25
|
1 |
theory Recs
|
|
2 |
imports Main Fact
|
|
3 |
"~~/src/HOL/Number_Theory/Primes"
|
|
4 |
"~~/src/HOL/Library/Nat_Bijection"
|
|
5 |
(* "~~/src/HOL/Library/Discrete" *)
|
|
6 |
Hoare_abc
|
|
7 |
LetElim
|
|
8 |
begin
|
|
9 |
|
|
10 |
declare One_nat_def[simp del]
|
|
11 |
|
|
12 |
(*
|
|
13 |
some definitions from
|
|
14 |
|
|
15 |
A Course in Formal Languages, Automata and Groups
|
|
16 |
I M Chiswell
|
|
17 |
|
|
18 |
and
|
|
19 |
|
|
20 |
Lecture on undecidability
|
|
21 |
Michael M. Wolf
|
|
22 |
*)
|
|
23 |
|
|
24 |
lemma if_zero_one [simp]:
|
|
25 |
"(if P then 1 else 0) = (0::nat) \<longleftrightarrow> \<not> P"
|
|
26 |
"(0::nat) < (if P then 1 else 0) = P"
|
|
27 |
"(if P then 0 else 1) = (if \<not>P then 1 else (0::nat))"
|
|
28 |
by (simp_all)
|
|
29 |
|
|
30 |
lemma nth:
|
|
31 |
"(x # xs) ! 0 = x"
|
|
32 |
"(x # y # xs) ! 1 = y"
|
|
33 |
"(x # y # z # xs) ! 2 = z"
|
|
34 |
"(x # y # z # u # xs) ! 3 = u"
|
|
35 |
by (simp_all)
|
|
36 |
|
|
37 |
|
|
38 |
section {* Some auxiliary lemmas about @{text "\<Sum>"} and @{text "\<Prod>"} *}
|
|
39 |
|
|
40 |
lemma setprod_atMost_Suc[simp]:
|
|
41 |
"(\<Prod>i \<le> Suc n. f i) = (\<Prod>i \<le> n. f i) * f(Suc n)"
|
|
42 |
by(simp add:atMost_Suc mult_ac)
|
|
43 |
|
|
44 |
lemma setprod_lessThan_Suc[simp]:
|
|
45 |
"(\<Prod>i < Suc n. f i) = (\<Prod>i < n. f i) * f n"
|
|
46 |
by (simp add:lessThan_Suc mult_ac)
|
|
47 |
|
|
48 |
lemma setsum_add_nat_ivl2: "n \<le> p \<Longrightarrow>
|
|
49 |
setsum f {..<n} + setsum f {n..p} = setsum f {..p::nat}"
|
|
50 |
apply(subst setsum_Un_disjoint[symmetric])
|
|
51 |
apply(auto simp add: ivl_disj_un_one)
|
|
52 |
done
|
|
53 |
|
|
54 |
lemma setsum_eq_zero [simp]:
|
|
55 |
fixes f::"nat \<Rightarrow> nat"
|
|
56 |
shows "(\<Sum>i < n. f i) = 0 \<longleftrightarrow> (\<forall>i < n. f i = 0)"
|
|
57 |
"(\<Sum>i \<le> n. f i) = 0 \<longleftrightarrow> (\<forall>i \<le> n. f i = 0)"
|
|
58 |
by (auto)
|
|
59 |
|
|
60 |
lemma setprod_eq_zero [simp]:
|
|
61 |
fixes f::"nat \<Rightarrow> nat"
|
|
62 |
shows "(\<Prod>i < n. f i) = 0 \<longleftrightarrow> (\<exists>i < n. f i = 0)"
|
|
63 |
"(\<Prod>i \<le> n. f i) = 0 \<longleftrightarrow> (\<exists>i \<le> n. f i = 0)"
|
|
64 |
by (auto)
|
|
65 |
|
|
66 |
lemma setsum_one_less:
|
|
67 |
fixes n::nat
|
|
68 |
assumes "\<forall>i < n. f i \<le> 1"
|
|
69 |
shows "(\<Sum>i < n. f i) \<le> n"
|
|
70 |
using assms
|
|
71 |
by (induct n) (auto)
|
|
72 |
|
|
73 |
lemma setsum_one_le:
|
|
74 |
fixes n::nat
|
|
75 |
assumes "\<forall>i \<le> n. f i \<le> 1"
|
|
76 |
shows "(\<Sum>i \<le> n. f i) \<le> Suc n"
|
|
77 |
using assms
|
|
78 |
by (induct n) (auto)
|
|
79 |
|
|
80 |
lemma setsum_eq_one_le:
|
|
81 |
fixes n::nat
|
|
82 |
assumes "\<forall>i \<le> n. f i = 1"
|
|
83 |
shows "(\<Sum>i \<le> n. f i) = Suc n"
|
|
84 |
using assms
|
|
85 |
by (induct n) (auto)
|
|
86 |
|
|
87 |
lemma setsum_least_eq:
|
|
88 |
fixes f::"nat \<Rightarrow> nat"
|
|
89 |
assumes h0: "p \<le> n"
|
|
90 |
assumes h1: "\<forall>i \<in> {..<p}. f i = 1"
|
|
91 |
assumes h2: "\<forall>i \<in> {p..n}. f i = 0"
|
|
92 |
shows "(\<Sum>i \<le> n. f i) = p"
|
|
93 |
proof -
|
|
94 |
have eq_p: "(\<Sum>i \<in> {..<p}. f i) = p"
|
|
95 |
using h1 by (induct p) (simp_all)
|
|
96 |
have eq_zero: "(\<Sum>i \<in> {p..n}. f i) = 0"
|
|
97 |
using h2 by auto
|
|
98 |
have "(\<Sum>i \<le> n. f i) = (\<Sum>i \<in> {..<p}. f i) + (\<Sum>i \<in> {p..n}. f i)"
|
|
99 |
using h0 by (simp add: setsum_add_nat_ivl2)
|
|
100 |
also have "... = (\<Sum>i \<in> {..<p}. f i)" using eq_zero by simp
|
|
101 |
finally show "(\<Sum>i \<le> n. f i) = p" using eq_p by simp
|
|
102 |
qed
|
|
103 |
|
|
104 |
lemma nat_mult_le_one:
|
|
105 |
fixes m n::nat
|
|
106 |
assumes "m \<le> 1" "n \<le> 1"
|
|
107 |
shows "m * n \<le> 1"
|
|
108 |
using assms by (induct n) (auto)
|
|
109 |
|
|
110 |
lemma setprod_one_le:
|
|
111 |
fixes f::"nat \<Rightarrow> nat"
|
|
112 |
assumes "\<forall>i \<le> n. f i \<le> 1"
|
|
113 |
shows "(\<Prod>i \<le> n. f i) \<le> 1"
|
|
114 |
using assms
|
|
115 |
by (induct n) (auto intro: nat_mult_le_one)
|
|
116 |
|
|
117 |
lemma setprod_greater_zero:
|
|
118 |
fixes f::"nat \<Rightarrow> nat"
|
|
119 |
assumes "\<forall>i \<le> n. f i \<ge> 0"
|
|
120 |
shows "(\<Prod>i \<le> n. f i) \<ge> 0"
|
|
121 |
using assms by (induct n) (auto)
|
|
122 |
|
|
123 |
