25
|
1 |
header {*
|
|
2 |
Separation logic for TM
|
|
3 |
*}
|
|
4 |
|
|
5 |
theory Hoare_tm_basis
|
|
6 |
imports Hoare_gen My_block Data_slot MLs Term_pat (* BaseSS *) Subgoal Sort_ops
|
|
7 |
Thm_inst
|
|
8 |
begin
|
|
9 |
|
|
10 |
section {* Aux lemmas on seperation algebra *}
|
|
11 |
|
|
12 |
lemma cond_eq: "((<b> \<and>* p) s) = (b \<and> (p s))"
|
|
13 |
proof
|
|
14 |
assume "(<b> \<and>* p) s"
|
|
15 |
from condD[OF this] show " b \<and> p s" .
|
|
16 |
next
|
|
17 |
assume "b \<and> p s"
|
|
18 |
hence b and "p s" by auto
|
|
19 |
from `b` have "(<b>) 0" by (auto simp:pasrt_def)
|
|
20 |
moreover have "s = 0 + s" by auto
|
|
21 |
moreover have "0 ## s" by auto
|
|
22 |
moreover note `p s`
|
|
23 |
ultimately show "(<b> \<and>* p) s" by (auto intro!:sep_conjI)
|
|
24 |
qed
|
|
25 |
|
|
26 |
lemma cond_eqI:
|
|
27 |
assumes h: "b \<Longrightarrow> r = s"
|
|
28 |
shows "(<b> ** r) = (<b> ** s)"
|
|
29 |
proof(cases b)
|
|
30 |
case True
|
|
31 |
from h[OF this] show ?thesis by simp
|
|
32 |
next
|
|
33 |
case False
|
|
34 |
thus ?thesis
|
|
35 |
by (unfold sep_conj_def set_ins_def pasrt_def, auto)
|
|
36 |
qed
|
|
37 |
|
|
38 |
lemma EXS_intro:
|
|
39 |
assumes h: "(P x) s"
|
|
40 |
shows "((EXS x. P(x))) s"
|
|
41 |
by (smt h pred_ex_def sep_conj_impl)
|
|
42 |
|
|
43 |
lemma EXS_elim:
|
|
44 |
assumes "(EXS x. P x) s"
|
|
45 |
obtains x where "P x s"
|
|
46 |
by (metis assms pred_ex_def)
|
|
47 |
|
|
48 |
lemma EXS_eq:
|
|
49 |
fixes x
|
|
50 |
assumes h: "Q (p x)"
|
|
51 |
and h1: "\<And> y s. \<lbrakk>p y s\<rbrakk> \<Longrightarrow> y = x"
|
|
52 |
shows "p x = (EXS x. p x)"
|
|
53 |
proof
|
|
54 |
fix s
|
|
55 |
show "p x s = (EXS x. p x) s"
|
|
56 |
proof
|
|
57 |
assume "p x s"
|
|
58 |
thus "(EXS x. p x) s" by (auto simp:pred_ex_def)
|
|
59 |
next
|
|
60 |
assume "(EXS x. p x) s"
|
|
61 |
thus "p x s"
|
|
62 |
proof(rule EXS_elim)
|
|
63 |
fix y
|
|
64 |
assume "p y s"
|
|
65 |
from this[unfolded h1[OF this]] show "p x s" .
|
|
66 |
qed
|
|
67 |
qed
|
|
68 |
qed
|
|
69 |
|
|
70 |
section {* The TM assembly language *}
|
|
71 |
|
|
72 |
subsection {* The TM assembly language *}
|
|
73 |
|
|
74 |
datatype taction = W0 | W1 | L | R
|
|
75 |
|
|
76 |
datatype tstate = St nat
|
|
77 |
|
|
78 |
fun nat_of :: "tstate \<Rightarrow> nat"
|
|
79 |
where "nat_of (St n) = n"
|
|
80 |
|
|
81 |
declare [[coercion_enabled]]
|
|
82 |
|
|
83 |
declare [[coercion "St :: nat \<Rightarrow> tstate"]]
|
|
84 |
|
|
85 |
type_synonym tm_inst = "(taction \<times> tstate) \<times> (taction \<times> tstate)"
|
|
86 |
|
|
87 |
datatype Block = Oc | Bk
|
|
88 |
|
|
89 |
datatype tpg =
|
|
90 |
TInstr tm_inst
|
|
91 |
| TLabel tstate
|
|
92 |
| TSeq tpg tpg
|
|
93 |
| TLocal "(tstate \<Rightarrow> tpg)"
|
|
94 |
|
|
95 |
notation TLocal (binder "TL " 10)
|
|
96 |
|
|
97 |
abbreviation tprog_instr :: "tm_inst \<Rightarrow> tpg" ("\<guillemotright> _" [61] 61)
|
|
98 |
where "\<guillemotright> i \<equiv> TInstr i"
|
|
99 |
|
|
100 |
abbreviation tprog_seq :: "tpg \<Rightarrow> tpg \<Rightarrow> tpg" (infixr ";" 52)
|
|
101 |
where "c1 ; c2 \<equiv> TSeq c1 c2"
|
|
102 |
|
|
103 |
subsection {* The notion of assembling *}
|
|
104 |
|
|
105 |
datatype tresource =
|
|
106 |
TM int Block
|
|
107 |
| TC nat tm_inst
|
|
108 |
| TAt nat
|
|
109 |
| TPos int
|
|
110 |
| TFaults nat
|
|
111 |
|
|
112 |
type_synonym tassert = "tresource set \<Rightarrow> bool"
|
|
113 |
|
|
114 |
definition "sg e = (\<lambda> s. s = e)"
|
|
115 |
|
|
116 |
primrec tassemble_to :: "tpg \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> tassert"
|
|
117 |
where
|
|
118 |
"tassemble_to (TInstr ai) i j = (sg ({TC i ai}) ** <(j = i + 1)>)" |
|
|
119 |
"tassemble_to (TSeq p1 p2) i j = (EXS j'. (tassemble_to p1 i j') ** (tassemble_to p2 j' j))" |
|
|
120 |
"tassemble_to (TLocal fp) i j = (EXS l. (tassemble_to (fp l) i j))" |
|
|
121 |
"tassemble_to (TLabel l) i j = <(i = j \<and> j = nat_of l)>"
|
|
122 |
|
|
123 |
declare tassemble_to.simps [simp del]
|
|
124 |
|
|
125 |
lemmas tasmp = tassemble_to.simps (2, 3, 4)
|
|
126 |
|
|
127 |
abbreviation tasmb_to :: "nat \<Rightarrow> tpg \<Rightarrow> nat \<Rightarrow> tassert" ("_ :[ _ ]: _" [60, 60, 60] 60)
|
|
128 |
where "i :[ tpg ]: j \<equiv> tassemble_to tpg i j"
|
|
129 |
|
|
130 |
section {* Automatic checking of assemblility *}
|
|
131 |
|
|
132 |
subsection {* Basic theories *}
|
|
133 |
|
|
134 |
text {* @{text cpg} is the type for skeleton assembly language. Every constructor
|
|
135 |
corresponds to one in the definition of @{text tpg} *}
|
|
136 |
|
|
137 |
datatype cpg =
|
|
138 |
CInstr tm_inst
|
|
139 |
| CLabel nat
|
|
140 |
| CSeq cpg cpg
|
|
141 |
| CLocal cpg
|
|
142 |
|
|
143 |
text {* Conversion from @{text cpg} to @{text tpg}*}
|
|
144 |
|
|
145 |
fun c2t :: "tstate list \<Rightarrow> cpg \<Rightarrow> tpg" where
|
|
146 |
"c2t env (CInstr ((act0, St st0), (act1, St st1))) =
|
|
147 |
TInstr ((act0, env!st0), (act1, env!st1))" |
|
|
148 |
"c2t env (CLabel l) = TLabel (env!l)" |
|
|
149 |
"c2t env (CSeq cpg1 cpg2) = TSeq (c2t env cpg1) (c2t env cpg2)" |
|
|
150 |
"c2t env (CLocal cpg) = TLocal (\<lambda> x. c2t (x#env) cpg)"
|
|
151 |
|
|
152 |
text {* Well formedness checking of @{text cpg} *}
|
|
153 |
|
|
154 |
datatype status = Free | Bound
|
|
155 |
|
|
156 |
text {* @{text wf_cpg_test} is the checking function *}
|
|
157 |
|
|
158 |
fun wf_cpg_test :: "status list \<Rightarrow> cpg \<Rightarrow> (bool \<times> status list)" where
|
|
159 |
"wf_cpg_test sts (CInstr ((a0, l0), (a1, l1))) = ((l0 < length sts \<and> l1 < length sts), sts)" |
|
|
160 |
"wf_cpg_test sts (CLabel l) = ((l < length sts) \<and> sts!l = Free, sts[l:=Bound])" |
|
|
161 |
"wf_cpg_test sts (CSeq c1 c2) = (let (b1, sts1) = wf_cpg_test sts c1;
|
|
162 |
(b2, sts2) = wf_cpg_test sts1 c2 in
|
|
163 |
(b1 \<and> b2, sts2))" |
|
|
164 |
"wf_cpg_test sts (CLocal body) = (let (b, sts') = (wf_cpg_test (Free#sts) body) in
|
|
165 |
(b, tl sts'))"
|
|
166 |
|
|
167 |
text {*
|
|
168 |
The meaning the following @{text "c2p"} has to be understood together with
|
|
169 |
the following lemma @{text "wf_cpg_test_correct"}. The intended use of @{text "c2p"}
|
|
170 |
is when the elements of @{text "sts"} are all @{text "Free"}, in which case,
|
|
171 |
the precondition on @{text "f"}, i.e.
|
|
172 |
@{text "\<forall> x. ((length x = length sts \<and>
|
|
173 |
(\<forall> k < length sts. sts!k = Bound \<longrightarrow> (x!k = f i k))"}
|
|
174 |
is trivially true.
