Separation_Algebra/Separation_Algebra.thy
author Christian Urban <christian dot urban at kcl dot ac dot uk>
Mon, 24 Mar 2014 12:15:55 +0000
changeset 9 b88fc9da1970
parent 5 6c722e960f2e
child 25 a5f5b9336007
permissions -rw-r--r--
small modifications
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
0
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     1
(* Authors: Gerwin Klein and Rafal Kolanski, 2012
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     2
   Maintainers: Gerwin Klein <kleing at cse.unsw.edu.au>
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     3
                Rafal Kolanski <rafal.kolanski at nicta.com.au>
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     4
*)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     5
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     6
header "Abstract Separation Algebra"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     7
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     8
theory Separation_Algebra
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     9
imports Main
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    10
begin
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    11
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    12
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    13
text {* This theory is the main abstract separation algebra development *}
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    14
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    15
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    16
section {* Input syntax for lifting boolean predicates to separation predicates *}
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    17
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    18
abbreviation (input)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    19
  pred_and :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" (infixr "and" 35) where
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    20
  "a and b \<equiv> \<lambda>s. a s \<and> b s"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    21
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    22
abbreviation (input)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    23
  pred_or :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" (infixr "or" 30) where
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    24
  "a or b \<equiv> \<lambda>s. a s \<or> b s"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    25
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    26
abbreviation (input)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    27
  pred_not :: "('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" ("not _" [40] 40) where
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    28
  "not a \<equiv> \<lambda>s. \<not>a s"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    29
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    30
abbreviation (input)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    31
  pred_imp :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" (infixr "imp" 25) where
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    32
  "a imp b \<equiv> \<lambda>s. a s \<longrightarrow> b s"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    33
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    34
abbreviation (input)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    35
  pred_K :: "'b \<Rightarrow> 'a \<Rightarrow> 'b" ("\<langle>_\<rangle>") where
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    36
  "\<langle>f\<rangle> \<equiv> \<lambda>s. f"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    37
5
6c722e960f2e minor changes
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 0
diff changeset
    38
(* was an abbreviation *)
0
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    39
  definition pred_ex :: "('b \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" (binder "EXS " 10) where
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    40
  "EXS x. P x \<equiv> \<lambda>s. \<exists>x. P x s"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    41
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    42
abbreviation (input)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    43
  pred_all :: "('b \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" (binder "ALLS " 10) where
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    44
  "ALLS x. P x \<equiv> \<lambda>s. \<forall>x. P x s"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    45
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    46
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    47
section {* Associative/Commutative Monoid Basis of Separation Algebras *}
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    48
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    49
class pre_sep_algebra = zero + plus +
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    50
  fixes sep_disj :: "'a => 'a => bool" (infix "##" 60)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    51
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    52
  assumes sep_disj_zero [simp]: "x ## 0"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    53
  assumes sep_disj_commuteI: "x ## y \<Longrightarrow> y ## x"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    54
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    55
  assumes sep_add_zero [simp]: "x + 0 = x"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    56
  assumes sep_add_commute: "x ## y \<Longrightarrow> x + y = y + x"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    57
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    58
  assumes sep_add_assoc:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    59
    "\<lbrakk> x ## y; y ## z; x ## z \<rbrakk> \<Longrightarrow> (x + y) + z = x + (y + z)"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    60
begin
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    61
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    62
lemma sep_disj_commute: "x ## y = y ## x"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    63
  by (blast intro: sep_disj_commuteI)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    64
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    65
lemma sep_add_left_commute:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    66
  assumes a: "a ## b" "b ## c" "a ## c"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    67
  shows "b + (a + c) = a + (b + c)" (is "?lhs = ?rhs")
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    68
proof -
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    69
  have "?lhs = b + a + c" using a
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    70
    by (simp add: sep_add_assoc[symmetric] sep_disj_commute)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    71
  also have "... = a + b + c" using a
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    72
    by (simp add: sep_add_commute sep_disj_commute)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    73
  also have "... = ?rhs" using a
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    74
    by (simp add: sep_add_assoc sep_disj_commute)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    75
  finally show ?thesis .
