_drop)
       
  5224           ultimately show ?thesis by metis
       
  5225         qed
       
  5226       my_block_end
       
  5227       apply (unfold this, sep_cancel+, smt)
       
  5228       apply (simp add:sep_conj_ac)
       
  5229       apply (fwd abs_reps')+
       
  5230       apply (simp add:sep_conj_ac int_add_ac)
       
  5231       apply (sep_cancel+)
       
  5232       apply (subst (asm) reps'_def, simp add:sep_conj_ac)
       
  5233       apply (subst (asm) sep_conj_cond)+
       
  5234       apply (erule condE, clarsimp)
       
  5235       apply (simp add:sep_conj_ac, sep_cancel+)
       
  5236       apply (fwd abs_ones)+
       
  5237       apply (fwd abs_reps')+
       
  5238       apply (subst (asm) reps'_def, simp)
       
  5239       apply (subst (asm) fam_conj_interv_simp)
       
  5240       apply (simp add:sep_conj_ac int_add_ac eq_drop reps'_def)
       
  5241       apply (subst (asm) sep_conj_cond)+
       
  5242       apply (erule condE, clarsimp)
       
  5243       by (simp add:sep_conj_ac int_add_ac)
       
  5244   next
       
  5245     case True
       
  5246     show ?thesis
       
  5247       apply (unfold Dec_def, intro t_hoare_local)
       
  5248       apply (subst tassemble_to.simps(2), rule tm.code_exI)
       
  5249       apply (subst (1) eq_ks, simp add:True)
       
  5250       my_block
       
  5251         have "(reps u ia (take a ks @ [ks ! a]) \<and>* fam_conj {ia<..} zero) = 
       
  5252               (reps' u (ia + 1) (take a ks @ [ks ! a]) \<and>* fam_conj {ia + 1<..} zero)"
       
  5253           apply (subst fam_conj_interv_simp)
       
  5254           by (unfold reps'_def, simp add:sep_conj_ac)
       
  5255       my_block_end
       
  5256       apply (unfold this)
       
  5257       apply (subst reps'_append)
       
  5258       apply (simp only:sep_conj_exists, intro tm.precond_exI)
       
  5259       apply (rule_tac q = "st l \<and>* ps m \<and>* zero (u - 1) \<and>* reps' u (m - 1) (take a ks) \<and>*
       
  5260             reps' m (ia + 1) [ks ! a] \<and>* zero (2 + ia) \<and>* zero (u - 2) \<and>* fam_conj {2 + ia<..} zero"
       
  5261              in tm.sequencing)
       
  5262       apply (rule tm.code_extension)
       
  5263       apply (subst fam_conj_interv_simp, simp)
       
  5264       apply hsteps
       
  5265       (* apply (hstep hoare_locate_skip_gen[OF `a < length ks`]) *)
       
  5266       my_block
       
  5267         fix m
       
  5268         have "(reps' m (ia + 1) [ks ! a]) = 
       
  5269               (reps m ia [ks!a] \<and>* zero (ia + 1))"
       
  5270           by (unfold reps'_def, simp)
       
  5271       my_block_end
       
  5272       apply (unfold this)
       
  5273       my_block
       
  5274         fix i j l m
       
  5275         from `ks!a = (Suc v)` have "ks!a \<noteq> 0" by simp
       
  5276       my_block_end
       
  5277       apply (hgoto hoare_if_reps_nz_true_gen)
       
  5278       apply (rule tm.code_extension1)
       
  5279       apply (rule t_hoare_label1, simp)
       
  5280       apply (thin_tac "la = j'", prune)
       
  5281       apply (subst (1) reps.simps)
       
  5282       apply (subst sep_conj_cond)+
       
  5283       apply (rule tm.pre_condI, simp)
       
  5284       apply hsteps
       
  5285       apply (unfold `ks!a = Suc v`)
       