|
|
175 |
*}
|
|
176 |
definition
|
|
177 |
"c2p sts i cpg j =
|
|
178 |
(\<exists> f. \<forall> x. ((length x = length sts \<and>
|
|
179 |
(\<forall> k < length sts. sts!k = Bound \<longrightarrow> (x!k = f i k)))
|
|
180 |
\<longrightarrow> (\<exists> s. (i:[(c2t x cpg)]:j) s)))"
|
|
181 |
|
|
182 |
instantiation status :: order
|
|
183 |
begin
|
|
184 |
definition less_eq_status_def: "((st1::status) \<le> st2) = (st1 = Free \<or> st2 = Bound)"
|
|
185 |
definition less_status_def: "((st1::status) < st2) = (st1 \<le> st2 \<and> st1 \<noteq> st2)"
|
|
186 |
instance
|
|
187 |
proof
|
|
188 |
fix x y
|
|
189 |
show "(x < (y::status)) = (x \<le> y \<and> \<not> y \<le> x)"
|
|
190 |
by (metis less_eq_status_def less_status_def status.distinct(1))
|
|
191 |
next
|
|
192 |
fix x show "x \<le> (x::status)"
|
|
193 |
by (metis (full_types) less_eq_status_def status.exhaust)
|
|
194 |
next
|
|
195 |
fix x y z
|
|
196 |
assume "x \<le> y" "y \<le> (z::status)" show "x \<le> (z::status)"
|
|
197 |
by (metis `x \<le> y` `y \<le> z` less_eq_status_def status.distinct(1))
|
|
198 |
next
|
|
199 |
fix x y
|
|
200 |
assume "x \<le> y" "y \<le> (x::status)" show "x = y"
|
|
201 |
by (metis `x \<le> y` `y \<le> x` less_eq_status_def status.distinct(1))
|
|
202 |
qed
|
|
203 |
end
|
|
204 |
|
|
205 |
instantiation list :: (order)order
|
|
206 |
begin
|
|
207 |
definition "((sts::('a::order) list) \<le> sts') =
|
|
208 |
((length sts = length sts') \<and> (\<forall> i < length sts. sts!i \<le> sts'!i))"
|
|
209 |
definition "((sts::('a::order) list) < sts') = ((sts \<le> sts') \<and> sts \<noteq> sts')"
|
|
210 |
|
|
211 |
lemma anti_sym: assumes h: "x \<le> (y::'a list)" "y \<le> x"
|
|
212 |
shows "x = y"
|
|
213 |
proof -
|
|
214 |
from h have "length x = length y"
|
|
215 |
by (metis less_eq_list_def)
|
|
216 |
moreover from h have " (\<forall> i < length x. x!i = y!i)"
|
|
217 |
by (metis (full_types) antisym_conv less_eq_list_def)
|
|
218 |
ultimately show ?thesis
|
|
219 |
by (metis nth_equalityI)
|
|
220 |
qed
|
|
221 |
|
|
222 |
lemma refl: "x \<le> (x::('a::order) list)"
|
|
223 |
apply (unfold less_eq_list_def)
|
|
224 |
by (metis order_refl)
|
|
225 |
|
|
226 |
instance
|
|
227 |
proof
|
|
228 |
fix x y
|
|
229 |
show "((x::('a::order) list) < y) = (x \<le> y \<and> \<not> y \<le> x)"
|
|
230 |
proof
|
|
231 |
assume h: "x \<le> y \<and> \<not> y \<le> x"
|
|
232 |
have "x \<noteq> y"
|
|
233 |
proof
|
|
234 |
assume "x = y" with h have "\<not> (x \<le> x)" by simp
|
|
235 |
with refl show False by auto
|
|
236 |
qed
|
|
237 |
moreover from h have "x \<le> y" by blast
|
|
238 |
ultimately show "x < y" by (auto simp:less_list_def)
|
|
239 |
next
|
|
240 |
assume h: "x < y"
|
|
241 |
hence hh: "x \<le> y"
|
|
242 |
by (metis less_list_def)
|
|
243 |
moreover have "\<not> y \<le> x"
|
|
244 |
proof
|
|
245 |
assume "y \<le> x"
|
|
246 |
from anti_sym[OF hh this] have "x = y" .
|
|
247 |
with h show False
|
|
248 |
by (metis less_list_def)
|
|
249 |
qed
|
|
250 |
ultimately show "x \<le> y \<and> \<not> y \<le> x" by auto
|
|
251 |
qed
|
|
252 |
next
|
|
253 |
fix x from refl show "(x::'a list) \<le> x" .
|
|
254 |
next
|
|
255 |
fix x y assume "(x::'a list) \<le> y" "y \<le> x"
|
|
256 |
from anti_sym[OF this] show "x = y" .
|
|
257 |
next
|
|
258 |
fix x y z
|
|
259 |
assume h: "(x::'a list) \<le> y" "y \<le> z"
|
|
260 |
show "x \<le> z"
|
|
261 |
proof -
|
|
262 |
from h have "length x = length z" by (metis less_eq_list_def)
|
|
263 |
moreover from h have "\<forall> i < length x. x!i \<le> z!i"
|
|
264 |
by (metis less_eq_list_def order_trans)
|
|
265 |
ultimately show "x \<le> z"
|
|
266 |
by (metis less_eq_list_def)
|
|
267 |
qed
|
|
268 |
qed
|
|
269 |
end
|
|
270 |
|
|
271 |
lemma sts_bound_le: "sts \<le> sts[l := Bound]"
|
|
272 |
proof -
|
|
273 |
have "length sts = length (sts[l := Bound])"
|
|
274 |
by (metis length_list_update)
|
|
275 |
moreover have "\<forall> i < length sts. sts!i \<le> (sts[l:=Bound])!i"
|
|
276 |
proof -
|
|
277 |
{ fix i
|
|
278 |
assume "i < length sts"
|
|
279 |
have "sts ! i \<le> sts[l := Bound] ! i"
|
|
280 |
proof(cases "l < length sts")
|
|
281 |
case True
|
|
282 |
note le_l = this
|
|
283 |
show ?thesis
|
|
284 |
proof(cases "l = i")
|
|
285 |
case True with le_l
|
|
286 |
have "sts[l := Bound] ! i = Bound" by auto
|
|
287 |
thus ?thesis by (metis less_eq_status_def)
|
|
288 |
next
|
|
289 |
case False
|
|
290 |
with le_l have "sts[l := Bound] ! i = sts!i" by auto
|
|
291 |
thus ?thesis by auto
|
|
292 |
qed
|
|
293 |
next
|
|
294 |
case False
|
|
295 |
hence "sts[l := Bound] = sts" by auto
|
|
296 |
thus ?thesis by auto
|
|
297 |
qed
|
|
298 |
} thus ?thesis by auto
|
|
299 |
qed
|
|
300 |
ultimately show ?thesis by (metis less_eq_list_def)
|
|
301 |
qed
|
|
302 |
|
|
303 |
lemma sts_tl_le:
|
|
304 |
assumes "sts \<le> sts'"
|
|
305 |
shows "tl sts \<le> tl sts'"
|
|
306 |
proof -
|
|
307 |
from assms have "length (tl sts) = length (tl sts')"
|
|
308 |
by (metis (hide_lams, no_types) length_tl less_eq_list_def)
|
|
309 |
moreover from assms have "\<forall> i < length (tl sts). (tl sts)!i \<le> (tl sts')!i"
|
|
310 |
by (smt calculation length_tl less_eq_list_def nth_tl)
|
|
311 |
ultimately show ?thesis
|
|
312 |
by (metis less_eq_list_def)
|
|
313 |
qed
|
|
314 |
|
|
315 |
lemma wf_cpg_test_le:
|
|
316 |
assumes "wf_cpg_test sts cpg = (True, sts')"
|
|
317 |
shows "sts \<le> sts'" using assms
|
|
318 |
proof(induct cpg arbitrary:sts sts')
|
|
319 |
case (CInstr instr sts sts')
|
|
320 |
obtain a0 l0 a1 l1 where eq_instr: "instr = ((a0, St l0), (a1, St l1))"
|
|
321 |
by (metis surj_pair tstate.exhaust)
|
|
322 |
from CInstr[unfolded this]
|
|
323 |
show ?case by simp
|
|
324 |
next
|
|
325 |
case (CLabel l sts sts')
|
|
326 |
thus ?case by (auto simp:sts_bound_le)
|
|
327 |
next
|
|
328 |
case (CLocal body sts sts')
|
|
329 |
from this(2)
|
|
330 |
obtain sts1 where h: "wf_cpg_test (Free # sts) body = (True, sts1)" "sts' = tl sts1"
|
|
331 |
by (auto split:prod.splits)
|
|
332 |
from CLocal(1)[OF this(1)] have "Free # sts \<le> sts1" .
|
|
333 |
from sts_tl_le[OF this]
|
|
334 |
have "sts \<le> tl sts1" by simp
|
|
335 |
from this[folded h(2)]
|
|
336 |
show ?case .
|
|
337 |
next
|
|
338 |
case (CSeq cpg1 cpg2 sts sts')
|
|
339 |
from this(3)
|
|
340 |
show ?case
|
|
341 |
by (auto split:prod.splits dest!:CSeq(1, 2))
|
|
342 |
qed
|
|
343 |
|
|
344 |
lemma c2p_assert:
|
|
345 |
assumes "(c2p [] i cpg j)"
|
|
346 |
shows "\<exists> s. (i :[(c2t [] cpg)]: j) s"
|
|
347 |
proof -
|
|
348 |
from assms obtain f where
|
|
349 |
h [rule_format]:
|
|
350 |
"\<forall> x. length x = length [] \<and> (\<forall>k<length []. [] ! k = Bound \<longrightarrow> (x ! k = f i k)) \<longrightarrow>
|
|
351 |
(\<exists> s. (i :[ c2t [] cpg ]: j) s)"
|
|
352 |
by (unfold c2p_def, auto)
|
|
353 |
have "length [] = length [] \<and> (\<forall>k<length []. [] ! k = Bound \<longrightarrow> ([] ! k = f i k))"
|
|
354 |
by auto
|
|
355 |
from h[OF this] obtain s where "(i :[ c2t [] cpg ]: j) s" by blast
|
|
356 |
thus ?thesis by auto
|
|
357 |
qed
|
|
358 |
|
|
359 |
definition "sts_disj sts sts' = ((length sts = length sts') \<and>
|
|
360 |
(\<forall> i < length sts. \<not>(sts!i = Bound \<and> sts'!i = Bound)))"
|
|
361 |
|
|
362 |
instantiation list :: (plus)plus
|
|
363 |
begin
|
|
364 |
fun plus_list :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" where
|
|
365 |
"plus_list [] ys = []" |
|
|
366 |
"plus_list (x#xs) [] = []" |
|
|
367 |
"plus_list (x#xs) (y#ys) = ((x + y)#plus_list xs ys)"
|
|
368 |
instance ..
|
|
369 |
end
|
|
370 |
|
|
371 |
instantiation list :: (minus)minus
|
|
372 |
begin
|
|
373 |
fun minus_list :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" where
|
|
374 |
"minus_list [] ys = []" |
|
|
375 |
"minus_list (x#xs) [] = []" |
|
|
376 |
"minus_list (x#xs) (y#ys) = ((x - y)#minus_list xs ys)"
|
|
377 |
instance ..
|
|
378 |
end
|
|
379 |
|
|
380 |
instantiation status :: minus
|
|
381 |
begin
|
|
382 |
fun minus_status :: "status \<Rightarrow> status \<Rightarrow> status" where
|
|
383 |
"minus_status Bound Bound = Free" |
|
|
384 |
"minus_status Bound Free = Bound" |
|
|
385 |
"minus_status Free x = Free "
|
|
386 |
instance ..
|
|
387 |
end
|
|
388 |
|
|
389 |
instantiation status :: plus
|
|
390 |
begin
|
|
391 |
fun plus_status :: "status \<Rightarrow> status \<Rightarrow> status" where
|
|
392 |
"plus_status Free x = x" |
|
|
393 |
"plus_status Bound x = Bound"
|
|
394 |
instance ..