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    76
qed
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    77
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    78
lemmas sep_add_ac = sep_add_assoc sep_add_commute sep_add_left_commute
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    79
                    sep_disj_commute (* nearly always necessary *)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    80
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    81
end
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    82
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    83
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    84
section {* Separation Algebra as Defined by Calcagno et al. *}
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    85
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    86
class sep_algebra = pre_sep_algebra +
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    87
  assumes sep_disj_addD1: "\<lbrakk> x ## y + z; y ## z \<rbrakk> \<Longrightarrow> x ## y"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    88
  assumes sep_disj_addI1: "\<lbrakk> x ## y + z; y ## z \<rbrakk> \<Longrightarrow> x + y ##  z"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    89
begin
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    90
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    91
subsection {* Basic Construct Definitions and Abbreviations *}
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    92
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    93
definition
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    94
  sep_conj :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool)" (infixr "**" 35)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    95
  where
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    96
  "P ** Q \<equiv> \<lambda>h. \<exists>x y. x ## y \<and> h = x + y \<and> P x \<and> Q y"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    97
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    98
notation
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    99
  sep_conj (infixr "\<and>*" 35)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   100
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   101
definition
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   102
  sep_empty :: "'a \<Rightarrow> bool" ("\<box>") where
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   103
  "\<box> \<equiv> \<lambda>h. h = 0"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   104
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   105
definition
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   106
  sep_impl :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool)" (infixr "\<longrightarrow>*" 25)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   107
  where
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   108
  "P \<longrightarrow>* Q \<equiv> \<lambda>h. \<forall>h'. h ## h' \<and> P h' \<longrightarrow> Q (h + h')"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   109
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   110
definition
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   111
  sep_substate :: "'a => 'a => bool" (infix "\<preceq>" 60) where
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   112
  "x \<preceq> y \<equiv> \<exists>z. x ## z \<and> x + z = y"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   113
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   114
(* We want these to be abbreviations not definitions, because basic True and
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   115
   False will occur by simplification in sep_conj terms *)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   116
abbreviation
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   117
  "sep_true \<equiv> \<langle>True\<rangle>"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   118
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   119
abbreviation
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   120
  "sep_false \<equiv> \<langle>False\<rangle>"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   121
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   122
definition
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   123
  sep_list_conj :: "('a \<Rightarrow> bool) list \<Rightarrow> ('a \<Rightarrow> bool)"  ("\<And>* _" [60] 90) where
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   124
  "sep_list_conj Ps \<equiv> foldl (op **) \<box> Ps"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   125
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   126
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   127
subsection {* Disjunction/Addition Properties *}
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   128
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   129
lemma disjoint_zero_sym [simp]: "0 ## x"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   130
  by (simp add: sep_disj_commute)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   131
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   132
lemma sep_add_zero_sym [simp]: "0 + x = x"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   133
  by (simp add: sep_add_commute)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   134
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   135
lemma sep_disj_addD2: "\<lbrakk> x ## y + z; y ## z \<rbrakk> \<Longrightarrow> x ## z"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   136
  by (metis sep_disj_addD1 sep_add_ac)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   137
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   138
lemma sep_disj_addD: "\<lbrakk> x ## y + z; y ## z \<rbrakk> \<Longrightarrow> x ## y \<and> x ## z"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   139
  by (metis sep_disj_addD1 sep_disj_addD2)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   140
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   141
lemma sep_add_disjD: "\<lbrakk> x + y ## z; x ## y \<rbrakk> \<Longrightarrow> x ## z \<and> y ## z"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   142
  by (metis sep_disj_addD sep_disj_commuteI)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   143
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   144
lemma sep_disj_addI2:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   145
  "\<lbrakk> x ## y + z; y ## z \<rbrakk> \<Longrightarrow> x + z ## y"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   146
  by (metis sep_add_ac sep_disj_addI1)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   147
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   148
lemma sep_add_disjI1:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   149
  "\<lbrakk> x + y ## z; x ## y \<rbrakk> \<Longrightarrow> x + z ## y"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   150
  by (metis sep_add_ac sep_add_disjD sep_disj_addI2)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   151
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   152
lemma sep_add_disjI2:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   153
  "\<lbrakk> x + y ## z; x ## y \<rbrakk> \<Longrightarrow> z + y ## x"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   154
  by (metis sep_add_ac sep_add_disjD sep_disj_addI2)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   155
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   156
lemma sep_disj_addI3:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   157
   "x + y ## z \<Longrightarrow> x ## y \<Longrightarrow> x ## y + z"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   158
   by (metis sep_add_ac sep_add_disjD sep_add_disjI2)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   159
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   160
lemma sep_disj_add:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   161
  "\<lbrakk> y ## z; x ## y \<rbrakk> \<Longrightarrow> x ## y + z = x + y ## z"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   162
  by (metis sep_disj_addI1 sep_disj_addI3)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   163
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   164
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   165
subsection {* Substate Properties *}
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   166
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   167
lemma sep_substate_disj_add:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   168
  "x ## y \<Longrightarrow> x \<preceq> x + y"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   169
  unfolding sep_substate_def by blast
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   170
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   171
lemma sep_substate_disj_add':
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   172
  "x ## y \<Longrightarrow> x \<preceq> y + x"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   173
  by (simp add: sep_add_ac sep_substate_disj_add)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   174
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   175
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   176
subsection {* Separating Conjunction Properties *}
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   177
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   178
lemma sep_conjD:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   179
  "(P \<and>* Q) h \<Longrightarrow> \<exists>x y. x ## y \<and> h = x + y \<and> P x \<and> Q y"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   180
  by (simp add: sep_conj_def)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   181
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   182
lemma sep_conjE:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   183
  "\<lbrakk> (P ** Q) h; \<And>x y. \<lbrakk> P x; Q y; x ## y; h = x + y \<rbrakk> \<Longrightarrow> X \<rbrakk> \<Longrightarrow> X"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   184