lemma setprod_eq_one:
|
|
124 |
fixes f::"nat \<Rightarrow> nat"
|
|
125 |
assumes "\<forall>i \<le> n. f i = Suc 0"
|
|
126 |
shows "(\<Prod>i \<le> n. f i) = Suc 0"
|
|
127 |
using assms by (induct n) (auto)
|
|
128 |
|
|
129 |
lemma setsum_cut_off_less:
|
|
130 |
fixes f::"nat \<Rightarrow> nat"
|
|
131 |
assumes h1: "m \<le> n"
|
|
132 |
and h2: "\<forall>i \<in> {m..<n}. f i = 0"
|
|
133 |
shows "(\<Sum>i < n. f i) = (\<Sum>i < m. f i)"
|
|
134 |
proof -
|
|
135 |
have eq_zero: "(\<Sum>i \<in> {m..<n}. f i) = 0"
|
|
136 |
using h2 by auto
|
|
137 |
have "(\<Sum>i < n. f i) = (\<Sum>i \<in> {..<m}. f i) + (\<Sum>i \<in> {m..<n}. f i)"
|
|
138 |
using h1 by (metis atLeast0LessThan le0 setsum_add_nat_ivl)
|
|
139 |
also have "... = (\<Sum>i \<in> {..<m}. f i)" using eq_zero by simp
|
|
140 |
finally show "(\<Sum>i < n. f i) = (\<Sum>i < m. f i)" by simp
|
|
141 |
qed
|
|
142 |
|
|
143 |
lemma setsum_cut_off_le:
|
|
144 |
fixes f::"nat \<Rightarrow> nat"
|
|
145 |
assumes h1: "m \<le> n"
|
|
146 |
and h2: "\<forall>i \<in> {m..n}. f i = 0"
|
|
147 |
shows "(\<Sum>i \<le> n. f i) = (\<Sum>i < m. f i)"
|
|
148 |
proof -
|
|
149 |
have eq_zero: "(\<Sum>i \<in> {m..n}. f i) = 0"
|
|
150 |
using h2 by auto
|
|
151 |
have "(\<Sum>i \<le> n. f i) = (\<Sum>i \<in> {..<m}. f i) + (\<Sum>i \<in> {m..n}. f i)"
|
|
152 |
using h1 by (simp add: setsum_add_nat_ivl2)
|
|
153 |
also have "... = (\<Sum>i \<in> {..<m}. f i)" using eq_zero by simp
|
|
154 |
finally show "(\<Sum>i \<le> n. f i) = (\<Sum>i < m. f i)" by simp
|
|
155 |
qed
|
|
156 |
|
|
157 |
lemma setprod_one [simp]:
|
|
158 |
fixes n::nat
|
|
159 |
shows "(\<Prod>i < n. Suc 0) = Suc 0"
|
|
160 |
"(\<Prod>i \<le> n. Suc 0) = Suc 0"
|
|
161 |
by (induct n) (simp_all)
|
|
162 |
|
|
163 |
section {* Recursive Functions *}
|
|
164 |
|
|
165 |
datatype recf = Z
|
|
166 |
| S
|
|
167 |
| Id nat nat
|
|
168 |
| Cn nat recf "recf list"
|
|
169 |
| Pr nat recf recf
|
|
170 |
| Mn nat recf
|
|
171 |
|
|
172 |
fun arity :: "recf \<Rightarrow> nat"
|
|
173 |
where
|
|
174 |
"arity Z = 1"
|
|
175 |
| "arity S = 1"
|
|
176 |
| "arity (Id m n) = m"
|
|
177 |
| "arity (Cn n f gs) = n"
|
|
178 |
| "arity (Pr n f g) = Suc n"
|
|
179 |
| "arity (Mn n f) = n"
|
|
180 |
|
|
181 |
text {* Abbreviations for calculating the arity of the constructors *}
|
|
182 |
|
|
183 |
abbreviation
|
|
184 |
"CN f gs \<equiv> Cn (arity (hd gs)) f gs"
|
|
185 |
|
|
186 |
abbreviation
|
|
187 |
"PR f g \<equiv> Pr (arity f) f g"
|
|
188 |
|
|
189 |
abbreviation
|
|
190 |
"MN f \<equiv> Mn (arity f - 1) f"
|
|
191 |
|
|
192 |
text {* the evaluation function and termination relation *}
|
|
193 |
|
|
194 |
fun rec_eval :: "recf \<Rightarrow> nat list \<Rightarrow> nat"
|
|
195 |
where
|
|
196 |
"rec_eval Z xs = 0"
|
|
197 |
| "rec_eval S xs = Suc (xs ! 0)"
|
|
198 |
| "rec_eval (Id m n) xs = xs ! n"
|
|
199 |
| "rec_eval (Cn n f gs) xs = rec_eval f (map (\<lambda>x. rec_eval x xs) gs)"
|
|
200 |
| "rec_eval (Pr n f g) (0 # xs) = rec_eval f xs"
|
|
201 |
| "rec_eval (Pr n f g) (Suc x # xs) =
|
|
202 |
rec_eval g (x # (rec_eval (Pr n f g) (x # xs)) # xs)"
|
|
203 |
| "rec_eval (Mn n f) xs = (LEAST x. rec_eval f (x # xs) = 0)"
|
|
204 |
|
|
205 |
inductive
|
|
206 |
terminates :: "recf \<Rightarrow> nat list \<Rightarrow> bool"
|
|
207 |
where
|
|
208 |
termi_z: "terminates Z [n]"
|
|
209 |
| termi_s: "terminates S [n]"
|
|
210 |
| termi_id: "\<lbrakk>n < m; length xs = m\<rbrakk> \<Longrightarrow> terminates (Id m n) xs"
|
|
211 |
| termi_cn: "\<lbrakk>terminates f (map (\<lambda>g. rec_eval g xs) gs);
|
|
212 |
\<forall>g \<in> set gs. terminates g xs; length xs = n\<rbrakk> \<Longrightarrow> terminates (Cn n f gs) xs"
|
|
213 |
| termi_pr: "\<lbrakk>\<forall> y < x. terminates g (y # (rec_eval (Pr n f g) (y # xs) # xs));
|
|
214 |
terminates f xs;
|
|
215 |
length xs = n\<rbrakk>
|
|
216 |
\<Longrightarrow> terminates (Pr n f g) (x # xs)"
|
|
217 |
| termi_mn: "\<lbrakk>length xs = n; terminates f (r # xs);
|
|
218 |
rec_eval f (r # xs) = 0;
|
|
219 |
\<forall> i < r. terminates f (i # xs) \<and> rec_eval f (i # xs) > 0\<rbrakk> \<Longrightarrow> terminates (Mn n f) xs"
|
|
220 |
|
|
221 |
|
|
222 |
section {* Arithmetic Functions *}
|
|
223 |
|
|
224 |
text {*
|
|
225 |
@{text "constn n"} is the recursive function which computes
|
|
226 |
natural number @{text "n"}.