|
|
395 |
end
|
|
396 |
|
|
397 |
lemma length_sts_plus:
|
|
398 |
assumes "length (sts1 :: status list) = length sts2"
|
|
399 |
shows "length (sts1 + sts2) = length sts1"
|
|
400 |
using assms
|
|
401 |
proof(induct sts1 arbitrary: sts2)
|
|
402 |
case Nil
|
|
403 |
thus ?case
|
|
404 |
by (metis plus_list.simps(1))
|
|
405 |
next
|
|
406 |
case (Cons s' sts' sts2)
|
|
407 |
thus ?case
|
|
408 |
proof(cases "sts2 = []")
|
|
409 |
case True
|
|
410 |
with Cons show ?thesis by auto
|
|
411 |
next
|
|
412 |
case False
|
|
413 |
then obtain s'' sts'' where eq_sts2: "sts2 = s''#sts''"
|
|
414 |
by (metis neq_Nil_conv)
|
|
415 |
with Cons
|
|
416 |
show ?thesis
|
|
417 |
by (metis length_Suc_conv list.inject plus_list.simps(3))
|
|
418 |
qed
|
|
419 |
qed
|
|
420 |
|
|
421 |
lemma nth_sts_plus:
|
|
422 |
assumes "i < length ((sts1::status list) + sts2)"
|
|
423 |
shows "(sts1 + sts2)!i = sts1!i + sts2!i"
|
|
424 |
using assms
|
|
425 |
proof(induct sts1 arbitrary:i sts2)
|
|
426 |
case (Nil i sts2)
|
|
427 |
thus ?case by auto
|
|
428 |
next
|
|
429 |
case (Cons s' sts' i sts2)
|
|
430 |
show ?case
|
|
431 |
proof(cases "sts2 = []")
|
|
432 |
case True
|
|
433 |
with Cons show ?thesis by auto
|
|
434 |
next
|
|
435 |
case False
|
|
436 |
then obtain s'' sts'' where eq_sts2: "sts2 = s''#sts''"
|
|
437 |
by (metis neq_Nil_conv)
|
|
438 |
with Cons
|
|
439 |
show ?thesis
|
|
440 |
by (smt list.size(4) nth_Cons' plus_list.simps(3))
|
|
441 |
qed
|
|
442 |
qed
|
|
443 |
|
|
444 |
lemma nth_sts_minus:
|
|
445 |
assumes "i < length ((sts1::status list) - sts2)"
|
|
446 |
shows "(sts1 - sts2)!i = sts1!i - sts2!i"
|
|
447 |
using assms
|
|
448 |
proof(induct arbitrary:i rule:minus_list.induct)
|
|
449 |
case (3 x xs y ys i)
|
|
450 |
show ?case
|
|
451 |
proof(cases i)
|
|
452 |
case 0
|
|
453 |
thus ?thesis by simp
|
|
454 |
next
|
|
455 |
case (Suc k)
|
|
456 |
with 3(2) have "k < length (xs - ys)" by auto
|
|
457 |
from 3(1)[OF this] and Suc
|
|
458 |
show ?thesis
|
|
459 |
by auto
|
|
460 |
qed
|
|
461 |
qed auto
|
|
462 |
|
|
463 |
fun taddr :: "tresource \<Rightarrow> nat" where
|
|
464 |
"taddr (TC i instr) = i"
|
|
465 |
|
|
466 |
lemma tassemble_to_range:
|
|
467 |
assumes "(i :[tpg]: j) s"
|
|
468 |
shows "(i \<le> j) \<and> (\<forall> r \<in> s. i \<le> taddr r \<and> taddr r < j)"
|
|
469 |
using assms
|
|
470 |
proof(induct tpg arbitrary: i j s)
|
|
471 |
case (TInstr instr i j s)
|
|
472 |
obtain a0 l0 a1 l1 where "instr = ((a0, l0), (a1, l1))"
|
|
473 |
by (metis pair_collapse)
|
|
474 |
with TInstr
|
|
475 |
show ?case
|
|
476 |
apply (simp add:tassemble_to.simps sg_def)
|
|
477 |
by (smt `instr = ((a0, l0), a1, l1)` cond_eq cond_true_eq1
|
|
478 |
empty_iff insert_iff le_refl lessI sep.mult_commute taddr.simps)
|
|
479 |
next
|
|
480 |
case (TLabel l i j s)
|
|
481 |
thus ?case
|
|
482 |
apply (simp add:tassemble_to.simps)
|
|
483 |
by (smt equals0D pasrt_def set_zero_def)
|
|
484 |
next
|
|
485 |
case (TSeq c1 c2 i j s)
|
|
486 |
from TSeq(3) obtain s1 s2 j' where
|
|
487 |
h: "(i :[ c1 ]: j') s1" "(j' :[ c2 ]: j) s2" "s1 ## s2" "s = s1 + s2"
|
|
488 |
by (auto simp:tassemble_to.simps elim!:EXS_elim sep_conjE)
|
|
489 |
show ?case
|
|
490 |
proof -
|
|
491 |
{ fix r
|
|
492 |
assume "r \<in> s"
|
|
493 |
with h (3, 4) have "r \<in> s1 \<or> r \<in> s2"
|
|
494 |
by (auto simp:set_ins_def)
|
|
495 |
hence "i \<le> j \<and> i \<le> taddr r \<and> taddr r < j"
|
|
496 |
proof
|
|
497 |
assume " r \<in> s1"
|
|
498 |
from TSeq(1)[OF h(1)]
|
|
499 |
have "i \<le> j'" "(\<forall>r\<in>s1. i \<le> taddr r \<and> taddr r < j')" by auto
|
|
500 |
from this(2)[rule_format, OF `r \<in> s1`]
|
|
501 |
have "i \<le> taddr r" "taddr r < j'" by auto
|
|
502 |
with TSeq(2)[OF h(2)]
|
|
503 |
show ?thesis by auto
|
|
504 |
next
|
|
505 |
assume "r \<in> s2"
|
|
506 |
from TSeq(2)[OF h(2)]
|
|
507 |
have "j' \<le> j" "(\<forall>r\<in>s2. j' \<le> taddr r \<and> taddr r < j)" by auto
|
|
508 |
from this(2)[rule_format, OF `r \<in> s2`]
|
|
509 |
have "j' \<le> taddr r" "taddr r < j" by auto
|
|
510 |
with TSeq(1)[OF h(1)]
|
|
511 |
show ?thesis by auto
|
|
512 |
qed
|
|
513 |
} thus ?thesis
|
|
514 |
by (smt TSeq.hyps(1) TSeq.hyps(2) h(1) h(2))
|
|
515 |
qed
|
|
516 |
next
|
|
517 |
case (TLocal body i j s)
|
|
518 |
from this(2) obtain l s' where "(i :[ body l ]: j) s"
|
|
519 |
by (simp add:tassemble_to.simps, auto elim!:EXS_elim)
|
|
520 |
from TLocal(1)[OF this]
|
|
521 |
show ?case by auto
|
|
522 |
qed
|
|
523 |
|
|
524 |
lemma c2p_seq:
|
|
525 |
assumes "c2p sts1 i cpg1 j'"
|
|
526 |
"c2p sts2 j' cpg2 j"
|
|
527 |
"sts_disj sts1 sts2"
|
|
528 |
shows "(c2p (sts1 + sts2) i (CSeq cpg1 cpg2) j)"
|
|
529 |
proof -
|
|
530 |
from assms(1)[unfolded c2p_def]
|
|
531 |
obtain f1 where
|
|
532 |
h1[rule_format]:
|
|
533 |
"\<forall>x. length x = length sts1 \<and> (\<forall>k<length sts1. sts1 ! k = Bound \<longrightarrow> (x ! k = f1 i k)) \<longrightarrow>
|
|
534 |
Ex (i :[ c2t x cpg1 ]: j')" by blast
|
|
535 |
from assms(2)[unfolded c2p_def]
|
|
536 |
obtain f2 where h2[rule_format]:
|
|
537 |
"\<forall>x. length x = length sts2 \<and> (\<forall>k<length sts2. sts2 ! k = Bound \<longrightarrow> (x ! k = f2 j' k)) \<longrightarrow>
|
|
538 |
Ex (j' :[ c2t x cpg2 ]: j)" by blast
|
|
539 |
from assms(3)[unfolded sts_disj_def]
|
|
540 |
have h3: "length sts1 = length sts2"
|
|
541 |
and h4[rule_format]:
|
|
542 |
"(\<forall>i<length sts1. \<not> (sts1 ! i = Bound \<and> sts2 ! i = Bound))" by auto
|
|
543 |
let ?f = "\<lambda> i k. if (sts1!k = Bound) then f1 i k else f2 j' k"
|
|
544 |
{ fix x
|
|
545 |
assume h5: "length x = length (sts1 + sts2)" and
|
|
546 |
h6[rule_format]: "(\<forall>k<length (sts1 + sts2). (sts1 + sts2) ! k = Bound \<longrightarrow> x ! k = ?f i k)"
|
|
547 |
obtain s1 where h_s1: "(i :[ c2t x cpg1 ]: j') s1"
|
|
548 |
proof(atomize_elim, rule h1)
|
|
549 |
from h3 h5 have "length x = length sts1"
|
|
550 |
by (metis length_sts_plus)
|
|
551 |
moreover {
|
|
552 |
fix k assume hh: "k<length sts1" "sts1 ! k = Bound"
|
|
553 |
from hh(1) h3 h5 have p1: "k < length (sts1 + sts2)"
|
|
554 |
by (metis calculation)
|
|
555 |
from h3 hh(2) have p2: "(sts1 + sts2)!k = Bound"
|
|
556 |
by (metis nth_sts_plus p1 plus_status.simps(2))
|
|
557 |
from h6[OF p1 p2] have "x ! k = (if sts1 ! k = Bound then f1 i k else f2 j' k)" .
|
|
558 |
with hh(2)
|
|
559 |
have "x ! k = f1 i k" by simp
|
|
560 |
} ultimately show "length x = length sts1 \<and>
|
|
561 |
(\<forall>k<length sts1. sts1 ! k = Bound \<longrightarrow> (x ! k = f1 i k))"
|
|
562 |
by blast
|
|
563 |
qed
|
|
564 |
obtain s2 where h_s2: "(j' :[ c2t x cpg2 ]: j) s2"
|
|
565 |
proof(atomize_elim, rule h2)
|
|
566 |
from h3 h5 have "length x = length sts2"
|
|
567 |
by (metis length_sts_plus)
|
|
568 |
moreover {
|
|
569 |
fix k
|
|
570 |
assume hh: "k<length sts2" "sts2 ! k = Bound"
|
|
571 |
from hh(1) h3 h5 have p1: "k < length (sts1 + sts2)"
|
|
572 |
by (metis calculation)
|
|
573 |
from hh(1) h3 h5 hh(2) have p2: "(sts1 + sts2)!k = Bound"
|
|
574 |
by (metis `length sts1 = length sts2 \<and>
|
|
575 |
(\<forall>i<length sts1. \<not> (sts1 ! i = Bound \<and> sts2 ! i = Bound))`
|
|
576 |
calculation nth_sts_plus plus_status.simps(1) status.distinct(1) status.exhaust)
|
|
577 |
from h6[OF p1 p2] have "x ! k = (if sts1 ! k = Bound then f1 i k else f2 j' k)" .