  by (auto simp: sep_conj_def)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   185
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   186
lemma sep_conjI:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   187
  "\<lbrakk> P x; Q y; x ## y; h = x + y \<rbrakk> \<Longrightarrow> (P ** Q) h"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   188
  by (auto simp: sep_conj_def)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   189
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   190
lemma sep_conj_commuteI:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   191
  "(P ** Q) h \<Longrightarrow> (Q ** P) h"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   192
  by (auto intro!: sep_conjI elim!: sep_conjE simp: sep_add_ac)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   193
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   194
lemma sep_conj_commute:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   195
  "(P ** Q) = (Q ** P)"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   196
  by (rule ext) (auto intro: sep_conj_commuteI)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   197
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   198
lemma sep_conj_assoc:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   199
  "((P ** Q) ** R) = (P ** Q ** R)" (is "?lhs = ?rhs")
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   200
proof (rule ext, rule iffI)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   201
  fix h
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   202
  assume a: "?lhs h"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   203
  then obtain x y z where "P x" and "Q y" and "R z"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   204
                      and "x ## y" and "x ## z" and "y ## z" and "x + y ## z"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   205
                      and "h = x + y + z"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   206
    by (auto dest!: sep_conjD dest: sep_add_disjD)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   207
  moreover
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   208
  then have "x ## y + z"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   209
    by (simp add: sep_disj_add)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   210
  ultimately
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   211
  show "?rhs h"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   212
    by (auto simp: sep_add_ac intro!: sep_conjI)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   213
next
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   214
  fix h
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   215
  assume a: "?rhs h"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   216
  then obtain x y z where "P x" and "Q y" and "R z"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   217
                      and "x ## y" and "x ## z" and "y ## z" and "x ## y + z"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   218
                      and "h = x + y + z"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   219
    by (fastforce elim!: sep_conjE simp: sep_add_ac dest: sep_disj_addD)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   220
  thus "?lhs h"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   221
    by (metis sep_conj_def sep_disj_addI1)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   222
qed
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   223
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   224
lemma sep_conj_impl:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   225
  "\<lbrakk> (P ** Q) h; \<And>h. P h \<Longrightarrow> P' h; \<And>h. Q h \<Longrightarrow> Q' h \<rbrakk> \<Longrightarrow> (P' ** Q') h"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   226
  by (erule sep_conjE, auto intro!: sep_conjI)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   227
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   228
lemma sep_conj_impl1:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   229
  assumes P: "\<And>h. P h \<Longrightarrow> I h"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   230
  shows "(P ** R) h \<Longrightarrow> (I ** R) h"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   231
  by (auto intro: sep_conj_impl P)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   232
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   233
lemma sep_globalise:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   234
  "\<lbrakk> (P ** R) h; (\<And>h. P h \<Longrightarrow> Q h) \<rbrakk> \<Longrightarrow> (Q ** R) h"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   235
  by (fast elim: sep_conj_impl)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   236
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   237
lemma sep_conj_trivial_strip2:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   238
  "Q = R \<Longrightarrow> (Q ** P) = (R ** P)" by simp
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   239
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   240
lemma disjoint_subheaps_exist:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   241
  "\<exists>x y. x ## y \<and> h = x + y"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   242
  by (rule_tac x=0 in exI, auto)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   243
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   244
lemma sep_conj_left_commute: (* for permutative rewriting *)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   245
  "(P ** (Q ** R)) = (Q ** (P ** R))" (is "?x = ?y")
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   246
proof -
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   247
  have "?x = ((Q ** R) ** P)" by (simp add: sep_conj_commute)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   248
  also have "\<dots> = (Q ** (R ** P))" by (subst sep_conj_assoc, simp)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   249
  finally show ?thesis by (simp add: sep_conj_commute)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   250
qed
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   251
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   252
lemmas sep_conj_ac = sep_conj_commute sep_conj_assoc sep_conj_left_commute
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   253
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   254
lemma ab_semigroup_mult_sep_conj: "class.ab_semigroup_mult op **"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   255
  by (unfold_locales)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   256
     (auto simp: sep_conj_ac)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   257
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   258
lemma sep_empty_zero [simp,intro!]: "\<box> 0"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   259
  by (simp add: sep_empty_def)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   260
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   261
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   262
subsection {* Properties of @{text sep_true} and @{text sep_false} *}
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   263
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   264
lemma sep_conj_sep_true:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   265
  "P h \<Longrightarrow> (P ** sep_true) h"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   266
  by (simp add: sep_conjI[where y=0])
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   267
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   268
lemma sep_conj_sep_true':
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   269
  "P h \<Longrightarrow> (sep_true ** P) h"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   270
  by (simp add: sep_conjI[where x=0])
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   271
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   272
lemma sep_conj_true [simp]:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   273
  "(sep_true ** sep_true) = sep_true"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   274
  unfolding sep_conj_def
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   275
  by (auto intro!: ext intro: disjoint_subheaps_exist)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   276
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   277
lemma sep_conj_false_right [simp]:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   278
  "(P ** sep_false) = sep_false"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   279
  by (force elim: sep_conjE intro!: ext)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   280
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   281
lemma sep_conj_false_left [simp]:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   282
  "(sep_false ** P) = sep_false"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   283
  by (subst sep_conj_commute) (rule sep_conj_false_right)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   284
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   285
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   286
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   287
subsection {* Properties of zero (@{const sep_empty}) *}
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   288
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   289
lemma sep_conj_empty [simp]:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   290
  "(P ** \<box>) = P"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   291
  by (simp add: sep_conj_def sep_empty_def)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   292
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   293
lemma sep_conj_empty'[simp]:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   294
  "(\<box> ** P) = P"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   295
  by (subst sep_conj_commute, rule sep_conj_empty)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   296