  5286       my_block
       
  5287         fix m
       
  5288         have "(ones m (m + int (Suc v))) = (ones m (m + int v) \<and>* one (m + int (Suc v)))"
       
  5289           by (simp add:ones_rev)
       
  5290       my_block_end
       
  5291       apply (unfold this)
       
  5292       apply hsteps 
       
  5293       apply (rule_tac p = "st j'a \<and>* ps (m + int v) \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* 
       
  5294                            reps u (m + int v) (take a ks @ [v]) \<and>* zero (m + (1 + int v)) \<and>*
       
  5295                            zero (2 + (m + int v)) \<and>* zero (3 + (m + int v)) \<and>*
       
  5296                            fam_conj {3 + (m + int v)<..} zero
       
  5297         " in tm.pre_stren)
       
  5298       apply hsteps
       
  5299       apply (simp add:sep_conj_ac, sep_cancel+)
       
  5300       my_block
       
  5301         have "take a ks @ [v] = list_ext a ks[a := v]"
       
  5302         proof -
       
  5303           from True `a < length ks` have "ks = take a ks @ [ks!a]"
       
  5304             by (metis append_Nil2 eq_ks)
       
  5305           hence "ks[a:=v] = take a ks @ [v]"
       
  5306             by (metis True `a < length ks` upd_conv_take_nth_drop)
       
  5307           moreover from `a < length ks` have "list_ext a ks = ks"
       
  5308             by (metis list_ext_lt)
       
  5309           ultimately show ?thesis by simp
       
  5310         qed
       
  5311       my_block_end my_note eq_l = this
       
  5312       apply (unfold this)
       
  5313       apply (subst fam_conj_interv_simp)
       
  5314       apply (subst fam_conj_interv_simp)
       
  5315       apply (subst fam_conj_interv_simp)
       
  5316       apply (simp add:sep_conj_ac, sep_cancel, smt)
       
  5317       apply (simp add:sep_conj_ac int_add_ac)+
       
  5318       apply (sep_cancel+)
       
  5319       apply (fwd abs_reps')+
       
  5320       apply (fwd reps'_reps_abs)
       
  5321       by (simp add:eq_l)
       
  5322   qed
       
  5323 qed
       
  5324 
       
  5325 definition "cfill_until_one = (TL start exit.
       
  5326                                 TLabel start;
       
  5327                                   if_one exit;
       
  5328                                   write_one;
       
  5329                                   move_left;
       
  5330                                   jmp start;
       
  5331                                 TLabel exit
       
  5332                                )"
       
  5333 
       
  5334 lemma hoare_cfill_until_one:
       
  5335    "\<lbrace>st i \<and>* ps v \<and>* one (u - 1) \<and>* zeros u v\<rbrace> 
       
  5336               i :[ cfill_until_one ]: j
       
  5337     \<lbrace>st j \<and>* ps (u - 1) \<and>* ones (u - 1) v \<rbrace>"
       
  5338 proof(induct u v rule:zeros_rev_induct)
       
  5339   case (Base x y)
       
  5340   thus ?case
       
  5341     apply (subst sep_conj_cond)+
       
  5342     apply (rule tm.pre_condI, simp add:ones_simps)
       
  5343     apply (unfold cfill_until_one_def, intro t_hoare_local t_hoare_label, rule t_hoare_label_last, simp+)
       
  5344     by hstep
       
  5345 next
       
  5346   case (Step x y)
       
  5347   show ?case
       
  5348     apply (rule_tac q = "st i \<and>* ps (y - 1) \<and>* one (x - 1) \<and>* zeros x (y - 1) \<and>* one y" in tm.sequencing)
       
  5349     apply (subst cfill_until_one_def, intro t_hoare_local t_hoare_label, rule t_hoare_label_last, simp+)
       
  5350     apply hsteps
       
  5351     my_block
       
  5352       fix i j l
       
  5353       have "\<lbrace>st i \<and>* ps (y - 1) \<and>* one (x - 1) \<and>* zeros x (y - 1)\<rbrace>  
       