|
|
227 |
*}
|
|
228 |
fun constn :: "nat \<Rightarrow> recf"
|
|
229 |
where
|
|
230 |
"constn 0 = Z" |
|
|
231 |
"constn (Suc n) = CN S [constn n]"
|
|
232 |
|
|
233 |
definition
|
|
234 |
"rec_swap f = CN f [Id 2 1, Id 2 0]"
|
|
235 |
|
|
236 |
definition
|
|
237 |
"rec_add = PR (Id 1 0) (CN S [Id 3 1])"
|
|
238 |
|
|
239 |
definition
|
|
240 |
"rec_mult = PR Z (CN rec_add [Id 3 1, Id 3 2])"
|
|
241 |
|
|
242 |
definition
|
|
243 |
"rec_power = rec_swap (PR (constn 1) (CN rec_mult [Id 3 1, Id 3 2]))"
|
|
244 |
|
|
245 |
definition
|
|
246 |
"rec_fact_aux = PR (constn 1) (CN rec_mult [CN S [Id 3 0], Id 3 1])"
|
|
247 |
|
|
248 |
definition
|
|
249 |
"rec_fact = CN rec_fact_aux [Id 1 0, Id 1 0]"
|
|
250 |
|
|
251 |
definition
|
|
252 |
"rec_pred = CN (PR Z (Id 3 0)) [Id 1 0, Id 1 0]"
|
|
253 |
|
|
254 |
definition
|
|
255 |
"rec_minus = rec_swap (PR (Id 1 0) (CN rec_pred [Id 3 1]))"
|
|
256 |
|
|
257 |
lemma constn_lemma [simp]:
|
|
258 |
"rec_eval (constn n) xs = n"
|
|
259 |
by (induct n) (simp_all)
|
|
260 |
|
|
261 |
lemma swap_lemma [simp]:
|
|
262 |
"rec_eval (rec_swap f) [x, y] = rec_eval f [y, x]"
|
|
263 |
by (simp add: rec_swap_def)
|
|
264 |
|
|
265 |
lemma add_lemma [simp]:
|
|
266 |
"rec_eval rec_add [x, y] = x + y"
|
|
267 |
by (induct x) (simp_all add: rec_add_def)
|
|
268 |
|
|
269 |
lemma mult_lemma [simp]:
|
|
270 |
"rec_eval rec_mult [x, y] = x * y"
|
|
271 |
by (induct x) (simp_all add: rec_mult_def)
|
|
272 |
|
|
273 |
lemma power_lemma [simp]:
|
|
274 |
"rec_eval rec_power [x, y] = x ^ y"
|
|
275 |
by (induct y) (simp_all add: rec_power_def)
|
|
276 |
|
|
277 |
lemma fact_aux_lemma [simp]:
|
|
278 |
"rec_eval rec_fact_aux [x, y] = fact x"
|
|
279 |
by (induct x) (simp_all add: rec_fact_aux_def)
|
|
280 |
|
|
281 |
lemma fact_lemma [simp]:
|
|
282 |
"rec_eval rec_fact [x] = fact x"
|
|
283 |
by (simp add: rec_fact_def)
|
|
284 |
|
|
285 |
lemma pred_lemma [simp]:
|
|
286 |
"rec_eval rec_pred [x] = x - 1"
|
|
287 |
by (induct x) (simp_all add: rec_pred_def)
|
|
288 |
|
|
289 |
lemma minus_lemma [simp]:
|
|
290 |
"rec_eval rec_minus [x, y] = x - y"
|
|
291 |
by (induct y) (simp_all add: rec_minus_def)
|
|
292 |
|
|
293 |
|
|
294 |
section {* Logical functions *}
|
|
295 |
|
|
296 |
text {*
|
|
297 |
The @{text "sign"} function returns 1 when the input argument
|
|
298 |
is greater than @{text "0"}. *}
|
|
299 |
|
|
300 |
definition
|
|
301 |
"rec_sign = CN rec_minus [constn 1, CN rec_minus [constn 1, Id 1 0]]"
|
|
302 |
|
|
303 |
definition
|
|
304 |
"rec_not = CN rec_minus [constn 1, Id 1 0]"
|
|
305 |
|
|
306 |
text {*
|
|
307 |
@{text "rec_eq"} compares two arguments: returns @{text "1"}
|
|
308 |
if they are equal; @{text "0"} otherwise. *}
|
|
309 |
definition
|
|
310 |
"rec_eq = CN rec_minus [CN (constn 1) [Id 2 0], CN rec_add [rec_minus, rec_swap rec_minus]]"
|
|
311 |
|
|
312 |
definition
|
|
313 |
"rec_noteq = CN rec_not [rec_eq]"
|
|
314 |
|
|
315 |
definition
|
|
316 |
"rec_conj = CN rec_sign [rec_mult]"
|
|
317 |
|
|
318 |
definition
|
|
319 |
"rec_disj = CN rec_sign [rec_add]"
|
|
320 |
|
|
321 |
definition
|
|
322 |
"rec_imp = CN rec_disj [CN rec_not [Id 2 0], Id 2 1]"
|
|
323 |
|
|
324 |
text {* @{term "rec_ifz [z, x, y]"} returns x if z is zero,
|
|
325 |
y otherwise; @{term "rec_if [z, x, y]"} returns x if z is *not*
|
|
326 |
zero, y otherwise *}
|
|
327 |
|
|
328 |
definition
|
|
329 |
"rec_ifz = PR (Id 2 0) (Id 4 3)"
|
|
330 |
|
|
331 |
definition
|
|
332 |
"rec_if = CN rec_ifz [CN rec_not [Id 3 0], Id 3 1, Id 3 2]"
|
|
333 |
|
|
334 |
|
|
335 |
lemma sign_lemma [simp]:
|
|
336 |
"rec_eval rec_sign [x] = (if x = 0 then 0 else 1)"
|
|
337 |
by (simp add: rec_sign_def)
|
|
338 |
|
|
339 |
lemma not_lemma [simp]:
|
|
340 |
"rec_eval rec_not [x] = (if x = 0 then 1 else 0)"
|
|
341 |
by (simp add: rec_not_def)
|
|
342 |
|
|
343 |
lemma eq_lemma [simp]:
|
|
344 |
"rec_eval rec_eq [x, y] = (if x = y then 1 else 0)"
|
|
345 |
by (simp add: rec_eq_def)
|
|
346 |
|
|
347 |
lemma noteq_lemma [simp]:
|
|
348 |