|
|
578 |
moreover from h4[OF hh(1)[folded h3]] hh(2) have "sts1!k \<noteq> Bound" by auto
|
|
579 |
ultimately have "x!k = f2 j' k" by simp
|
|
580 |
} ultimately show "length x = length sts2 \<and>
|
|
581 |
(\<forall>k<length sts2. sts2 ! k = Bound \<longrightarrow> (x ! k = f2 j' k))"
|
|
582 |
by blast
|
|
583 |
qed
|
|
584 |
have h_s12: "s1 ## s2"
|
|
585 |
proof -
|
|
586 |
{ fix r assume h: "r \<in> s1" "r \<in> s2"
|
|
587 |
with h_s1 h_s2
|
|
588 |
have "False"by (smt tassemble_to_range)
|
|
589 |
} thus ?thesis by (auto simp:set_ins_def)
|
|
590 |
qed
|
|
591 |
have "(EXS j'. i :[ c2t x cpg1 ]: j' \<and>* j' :[ c2t x cpg2 ]: j) (s1 + s2)"
|
|
592 |
proof(rule_tac x = j' in EXS_intro)
|
|
593 |
from h_s1 h_s2 h_s12
|
|
594 |
show "(i :[ c2t x cpg1 ]: j' \<and>* j' :[ c2t x cpg2 ]: j) (s1 + s2)"
|
|
595 |
by (metis sep_conjI)
|
|
596 |
qed
|
|
597 |
hence "\<exists> s. (i :[ c2t x (CSeq cpg1 cpg2) ]: j) s"
|
|
598 |
by (auto simp:tassemble_to.simps)
|
|
599 |
}
|
|
600 |
hence "\<exists>f. \<forall>x. length x = length (sts1 + sts2) \<and>
|
|
601 |
(\<forall>k<length (sts1 + sts2). (sts1 + sts2) ! k = Bound \<longrightarrow> x ! k = f i k) \<longrightarrow>
|
|
602 |
Ex (i :[ c2t x (CSeq cpg1 cpg2) ]: j)"
|
|
603 |
by (rule_tac x = ?f in exI, auto)
|
|
604 |
thus ?thesis
|
|
605 |
by(unfold c2p_def, auto)
|
|
606 |
qed
|
|
607 |
|
|
608 |
lemma plus_list_len:
|
|
609 |
"length ((sts1::status list) + sts2) = min (length sts1) (length sts2)"
|
|
610 |
by(induct rule:plus_list.induct, auto)
|
|
611 |
|
|
612 |
lemma minus_list_len:
|
|
613 |
"length ((sts1::status list) - sts2) = min (length sts1) (length sts2)"
|
|
614 |
by(induct rule:minus_list.induct, auto)
|
|
615 |
|
|
616 |
lemma sts_le_comb:
|
|
617 |
assumes "sts1 \<le> sts2"
|
|
618 |
and "sts2 \<le> sts3"
|
|
619 |
shows "sts_disj (sts2 - sts1) (sts3 - sts2)" and
|
|
620 |
"(sts3 - sts1) = (sts2 - sts1) + (sts3 - sts2)"
|
|
621 |
proof -
|
|
622 |
from assms
|
|
623 |
have h1: "length sts1 = length sts2" "\<forall>i<length sts1. sts1 ! i \<le> sts2 ! i"
|
|
624 |
and h2: "length sts2 = length sts3" "\<forall>i<length sts1. sts2 ! i \<le> sts3 ! i"
|
|
625 |
by (unfold less_eq_list_def, auto)
|
|
626 |
have "sts_disj (sts2 - sts1) (sts3 - sts2)"
|
|
627 |
proof -
|
|
628 |
from h1(1) h2(1)
|
|
629 |
have "length (sts2 - sts1) = length (sts3 - sts2)"
|
|
630 |
by (metis minus_list_len)
|
|
631 |
moreover {
|
|
632 |
fix i
|
|
633 |
assume lt_i: "i<length (sts2 - sts1)"
|
|
634 |
from lt_i h1(1) h2(1) have "i < length sts1"
|
|
635 |
by (smt minus_list_len)
|
|
636 |
from h1(2)[rule_format, of i, OF this] h2(2)[rule_format, of i, OF this]
|
|
637 |
have "sts1 ! i \<le> sts2 ! i" "sts2 ! i \<le> sts3 ! i" .
|
|
638 |
moreover have "(sts2 - sts1) ! i = sts2!i - sts1!i"
|
|
639 |
by (metis lt_i nth_sts_minus)
|
|
640 |
moreover have "(sts3 - sts2)!i = sts3!i - sts2!i"
|
|
641 |
by (metis `length (sts2 - sts1) = length (sts3 - sts2)` lt_i nth_sts_minus)
|
|
642 |
ultimately have " \<not> ((sts2 - sts1) ! i = Bound \<and> (sts3 - sts2) ! i = Bound)"
|
|
643 |
apply (cases "sts2!i", cases "sts1!i", cases "sts3!i", simp, simp)
|
|
644 |
apply (cases "sts3!i", simp, simp)
|
|
645 |
apply (cases "sts1!i", cases "sts3!i", simp, simp)
|
|
646 |
by (cases "sts3!i", simp, simp)
|
|
647 |
} ultimately show ?thesis by (unfold sts_disj_def, auto)
|
|
648 |
qed
|
|
649 |
moreover have "(sts3 - sts1) = (sts2 - sts1) + (sts3 - sts2)"
|
|
650 |
proof(induct rule:nth_equalityI)
|
|
651 |
case 1
|
|
652 |
show ?case by (metis h1(1) h2(1) length_sts_plus minus_list_len)
|
|
653 |
next
|
|
654 |
case 2
|
|
655 |
{ fix i
|
|
656 |
assume lt_i: "i<length (sts3 - sts1)"
|
|
657 |
have "(sts3 - sts1) ! i = (sts2 - sts1 + (sts3 - sts2)) ! i" (is "?L = ?R")
|
|
658 |
proof -
|
|
659 |
have "?R = sts2!i - sts1!i + (sts3!i - sts2!i)"
|
|
660 |
by (smt `i < length (sts3 - sts1)` h2(1) minus_list_len nth_sts_minus
|
|
661 |
nth_sts_plus plus_list_len)
|
|
662 |
moreover have "?L = sts3!i - sts1!i"
|
|
663 |
by (metis `i < length (sts3 - sts1)` nth_sts_minus)
|
|
664 |
moreover
|
|
665 |
have "sts2!i - sts1!i + (sts3!i - sts2!i) = sts3!i - sts1!i"
|
|
666 |
proof -
|
|
667 |
from lt_i h1(1) h2(1) have "i < length sts1"
|
|
668 |
by (smt minus_list_len)
|
|
669 |
from h1(2)[rule_format, of i, OF this] h2(2)[rule_format, of i, OF this]
|
|
670 |
show ?thesis
|
|
671 |
apply (cases "sts2!i", cases "sts1!i", cases "sts3!i", simp, simp)
|
|
672 |
apply (cases "sts3!i", simp, simp)
|
|
673 |
apply (cases "sts1!i", cases "sts3!i", simp, simp)
|
|
674 |
by (cases "sts3!i", simp, simp)
|
|
675 |
qed
|
|
676 |
ultimately show ?thesis by simp
|
|
677 |
qed
|
|
678 |
} thus ?case by auto
|
|
679 |
qed
|
|
680 |
ultimately show "sts_disj (sts2 - sts1) (sts3 - sts2)" and
|
|
681 |
"(sts3 - sts1) = (sts2 - sts1) + (sts3 - sts2)" by auto
|
|
682 |
qed
|
|
683 |
|
|
684 |
lemma wf_cpg_test_correct:
|
|
685 |
assumes "wf_cpg_test sts cpg = (True, sts')"
|
|
686 |
shows "(\<forall> i. \<exists> j. (c2p (sts' - sts) i cpg j))"
|
|
687 |
using assms
|
|
688 |
proof(induct cpg arbitrary:sts sts')
|
|
689 |
case (CInstr instr sts sts')
|
|
690 |
obtain a0 l0 a1 l1 where eq_instr: "instr = ((a0, St l0), (a1, St l1))"
|
|
691 |
by (metis surj_pair tstate.exhaust)
|
|
692 |
show ?case
|
|
693 |
proof(unfold eq_instr c2p_def, clarsimp simp:tassemble_to.simps)
|
|
694 |
fix i
|
|
695 |
let ?a = "(Suc i)" and ?f = "\<lambda> i k. St i"
|
|
696 |
show "\<exists>a f. \<forall>x. length x = length (sts' - sts) \<and>
|
|
697 |
(\<forall>k<length (sts' - sts). (sts' - sts) ! k = Bound \<longrightarrow> x ! k = f i k) \<longrightarrow>
|
|
698 |
Ex (sg {TC i ((a0, (x ! l0)), a1, (x ! l1))} \<and>* <(a = (Suc i))>)"
|
|
699 |
proof(rule_tac x = ?a in exI, rule_tac x = ?f in exI, default, clarsimp)
|
|
700 |
fix x
|
|
701 |
let ?j = "Suc i"
|
|
702 |
let ?s = " {TC i ((a0, x ! l0), a1, x ! l1)}"
|
|
703 |
have "(sg {TC i ((a0, x ! l0), a1, x ! l1)} \<and>* <(Suc i = Suc i)>) ?s"
|
|
704 |
by (simp add:tassemble_to.simps sg_def)
|
|
705 |
thus "Ex (sg {TC i ((a0, (x ! l0)), a1, (x ! l1))})"
|
|
706 |
by auto
|
|
707 |
qed
|
|
708 |
qed
|
|
709 |
next
|
|
710 |
case (CLabel l sts sts')
|
|
711 |
show ?case
|
|
712 |
proof
|
|
713 |
fix i
|
|
714 |
from CLabel
|
|
715 |
have h1: "l < length sts"
|
|
716 |
and h2: "sts ! l = Free"
|
|
717 |
and h3: "sts[l := Bound] = sts'" by auto
|
|
718 |
let ?f = "\<lambda> i k. St i"
|
|
719 |
have "\<exists>a f. \<forall>x. length x = length (sts' - sts) \<and>
|
|
720 |
(\<forall>k<length (sts' - sts). (sts' - sts) ! k = Bound \<longrightarrow> x ! k = f (i::nat) k) \<longrightarrow>
|
|
721 |
Ex (<(i = a \<and> a = nat_of (x ! l))>)"
|
|
722 |
proof(rule_tac x = i in exI, rule_tac x = ?f in exI, clarsimp)
|
|
723 |
fix x
|
|
724 |
assume h[rule_format]:
|
|
725 |
"\<forall>k<length (sts' - sts). (sts' - sts) ! k = Bound \<longrightarrow> x ! k = St i"
|
|
726 |
from h1 h3 have p1: "l < length (sts' - sts)"
|
|
727 |
by (metis length_list_update min_max.inf.idem minus_list_len)
|
|
728 |
from p1 h2 h3 have p2: "(sts' - sts)!l = Bound"
|
|
729 |
by (metis h1 minus_status.simps(2) nth_list_update_eq nth_sts_minus)
|
|
730 |
from h[OF p1 p2] have "(<(i = nat_of (x ! l))>) 0"
|
|
731 |
by (simp add:set_ins_def)
|
|
732 |
thus "\<exists> s. (<(i = nat_of (x ! l))>) s" by auto
|
|
733 |
qed
|
|
734 |
thus "\<exists>a. c2p (sts' - sts) i (CLabel l) a"
|
|
735 |
by (auto simp:c2p_def tassemble_to.simps)
|
|
736 |
qed
|
|
737 |
next
|
|
738 |
case (CSeq cpg1 cpg2 sts sts')
|
|
739 |
show ?case
|
|
740 |
proof
|
|
741 |
fix i
|
|
742 |
from CSeq(3)[unfolded wf_cpg_test.simps]
|
|
743 |
obtain b1 sts1
|
|
744 |
where LetE: "(let (b2, y) = wf_cpg_test sts1 cpg2 in (b1 \<and> b2, y)) = (True, sts')"
|
|
745 |
"(b1, sts1) = wf_cpg_test sts cpg1"
|
|
746 |
by (auto simp:Let_def split:prod.splits)
|
|
747 |
show "\<exists> j. c2p (sts' - sts) i (CSeq cpg1 cpg2) j"
|
|
748 |
proof -
|
|
749 |
from LetE(1)
|
|
750 |
obtain b2 where h: "(b2, sts') = wf_cpg_test sts1 cpg2" "b1=True" "b2=True"
|
|
751 |
by (atomize_elim, unfold Let_def, auto split:prod.splits)
|
|
752 |
from wf_cpg_test_le[OF LetE(2)[symmetric, unfolded h(2)]]
|
|
753 |
have sts_le1: "sts \<le> sts1" .