  5354               i :[ jmp l ]: j
       
  5355             \<lbrace>st l \<and>* ps (y - 1) \<and>* one (x - 1) \<and>* zeros x (y - 1)\<rbrace>"
       
  5356         apply (case_tac "(y - 1) < x", simp add:zeros_simps)
       
  5357         apply (subst sep_conj_cond)+
       
  5358         apply (rule tm.pre_condI, simp)
       
  5359         apply hstep
       
  5360         apply (drule_tac zeros_rev, simp)
       
  5361         by hstep
       
  5362     my_block_end
       
  5363     apply (hstep this)
       
  5364     (* The next half *)
       
  5365     apply (hstep Step(2), simp add:sep_conj_ac, sep_cancel+)
       
  5366     by (insert Step(1), simp add:ones_rev sep_conj_ac)
       
  5367 qed
       
  5368 
       
  5369 definition "cmove = (TL start exit.
       
  5370                        TLabel start;
       
  5371                          left_until_zero;
       
  5372                          left_until_one;
       
  5373                          move_left;
       
  5374                          if_zero exit;
       
  5375                          move_right;
       
  5376                          write_zero;
       
  5377                          right_until_one;
       
  5378                          right_until_zero;
       
  5379                          write_one;
       
  5380                          jmp start;
       
  5381                      TLabel exit
       
  5382                     )"
       
  5383 
       
  5384 declare zeros.simps [simp del] zeros_simps[simp del]
       
  5385 
       
  5386 lemma hoare_cmove:
       
  5387   assumes "w \<le> k"
       
  5388   shows "\<lbrace>st i \<and>* ps (v + 2 + int w) \<and>* zero (u - 1) \<and>* 
       
  5389               reps u (v - int w) [k - w] \<and>* zeros (v - int w + 1) (v + 1) \<and>*
       
  5390               one (v + 2) \<and>* ones (v + 3) (v + 2 + int w) \<and>* zeros (v + 3 + int w)  (v + int(reps_len [k]) + 1)\<rbrace>
       
  5391                                  i :[cmove]: j
       
  5392           \<lbrace>st j \<and>* ps (u - 1) \<and>* zero (u - 1) \<and>* reps u u [0] \<and>* zeros (u + 1) (v + 1) \<and>*
       
  5393                                                                   reps (v + 2) (v + int (reps_len [k]) + 1) [k]\<rbrace>"
       
  5394   using assms
       
  5395 proof(induct "k - w" arbitrary: w)
       
  5396   case (0 w)
       
  5397   hence "w = k" by auto
       
  5398   show ?case
       
  5399     apply (simp add: `w = k` del:zeros.simps zeros_simps)
       
  5400     apply (unfold cmove_def, intro t_hoare_local t_hoare_label, rule t_hoare_label_last, simp+)
       
  5401     apply (simp add:reps_len_def reps_sep_len_def reps_ctnt_len_def del:zeros_simps zeros.simps)
       
  5402     apply (rule_tac p = "st i \<and>* ps (v + 2 + int k) \<and>* zero (u - 1) \<and>*
       
  5403                          reps u u [0] \<and>* zeros (u + 1) (v + 1) \<and>*
       
  5404                          ones (v + 2) (v + 2 + int k) \<and>* zeros (v + 3 + int k) (2 + (v + int k)) \<and>*
       
  5405                          <(u = v - int k)>" 
       
  5406       in tm.pre_stren)
       
  5407     my_block
       
  5408       fix i j
       
  5409       have "\<lbrace>st i \<and>* ps (v + 2 + int k) \<and>* zeros (u + 1) (v + 1) \<and>* ones (v + 2) (v + 2 + int k) 
       
  5410                                                              \<and>* <(u = v - int k)>\<rbrace>
       
  5411                   i :[ left_until_zero ]: j
       
  5412             \<lbrace>st j \<and>* ps (v + 1) \<and>* zeros (u + 1) (v + 1) \<and>* ones (v + 2) (v + 2 + int k)
       