"rec_eval rec_noteq [x, y] = (if x \<noteq> y then 1 else 0)"
|
|
349 |
by (simp add: rec_noteq_def)
|
|
350 |
|
|
351 |
lemma conj_lemma [simp]:
|
|
352 |
"rec_eval rec_conj [x, y] = (if x = 0 \<or> y = 0 then 0 else 1)"
|
|
353 |
by (simp add: rec_conj_def)
|
|
354 |
|
|
355 |
lemma disj_lemma [simp]:
|
|
356 |
"rec_eval rec_disj [x, y] = (if x = 0 \<and> y = 0 then 0 else 1)"
|
|
357 |
by (simp add: rec_disj_def)
|
|
358 |
|
|
359 |
lemma imp_lemma [simp]:
|
|
360 |
"rec_eval rec_imp [x, y] = (if 0 < x \<and> y = 0 then 0 else 1)"
|
|
361 |
by (simp add: rec_imp_def)
|
|
362 |
|
|
363 |
lemma ifz_lemma [simp]:
|
|
364 |
"rec_eval rec_ifz [z, x, y] = (if z = 0 then x else y)"
|
|
365 |
by (case_tac z) (simp_all add: rec_ifz_def)
|
|
366 |
|
|
367 |
lemma if_lemma [simp]:
|
|
368 |
"rec_eval rec_if [z, x, y] = (if 0 < z then x else y)"
|
|
369 |
by (simp add: rec_if_def)
|
|
370 |
|
|
371 |
section {* Less and Le Relations *}
|
|
372 |
|
|
373 |
text {*
|
|
374 |
@{text "rec_less"} compares two arguments and returns @{text "1"} if
|
|
375 |
the first is less than the second; otherwise returns @{text "0"}. *}
|
|
376 |
|
|
377 |
definition
|
|
378 |
"rec_less = CN rec_sign [rec_swap rec_minus]"
|
|
379 |
|
|
380 |
definition
|
|
381 |
"rec_le = CN rec_disj [rec_less, rec_eq]"
|
|
382 |
|
|
383 |
lemma less_lemma [simp]:
|
|
384 |
"rec_eval rec_less [x, y] = (if x < y then 1 else 0)"
|
|
385 |
by (simp add: rec_less_def)
|
|
386 |
|
|
387 |
lemma le_lemma [simp]:
|
|
388 |
"rec_eval rec_le [x, y] = (if (x \<le> y) then 1 else 0)"
|
|
389 |
by(simp add: rec_le_def)
|
|
390 |
|
|
391 |
|
|
392 |
section {* Summation and Product Functions *}
|
|
393 |
|
|
394 |
definition
|
|
395 |
"rec_sigma1 f = PR (CN f [CN Z [Id 1 0], Id 1 0])
|
|
396 |
(CN rec_add [Id 3 1, CN f [CN S [Id 3 0], Id 3 2]])"
|
|
397 |
|
|
398 |
definition
|
|
399 |
"rec_sigma2 f = PR (CN f [CN Z [Id 2 0], Id 2 0, Id 2 1])
|
|
400 |
(CN rec_add [Id 4 1, CN f [CN S [Id 4 0], Id 4 2, Id 4 3]])"
|
|
401 |
|
|
402 |
definition
|
|
403 |
"rec_accum1 f = PR (CN f [CN Z [Id 1 0], Id 1 0])
|
|
404 |
(CN rec_mult [Id 3 1, CN f [CN S [Id 3 0], Id 3 2]])"
|
|
405 |
|
|
406 |
definition
|
|
407 |
"rec_accum2 f = PR (CN f [CN Z [Id 2 0], Id 2 0, Id 2 1])
|
|
408 |
(CN rec_mult [Id 4 1, CN f [CN S [Id 4 0], Id 4 2, Id 4 3]])"
|
|
409 |
|
|
410 |
definition
|
|
411 |
"rec_accum3 f = PR (CN f [CN Z [Id 3 0], Id 3 0, Id 3 1, Id 3 2])
|
|
412 |
(CN rec_mult [Id 5 1, CN f [CN S [Id 5 0], Id 5 2, Id 5 3, Id 5 4]])"
|
|
413 |
|
|
414 |
|
|
415 |
lemma sigma1_lemma [simp]:
|
|
416 |
shows "rec_eval (rec_sigma1 f) [x, y] = (\<Sum> z \<le> x. rec_eval f [z, y])"
|
|
417 |
by (induct x) (simp_all add: rec_sigma1_def)
|
|
418 |
|
|
419 |
lemma sigma2_lemma [simp]:
|
|
420 |
shows "rec_eval (rec_sigma2 f) [x, y1, y2] = (\<Sum> z \<le> x. rec_eval f [z, y1, y2])"
|
|
421 |
by (induct x) (simp_all add: rec_sigma2_def)
|
|
422 |
|
|
423 |
lemma accum1_lemma [simp]:
|
|
424 |
shows "rec_eval (rec_accum1 f) [x, y] = (\<Prod> z \<le> x. rec_eval f [z, y])"
|
|
425 |
by (induct x) (simp_all add: rec_accum1_def)
|
|
426 |
|
|
427 |
lemma accum2_lemma [simp]:
|
|
428 |
shows "rec_eval (rec_accum2 f) [x, y1, y2] = (\<Prod> z \<le> x. rec_eval f [z, y1, y2])"
|
|
429 |
by (induct x) (simp_all add: rec_accum2_def)
|
|
430 |
|
|
431 |
lemma accum3_lemma [simp]:
|
|
432 |
shows "rec_eval (rec_accum3 f) [x, y1, y2, y3] = (\<Prod> z \<le> x. (rec_eval f) [z, y1, y2, y3])"
|
|
433 |
by (induct x) (simp_all add: rec_accum3_def)
|
|
434 |
|
|
435 |
|
|
436 |
section {* Bounded Quantifiers *}
|
|
437 |
|
|
438 |
definition
|
|
439 |
"rec_all1 f = CN rec_sign [rec_accum1 f]"
|
|
440 |
|
|
441 |
definition
|
|
442 |
"rec_all2 f = CN rec_sign [rec_accum2 f]"
|
|
443 |
|
|
444 |
definition
|
|
445 |
"rec_all3 f = CN rec_sign [rec_accum3 f]"
|
|
446 |
|
|
447 |
definition
|
|
448 |
"rec_all1_less f = (let cond1 = CN rec_eq [Id 3 0, Id 3 1] in
|
|
449 |
let cond2 = CN f [Id 3 0, Id 3 2]
|
|
450 |
in CN (rec_all2 (CN rec_disj [cond1, cond2])) [Id 2 0, Id 2 0, Id 2 1])"