|
|
754 |
from CSeq(1)[OF LetE(2)[unfolded h(2), symmetric], rule_format, of i]
|
|
755 |
obtain j1 where h1: "(c2p (sts1 - sts) i cpg1 j1)" by blast
|
|
756 |
from wf_cpg_test_le[OF h(1)[symmetric, unfolded h(3)]]
|
|
757 |
have sts_le2: "sts1 \<le> sts'" .
|
|
758 |
from sts_le_comb[OF sts_le1 sts_le2]
|
|
759 |
have hh: "sts_disj (sts1 - sts) (sts' - sts1)"
|
|
760 |
"sts' - sts = (sts1 - sts) + (sts' - sts1)" .
|
|
761 |
from CSeq(2)[OF h(1)[symmetric, unfolded h(3)], rule_format, of j1]
|
|
762 |
obtain j2 where h2: "(c2p (sts' - sts1) j1 cpg2 j2)" by blast
|
|
763 |
have "c2p (sts' - sts) i (CSeq cpg1 cpg2) j2"
|
|
764 |
by(unfold hh(2), rule c2p_seq[OF h1 h2 hh(1)])
|
|
765 |
thus ?thesis by blast
|
|
766 |
qed
|
|
767 |
qed
|
|
768 |
next
|
|
769 |
case (CLocal body sts sts')
|
|
770 |
from this(2) obtain b sts1 s where
|
|
771 |
h: "wf_cpg_test (Free # sts) body = (True, sts1)"
|
|
772 |
"sts' = tl sts1"
|
|
773 |
by (unfold wf_cpg_test.simps, auto split:prod.splits)
|
|
774 |
from wf_cpg_test_le[OF h(1), unfolded less_eq_list_def] h(2)
|
|
775 |
obtain s where eq_sts1: "sts1 = s#sts'"
|
|
776 |
by (metis Suc_length_conv list.size(4) tl.simps(2))
|
|
777 |
from CLocal(1)[OF h(1)] have p1: "\<forall>i. \<exists>a. c2p (sts1 - (Free # sts)) i body a" .
|
|
778 |
show ?case
|
|
779 |
proof
|
|
780 |
fix i
|
|
781 |
from p1[rule_format, of i] obtain j where "(c2p (sts1 - (Free # sts)) i body) j" by blast
|
|
782 |
then obtain f where hh [rule_format]:
|
|
783 |
"\<forall>x. length x = length (sts1 - (Free # sts)) \<and>
|
|
784 |
(\<forall>k<length (sts1 - (Free # sts)). (sts1 - (Free # sts)) ! k = Bound \<longrightarrow> x ! k = f i k) \<longrightarrow>
|
|
785 |
(\<exists>s. (i :[ c2t x body ]: j) s)"
|
|
786 |
by (auto simp:c2p_def)
|
|
787 |
let ?f = "\<lambda> i k. f i (Suc k)"
|
|
788 |
have "\<exists>j f. \<forall>x. length x = length (sts' - sts) \<and>
|
|
789 |
(\<forall>k<length (sts' - sts). (sts' - sts) ! k = Bound \<longrightarrow> x ! k = f i k) \<longrightarrow>
|
|
790 |
(\<exists>s. (i :[ (TL xa. c2t (xa # x) body) ]: j) s)"
|
|
791 |
proof(rule_tac x = j in exI, rule_tac x = ?f in exI, default, clarsimp)
|
|
792 |
fix x
|
|
793 |
assume h1: "length x = length (sts' - sts)"
|
|
794 |
and h2: "\<forall>k<length (sts' - sts). (sts' - sts) ! k = Bound \<longrightarrow> x ! k = f i (Suc k)"
|
|
795 |
let ?l = "f i 0" let ?x = " ?l#x"
|
|
796 |
from wf_cpg_test_le[OF h(1)] have "length (Free#sts) = length sts1"
|
|
797 |
by (unfold less_eq_list_def, simp)
|
|
798 |
with h1 h(2) have q1: "length (?l # x) = length (sts1 - (Free # sts))"
|
|
799 |
by (smt Suc_length_conv length_Suc_conv list.inject list.size(4)
|
|
800 |
minus_list.simps(3) minus_list_len tl.simps(2))
|
|
801 |
have q2: "(\<forall>k<length (sts1 - (Free # sts)).
|
|
802 |
(sts1 - (Free # sts)) ! k = Bound \<longrightarrow> (f i 0 # x) ! k = f i k)"
|
|
803 |
proof -
|
|
804 |
{ fix k
|
|
805 |
assume lt_k: "k<length (sts1 - (Free # sts))"
|
|
806 |
and bd_k: "(sts1 - (Free # sts)) ! k = Bound"
|
|
807 |
have "(f i 0 # x) ! k = f i k"
|
|
808 |
proof(cases "k")
|
|
809 |
case (Suc k')
|
|
810 |
moreover have "x ! k' = f i (Suc k')"
|
|
811 |
proof(rule h2[rule_format])
|
|
812 |
from bd_k Suc eq_sts1 show "(sts' - sts) ! k' = Bound" by simp
|
|
813 |
next
|
|
814 |
from Suc lt_k eq_sts1 show "k' < length (sts' - sts)" by simp
|
|
815 |
qed
|
|
816 |
ultimately show ?thesis by simp
|
|
817 |
qed simp
|
|
818 |
} thus ?thesis by auto
|
|
819 |
qed
|
|
820 |
from conjI[THEN hh[of ?x], OF q1 q2] obtain s
|
|
821 |
where h_s: "(i :[ c2t (f i 0 # x) body ]: j) s" by blast
|
|
822 |
thus "(\<exists>s. (i :[ (TL xa. c2t (xa # x) body) ]: j) s)"
|
|
823 |
apply (simp add:tassemble_to.simps)
|
|
824 |
by (rule_tac x = s in exI, rule_tac x = "?l::tstate" in EXS_intro, simp)
|
|
825 |
qed
|
|
826 |
thus "\<exists>j. c2p (sts' - sts) i (CLocal body) j"
|
|
827 |
by (auto simp:c2p_def)
|
|
828 |
qed
|
|
829 |
qed
|
|
830 |
|
|
831 |
lemma
|
|
832 |
assumes "wf_cpg_test [] cpg = (True, sts')"
|
|
833 |
and "tpg = c2t [] cpg"
|
|
834 |
shows "\<forall> i. \<exists> j s. ((i:[tpg]:j) s)"
|
|
835 |
proof
|
|
836 |
fix i
|
|
837 |
have eq_sts_minus: "(sts' - []) = []"
|
|
838 |
by (metis list.exhaust minus_list.simps(1) minus_list.simps(2))
|
|
839 |
from wf_cpg_test_correct[OF assms(1), rule_format, of i]
|
|
840 |
obtain j where "c2p (sts' - []) i cpg j" by auto
|
|
841 |
from c2p_assert [OF this[unfolded eq_sts_minus]]
|
|
842 |
obtain s where "(i :[ c2t [] cpg ]: j) s" by blast
|
|
843 |
from this[folded assms(2)]
|
|
844 |
show " \<exists> j s. ((i:[tpg]:j) s)" by blast
|
|
845 |
qed
|
|
846 |
|
|
847 |
lemma replicate_nth: "(replicate n x @ sts) ! (l + n) = sts!l"
|
|
848 |
by (smt length_replicate nth_append)
|
|
849 |
|
|
850 |
lemma replicate_update:
|
|
851 |
"(replicate n x @ sts)[l + n := v] = replicate n x @ sts[l := v]"
|
|
852 |
by (smt length_replicate list_update_append)
|
|
853 |
|
|
854 |
lemma nth_app: "length xs \<le> a \<Longrightarrow> (xs @ ys)!a = ys!(a - length xs)"
|
|
855 |
by (metis not_less nth_append)
|
|
856 |
|
|
857 |
lemma l_n_v_orig:
|
|
858 |
assumes "l0 < length env"
|
|
859 |
and "t \<le> l0"
|
|
860 |
shows "(take t env @ es @ drop t env) ! (l0 + length es) = env ! l0"
|
|
861 |
proof -
|
|
862 |
from assms(1, 2) have "t < length env" by auto
|
|
863 |
hence h: "env = take t env @ drop t env"
|
|
864 |
"length (take t env) = t"
|
|
865 |
apply (metis append_take_drop_id)
|
|
866 |
by (smt `t < length env` length_take)
|
|
867 |
with assms(2) have eq_sts_l: "env!l0 = (drop t env)!(l0 - t)"
|
|
868 |
by (metis nth_app)
|
|
869 |
from h(2) have "length (take t env @ es) = t + length es"
|
|
870 |
by (metis length_append length_replicate nat_add_commute)
|
|
871 |
moreover from assms(2) have "t + (length es) \<le> l0 + (length es)" by auto
|
|
872 |
ultimately have "((take t env @ es) @ drop t env)!(l0 + length es) =
|
|
873 |
(drop t env)!(l0+ length es - (t + length es))"
|
|
874 |
by (smt length_replicate length_splice nth_append)
|
|
875 |
with eq_sts_l[symmetric, unfolded assms]
|
|
876 |
show ?thesis by auto
|
|
877 |
qed
|
|
878 |
|
|
879 |
lemma l_n_v:
|
|
880 |
assumes "l < length sts"
|
|
881 |
and "sts!l = v"
|
|
882 |
and "t \<le> l"
|
|
883 |
shows "(take t sts @ replicate n x @ drop t sts) ! (l + n) = v"
|
|
884 |
proof -
|
|
885 |
from l_n_v_orig[OF assms(1) assms(3), of "replicate n x"]
|
|
886 |
and assms(2)
|
|
887 |
show ?thesis by auto
|
|
888 |
qed
|
|
889 |
|
|
890 |
lemma l_n_v_s:
|
|
891 |
assumes "l < length sts"
|
|
892 |
and "t \<le> l"
|
|
893 |
shows "(take t sts @ sts0 @ drop t sts)[l + length sts0 := v] =
|
|
894 |
take t (sts[l:=v])@ sts0 @ drop t (sts[l:=v])"
|
|
895 |
proof -
|
|
896 |
let ?n = "length sts0"
|
|
897 |
from assms(1, 2) have "t < length sts" by auto
|
|
898 |
hence h: "sts = take t sts @ drop t sts"
|
|
899 |
"length (take t sts) = t"
|
|
900 |
apply (metis append_take_drop_id)
|
|
901 |
by (smt `t < length sts` length_take)
|
|
902 |
with assms(2) have eq_sts_l: "sts[l:=v] = take t sts @ drop t sts [(l - t) := v]"
|
|
903 |
by (smt list_update_append)
|
|
904 |
with h(2) have eq_take_drop_t: "take t (sts[l:=v]) = take t sts"
|
|
905 |