  5413                                                              \<and>* <(u = v - int k)>\<rbrace>"
       
  5414         apply (subst sep_conj_cond)+
       
  5415         apply (rule tm.pre_condI, simp)
       
  5416         my_block
       
  5417           have "(zeros (v - int k + 1) (v + 1)) = (zeros (v - int k + 1) v \<and>* zero (v + 1))"
       
  5418             by (simp only:zeros_rev, smt)
       
  5419         my_block_end
       
  5420         apply (unfold this)
       
  5421         by hsteps
       
  5422     my_block_end
       
  5423     apply (hstep this)
       
  5424     my_block
       
  5425       fix i j 
       
  5426       have "\<lbrace>st i \<and>* ps (v + 1) \<and>* reps u u [0] \<and>* zeros (u + 1) (v + 1)\<rbrace> 
       
  5427                 i :[left_until_one]:j 
       
  5428             \<lbrace>st j \<and>* ps u \<and>* reps u u [0] \<and>* zeros (u + 1) (v + 1)\<rbrace>"
       
  5429         apply (simp add:reps.simps ones_simps)
       
  5430         by hsteps
       
  5431     my_block_end
       
  5432     apply (hsteps this)
       
  5433     apply ((subst (asm) sep_conj_cond)+, erule condE, clarsimp)
       
  5434     apply (fwd abs_reps')+
       
  5435     apply (simp only:sep_conj_ac int_add_ac, sep_cancel+)
       
  5436     apply (simp add:int_add_ac sep_conj_ac zeros_simps)
       
  5437     apply (simp add:sep_conj_ac int_add_ac, sep_cancel+)
       
  5438     apply (fwd reps_lenE)
       
  5439     apply (subst (asm) sep_conj_cond)+
       
  5440     apply (erule condE, clarsimp)
       
  5441     apply (subgoal_tac "v  = u + int k + int (reps_len [0]) - 1", clarsimp)
       
  5442     apply (simp add:reps_len_sg)
       
  5443     apply (fwd abs_ones)+
       
  5444     apply (fwd abs_reps')+
       
  5445     apply (simp add:sep_conj_ac int_add_ac)
       
  5446     apply (sep_cancel+)
       
  5447     apply (simp add:reps.simps, smt)
       
  5448     by (clarsimp)
       
  5449 next
       
  5450   case (Suc k' w)
       
  5451   from `Suc k' = k - w` `w \<le> k` 
       
  5452   have h: "k' = k - (Suc w)" "Suc w \<le> k" by auto
       
  5453   show ?case
       
  5454     apply (rule tm.sequencing[OF _ Suc(1)[OF h(1, 2)]])
       
  5455     apply (unfold cmove_def, intro t_hoare_local t_hoare_label, rule t_hoare_label_last, simp+)
       
  5456     apply (simp add:reps_len_def reps_sep_len_def reps_ctnt_len_def del:zeros_simps zeros.simps)
       
  5457     my_block
       
  5458       fix i j
       
  5459       have "\<lbrace>st i \<and>* ps (v + 2 + int w) \<and>* zeros (v - int w + 1) (v + 1) \<and>*
       
  5460                                one (v + 2) \<and>* ones (v + 3) (v + 2 + int w) \<rbrace> 
       
  5461                     i :[left_until_zero]: j
       
  5462             \<lbrace>st j \<and>* ps (v + 1) \<and>* zeros (v - int w + 1) (v + 1) \<and>*
       
  5463                                one (v + 2) \<and>* ones (v + 3) (v + 2 + int w) \<rbrace>"
       
  5464         my_block
       
  5465           have "(one (v + 2) \<and>* ones (v + 3) (v + 2 + int w)) = 
       
  5466                  ones (v + 2) (v + 2 + int w)"
       
  5467             by (simp only:ones_simps, smt)
       