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   297
lemma sep_conj_sep_emptyI:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   298
  "P h \<Longrightarrow> (P ** \<box>) h"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   299
  by simp
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   300
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   301
lemma sep_conj_sep_emptyE:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   302
  "\<lbrakk> P s; (P ** \<box>) s \<Longrightarrow> (Q ** R) s \<rbrakk> \<Longrightarrow> (Q ** R) s"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   303
  by simp
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   304
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   305
lemma monoid_add: "class.monoid_add (op **) \<box>"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   306
  by (unfold_locales) (auto simp: sep_conj_ac)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   307
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   308
lemma comm_monoid_add: "class.comm_monoid_add op ** \<box>"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   309
  by (unfold_locales) (auto simp: sep_conj_ac)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   310
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   311
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   312
subsection {* Properties of top (@{text sep_true}) *}
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   313
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   314
lemma sep_conj_true_P [simp]:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   315
  "(sep_true ** (sep_true ** P)) = (sep_true ** P)"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   316
  by (simp add: sep_conj_assoc[symmetric])
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   317
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   318
lemma sep_conj_disj:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   319
  "((P or Q) ** R) = ((P ** R) or (Q ** R))"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   320
  by (auto simp: sep_conj_def intro!: ext)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   321
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   322
lemma sep_conj_sep_true_left:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   323
  "(P ** Q) h \<Longrightarrow> (sep_true ** Q) h"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   324
  by (erule sep_conj_impl, simp+)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   325
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   326
lemma sep_conj_sep_true_right:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   327
  "(P ** Q) h \<Longrightarrow> (P ** sep_true) h"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   328
  by (subst (asm) sep_conj_commute, drule sep_conj_sep_true_left,
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   329
      simp add: sep_conj_ac)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   330
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   331
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   332
subsection {* Separating Conjunction with Quantifiers *}
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   333
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   334
lemma sep_conj_conj:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   335
  "((P and Q) ** R) h \<Longrightarrow> ((P ** R) and (Q ** R)) h"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   336
  by (force intro: sep_conjI elim!: sep_conjE)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   337
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   338
lemma sep_conj_exists1:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   339
  "((EXS x. P x) ** Q) = (EXS x. (P x ** Q))"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   340
  by (unfold pred_ex_def, force intro!: ext intro: sep_conjI elim: sep_conjE)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   341
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   342
lemma sep_conj_exists2:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   343
  "(P ** (EXS x. Q x)) = (EXS x. P ** Q x)"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   344
  by (unfold pred_ex_def, force intro!: sep_conjI ext elim!: sep_conjE)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   345
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   346
lemmas sep_conj_exists = sep_conj_exists1 sep_conj_exists2
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   347
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   348
lemma sep_conj_spec:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   349
  "((ALLS x. P x) ** Q) h \<Longrightarrow> (P x ** Q) h"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   350
  by (force intro: sep_conjI elim: sep_conjE)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   351
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   352
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   353
subsection {* Properties of Separating Implication *}
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   354
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   355
lemma sep_implI:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   356
  assumes a: "\<And>h'. \<lbrakk> h ## h'; P h' \<rbrakk> \<Longrightarrow> Q (h + h')"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   357
  shows "(P \<longrightarrow>* Q) h"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   358
  unfolding sep_impl_def by (auto elim: a)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   359
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   360
lemma sep_implD:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   361
  "(x \<longrightarrow>* y) h \<Longrightarrow> \<forall>h'. h ## h' \<and> x h' \<longrightarrow> y (h + h')"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   362
  by (force simp: sep_impl_def)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   363
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   364
lemma sep_implE:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   365
  "(x \<longrightarrow>* y) h \<Longrightarrow> (\<forall>h'. h ## h' \<and> x h' \<longrightarrow> y (h + h') \<Longrightarrow> Q) \<Longrightarrow> Q"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   366
  by (auto dest: sep_implD)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   367
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   368
lemma sep_impl_sep_true [simp]:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   369
  "(P \<longrightarrow>* sep_true) = sep_true"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   370
  by (force intro!: sep_implI ext)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   371
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   372
lemma sep_impl_sep_false [simp]:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   373
  "(sep_false \<longrightarrow>* P) = sep_true"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   374
  by (force intro!: sep_implI ext)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   375
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   376
lemma sep_impl_sep_true_P:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   377
  "(sep_true \<longrightarrow>* P) h \<Longrightarrow> P h"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   378
  by (clarsimp dest!: sep_implD elim!: allE[where x=0])
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   379
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   380
lemma sep_impl_sep_true_false [simp]:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   381
  "(sep_true \<longrightarrow>* sep_false) = sep_false"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   382
  by (force intro!: ext dest: sep_impl_sep_true_P)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   383
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   384
lemma sep_conj_sep_impl:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   385
  "\<lbrakk> P h; \<And>h. (P ** Q) h \<Longrightarrow> R h \<rbrakk> \<Longrightarrow> (Q \<longrightarrow>* R) h"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   386
proof (rule sep_implI)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   387
  fix h' h
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   388
  assume "P h" and "h ## h'" and "Q h'"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   389
  hence "(P ** Q) (h + h')" by (force intro: sep_conjI)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   390
  moreover assume "\<And>h. (P ** Q) h \<Longrightarrow> R h"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   391
  ultimately show "R (h + h')" by simp
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   392
qed
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   393
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   394
lemma sep_conj_sep_impl2:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   395
  "\<lbrakk> (P ** Q) h; \<And>h. P h \<Longrightarrow> (Q \<longrightarrow>* R) h \<rbrakk> \<Longrightarrow> R h"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   396
  by (force dest: sep_implD elim: sep_conjE)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   397
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   398
lemma sep_conj_sep_impl_sep_conj2:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   399
  "(P ** R) h \<Longrightarrow> (P ** (Q \<longrightarrow>* (Q ** R))) h"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   400
  by (erule (1) sep_conj_impl, erule sep_conj_sep_impl, simp add: sep_conj_ac)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   401
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   402
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   403
subsection {* Pure assertions *}
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   404
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   405
definition