"drop t (sts[l:=v]) = (drop t sts)[l - t:=v]"
|
|
906 |
apply (metis append_eq_conv_conj)
|
|
907 |
by (metis append_eq_conv_conj eq_sts_l h(2))
|
|
908 |
from h(2) have "length (take t sts @ sts0) = t + ?n"
|
|
909 |
by (metis length_append length_replicate nat_add_commute)
|
|
910 |
moreover from assms(2) have "t + ?n \<le> l + ?n" by auto
|
|
911 |
ultimately have "((take t sts @ sts0) @ drop t sts)[l + ?n := v] =
|
|
912 |
(take t sts @ sts0) @ (drop t sts)[(l + ?n - (t + ?n)) := v]"
|
|
913 |
by (smt list_update_append replicate_nth)
|
|
914 |
with eq_take_drop_t
|
|
915 |
show ?thesis by auto
|
|
916 |
qed
|
|
917 |
|
|
918 |
lemma l_n_v_s1:
|
|
919 |
assumes "l < length sts"
|
|
920 |
and "\<not> t \<le> l"
|
|
921 |
shows "(take t sts @ sts0 @ drop t sts)[l := v] =
|
|
922 |
take t (sts[l := v]) @ sts0 @ drop t (sts[l := v])"
|
|
923 |
proof(cases "t < length sts")
|
|
924 |
case False
|
|
925 |
hence h: "take t sts = sts" "drop t sts = []"
|
|
926 |
"take t (sts[l:=v]) = sts [l:=v]"
|
|
927 |
"drop t (sts[l:=v]) = []"
|
|
928 |
by auto
|
|
929 |
with assms(1)
|
|
930 |
show ?thesis
|
|
931 |
by (metis list_update_append)
|
|
932 |
next
|
|
933 |
case True
|
|
934 |
with assms(2)
|
|
935 |
have h: "(take t sts)[l:=v] = take t (sts[l:=v])"
|
|
936 |
"(sts[l:=v]) = (take t sts)[l:=v]@drop t sts"
|
|
937 |
"length (take t sts) = t"
|
|
938 |
apply (smt length_list_update length_take nth_equalityI nth_list_update nth_take)
|
|
939 |
apply (smt True append_take_drop_id assms(2) length_take list_update_append1)
|
|
940 |
by (smt True length_take)
|
|
941 |
from h(2,3) have "drop t (sts[l := v]) = drop t sts"
|
|
942 |
by (metis append_eq_conv_conj length_list_update)
|
|
943 |
with h(1)
|
|
944 |
show ?thesis
|
|
945 |
apply simp
|
|
946 |
by (metis assms(2) h(3) list_update_append1 not_leE)
|
|
947 |
qed
|
|
948 |
|
|
949 |
lemma l_n_v_s2:
|
|
950 |
assumes "l0 < length env"
|
|
951 |
and "t \<le> l0"
|
|
952 |
and "\<not> t \<le> l1"
|
|
953 |
shows "(take t env @ es @ drop t env) ! l1 = env ! l1"
|
|
954 |
proof -
|
|
955 |
from assms(1, 2) have "t < length env" by auto
|
|
956 |
hence h: "env = take t env @ drop t env"
|
|
957 |
"length (take t env) = t"
|
|
958 |
apply (metis append_take_drop_id)
|
|
959 |
by (smt `t < length env` length_take)
|
|
960 |
with assms(3) show ?thesis
|
|
961 |
by (smt nth_append)
|
|
962 |
qed
|
|
963 |
|
|
964 |
lemma l_n_v_s3:
|
|
965 |
assumes "l0 < length env"
|
|
966 |
and "\<not> t \<le> l0"
|
|
967 |
shows "(take t env @ es @ drop t env) ! l0 = env ! l0"
|
|
968 |
proof(cases "t < length env")
|
|
969 |
case True
|
|
970 |
hence h: "env = take t env @ drop t env"
|
|
971 |
"length (take t env) = t"
|
|
972 |
apply (metis append_take_drop_id)
|
|
973 |
by (smt `t < length env` length_take)
|
|
974 |
with assms(2) show ?thesis
|
|
975 |
by (smt nth_append)
|
|
976 |
next
|
|
977 |
case False
|
|
978 |
hence "take t env = env" by auto
|
|
979 |
with assms(1) show ?thesis
|
|
980 |
by (metis nth_append)
|
|
981 |
qed
|
|
982 |
|
|
983 |
subsection {* Invariant under lifts and perms *}
|
|
984 |
|
|
985 |
definition "lift_b t i j = (if (j \<ge> t) then (j + i) else j)"
|
|
986 |
|
|
987 |
fun lift_t :: "nat \<Rightarrow> nat \<Rightarrow> cpg \<Rightarrow> cpg"
|
|
988 |
where "lift_t t i (CInstr ((act0, l0), (act1, l1))) =
|
|
989 |
(CInstr ((act0, lift_b t i (nat_of l0)),
|
|
990 |
(act1, lift_b t i (nat_of l1))))" |
|
|
991 |
"lift_t t i (CLabel l) = CLabel (lift_b t i l)" |
|
|
992 |
"lift_t t i (CSeq c1 c2) = CSeq (lift_t t i c1) (lift_t t i c2)" |
|
|
993 |
"lift_t t i (CLocal c) = CLocal (lift_t (t + 1) i c)"
|
|
994 |
|
|
995 |
definition "lift0 (i::nat) cpg = lift_t 0 i cpg"
|
|
996 |
|
|
997 |
definition "perm_b t i j k = (if ((k::nat) = i \<and> i < t \<and> j < t) then j else
|
|
998 |
if (k = j \<and> i < t \<and> j < t) then i else k)"
|
|
999 |
|
|
1000 |
fun perm :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> cpg \<Rightarrow> cpg"
|
|
1001 |
where "perm t i j (CInstr ((act0, l0), (act1, l1))) =
|
|
1002 |
(CInstr ((act0, perm_b t i j l0), (act1, perm_b t i j l1)))" |
|
|
1003 |
"perm t i j (CLabel l) = CLabel (perm_b t i j l)" |
|
|
1004 |
"perm t i j (CSeq c1 c2) = CSeq (perm t i j c1) (perm t i j c2)" |
|
|
1005 |
"perm t i j (CLocal c) = CLocal (perm (t + 1) (i + 1) (j + 1) c)"
|
|
1006 |
|
|
1007 |
definition "map_idx f sts = map (\<lambda> k. sts!(f (nat k))) [0 .. int (length sts) - 1]"
|
|
1008 |
|
|
1009 |
definition "perm_s i j sts = map_idx (perm_b (length sts) i j) sts"
|
|
1010 |
|
|
1011 |
fun lift_es :: "(tstate list \<times> nat) list \<Rightarrow> tstate list \<Rightarrow> tstate list" where
|
|
1012 |
"lift_es [] env = env"
|
|
1013 |
| "lift_es ((env', t)#ops) env = lift_es ops (take t env @ env' @ drop t env)"
|
|
1014 |
|
|
1015 |
fun lift_ss :: "(tstate list \<times> nat) list \<Rightarrow> status list \<Rightarrow> status list" where
|
|
1016 |
"lift_ss [] sts = sts"
|
|
1017 |
| "lift_ss ((env', t)#ops) sts = lift_ss ops (take t sts @ map (\<lambda> x. Free) env' @ drop t sts)"
|
|
1018 |
|
|
1019 |
|
|
1020 |
fun lift_ts :: "(nat \<times> nat) list \<Rightarrow> cpg \<Rightarrow> cpg" where
|
|
1021 |
"lift_ts [] cpg = cpg"
|
|
1022 |
| "lift_ts ((lenv, t)#ops) cpg = lift_ts ops (lift_t t lenv cpg)"
|
|
1023 |
|
|
1024 |
fun perm_ss :: "(nat \<times> nat) list \<Rightarrow> 'a list \<Rightarrow> 'a list" where
|
|
1025 |
"perm_ss [] env = env"
|
|
1026 |
| "perm_ss ((i, j)#ops) env = perm_ss ops (perm_s i j env)"
|
|
1027 |
|
|
1028 |
fun perms :: "nat => (nat \<times> nat) list \<Rightarrow> cpg \<Rightarrow> cpg" where
|
|
1029 |
"perms n [] cpg = cpg"
|
|
1030 |
| "perms n ((i, j)#ops) cpg = perms n ops (perm n i j cpg)"
|
|
1031 |
|
|
1032 |
definition
|
|
1033 |
"adjust_cpg len sps lfs cpg = lift_ts lfs (perms len sps cpg)"
|
|
1034 |
|
|
1035 |
definition
|
|
1036 |
"red_lfs lfs = map (apfst length) lfs"
|
|
1037 |
|
|
1038 |
definition
|
|
1039 |
"adjust_env sps lfs env = lift_es lfs (perm_ss sps env)"
|
|
1040 |
|
|
1041 |
definition
|
|
1042 |
"adjust_sts sps lfs sts = lift_ss lfs (perm_ss sps sts)"
|
|
1043 |
|
|
1044 |
fun sts_disj_test :: "status list \<Rightarrow> status list \<Rightarrow> bool" where
|
|
1045 |
"sts_disj_test [] [] = True"
|
|
1046 |
| "sts_disj_test [] (s#ss) = False"
|
|
1047 |
| "sts_disj_test (s#ss) [] = False"
|
|
1048 |
| "sts_disj_test (s1#ss1) (s2#ss2) = (case (s1, s2) of
|
|
1049 |
(Bound, Bound) \<Rightarrow> False
|
|
1050 |
| _ \<Rightarrow> sts_disj_test ss1 ss2)"
|
|
1051 |
|
|
1052 |
lemma inj_perm_b: "inj (perm_b t i j)"
|
|
1053 |
proof(induct rule:injI)
|
|
1054 |
case (1 x y)
|
|
1055 |
thus ?case
|
|
1056 |
by (unfold perm_b_def, auto split:if_splits)
|
|
1057 |
qed
|
|
1058 |
|
|
1059 |
lemma lift_wf_cpg_test:
|
|
1060 |
assumes "wf_cpg_test sts cpg = (True, sts')"
|
|
1061 |
shows "wf_cpg_test (take t sts @ sts0 @ drop t sts) (lift_t t (length sts0) cpg) =
|
|
1062 |
(True, take t sts' @ sts0 @ drop t sts')"
|
|
1063 |
using assms
|
|
1064 |
proof(induct cpg arbitrary:t sts0 sts sts')
|
|
1065 |
case (CInstr instr t sts0 sts sts')
|
|
1066 |
obtain a0 l0 a1 l1 where eq_instr: "instr = ((a0, St l0), (a1, St l1))"
|
|
1067 |
by (metis surj_pair tstate.exhaust)
|
|
1068 |
from CInstr
|