  5468         my_block_end
       
  5469         apply (unfold this)
       
  5470         my_block
       
  5471           have "(zeros (v - int w + 1) (v + 1)) = (zeros (v - int w + 1) v \<and>*  zero (v + 1))"
       
  5472             by (simp only:zeros_rev, simp)
       
  5473         my_block_end
       
  5474         apply (unfold this)
       
  5475         by hsteps
       
  5476     my_block_end
       
  5477     apply (hstep this)
       
  5478     my_block
       
  5479       fix i j
       
  5480       have "\<lbrace>st i \<and>* ps (v + 1) \<and>* reps u (v - int w) [k - w] \<and>* zeros (v - int w + 1) (v + 1)\<rbrace> 
       
  5481                  i :[left_until_one]: j 
       
  5482             \<lbrace>st j \<and>* ps (v - int w) \<and>* reps u (v - int w) [k - w] \<and>* zeros (v - int w + 1) (v + 1)\<rbrace>"
       
  5483         apply (simp add:reps.simps ones_rev)
       
  5484         apply (subst sep_conj_cond)+
       
  5485         apply (rule tm.pre_condI, clarsimp)
       
  5486         apply (subgoal_tac "u + int (k - w) = v - int w", simp)
       
  5487         defer
       
  5488         apply simp
       
  5489         by hsteps
       
  5490     my_block_end
       
  5491     apply (hstep this)
       
  5492     my_block
       
  5493       have "(reps u (v - int w) [k - w]) = (reps u (v - (1 + int w)) [k - Suc w] \<and>* one (v - int w))"
       
  5494         apply (subst (1 2) reps.simps)
       
  5495         apply (subst sep_conj_cond)+
       
  5496         my_block
       
  5497           have "((v - int w = u + int (k - w))) =
       
  5498                 (v - (1 + int w) = u + int (k - Suc w))"
       
  5499             apply auto
       
  5500             apply (smt Suc.prems h(2))
       
  5501             by (smt Suc.prems h(2))
       
  5502         my_block_end
       
  5503         apply (simp add:this)
       
  5504         my_block
       
  5505           fix b p q
       
  5506           assume "(b \<Longrightarrow> (p::tassert) = q)"
       
  5507           have "(<b> \<and>* p) = (<b> \<and>* q)"
       
  5508             by (metis `b \<Longrightarrow> p = q` cond_eqI)
       
  5509         my_block_end
       
  5510         apply (rule this)
       
  5511         my_block
       
  5512           assume "v - (1 + int w) = u + int (k - Suc w)"
       
  5513           hence "v = 1 + int w +  u + int (k - Suc w)" by auto
       
  5514         my_block_end
       
  5515         apply (simp add:this)
       
  5516         my_block
       
  5517           have "\<not> (u + int (k - w)) < u" by auto
       
  5518         my_block_end
       
  5519         apply (unfold ones_rev[OF this])
       
  5520         my_block
       
  5521           from Suc (2, 3) have "(u + int (k - w) - 1) = (u + int (k - Suc w))"
       
  5522             by auto
       
  5523         my_block_end
       
  5524         apply (unfold this)
       
  5525         my_block
       
  5526           from Suc (2, 3) have "(u + int (k - w)) =  (1 + (u + int (k - Suc w)))"
       
  5527             by auto
       
  5528         my_block_end
       
  5529         by (unfold this, simp)
       
  5530     my_block_end
       
  5531     apply (unfold this)
       
  5532     my_block
       
  5533       fix i j
       
  5534       have "\<lbrace>st i \<and>* ps (v - int w) \<and>*
       
  5535                         (reps u (v - (1 + int w)) [k - Suc w] \<and>* one (v - int w))\<rbrace> 
       
  5536                  i :[ move_left]: j
       
  5537             \<lbrace>st j \<and>* ps (v - (1 + int w)) \<and>*
       
  5538                         (reps u (v - (1 + int w)) [k - Suc w] \<and>* one (v - int w))\<rbrace>"
       