|
|
451 |
|
|
452 |
definition
|
|
453 |
"rec_all2_less f = (let cond1 = CN rec_eq [Id 4 0, Id 4 1] in
|
|
454 |
let cond2 = CN f [Id 4 0, Id 4 2, Id 4 3] in
|
|
455 |
CN (rec_all3 (CN rec_disj [cond1, cond2])) [Id 3 0, Id 3 0, Id 3 1, Id 3 2])"
|
|
456 |
|
|
457 |
definition
|
|
458 |
"rec_ex1 f = CN rec_sign [rec_sigma1 f]"
|
|
459 |
|
|
460 |
definition
|
|
461 |
"rec_ex2 f = CN rec_sign [rec_sigma2 f]"
|
|
462 |
|
|
463 |
|
|
464 |
lemma ex1_lemma [simp]:
|
|
465 |
"rec_eval (rec_ex1 f) [x, y] = (if (\<exists>z \<le> x. 0 < rec_eval f [z, y]) then 1 else 0)"
|
|
466 |
by (simp add: rec_ex1_def)
|
|
467 |
|
|
468 |
lemma ex2_lemma [simp]:
|
|
469 |
"rec_eval (rec_ex2 f) [x, y1, y2] = (if (\<exists>z \<le> x. 0 < rec_eval f [z, y1, y2]) then 1 else 0)"
|
|
470 |
by (simp add: rec_ex2_def)
|
|
471 |
|
|
472 |
lemma all1_lemma [simp]:
|
|
473 |
"rec_eval (rec_all1 f) [x, y] = (if (\<forall>z \<le> x. 0 < rec_eval f [z, y]) then 1 else 0)"
|
|
474 |
by (simp add: rec_all1_def)
|
|
475 |
|
|
476 |
lemma all2_lemma [simp]:
|
|
477 |
"rec_eval (rec_all2 f) [x, y1, y2] = (if (\<forall>z \<le> x. 0 < rec_eval f [z, y1, y2]) then 1 else 0)"
|
|
478 |
by (simp add: rec_all2_def)
|
|
479 |
|
|
480 |
lemma all3_lemma [simp]:
|
|
481 |
"rec_eval (rec_all3 f) [x, y1, y2, y3] = (if (\<forall>z \<le> x. 0 < rec_eval f [z, y1, y2, y3]) then 1 else 0)"
|
|
482 |
by (simp add: rec_all3_def)
|
|
483 |
|
|
484 |
lemma all1_less_lemma [simp]:
|
|
485 |
"rec_eval (rec_all1_less f) [x, y] = (if (\<forall>z < x. 0 < rec_eval f [z, y]) then 1 else 0)"
|
|
486 |
apply(auto simp add: Let_def rec_all1_less_def)
|
|
487 |
apply (metis nat_less_le)+
|
|
488 |
done
|
|
489 |
|
|
490 |
lemma all2_less_lemma [simp]:
|
|
491 |
"rec_eval (rec_all2_less f) [x, y1, y2] = (if (\<forall>z < x. 0 < rec_eval f [z, y1, y2]) then 1 else 0)"
|
|
492 |
apply(auto simp add: Let_def rec_all2_less_def)
|
|
493 |
apply(metis nat_less_le)+
|
|
494 |
done
|
|
495 |
|
|
496 |
section {* Quotients *}
|
|
497 |
|
|
498 |
definition
|
|
499 |
"rec_quo = (let lhs = CN S [Id 3 0] in
|
|
500 |
let rhs = CN rec_mult [Id 3 2, CN S [Id 3 1]] in
|
|
501 |
let cond = CN rec_eq [lhs, rhs] in
|
|
502 |
let if_stmt = CN rec_if [cond, CN S [Id 3 1], Id 3 1]
|
|
503 |
in PR Z if_stmt)"
|
|
504 |
|
|
505 |
fun Quo where
|
|
506 |
"Quo x 0 = 0"
|
|
507 |
| "Quo x (Suc y) = (if (Suc y = x * (Suc (Quo x y))) then Suc (Quo x y) else Quo x y)"
|
|
508 |
|
|
509 |
lemma Quo0:
|
|
510 |
shows "Quo 0 y = 0"
|
|
511 |
by (induct y) (auto)
|
|
512 |
|
|
513 |
lemma Quo1:
|
|
514 |
"x * (Quo x y) \<le> y"
|
|
515 |
by (induct y) (simp_all)
|
|
516 |
|
|
517 |
lemma Quo2:
|
|
518 |
"b * (Quo b a) + a mod b = a"
|
|
519 |
by (induct a) (auto simp add: mod_Suc)
|
|
520 |
|
|
521 |
lemma Quo3:
|
|
522 |
"n * (Quo n m) = m - m mod n"
|
|
523 |
using Quo2[of n m] by (auto)
|
|
524 |
|
|
525 |
lemma Quo4:
|
|
526 |
assumes h: "0 < x"
|
|
527 |
shows "y < x + x * Quo x y"
|
|
528 |
proof -
|
|
529 |
have "x - (y mod x) > 0" using mod_less_divisor assms by auto
|
|
530 |
then have "y < y + (x - (y mod x))" by simp
|
|
531 |
then have "y < x + (y - (y mod x))" by simp
|
|
532 |
then show "y < x + x * (Quo x y)" by (simp add: Quo3)
|
|
533 |
qed
|
|
534 |
|
|
535 |
lemma Quo_div:
|
|
536 |
shows "Quo x y = y div x"
|
|
537 |
apply(case_tac "x = 0")
|
|
538 |
apply(simp add: Quo0)
|
|
539 |
apply(subst split_div_lemma[symmetric])
|
|
540 |
apply(auto intro: Quo1 Quo4)
|
|
541 |
done
|
|
542 |
|
|
543 |
lemma Quo_rec_quo:
|
|
544 |
shows "rec_eval rec_quo [y, x] = Quo x y"
|
|
545 |
by (induct y) (simp_all add: rec_quo_def)
|
|
546 |
|
|
547 |
lemma quo_lemma [simp]:
|
|
548 |
shows "rec_eval rec_quo [y, x] = y div x"
|
|
549 |
by (simp add: Quo_div Quo_rec_quo)
|
|
550 |
|
|
551 |
|
|
552 |
section {* Iteration *}
|
|
553 |
|
|
554 |
definition
|
|
555 |
"rec_iter f = PR (Id 1 0) (CN f [Id 3 1])"
|
|
556 |
|
|
557 |
fun Iter where
|
|
558 |
"Iter f 0 = id"
|
|
559 |
| "Iter f (Suc n) = f \<circ> (Iter f n)"
|
|
560 |
|
|
561 |