|
1069 |
show ?case
|
|
1070 |
by (auto simp:eq_instr lift_b_def)
|
|
1071 |
next
|
|
1072 |
case (CLabel l t sts0 sts sts')
|
|
1073 |
thus ?case
|
|
1074 |
apply (auto simp:lift_b_def
|
|
1075 |
replicate_nth replicate_update l_n_v_orig l_n_v_s)
|
|
1076 |
apply (metis (mono_tags) diff_diff_cancel length_drop length_rev
|
|
1077 |
linear not_less nth_append nth_take rev_take take_all)
|
|
1078 |
by (simp add:l_n_v_s1)
|
|
1079 |
next
|
|
1080 |
case (CSeq c1 c2 sts0 sts sts')
|
|
1081 |
thus ?case
|
|
1082 |
by (auto simp: lift0_def lift_b_def split:prod.splits)
|
|
1083 |
next
|
|
1084 |
case (CLocal body t sts0 sts sts')
|
|
1085 |
from this(2) obtain sts1 where h: "wf_cpg_test (Free # sts) body = (True, sts1)" "tl sts1 = sts'"
|
|
1086 |
by (auto simp:lift0_def lift_b_def split:prod.splits)
|
|
1087 |
let ?lift_s = "\<lambda> t sts. take t sts @ sts0 @ drop t sts"
|
|
1088 |
have eq_lift_1: "(?lift_s (Suc t) (Free # sts)) = Free#?lift_s t sts"
|
|
1089 |
by (simp)
|
|
1090 |
from wf_cpg_test_le[OF h(1)] have "length (Free#sts) = length sts1"
|
|
1091 |
by (unfold less_eq_list_def, simp)
|
|
1092 |
hence eq_sts1: "sts1 = hd sts1 # tl sts1"
|
|
1093 |
by (metis append_Nil append_eq_conv_conj hd.simps list.exhaust tl.simps(2))
|
|
1094 |
from CLocal(1)[OF h(1), of "Suc t", of "sts0", unfolded eq_lift_1]
|
|
1095 |
show ?case
|
|
1096 |
apply (simp, subst eq_sts1, simp)
|
|
1097 |
apply (simp add:h(2))
|
|
1098 |
by (subst eq_sts1, simp add:h(2))
|
|
1099 |
qed
|
|
1100 |
|
|
1101 |
lemma lift_c2t:
|
|
1102 |
assumes "wf_cpg_test sts cpg = (True, sts')"
|
|
1103 |
and "length env = length sts"
|
|
1104 |
shows "c2t (take t env @ es @ drop t env) (lift_t t (length es) cpg) =
|
|
1105 |
c2t env cpg"
|
|
1106 |
using assms
|
|
1107 |
proof(induct cpg arbitrary: t env es sts sts')
|
|
1108 |
case (CInstr instr t env es sts sts')
|
|
1109 |
obtain a0 l0 a1 l1 where eq_instr: "instr = ((a0, St l0), (a1, St l1))"
|
|
1110 |
by (metis nat_of.cases surj_pair)
|
|
1111 |
from CInstr have h: "l0 < length env" "l1 < length env"
|
|
1112 |
by (auto simp:eq_instr)
|
|
1113 |
with CInstr(2)
|
|
1114 |
show ?case
|
|
1115 |
by (auto simp:eq_instr lift_b_def l_n_v_orig l_n_v_s2 l_n_v_s3)
|
|
1116 |
next
|
|
1117 |
case (CLabel l t env es sts sts')
|
|
1118 |
thus ?case
|
|
1119 |
by (auto simp:lift_b_def
|
|
1120 |
replicate_nth replicate_update l_n_v_orig l_n_v_s3)
|
|
1121 |
next
|
|
1122 |
case (CSeq c1 c2 t env es sts sts')
|
|
1123 |
from CSeq(3) obtain sts1
|
|
1124 |
where h: "wf_cpg_test sts c1 = (True, sts1)" "wf_cpg_test sts1 c2 = (True, sts')"
|
|
1125 |
by (auto split:prod.splits)
|
|
1126 |
from wf_cpg_test_le[OF h(1)] have "length sts = length sts1"
|
|
1127 |
by (auto simp:less_eq_list_def)
|
|
1128 |
from CSeq(4)[unfolded this] have eq_len_env: "length env = length sts1" .
|
|
1129 |
from CSeq(1)[OF h(1) CSeq(4)]
|
|
1130 |
CSeq(2)[OF h(2) eq_len_env]
|
|
1131 |
show ?case
|
|
1132 |
by (auto simp: lift0_def lift_b_def split:prod.splits)
|
|
1133 |
next
|
|
1134 |
case (CLocal body t env es sts sts')
|
|
1135 |
{ fix x
|
|
1136 |
from CLocal(2)
|
|
1137 |
obtain sts1 where h1: "wf_cpg_test (Free # sts) body = (True, sts1)"
|
|
1138 |
by (auto split:prod.splits)
|
|
1139 |
from CLocal(3) have "length (x#env) = length (Free # sts)" by simp
|
|
1140 |
from CLocal(1)[OF h1 this, of "Suc t"]
|
|
1141 |
have "c2t (x # take t env @ es @ drop t env) (lift_t (Suc t) (length es) body) =
|
|
1142 |
c2t (x # env) body"
|
|
1143 |
by simp
|
|
1144 |
} thus ?case by simp
|
|
1145 |
qed
|
|
1146 |
|
|
1147 |
lemma upto_len: "length [i .. j] = (if j < i then 0 else (nat (j - i + 1)))"
|
|
1148 |
proof(induct i j rule:upto.induct)
|
|
1149 |
case (1 i j)
|
|
1150 |
show ?case
|
|
1151 |
proof(cases "j < i")
|
|
1152 |
case True
|
|
1153 |
thus ?thesis by simp
|
|
1154 |
next
|
|
1155 |
case False
|
|
1156 |
hence eq_ij: "[i..j] = i # [i + 1..j]" by (simp add:upto.simps)
|
|
1157 |
from 1 False
|
|
1158 |
show ?thesis
|
|
1159 |
by (auto simp:eq_ij)
|
|
1160 |
qed
|
|
1161 |
qed
|
|
1162 |
|
|
1163 |
lemma upto_append:
|
|
1164 |
assumes "x \<le> y + 1"
|
|
1165 |
shows "[x .. y + 1] = [x .. y]@[y + 1]"
|
|
1166 |
using assms
|
|
1167 |
by (induct x y rule:upto.induct, auto simp:upto.simps)
|
|
1168 |
|
|
1169 |
lemma nth_upto:
|
|
1170 |
assumes "l < length sts"
|
|
1171 |
shows "[0..(int (length sts)) - 1]!l = int l"
|
|
1172 |
using assms
|
|
1173 |
proof(induct sts arbitrary:l)
|
|
1174 |
case Nil
|
|
1175 |
thus ?case by simp
|
|
1176 |
next
|
|
1177 |
case (Cons s sts l)
|
|
1178 |
from Cons(2)
|
|
1179 |
have "0 \<le> (int (length sts) - 1) + 1" by auto
|
|
1180 |
from upto_append[OF this]
|
|
1181 |
have eq_upto: "[0..int (length sts)] = [0..int (length sts) - 1] @ [int (length sts)]"
|
|
1182 |
by simp
|
|
1183 |
show ?case
|
|
1184 |
proof(cases "l < length sts")
|
|
1185 |
case True
|
|
1186 |
with Cons(1)[OF True] eq_upto
|
|
1187 |
show ?thesis
|
|
1188 |
apply simp
|
|
1189 |
by (smt nth_append take_eq_Nil upto_len)
|
|
1190 |
next
|
|
1191 |
case False
|
|
1192 |
with Cons(2) have eq_l: "l = length sts" by simp
|
|
1193 |
show ?thesis
|
|
1194 |
proof(cases sts)
|
|
1195 |
case (Cons x xs)
|
|
1196 |
have "[0..1 + int (length xs)] = [0 .. int (length xs)]@[1 + int (length xs)]"
|
|
1197 |
by (smt upto_append)
|
|
1198 |
moreover have "length [0 .. int (length xs)] = Suc (length xs)"
|
|
1199 |
by (smt upto_len)
|
|
1200 |
moreover note Cons
|
|
1201 |
ultimately show ?thesis
|
|
1202 |
apply (simp add:eq_l)
|
|
1203 |
by (smt nth_Cons' nth_append)
|
|
1204 |
qed (simp add:upto_len upto.simps eq_l)
|
|
1205 |
qed
|
|
1206 |
qed
|
|
1207 |
|
|
1208 |
lemma map_idx_idx:
|
|
1209 |
assumes "l < length sts"
|
|
1210 |
shows "(map_idx f sts)!l = sts!(f l)"
|
|
1211 |
proof -
|
|
1212 |
from assms have lt_l: "l < length [0..int (length sts) - 1]"
|
|
1213 |
by (smt upto_len)
|
|
1214 |
show ?thesis
|
|
1215 |
apply (unfold map_idx_def nth_map[OF lt_l])
|
|
1216 |
by (metis assms nat_int nth_upto)
|
|
1217 |
qed
|
|
1218 |
|
|
1219 |
lemma map_idx_len: "length (map_idx f sts) = length sts"
|
|
1220 |
apply (unfold map_idx_def)
|
|
1221 |
by (smt length_map upto_len)
|
|
1222 |
|
|
1223 |
lemma map_idx_eq:
|
|
1224 |
assumes "\<forall> l < length sts. f l = g l"
|
|
1225 |
shows "map_idx f sts = map_idx g sts"
|
|
1226 |
proof(induct rule: nth_equalityI)
|
|
1227 |
case 1
|
|
1228 |
show "length (map_idx f sts) = length (map_idx g sts)"
|
|
1229 |
by (metis map_idx_len)
|
|
1230 |
next
|
|
1231 |
case 2
|
|
1232 |
{ fix l
|
|
1233 |
assume "l < length (map_idx f sts)"
|
|
1234 |
hence "l < length sts"
|
|
1235 |
by (metis map_idx_len)
|
|
1236 |
from map_idx_idx[OF this] and assms and this
|
|
1237 |
have "map_idx f sts ! l = map_idx g sts ! l"
|
|
1238 |
by (smt list_eq_iff_nth_eq map_idx_idx map_idx_len)
|
|
1239 |
} thus ?case by auto
|
|
1240 |
qed
|
|
1241 |
|
|
1242 |
lemma perm_s_commut: "perm_s i j sts = perm_s j i sts"
|
|
1243 |
apply (unfold perm_s_def, rule map_idx_eq, unfold perm_b_def)
|
|
1244 |
by smt
|
|
1245 |
|
|
1246 |
lemma map_idx_id: "map_idx id sts = sts"
|
|
1247 |
proof(induct rule:nth_equalityI)
|
|
1248 |
case 1
|
|
1249 |
from map_idx_len show "length (map_idx id sts) = length sts" .