  5539         apply (simp add:reps.simps ones_rev)
       
  5540         apply (subst sep_conj_cond)+
       
  5541         apply (rule tm.pre_condI, clarsimp)
       
  5542         apply (subgoal_tac " u + int (k - Suc w) = v - (1 + int w)", simp)
       
  5543         defer
       
  5544         apply simp
       
  5545         apply hsteps
       
  5546         by (simp add:sep_conj_ac, sep_cancel+, smt)
       
  5547     my_block_end
       
  5548     apply (hstep this)
       
  5549     my_block
       
  5550       fix i' j'
       
  5551       have "\<lbrace>st i' \<and>* ps (v - (1 + int w)) \<and>* reps u (v - (1 + int w)) [k - Suc w]\<rbrace> 
       
  5552                i' :[ if_zero j ]: j'
       
  5553             \<lbrace>st j' \<and>* ps (v - (1 + int w)) \<and>* reps u (v - (1 + int w)) [k - Suc w]\<rbrace>"
       
  5554         apply (simp add:reps.simps ones_rev)
       
  5555         apply (subst sep_conj_cond)+
       
  5556         apply (rule tm.pre_condI, clarsimp)
       
  5557         apply (subgoal_tac " u + int (k - Suc w) = v - (1 + int w)", simp)
       
  5558         defer
       
  5559         apply simp
       
  5560         by hstep
       
  5561     my_block_end
       
  5562     apply (hstep this)
       
  5563     my_block
       
  5564       fix i j
       
  5565       have "\<lbrace>st i \<and>* ps (v - (1 + int w)) \<and>*  reps u (v - (1 + int w)) [k - Suc w]\<rbrace> 
       
  5566                 i :[ move_right ]: j 
       
  5567             \<lbrace>st j \<and>* ps (v - int w) \<and>*  reps u (v - (1 + int w)) [k - Suc w] \<rbrace>"
       
  5568         apply (simp add:reps.simps ones_rev)
       
  5569         apply (subst sep_conj_cond)+
       
  5570         apply (rule tm.pre_condI, clarsimp)
       
  5571         apply (subgoal_tac " u + int (k - Suc w) =  v - (1 + int w)", simp)
       
  5572         defer
       
  5573         apply simp
       
  5574         by hstep
       
  5575     my_block_end
       
  5576     apply (hsteps this)
       
  5577     my_block
       
  5578       fix i j
       
  5579       have "\<lbrace>st i \<and>* ps (v - int w) \<and>*  one (v + 2) \<and>* 
       
  5580                          zero (v - int w) \<and>* zeros (v - int w + 1) (v + 1)\<rbrace> 
       
  5581                  i :[right_until_one]: j
       
  5582             \<lbrace>st j \<and>* ps (v + 2) \<and>*  one (v + 2) \<and>*  zero (v - int w) \<and>* zeros (v - int w + 1) (v + 1)\<rbrace>"
       
  5583         my_block
       
  5584           have "(zero (v - int w) \<and>* zeros (v - int w + 1) (v + 1)) = 
       
  5585                     (zeros (v - int w) (v + 1))"
       
  5586             by (simp add:zeros_simps)
       
  5587         my_block_end
       
  5588         apply (unfold this)
       
  5589         by hsteps
       
  5590     my_block_end
       
  5591     apply (hstep this)
       
  5592     my_block
       
  5593       from Suc(2, 3) have "w < k" by auto
       
  5594       hence "(zeros (v + 3 + int w) (2 + (v + int k))) = 
       
  5595                   (zero (v + 3 + int w) \<and>* zeros (4 + (v + int w)) (2 + (v + int k)))"
       
  5596         by (simp add:zeros_simps)
       
  5597     my_block_end
       
  5598     apply (unfold this)
       
  5599     my_block
       
  5600       fix i j
       
  5601       have "\<lbrace>st i \<and>* ps (v + 2) \<and>* zero (v + 3 + int w) \<and>* zeros (4 + (v + int w)) (2 + (v + int k)) \<and>* 
       