lemma Iter_comm:
|
|
562 |
"(Iter f n) (f x) = f ((Iter f n) x)"
|
|
563 |
by (induct n) (simp_all)
|
|
564 |
|
|
565 |
lemma iter_lemma [simp]:
|
|
566 |
"rec_eval (rec_iter f) [n, x] = Iter (\<lambda>x. rec_eval f [x]) n x"
|
|
567 |
by (induct n) (simp_all add: rec_iter_def)
|
|
568 |
|
|
569 |
|
|
570 |
section {* Bounded Maximisation *}
|
|
571 |
|
|
572 |
|
|
573 |
fun BMax_rec where
|
|
574 |
"BMax_rec RR 0 = 0"
|
|
575 |
| "BMax_rec RR (Suc n) = (if RR (Suc n) then (Suc n) else BMax_rec RR n)"
|
|
576 |
|
|
577 |
definition
|
|
578 |
BMax_set :: "(nat \<Rightarrow> bool) \<Rightarrow> nat \<Rightarrow> nat"
|
|
579 |
where
|
|
580 |
"BMax_set RR x = Max ({z. z \<le> x \<and> RR z} \<union> {0})"
|
|
581 |
|
|
582 |
lemma BMax_rec_eq1:
|
|
583 |
"BMax_rec RR x = (GREATEST z. (RR z \<and> z \<le> x) \<or> z = 0)"
|
|
584 |
apply(induct x)
|
|
585 |
apply(auto intro: Greatest_equality Greatest_equality[symmetric])
|
|
586 |
apply(simp add: le_Suc_eq)
|
|
587 |
by metis
|
|
588 |
|
|
589 |
lemma BMax_rec_eq2:
|
|
590 |
"BMax_rec RR x = Max ({z. z \<le> x \<and> RR z} \<union> {0})"
|
|
591 |
apply(induct x)
|
|
592 |
apply(auto intro: Max_eqI Max_eqI[symmetric])
|
|
593 |
apply(simp add: le_Suc_eq)
|
|
594 |
by metis
|
|
595 |
|
|
596 |
lemma BMax_rec_eq3:
|
|
597 |
"BMax_rec RR x = Max (Set.filter (\<lambda>z. RR z) {..x} \<union> {0})"
|
|
598 |
by (simp add: BMax_rec_eq2 Set.filter_def)
|
|
599 |
|
|
600 |
definition
|
|
601 |
"rec_max1 f = PR Z (CN rec_ifz [CN f [CN S [Id 3 0], Id 3 2], CN S [Id 3 0], Id 3 1])"
|
|
602 |
|
|
603 |
lemma max1_lemma [simp]:
|
|
604 |
"rec_eval (rec_max1 f) [x, y] = BMax_rec (\<lambda>u. rec_eval f [u, y] = 0) x"
|
|
605 |
by (induct x) (simp_all add: rec_max1_def)
|
|
606 |
|
|
607 |
definition
|
|
608 |
"rec_max2 f = PR Z (CN rec_ifz [CN f [CN S [Id 4 0], Id 4 2, Id 4 3], CN S [Id 4 0], Id 4 1])"
|
|
609 |
|
|
610 |
lemma max2_lemma [simp]:
|
|
611 |
"rec_eval (rec_max2 f) [x, y1, y2] = BMax_rec (\<lambda>u. rec_eval f [u, y1, y2] = 0) x"
|
|
612 |
by (induct x) (simp_all add: rec_max2_def)
|
|
613 |
|
|
614 |
|
|
615 |
section {* Encodings using Cantor's pairing function *}
|
|
616 |
|
|
617 |
text {*
|
|
618 |
We use Cantor's pairing function from Nat_Bijection.
|
|
619 |
However, we need to prove that the formulation of the
|
|
620 |
decoding function there is recursive. For this we first
|
|
621 |
prove that we can extract the maximal triangle number
|
|
622 |
using @{term prod_decode}.
|
|
623 |
*}
|
|
624 |
|
|
625 |
abbreviation Max_triangle_aux where
|
|
626 |
"Max_triangle_aux k z \<equiv> fst (prod_decode_aux k z) + snd (prod_decode_aux k z)"
|
|
627 |
|
|
628 |
abbreviation Max_triangle where
|
|
629 |
"Max_triangle z \<equiv> Max_triangle_aux 0 z"
|
|
630 |
|
|
631 |
abbreviation
|
|
632 |
"pdec1 z \<equiv> fst (prod_decode z)"
|
|
633 |
|
|
634 |
abbreviation
|
|
635 |
"pdec2 z \<equiv> snd (prod_decode z)"
|
|
636 |
|
|
637 |
abbreviation
|
|
638 |
"penc m n \<equiv> prod_encode (m, n)"
|
|
639 |
|
|
640 |
lemma fst_prod_decode:
|
|
641 |
"pdec1 z = z - triangle (Max_triangle z)"
|
|
642 |
by (subst (3) prod_decode_inverse[symmetric])
|
|
643 |
(simp add: prod_encode_def prod_decode_def split: prod.split)
|
|
644 |
|
|
645 |
lemma snd_prod_decode:
|
|
646 |
"pdec2 z = Max_triangle z - pdec1 z"
|
|
647 |
by (simp only: prod_decode_def)
|
|
648 |
|
|
649 |
lemma le_triangle:
|
|
650 |
"m \<le> triangle (n + m)"
|
|
651 |
by (induct_tac m) (simp_all)
|
|
652 |
|
|
653 |
lemma Max_triangle_triangle_le:
|
|
654 |
"triangle (Max_triangle z) \<le> z"
|
|
655 |
by (subst (9) prod_decode_inverse[symmetric])
|
|
656 |
(simp add: prod_decode_def prod_encode_def split: prod.split)
|
|
657 |
|
|
658 |
lemma Max_triangle_le:
|
|
659 |
"Max_triangle z \<le> z"
|
|
660 |
proof -
|
|
661 |
have "Max_triangle z \<le> triangle (Max_triangle z)"
|
|
662 |
using le_triangle[of _ 0, simplified] by simp
|
|
663 |
also have "... \<le> z" by (rule Max_triangle_triangle_le)
|
|
664 |
finally show "Max_triangle z \<le> z" .