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   406
  pure :: "('a \<Rightarrow> bool) \<Rightarrow> bool" where
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   407
  "pure P \<equiv> \<forall>h h'. P h = P h'"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   408
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   409
lemma pure_sep_true:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   410
  "pure sep_true"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   411
  by (simp add: pure_def)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   412
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   413
lemma pure_sep_false:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   414
  "pure sep_true"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   415
  by (simp add: pure_def)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   416
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   417
lemma pure_split:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   418
  "pure P = (P = sep_true \<or> P = sep_false)"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   419
  by (force simp: pure_def intro!: ext)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   420
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   421
lemma pure_sep_conj:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   422
  "\<lbrakk> pure P; pure Q \<rbrakk> \<Longrightarrow> pure (P \<and>* Q)"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   423
  by (force simp: pure_split)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   424
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   425
lemma pure_sep_impl:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   426
  "\<lbrakk> pure P; pure Q \<rbrakk> \<Longrightarrow> pure (P \<longrightarrow>* Q)"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   427
  by (force simp: pure_split)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   428
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   429
lemma pure_conj_sep_conj:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   430
  "\<lbrakk> (P and Q) h; pure P \<or> pure Q \<rbrakk> \<Longrightarrow> (P \<and>* Q) h"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   431
  by (metis pure_def sep_add_zero sep_conjI sep_conj_commute sep_disj_zero)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   432
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   433
lemma pure_sep_conj_conj:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   434
  "\<lbrakk> (P \<and>* Q) h; pure P; pure Q \<rbrakk> \<Longrightarrow> (P and Q) h"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   435
  by (force simp: pure_split)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   436
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   437
lemma pure_conj_sep_conj_assoc:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   438
  "pure P \<Longrightarrow> ((P and Q) \<and>* R) = (P and (Q \<and>* R))"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   439
  by (auto simp: pure_split)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   440
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   441
lemma pure_sep_impl_impl:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   442
  "\<lbrakk> (P \<longrightarrow>* Q) h; pure P \<rbrakk> \<Longrightarrow> P h \<longrightarrow> Q h"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   443
  by (force simp: pure_split dest: sep_impl_sep_true_P)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   444
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   445
lemma pure_impl_sep_impl:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   446
  "\<lbrakk> P h \<longrightarrow> Q h; pure P; pure Q \<rbrakk> \<Longrightarrow> (P \<longrightarrow>* Q) h"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   447
  by (force simp: pure_split)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   448
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   449
lemma pure_conj_right: "(Q \<and>* (\<langle>P'\<rangle> and Q')) = (\<langle>P'\<rangle> and (Q \<and>* Q'))"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   450
  by (rule ext, rule, rule, clarsimp elim!: sep_conjE)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   451
     (erule sep_conj_impl, auto)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   452
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   453
lemma pure_conj_right': "(Q \<and>* (P' and \<langle>Q'\<rangle>)) = (\<langle>Q'\<rangle> and (Q \<and>* P'))"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   454
  by (simp add: conj_comms pure_conj_right)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   455
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   456
lemma pure_conj_left: "((\<langle>P'\<rangle> and Q') \<and>* Q) = (\<langle>P'\<rangle> and (Q' \<and>* Q))"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   457
  by (simp add: pure_conj_right sep_conj_ac)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   458
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   459
lemma pure_conj_left': "((P' and \<langle>Q'\<rangle>) \<and>* Q) = (\<langle>Q'\<rangle> and (P' \<and>* Q))"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   460
  by (subst conj_comms, subst pure_conj_left, simp)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   461
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   462
lemmas pure_conj = pure_conj_right pure_conj_right' pure_conj_left
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   463
    pure_conj_left'
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   464
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   465
declare pure_conj[simp add]
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   466
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   467
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   468
subsection {* Intuitionistic assertions *}
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   469
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   470
definition intuitionistic :: "('a \<Rightarrow> bool) \<Rightarrow> bool" where
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   471
  "intuitionistic P \<equiv> \<forall>h h'. P h \<and> h \<preceq> h' \<longrightarrow> P h'"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   472
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   473
lemma intuitionisticI:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   474
  "(\<And>h h'. \<lbrakk> P h; h \<preceq> h' \<rbrakk> \<Longrightarrow> P h') \<Longrightarrow> intuitionistic P"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   475
  by (unfold intuitionistic_def, fast)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   476
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   477
lemma intuitionisticD:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   478
  "\<lbrakk> intuitionistic P; P h; h \<preceq> h' \<rbrakk> \<Longrightarrow> P h'"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   479
  by (unfold intuitionistic_def, fast)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   480
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   481
lemma pure_intuitionistic:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   482
  "pure P \<Longrightarrow> intuitionistic P"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   483
  by (clarsimp simp: intuitionistic_def pure_def, fast)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   484
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   485
lemma intuitionistic_conj:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   486
  "\<lbrakk> intuitionistic P; intuitionistic Q \<rbrakk> \<Longrightarrow> intuitionistic (P and Q)"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   487
  by (force intro: intuitionisticI dest: intuitionisticD)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   488
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   489
lemma intuitionistic_disj:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   490
  "\<lbrakk> intuitionistic P; intuitionistic Q \<rbrakk> \<Longrightarrow> intuitionistic (P or Q)"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   491
  by (force intro: intuitionisticI dest: intuitionisticD)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   492
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   493
lemma intuitionistic_forall:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   494
  "(\<And>x. intuitionistic (P x)) \<Longrightarrow> intuitionistic (ALLS x. P x)"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   495
  by (force intro: intuitionisticI dest: intuitionisticD)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   496
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   497
lemma intuitionistic_exists:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   498
  "(\<And>x. intuitionistic (P x)) \<Longrightarrow> intuitionistic (EXS x. P x)"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   499
  by (unfold pred_ex_def, force intro: intuitionisticI dest: intuitionisticD)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   500
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   501
lemma intuitionistic_sep_conj_sep_true:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   502
  "intuitionistic (sep_true \<and>* P)"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   503
proof (rule intuitionisticI)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   504
  fix h h' r
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   505
  assume a: "(sep_true \<and>* P) h"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   506
  then obtain x y where P: "P y" and h: "h = x + y" and xyd: "x ## y"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   507
    by - (drule sep_conjD, clarsimp)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   508
  moreover assume a2: "h \<preceq> h'"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   509