  5602                                                         one (v + 2) \<and>* ones (v + 3) (v + 2 + int w)\<rbrace>
       
  5603                 i :[right_until_zero]: j
       
  5604             \<lbrace>st j \<and>* ps (v + 3 + int w) \<and>* zero (v + 3 + int w) \<and>* zeros (4 + (v + int w)) (2 + (v + int k)) \<and>* 
       
  5605                                                         one (v + 2) \<and>* ones (v + 3) (v + 2 + int w)\<rbrace>"
       
  5606         my_block
       
  5607           have "(one (v + 2) \<and>* ones (v + 3) (v + 2 + int w)) =
       
  5608                 (ones (v + 2) (v + 2 + int w))"
       
  5609             by (simp add:ones_simps, smt)
       
  5610         my_block_end
       
  5611         apply (unfold this)
       
  5612         by hsteps
       
  5613     my_block_end
       
  5614     apply (hsteps this, simp only:sep_conj_ac)
       
  5615     apply (sep_cancel+, simp add:sep_conj_ac)
       
  5616     my_block
       
  5617       fix s
       
  5618       assume "(zero (v - int w) \<and>* zeros (v - int w + 1) (v + 1)) s"
       
  5619       hence "zeros (v - int w) (v + 1) s"
       
  5620         by (simp add:zeros_simps)
       
  5621     my_block_end
       
  5622     apply (fwd this)
       
  5623     my_block
       
  5624       fix s
       
  5625       assume "(one (v + 3 + int w) \<and>* ones (v + 3) (v + 2 + int w)) s"
       
  5626       hence "ones (v + 3) (3 + (v + int w)) s"
       
  5627         by (simp add:ones_rev sep_conj_ac, smt)
       
  5628     my_block_end
       
  5629     apply (fwd this)
       
  5630     by (simp add:sep_conj_ac, smt)
       
  5631 qed
       
  5632 
       
  5633 definition "cinit = (right_until_zero; move_right; write_one)"
       
  5634 
       
  5635 definition "copy = (cinit; cmove; move_right; move_right; right_until_one; move_left; move_left; cfill_until_one)"
       
  5636 
       
  5637 lemma hoare_copy:
       
  5638   shows
       
  5639    "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u v [k] \<and>* zero (v + 1) \<and>*
       
  5640                                                      zeros (v + 2) (v + int(reps_len [k]) + 1)\<rbrace>
       
  5641                                   i :[copy]: j
       
  5642     \<lbrace>st j \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u v [k] \<and>* zero (v + 1) \<and>* 
       
  5643                                                       reps (v + 2) (v + int (reps_len [k]) + 1) [k]\<rbrace>"
       
  5644   apply (unfold copy_def)
       
  5645   my_block
       
  5646     fix i j
       
  5647     have 
       
  5648        "\<lbrace>st i \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1) \<and>* zeros (v + 2) (v + int(reps_len [k]) + 1)\<rbrace>
       
  5649                       i :[cinit]: j
       
  5650         \<lbrace>st j \<and>* ps (v + 2) \<and>* reps u v [k] \<and>* zero (v + 1) \<and>*
       
  5651                                            one (v + 2) \<and>* zeros (v + 3) (v + int(reps_len [k]) + 1)\<rbrace>"
       
  5652       apply (unfold cinit_def)
       
  5653       apply (simp add:reps.simps)
       
  5654       apply (subst sep_conj_cond)+
       
  5655       apply (rule tm.pre_condI, simp)
       
  5656       apply hsteps
       
  5657       apply (simp add:sep_conj_ac)
       
  5658       my_block
       
  5659         have "(zeros (u + int k + 2) (u + int k + int (reps_len [k]) + 1)) = 
       
  5660               (zero (u + int k + 2) \<and>*  zeros (u + int k + 3) (u + int k + int (reps_len [k]) + 1))"
       