|
|
665 |
qed
|
|
666 |
|
|
667 |
lemma w_aux:
|
|
668 |
"Max_triangle (triangle k + m) = Max_triangle_aux k m"
|
|
669 |
by (simp add: prod_decode_def[symmetric] prod_decode_triangle_add)
|
|
670 |
|
|
671 |
lemma y_aux: "y \<le> Max_triangle_aux y k"
|
|
672 |
apply(induct k arbitrary: y rule: nat_less_induct)
|
|
673 |
apply(subst (1 2) prod_decode_aux.simps)
|
|
674 |
apply(simp)
|
|
675 |
apply(rule impI)
|
|
676 |
apply(drule_tac x="n - Suc y" in spec)
|
|
677 |
apply(drule mp)
|
|
678 |
apply(auto)[1]
|
|
679 |
apply(drule_tac x="Suc y" in spec)
|
|
680 |
apply(erule Suc_leD)
|
|
681 |
done
|
|
682 |
|
|
683 |
lemma Max_triangle_greatest:
|
|
684 |
"Max_triangle z = (GREATEST k. (triangle k \<le> z \<and> k \<le> z) \<or> k = 0)"
|
|
685 |
apply(rule Greatest_equality[symmetric])
|
|
686 |
apply(rule disjI1)
|
|
687 |
apply(rule conjI)
|
|
688 |
apply(rule Max_triangle_triangle_le)
|
|
689 |
apply(rule Max_triangle_le)
|
|
690 |
apply(erule disjE)
|
|
691 |
apply(erule conjE)
|
|
692 |
apply(subst (asm) (1) le_iff_add)
|
|
693 |
apply(erule exE)
|
|
694 |
apply(clarify)
|
|
695 |
apply(simp only: w_aux)
|
|
696 |
apply(rule y_aux)
|
|
697 |
apply(simp)
|
|
698 |
done
|
|
699 |
|
|
700 |
|
|
701 |
definition
|
|
702 |
"rec_triangle = CN rec_quo [CN rec_mult [Id 1 0, S], constn 2]"
|
|
703 |
|
|
704 |
definition
|
|
705 |
"rec_max_triangle =
|
|
706 |
(let cond = CN rec_not [CN rec_le [CN rec_triangle [Id 2 0], Id 2 1]] in
|
|
707 |
CN (rec_max1 cond) [Id 1 0, Id 1 0])"
|
|
708 |
|
|
709 |
|
|
710 |
lemma triangle_lemma [simp]:
|
|
711 |
"rec_eval rec_triangle [x] = triangle x"
|
|
712 |
by (simp add: rec_triangle_def triangle_def)
|
|
713 |
|
|
714 |
lemma max_triangle_lemma [simp]:
|
|
715 |
"rec_eval rec_max_triangle [x] = Max_triangle x"
|
|
716 |
by (simp add: Max_triangle_greatest rec_max_triangle_def Let_def BMax_rec_eq1)
|
|
717 |
|
|
718 |
|
|
719 |
text {* Encodings for Products *}
|
|
720 |
|
|
721 |
definition
|
|
722 |
"rec_penc = CN rec_add [CN rec_triangle [CN rec_add [Id 2 0, Id 2 1]], Id 2 0]"
|
|
723 |
|
|
724 |
definition
|
|
725 |
"rec_pdec1 = CN rec_minus [Id 1 0, CN rec_triangle [CN rec_max_triangle [Id 1 0]]]"
|
|
726 |
|
|
727 |
definition
|
|
728 |
"rec_pdec2 = CN rec_minus [CN rec_max_triangle [Id 1 0], CN rec_pdec1 [Id 1 0]]"
|
|
729 |
|
|
730 |
lemma pdec1_lemma [simp]:
|
|
731 |
"rec_eval rec_pdec1 [z] = pdec1 z"
|
|
732 |
by (simp add: rec_pdec1_def fst_prod_decode)
|
|
733 |
|
|
734 |
lemma pdec2_lemma [simp]:
|
|
735 |
"rec_eval rec_pdec2 [z] = pdec2 z"
|
|
736 |
by (simp add: rec_pdec2_def snd_prod_decode)
|
|
737 |
|
|
738 |
lemma penc_lemma [simp]:
|
|
739 |
"rec_eval rec_penc [m, n] = penc m n"
|
|
740 |
by (simp add: rec_penc_def prod_encode_def)
|
|
741 |
|
|
742 |
|
|
743 |
text {* Encodings of Lists *}
|
|
744 |
|
|
745 |
fun
|
|
746 |
lenc :: "nat list \<Rightarrow> nat"
|
|
747 |
where
|
|
748 |
"lenc [] = 0"
|
|
749 |
| "lenc (x # xs) = penc (Suc x) (lenc xs)"
|
|
750 |
|
|
751 |
fun
|
|
752 |
ldec :: "nat \<Rightarrow> nat \<Rightarrow> nat"
|
|
753 |
where
|
|
754 |
"ldec z 0 = (pdec1 z) - 1"
|
|
755 |
| "ldec z (Suc n) = ldec (pdec2 z) n"
|
|
756 |
|
|
757 |
lemma pdec_zero_simps [simp]:
|
|
758 |
"pdec1 0 = 0"
|
|
759 |
"pdec2 0 = 0"
|
|
760 |
by (simp_all add: prod_decode_def prod_decode_aux.simps)
|
|
761 |
|
|
762 |
lemma ldec_zero:
|
|
763 |
"ldec 0 n = 0"
|
|
764 |
by (induct n) (simp_all add: prod_decode_def prod_decode_aux.simps)
|
|
765 |
|
|
766 |
lemma list_encode_inverse:
|
|
767 |
"ldec (lenc xs) n = (if n < length xs then xs ! n else 0)"
|
|
768 |
by (induct xs arbitrary: n rule: lenc.induct)
|
|
769 |
(auto simp add: ldec_zero nth_Cons split: nat.splits)
|
|
770 |
|
|
771 |
lemma lenc_length_le:
|
|
772 |
"length xs \<le> lenc xs"
|
|
773 |
by (induct xs) (simp_all add: prod_encode_def)
|
|
774 |
|
|
775 |
|
|
776 |
text {* Membership for the List Encoding *}
|
|
777 |
|
|
778 |
fun within :: "nat \<Rightarrow> nat \<Rightarrow> bool" where
|
|
779 |
"within z 0 = (0 < z)"
|
|
780 |
| "within z (Suc n) = within (pdec2 z) n"
|
|
781 |
|
|
782 |
definition enclen :: "nat \<Rightarrow> nat" where
|
|
783 |
"enclen z = BMax_rec (\<lambda>x. within z (x - 1)) z"
|
|
784 |
|
|
785 |
lemma within_False [simp]:
|
|
786 |
"within 0 n = False"
|
|
787 |
by (induct n) (simp_all)
|
|
788 |
|
|
789 |
lemma within_length [simp]:
|
|
790 |
"within (lenc xs) s = (s < length xs)"
|
|
791 |
apply(induct s arbitrary: xs)
|
|
792 |
apply(case_tac xs)
|
|
793 |
apply(simp_all add: prod_encode_def)
|
|
794 |
apply(case_tac xs)
|
|
795 |
apply(simp_all)
|
|
796 |
done
|
|
797 |
|
|
798 |
text {* Length of Encoded Lists *}
|
|
799 |
|
|
800 |
lemma enclen_length [simp]:
|
|
801 |
"enclen (lenc xs) = length xs"
|
|
802 |
unfolding enclen_def
|
|
803 |
apply(simp add: BMax_rec_eq1)
|
|
804 |
apply(rule Greatest_equality)
|
|
805 |
apply(auto simp add: lenc_length_le)
|
|
806 |
done
|
|
807 |
|
|
808 |
lemma enclen_penc [simp]:
|
|
809 |
"enclen (penc (Suc x) (lenc xs)) = Suc (enclen (lenc xs))"
|
|
810 |
by (simp only: lenc.simps[symmetric] enclen_length) (simp)
|
|
811 |
|
|
812 |
lemma enclen_zero [simp]:
|
|
813 |
"enclen 0 = 0"
|
|
814 |
by (simp add: enclen_def)