  then obtain z where h': "h' = h + z" and hzd: "h ## z"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   510
    by (clarsimp simp: sep_substate_def)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   511
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   512
  moreover have "(P \<and>* sep_true) (y + (x + z))"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   513
    using P h hzd xyd
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   514
    by (metis sep_add_disjI1 sep_disj_commute sep_conjI)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   515
  ultimately show "(sep_true \<and>* P) h'" using hzd
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   516
    by (auto simp: sep_conj_commute sep_add_ac dest!: sep_disj_addD)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   517
qed
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   518
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   519
lemma intuitionistic_sep_impl_sep_true:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   520
  "intuitionistic (sep_true \<longrightarrow>* P)"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   521
proof (rule intuitionisticI)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   522
  fix h h'
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   523
  assume imp: "(sep_true \<longrightarrow>* P) h" and hh': "h \<preceq> h'"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   524
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   525
  from hh' obtain z where h': "h' = h + z" and hzd: "h ## z"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   526
    by (clarsimp simp: sep_substate_def)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   527
  show "(sep_true \<longrightarrow>* P) h'" using imp h' hzd
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   528
    apply (clarsimp dest!: sep_implD)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   529
    apply (metis sep_add_assoc sep_add_disjD sep_disj_addI3 sep_implI)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   530
    done
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   531
qed
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   532
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   533
lemma intuitionistic_sep_conj:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   534
  assumes ip: "intuitionistic (P::('a \<Rightarrow> bool))"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   535
  shows "intuitionistic (P \<and>* Q)"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   536
proof (rule intuitionisticI)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   537
  fix h h'
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   538
  assume sc: "(P \<and>* Q) h" and hh': "h \<preceq> h'"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   539
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   540
  from hh' obtain z where h': "h' = h + z" and hzd: "h ## z"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   541
    by (clarsimp simp: sep_substate_def)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   542
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   543
  from sc obtain x y where px: "P x" and qy: "Q y"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   544
                       and h: "h = x + y" and xyd: "x ## y"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   545
    by (clarsimp simp: sep_conj_def)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   546
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   547
  have "x ## z" using hzd h xyd
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   548
    by (metis sep_add_disjD)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   549
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   550
  with ip px have "P (x + z)"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   551
    by (fastforce elim: intuitionisticD sep_substate_disj_add)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   552
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   553
  thus "(P \<and>* Q) h'" using h' h hzd qy xyd
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   554
    by (metis (full_types) sep_add_commute sep_add_disjD sep_add_disjI2
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   555
              sep_add_left_commute sep_conjI)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   556
qed
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   557
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   558
lemma intuitionistic_sep_impl:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   559
  assumes iq: "intuitionistic Q"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   560
  shows "intuitionistic (P \<longrightarrow>* Q)"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   561
proof (rule intuitionisticI)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   562
  fix h h'
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   563
  assume imp: "(P \<longrightarrow>* Q) h" and hh': "h \<preceq> h'"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   564
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   565
  from hh' obtain z where h': "h' = h + z" and hzd: "h ## z"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   566
    by (clarsimp simp: sep_substate_def)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   567
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   568
  {
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   569
    fix x
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   570
    assume px: "P x" and hzx: "h + z ## x"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   571
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   572
    have "h + x \<preceq> h + x + z" using hzx hzd
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   573
    by (metis sep_add_disjI1 sep_substate_def)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   574
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   575
    with imp hzd iq px hzx
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   576
    have "Q (h + z + x)"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   577
    by (metis intuitionisticD sep_add_assoc sep_add_ac sep_add_disjD sep_implE)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   578
  }
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   579
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   580
  with imp h' hzd iq show "(P \<longrightarrow>* Q) h'"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   581
    by (fastforce intro: sep_implI)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   582
qed
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   583
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   584
lemma strongest_intuitionistic:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   585
  "\<not> (\<exists>Q. (\<forall>h. (Q h \<longrightarrow> (P \<and>* sep_true) h)) \<and> intuitionistic Q \<and>
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   586
      Q \<noteq> (P \<and>* sep_true) \<and> (\<forall>h. P h \<longrightarrow> Q h))"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   587
  by (fastforce intro!: ext sep_substate_disj_add
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   588
                dest!: sep_conjD intuitionisticD)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   589
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   590
lemma weakest_intuitionistic:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   591
  "\<not> (\<exists>Q. (\<forall>h. ((sep_true \<longrightarrow>* P) h \<longrightarrow> Q h)) \<and> intuitionistic Q \<and>
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   592
      Q \<noteq> (sep_true \<longrightarrow>* P) \<and> (\<forall>h. Q h \<longrightarrow> P h))"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   593
  apply (clarsimp intro!: ext)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   594
  apply (rule iffI)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   595
   apply (rule sep_implI)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   596
   apply (drule_tac h="x" and h'="x + h'" in intuitionisticD)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   597
     apply (clarsimp simp: sep_add_ac sep_substate_disj_add)+
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   598
  done
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   599
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   600
lemma intuitionistic_sep_conj_sep_true_P:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   601
  "\<lbrakk> (P \<and>* sep_true) s; intuitionistic P \<rbrakk> \<Longrightarrow> P s"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   602
  by (force dest: intuitionisticD elim: sep_conjE sep_substate_disj_add)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   603
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   604
lemma intuitionistic_sep_conj_sep_true_simp:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   605
  "intuitionistic P \<Longrightarrow> (P \<and>* sep_true) = P"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   606
  by (fast intro!: sep_conj_sep_true ext
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   607
           elim: intuitionistic_sep_conj_sep_true_P)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   608
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   609
lemma intuitionistic_sep_impl_sep_true_P:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   610
  "\<lbrakk> P h; intuitionistic P \<rbrakk> \<Longrightarrow> (sep_true \<longrightarrow>* P) h"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   611
  by (force intro!: sep_implI dest: intuitionisticD
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   612
            intro: sep_substate_disj_add)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   613
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   614
lemma intuitionistic_sep_impl_sep_true_simp:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   615