  5661           by (smt reps_len_sg zeros_step_simp)
       
  5662       my_block_end
       
  5663       apply (unfold this)
       
  5664       apply hstep
       
  5665       by (simp add:sep_conj_ac, sep_cancel+, smt)
       
  5666   my_block_end
       
  5667   apply (hstep this)
       
  5668   apply (rule_tac p = "st j' \<and>* ps (v + 2) \<and>* reps u v [k] \<and>* zero (v + 1) \<and>*
       
  5669           one (v + 2) \<and>* zeros (v + 3) (v + int (reps_len [k]) + 1) \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>*
       
  5670             <(v = u + int (reps_len [k]) - 1)>
       
  5671     " in tm.pre_stren)
       
  5672   my_block
       
  5673     fix i j
       
  5674     from hoare_cmove[where w = 0 and k = k and i = i and j = j and v = v and u = u]
       
  5675     have "\<lbrace>st i \<and>* ps (v + 2) \<and>* zero (u - 1) \<and>* reps u v [k] \<and>* zero (v + 1) \<and>*
       
  5676                                             one (v + 2) \<and>* zeros (v + 3) (v + int(reps_len [k]) + 1)\<rbrace>
       
  5677                       i :[cmove]: j
       
  5678           \<lbrace>st j \<and>* ps (u - 1) \<and>* zero (u - 1) \<and>* reps u u [0] \<and>* zeros (u + 1) (v + 1) \<and>*
       
  5679                                                        reps (v + 2) (v + int (reps_len [k]) + 1) [k]\<rbrace>"
       
  5680       by (auto simp:ones_simps zeros_simps)
       
  5681   my_block_end
       
  5682   apply (hstep this)
       
  5683   apply (hstep, simp)
       
  5684   my_block
       
  5685     have "reps u u [0] = one u" by (simp add:reps.simps ones_simps)
       
  5686   my_block_end my_note eq_repsz = this
       
  5687   apply (unfold this)
       
  5688   apply (hstep)
       
  5689   apply (subst reps.simps, simp add: ones_simps)
       
  5690   apply hsteps
       
  5691   apply (subst sep_conj_cond)+
       
  5692   apply (rule tm.pre_condI, simp del:zeros.simps zeros_simps)
       
  5693   apply (thin_tac "int (reps_len [k]) = 1 + int k \<and> v = u + int (reps_len [k]) - 1")
       
  5694   my_block
       
  5695     have "(zeros (u + 1) (u + int k + 1)) = (zeros (u + 1) (u + int k) \<and>* zero (u + int k + 1))"
       
  5696       by (simp only:zeros_rev, smt)
       
  5697   my_block_end
       
  5698   apply (unfold this)
       
  5699   apply (hstep, simp)
       
  5700   my_block
       
  5701     fix i j
       
  5702     from hoare_cfill_until_one[where v = "u + int k" and u = "u + 1"]
       
  5703     have "\<lbrace>st i \<and>* ps (u + int k) \<and>* one u \<and>* zeros (u + 1) (u + int k)\<rbrace> 
       
  5704               i :[ cfill_until_one ]: j
       
  5705           \<lbrace>st j \<and>* ps u \<and>* ones u (u + int k) \<rbrace>"
       
  5706       by simp
       
  5707   my_block_end
       
  5708   apply (hstep this, simp add:sep_conj_ac reps.simps ones_simps)
       
  5709   apply (simp add:sep_conj_ac reps.simps ones_simps)
       
  5710   apply (subst sep_conj_cond)+
       
  5711   apply (subst (asm) sep_conj_cond)+
       
  5712   apply (rule condI)
       
  5713   apply (erule condE, simp)
       
  5714   apply (simp add: reps_len_def reps_sep_len_def reps_ctnt_len_def)
       
  5715   apply (sep_cancel+)
       
  5716   by (erule condE, simp)
       
  5717 
       
  5718 end