|
|
815 |
|
|
816 |
|
|
817 |
text {* Recursive Definitions for List Encodings *}
|
|
818 |
|
|
819 |
fun
|
|
820 |
rec_lenc :: "recf list \<Rightarrow> recf"
|
|
821 |
where
|
|
822 |
"rec_lenc [] = Z"
|
|
823 |
| "rec_lenc (f # fs) = CN rec_penc [CN S [f], rec_lenc fs]"
|
|
824 |
|
|
825 |
definition
|
|
826 |
"rec_ldec = CN rec_pred [CN rec_pdec1 [rec_swap (rec_iter rec_pdec2)]]"
|
|
827 |
|
|
828 |
definition
|
|
829 |
"rec_within = CN rec_less [Z, rec_swap (rec_iter rec_pdec2)]"
|
|
830 |
|
|
831 |
definition
|
|
832 |
"rec_enclen = CN (rec_max1 (CN rec_not [CN rec_within [Id 2 1, CN rec_pred [Id 2 0]]])) [Id 1 0, Id 1 0]"
|
|
833 |
|
|
834 |
lemma ldec_iter:
|
|
835 |
"ldec z n = pdec1 (Iter pdec2 n z) - 1"
|
|
836 |
by (induct n arbitrary: z) (simp | subst Iter_comm)+
|
|
837 |
|
|
838 |
lemma within_iter:
|
|
839 |
"within z n = (0 < Iter pdec2 n z)"
|
|
840 |
by (induct n arbitrary: z) (simp | subst Iter_comm)+
|
|
841 |
|
|
842 |
lemma lenc_lemma [simp]:
|
|
843 |
"rec_eval (rec_lenc fs) xs = lenc (map (\<lambda>f. rec_eval f xs) fs)"
|
|
844 |
by (induct fs) (simp_all)
|
|
845 |
|
|
846 |
lemma ldec_lemma [simp]:
|
|
847 |
"rec_eval rec_ldec [z, n] = ldec z n"
|
|
848 |
by (simp add: ldec_iter rec_ldec_def)
|
|
849 |
|
|
850 |
lemma within_lemma [simp]:
|
|
851 |
"rec_eval rec_within [z, n] = (if within z n then 1 else 0)"
|
|
852 |
by (simp add: within_iter rec_within_def)
|
|
853 |
|
|
854 |
lemma enclen_lemma [simp]:
|
|
855 |
"rec_eval rec_enclen [z] = enclen z"
|
|
856 |
by (simp add: rec_enclen_def enclen_def)
|
|
857 |
|
|
858 |
section {* Compliation from Recs to Abacus *}
|
|
859 |
|
|
860 |
definition "ms a xs = fam_conj {0..<(length xs)} (\<lambda> i. mm (a+i) (xs!i))"
|
|
861 |
|
|
862 |
definition "za a = mm a 0"
|
|
863 |
|
|
864 |
definition "zs I = fam_conj I za"
|
|
865 |
|
|
866 |
consts mn_compute_g :: "(nat \<times> tpg) \<Rightarrow> tpg"
|
|
867 |
mn_save_arg :: "nat \<Rightarrow> tpg"
|
|
868 |
mn_restore_arg :: "nat \<Rightarrow> tpg"
|
|
869 |
mn_install_f_arg :: "nat \<Rightarrow> tpg"
|
|
870 |
|
|
871 |
consts rec_ci :: "recf \<Rightarrow> (tpg \<times> nat)"
|
|
872 |
|
|
873 |
lemma mn_ci:
|
|
874 |
"rec_ci (Cn n f gs) =
|
|
875 |
(let (cf, muf) = rec_ci f in
|
|
876 |
let cgs = map (fst o rec_ci) gs in
|
|
877 |
let mgs = map (snd o rec_ci) gs in
|
|
878 |
let mub = int (Max (set (muf#mgs))) in
|
|
879 |
let ps = map nat [mub+1..mub + int (length gs)] in
|
|
880 |
let qs = map nat [mub + int (length gs) + 1 .. mub + int (n + length gs)] in
|
|
881 |
let compute_gs = tpg_fold (map mn_compute_g (zip ps cgs)) in
|
|
882 |
let save_args = tpg_fold (map mn_save_arg qs) in
|
|
883 |
let restore_args = tpg_fold (map mn_restore_arg qs) in
|
|
884 |
let clear_all = (tpg_fold (map (clear o nat) [0..(int (length gs))])) in
|
|
885 |
let install_f_args = tpg_fold (map mn_install_f_arg ps) in
|
|
886 |
let cf = (compute_gs; save_args; clear_all; install_f_args; cf; restore_args) in
|
|
887 |
let mu = ((nat mub) + n + length gs) in
|
|
888 |
(cf, mu))"
|
|
889 |
sorry
|
|
890 |
|
|
891 |
lemma rec_ci_cnE:
|
|
892 |
assumes "P (rec_ci (Cn n f gs))"
|
|
893 |
obtains cf muf cgs mgs mub pss qs compute_gs
|
|
894 |
save_args restore_args clear_all install_f_args code mu
|
|
895 |
where "(cf, muf) = rec_ci f"
|
|
896 |
"cgs = map (fst o rec_ci) gs"
|
|
897 |
"mgs = map (snd o rec_ci) gs"
|
|
898 |
"mub = int (Max (set (muf#mgs)))"
|
|
899 |
"pss = map nat [mub+1..mub + int (length gs)]"
|
|
900 |
"qs = map nat [mub + int (length gs) + 1 .. mub + int (n + length gs)]"
|
|
901 |
"compute_gs = tpg_fold (map mn_compute_g (zip pss cgs))"
|
|
902 |
"save_args = tpg_fold (map mn_save_arg qs)"
|
|
903 |
"restore_args = tpg_fold (map mn_restore_arg qs)"
|
|
904 |
"clear_all = (tpg_fold (map (clear o nat) [0..(int (length gs))]))"
|
|
905 |
"install_f_args = tpg_fold (map mn_install_f_arg pss)"
|
|
906 |
"code = (compute_gs; save_args; clear_all; install_f_args; cf; restore_args)"
|
|
907 |
"mu = (nat mub) + n + length gs"
|
|
908 |
"P (code, mu)"
|
|
909 |
proof -
|
|
910 |
show ?thesis
|
|
911 |
apply (insert assms)
|
|
912 |
apply (unfold mn_ci)
|
|
913 |
apply (tactic {* let_elim_tac @{context} 1 *})
|
|
914 |
apply (insert that)
|
|
915 |
by metis
|
|
916 |
qed
|
|
917 |
|
|
918 |
theorem rec_ci_correct:
|
|
919 |
assumes "terminates rcf xs"
|
|
920 |
"rec_ci rcf = (c, mu)"
|
|
921 |
shows
|
|
922 |
"IA. \<lbrace> pc i \<and>* ms 0 xs \<and>* mm (length xs) 0 \<and>* zs {length xs<..(mu - length xs)}\<rbrace>
|
|
923 |
i:[c]:j
|
|
924 |
\<lbrace> pc j \<and>* ms 0 xs \<and>* mm (length xs) (rec_eval rcf xs) \<and>* zs {length xs<..(mu - length xs)}\<rbrace>"
|
|
925 |
using assms
|
|
926 |
proof(induct arbitrary:c mu)
|
|
927 |
case (termi_cn f xs gs n c mu)
|
|
928 |
hence [unfolded mn_ci]: "rec_ci (Cn n f gs) = (c, mu)" by simp
|
|
929 |
thus ?case
|
|
930 |
proof(let_elim)
|
|
931 |
case (1 cf muf cgs mgs mub ps qs compute_gs
|
|
932 |
save_args restore_args clear_all install_f_args code)
|
|
933 |
from 1(1) have "c = code" "mu = (nat mub + n + length gs)" by auto
|
|
934 |
show ?thesis
|
|
935 |
proof(unfold `c = code`)
|
|
936 |
oops
|
|
937 |
|
|
938 |
end
|
|
939 |
|