  "intuitionistic P \<Longrightarrow> (sep_true \<longrightarrow>* P) = P"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   616
  by (fast intro!: ext
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   617
           elim: sep_impl_sep_true_P intuitionistic_sep_impl_sep_true_P)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   618
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   619
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   620
subsection {* Strictly exact assertions *}
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   621
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   622
definition strictly_exact :: "('a \<Rightarrow> bool) \<Rightarrow> bool" where
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   623
  "strictly_exact P \<equiv> \<forall>h h'. P h \<and> P h' \<longrightarrow> h = h'"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   624
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   625
lemma strictly_exactD:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   626
  "\<lbrakk> strictly_exact P; P h; P h' \<rbrakk> \<Longrightarrow> h = h'"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   627
  by (unfold strictly_exact_def, fast)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   628
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   629
lemma strictly_exactI:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   630
  "(\<And>h h'. \<lbrakk> P h; P h' \<rbrakk> \<Longrightarrow> h = h') \<Longrightarrow> strictly_exact P"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   631
  by (unfold strictly_exact_def, fast)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   632
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   633
lemma strictly_exact_sep_conj:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   634
  "\<lbrakk> strictly_exact P; strictly_exact Q \<rbrakk> \<Longrightarrow> strictly_exact (P \<and>* Q)"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   635
  apply (rule strictly_exactI)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   636
  apply (erule sep_conjE)+
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   637
  apply (drule_tac h="x" and h'="xa" in strictly_exactD, assumption+)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   638
  apply (drule_tac h="y" and h'="ya" in strictly_exactD, assumption+)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   639
  apply clarsimp
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   640
  done
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   641
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   642
lemma strictly_exact_conj_impl:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   643
  "\<lbrakk> (Q \<and>* sep_true) h; P h; strictly_exact Q \<rbrakk> \<Longrightarrow> (Q \<and>* (Q \<longrightarrow>* P)) h"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   644
  by (force intro: sep_conjI sep_implI dest: strictly_exactD elim!: sep_conjE
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   645
            simp: sep_add_commute sep_add_assoc)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   646
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   647
end
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   648
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   649
interpretation sep: ab_semigroup_mult "op **"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   650
  by (rule ab_semigroup_mult_sep_conj)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   651
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   652
interpretation sep: comm_monoid_add "op **" \<box>
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   653
  by (rule comm_monoid_add)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   654
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   655
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   656
section {* Separation Algebra with Stronger, but More Intuitive Disjunction Axiom *}
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   657
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   658
class stronger_sep_algebra = pre_sep_algebra +
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   659
  assumes sep_add_disj_eq [simp]: "y ## z \<Longrightarrow> x ## y + z = (x ## y \<and> x ## z)"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   660
begin
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   661
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   662
lemma sep_disj_add_eq [simp]: "x ## y \<Longrightarrow> x + y ## z = (x ## z \<and> y ## z)"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   663
  by (metis sep_add_disj_eq sep_disj_commute)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   664
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   665
subclass sep_algebra by default auto
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   666
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   667
end
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   668
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   669
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   670
section {* Folding separating conjunction over lists of predicates *}
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   671
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   672
lemma sep_list_conj_Nil [simp]: "\<And>* [] = \<box>"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   673
  by (simp add: sep_list_conj_def)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   674
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   675
(* apparently these two are rarely used and had to be removed from List.thy *)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   676
lemma (in semigroup_add) foldl_assoc:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   677
shows "foldl op+ (x+y) zs = x + (foldl op+ y zs)"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   678
by (induct zs arbitrary: y) (simp_all add:add_assoc)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   679
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   680
lemma (in monoid_add) foldl_absorb0:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   681
shows "x + (foldl op+ 0 zs) = foldl op+ x zs"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   682
by (induct zs) (simp_all add:foldl_assoc)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   683
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   684
lemma sep_list_conj_Cons [simp]: "\<And>* (x#xs) = (x ** \<And>* xs)"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   685
  by (simp add: sep_list_conj_def sep.foldl_absorb0)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   686
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   687
lemma sep_list_conj_append [simp]: "\<And>* (xs @ ys) = (\<And>* xs ** \<And>* ys)"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   688
  by (simp add: sep_list_conj_def sep.foldl_absorb0)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   689
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   690
lemma (in comm_monoid_add) foldl_map_filter:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   691
  "foldl op + 0 (map f (filter P xs)) +
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   692
     foldl op + 0 (map f (filter (not P) xs))
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   693
   = foldl op + 0 (map f xs)"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   694
proof (induct xs)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   695
  case Nil thus ?case by clarsimp
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   696
next
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   697
  case (Cons x xs)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   698
  hence IH: "foldl op + 0 (map f xs) =
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   699
               foldl op + 0 (map f (filter P xs)) +
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   700
               foldl op + 0 (map f [x\<leftarrow>xs . \<not> P x])"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   701
               by (simp only: eq_commute)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   702
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   703
  have foldl_Cons':
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   704
    "\<And>x xs. foldl op + 0 (x # xs) = x + (foldl op + 0 xs)"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   705
    by (simp, subst foldl_absorb0[symmetric], rule refl)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   706
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   707
  { assume "P x"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   708
    hence ?case by (auto simp del: foldl_Cons simp add: foldl_Cons' IH add_ac)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   709
  } moreover {
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   710
    assume "\<not> P x"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   711
    hence ?case by (auto simp del: foldl_Cons simp add: foldl_Cons' IH add_ac)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   712
  }
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   713
  ultimately show ?case by blast
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   714
qed
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   715
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   716
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   717
section {* Separation Algebra with a Cancellative Monoid (for completeness) *}
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   718
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   719
text {*
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   720
  Separation algebra with a cancellative monoid. The results of being a precise
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   721
  assertion (distributivity over separating conjunction) require this.
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   722
  although we never actually use this property in our developments, we keep
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   723
  it here for completeness.
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   724
  *}
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   725
class cancellative_sep_algebra = sep_algebra +
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   726
  assumes sep_add_cancelD: "\<lbrakk> x + z = y + z ; x ## z ; y ## z \<rbrakk> \<Longrightarrow> x = y"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   727
begin
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   728
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   729
definition
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   730
  (* In any heap, there exists at most one subheap for which P holds *)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   731
  precise :: "('a \<Rightarrow> bool) \<Rightarrow> bool" where
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   732
  "precise P = (\<forall>h hp hp'. hp \<preceq> h \<and> P hp \<and> hp' \<preceq> h \<and> P hp' \<longrightarrow> hp = hp')"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   733
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   734
lemma "precise (op = s)"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   735
  by (metis (full_types) precise_def)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   736
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   737
lemma sep_add_cancel:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   738
  "x ## z \<Longrightarrow> y ## z \<Longrightarrow> (x + z = y + z) = (x = y)"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   739
  by (metis sep_add_cancelD)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   740
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   741
lemma precise_distribute:
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   742
  "precise P = (\<forall>Q R. ((Q and R) \<and>* P) = ((Q \<and>* P) and (R \<and>* P)))"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   743
proof (rule iffI)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   744
  assume pp: "precise P"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   745
  {
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   746
    fix Q R
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   747
    fix h hp hp' s
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   748
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   749
    { assume a: "((Q and R) \<and>* P) s"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   750
      hence "((Q \<and>* P) and (R \<and>* P)) s"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   751
        by (fastforce dest!: sep_conjD elim: sep_conjI)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   752
    }
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   753
    moreover
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   754
    { assume qs: "(Q \<and>* P) s" and qr: "(R \<and>* P) s"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   755
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   756
      from qs obtain x y where sxy: "s = x + y" and xy: "x ## y"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   757
                           and x: "Q x" and y: "P y"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   758
        by (fastforce dest!: sep_conjD)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   759
      from qr obtain x' y' where sxy': "s = x' + y'" and xy': "x' ## y'"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   760
                           and x': "R x'" and y': "P y'"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   761
        by (fastforce dest!: sep_conjD)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   762
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   763
      from sxy have ys: "y \<preceq> x + y" using xy
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   764
        by (fastforce simp: sep_substate_disj_add' sep_disj_commute)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   765
      from sxy' have ys': "y' \<preceq> x' + y'" using xy'
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   766
        by (fastforce simp: sep_substate_disj_add' sep_disj_commute)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   767
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   768
      from pp have yy: "y = y'" using sxy sxy' xy xy' y y' ys ys'
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   769
        by (fastforce simp: precise_def)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   770
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   771
      hence "x = x'" using sxy sxy' xy xy'
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   772
        by (fastforce dest!: sep_add_cancelD)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   773
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   774
      hence "((Q and R) \<and>* P) s" using sxy x x' yy y' xy'
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   775
        by (fastforce intro: sep_conjI)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   776
    }
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   777
    ultimately
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   778
    have "((Q and R) \<and>* P) s = ((Q \<and>* P) and (R \<and>* P)) s" using pp by blast
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   779
  }
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   780
  thus "\<forall>Q R. ((Q and R) \<and>* P) = ((Q \<and>* P) and (R \<and>* P))" by (blast intro!: ext)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   781
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   782
next
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   783
  assume a: "\<forall>Q R. ((Q and R) \<and>* P) = ((Q \<and>* P) and (R \<and>* P))"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   784
  thus "precise P"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   785
  proof (clarsimp simp: precise_def)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   786
    fix h hp hp' Q R
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   787
    assume hp: "hp \<preceq> h" and hp': "hp' \<preceq> h" and php: "P hp" and php': "P hp'"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   788
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   789
    obtain z where hhp: "h = hp + z" and hpz: "hp ## z" using hp
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   790
      by (clarsimp simp: sep_substate_def)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   791
    obtain z' where hhp': "h = hp' + z'" and hpz': "hp' ## z'" using hp'
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   792
      by (clarsimp simp: sep_substate_def)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   793
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   794
    have h_eq: "z' + hp' = z + hp" using hhp hhp' hpz hpz'
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   795
      by (fastforce simp: sep_add_ac)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   796
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   797
    from hhp hhp' a hpz hpz' h_eq
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   798
    have "\<forall>Q R. ((Q and R) \<and>* P) (z + hp) = ((Q \<and>* P) and (R \<and>* P)) (z' + hp')"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   799
      by (fastforce simp: h_eq sep_add_ac sep_conj_commute)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   800
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   801
    hence "((op = z and op = z') \<and>* P) (z + hp) =
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   802
           ((op = z \<and>* P) and (op = z' \<and>* P)) (z' + hp')" by blast
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   803
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   804
    thus  "hp = hp'" using php php' hpz hpz' h_eq
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   805
      by (fastforce dest!: iffD2 cong: conj_cong
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   806
                    simp: sep_add_ac sep_add_cancel sep_conj_def)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   807
  qed
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   808
qed
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   809
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   810
lemma strictly_precise: "strictly_exact P \<Longrightarrow> precise P"
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   811
  by (metis precise_def strictly_exactD)
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   812
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   813
end
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   814
1378b654acde initial commit for Isabelle 2013-1
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   815
end