|
|
1250 |
next
|
|
1251 |
case 2
|
|
1252 |
{ fix l
|
|
1253 |
assume "l < length (map_idx id sts)"
|
|
1254 |
from map_idx_idx[OF this[unfolded map_idx_len]]
|
|
1255 |
have "map_idx id sts ! l = sts ! l" by simp
|
|
1256 |
} thus ?case by auto
|
|
1257 |
qed
|
|
1258 |
|
|
1259 |
lemma perm_s_lt_i:
|
|
1260 |
assumes "\<not> i < length sts"
|
|
1261 |
shows "perm_s i j sts = sts"
|
|
1262 |
proof -
|
|
1263 |
have "map_idx (perm_b (length sts) i j) sts = map_idx id sts"
|
|
1264 |
proof(rule map_idx_eq, default, clarsimp)
|
|
1265 |
fix l
|
|
1266 |
assume "l < length sts"
|
|
1267 |
with assms
|
|
1268 |
show "perm_b (length sts) i j l = l"
|
|
1269 |
by (unfold perm_b_def, auto)
|
|
1270 |
qed
|
|
1271 |
with map_idx_id
|
|
1272 |
have "map_idx (perm_b (length sts) i j) sts = sts" by simp
|
|
1273 |
thus ?thesis by (simp add:perm_s_def)
|
|
1274 |
qed
|
|
1275 |
|
|
1276 |
lemma perm_s_lt:
|
|
1277 |
assumes "\<not> i < length sts \<or> \<not> j < length sts"
|
|
1278 |
shows "perm_s i j sts = sts"
|
|
1279 |
using assms
|
|
1280 |
proof
|
|
1281 |
assume "\<not> i < length sts"
|
|
1282 |
from perm_s_lt_i[OF this] show ?thesis .
|
|
1283 |
next
|
|
1284 |
assume "\<not> j < length sts"
|
|
1285 |
from perm_s_lt_i[OF this, of i, unfolded perm_s_commut]
|
|
1286 |
show ?thesis .
|
|
1287 |
qed
|
|
1288 |
|
|
1289 |
lemma perm_s_update_i:
|
|
1290 |
assumes "i < length sts"
|
|
1291 |
and "j < length sts"
|
|
1292 |
shows "sts ! i = perm_s i j sts ! j"
|
|
1293 |
proof -
|
|
1294 |
from map_idx_idx[OF assms(2)]
|
|
1295 |
have "map_idx (perm_b (length sts) i j) sts ! j = sts!(perm_b (length sts) i j j)" .
|
|
1296 |
with assms
|
|
1297 |
show ?thesis
|
|
1298 |
by (auto simp:perm_s_def perm_b_def)
|
|
1299 |
qed
|
|
1300 |
|
|
1301 |
lemma nth_perm_s_neq:
|
|
1302 |
assumes "l \<noteq> j"
|
|
1303 |
and "l \<noteq> i"
|
|
1304 |
and "l < length sts"
|
|
1305 |
shows "sts ! l = perm_s i j sts ! l"
|
|
1306 |
proof -
|
|
1307 |
have "map_idx (perm_b (length sts) i j) sts ! l = sts!(perm_b (length sts) i j l)"
|
|
1308 |
by (metis assms(3) map_idx_def map_idx_idx)
|
|
1309 |
with assms
|
|
1310 |
show ?thesis
|
|
1311 |
by (unfold perm_s_def perm_b_def, auto)
|
|
1312 |
qed
|
|
1313 |
|
|
1314 |
lemma map_idx_update:
|
|
1315 |
assumes "f j = i"
|
|
1316 |
and "inj f"
|
|
1317 |
and "i < length sts"
|
|
1318 |
and "j < length sts"
|
|
1319 |
shows "map_idx f (sts[i:=v]) = map_idx f sts[j := v]"
|
|
1320 |
proof(induct rule:nth_equalityI)
|
|
1321 |
case 1
|
|
1322 |
show "length (map_idx f (sts[i := v])) = length (map_idx f sts[j := v])"
|
|
1323 |
by (metis length_list_update map_idx_len)
|
|
1324 |
next
|
|
1325 |
case 2
|
|
1326 |
{ fix l
|
|
1327 |
assume lt_l: "l < length (map_idx f (sts[i := v]))"
|
|
1328 |
have eq_nth: "sts[i := v] ! f l = map_idx f sts[j := v] ! l"
|
|
1329 |
proof(cases "f l = i")
|
|
1330 |
case False
|
|
1331 |
from lt_l have "l < length sts"
|
|
1332 |
by (metis length_list_update map_idx_len)
|
|
1333 |
from map_idx_idx[OF this, of f] have " map_idx f sts ! l = sts ! f l" .
|
|
1334 |
moreover from False assms have "l \<noteq> j" by auto
|
|
1335 |
moreover note False
|
|
1336 |
ultimately show ?thesis by simp
|
|
1337 |
next
|
|
1338 |
case True
|
|
1339 |
with assms have eq_l: "l = j"
|
|
1340 |
by (metis inj_eq)
|
|
1341 |
moreover from lt_l eq_l
|
|
1342 |
have "j < length (map_idx f sts[j := v])"
|
|
1343 |
by (metis length_list_update map_idx_len)
|
|
1344 |
moreover note True assms
|
|
1345 |
ultimately show ?thesis by simp
|
|
1346 |
qed
|
|
1347 |
from lt_l have "l < length (sts[i := v])"
|
|
1348 |
by (metis map_idx_len)
|
|
1349 |
from map_idx_idx[OF this] eq_nth
|
|
1350 |
have "map_idx f (sts[i := v]) ! l = map_idx f sts[j := v] ! l" by simp
|
|
1351 |
} thus ?case by auto
|
|
1352 |
qed
|
|
1353 |
|
|
1354 |
lemma perm_s_update:
|
|
1355 |
assumes "i < length sts"
|
|
1356 |
and "j < length sts"
|
|
1357 |
shows "(perm_s i j sts)[i := v] = perm_s i j (sts[j := v])"
|
|
1358 |
proof -
|
|
1359 |
have "map_idx (perm_b (length (sts[j := v])) i j) (sts[j := v]) =
|
|
1360 |
map_idx (perm_b (length (sts[j := v])) i j) sts[i := v]"
|
|
1361 |
proof(rule map_idx_update[OF _ _ assms(2, 1)])
|
|
1362 |
from inj_perm_b show "inj (perm_b (length (sts[j := v])) i j)" .
|
|
1363 |
next
|
|
1364 |
from assms show "perm_b (length (sts[j := v])) i j i = j"
|
|
1365 |
by (auto simp:perm_b_def)
|
|
1366 |
qed
|
|
1367 |
hence "map_idx (perm_b (length sts) i j) sts[i := v] =
|
|
1368 |
map_idx (perm_b (length (sts[j := v])) i j) (sts[j := v])"
|
|
1369 |
by simp
|
|
1370 |
thus ?thesis by (simp add:perm_s_def)
|
|
1371 |
qed
|
|
1372 |
|
|
1373 |
lemma perm_s_len: "length (perm_s i j sts') = length sts'"
|
|
1374 |
apply (unfold perm_s_def map_idx_def)
|
|
1375 |
by (smt Nil_is_map_conv length_0_conv length_greater_0_conv length_map neq_if_length_neq upto_len)
|
|
1376 |
|
|
1377 |
lemma perm_s_update_neq:
|
|
1378 |
assumes "l \<noteq> i"
|
|
1379 |
and "l \<noteq> j"
|
|
1380 |
shows "perm_s i j sts[l := v] = perm_s i j (sts[l := v])"
|
|
1381 |
proof(cases "i < length sts \<and> j < length sts")
|
|
1382 |
case False
|
|
1383 |
with perm_s_lt have "perm_s i j sts = sts" by auto
|
|
1384 |
moreover have "perm_s i j (sts[l:=v]) = sts[l:=v]"
|
|
1385 |
proof -
|
|
1386 |
have "length (sts[l:=v]) = length sts" by auto
|
|
1387 |
from False[folded this] perm_s_lt
|
|
1388 |
show ?thesis by metis
|
|
1389 |
qed
|
|
1390 |
ultimately show ?thesis by simp
|
|
1391 |
next
|
|
1392 |
case True
|
|
1393 |
note lt_ij = this
|
|
1394 |
show ?thesis
|
|
1395 |
proof(cases "l < length sts")
|
|
1396 |
case False
|
|
1397 |
hence "sts[l:=v] = sts" by auto
|
|
1398 |
moreover have "perm_s i j sts[l := v] = perm_s i j sts"
|
|
1399 |
proof -
|
|
1400 |
from False and perm_s_len
|
|
1401 |
have "\<not> l < length (perm_s i j sts)" by metis
|
|
1402 |
thus ?thesis by auto
|
|
1403 |
qed
|
|
1404 |
ultimately show ?thesis by simp
|
|
1405 |
next
|
|
1406 |
case True
|
|
1407 |
show ?thesis
|
|
1408 |
proof -
|
|
1409 |
have "map_idx (perm_b (length (sts[l := v])) i j) (sts[l := v]) =
|
|
1410 |
map_idx (perm_b (length (sts[l := v])) i j) sts[l := v]"
|
|
1411 |
proof(induct rule:map_idx_update [OF _ inj_perm_b True True])
|
|
1412 |
case 1
|
|
1413 |
from assms lt_ij
|
|
1414 |
show ?case
|
|
1415 |
by (unfold perm_b_def, auto)
|
|
1416 |
qed
|
|
1417 |
thus ?thesis
|
|
1418 |
by (unfold perm_s_def, simp)
|
|
1419 |
qed
|
|
1420 |
qed
|
|
1421 |
qed
|
|
1422 |
|
|
1423 |
lemma perm_sb: "(perm_s i j sts)[perm_b (length sts) i j l := v] = perm_s i j (sts[l := v])"
|
|
1424 |
apply(subst perm_b_def, auto simp:perm_s_len perm_s_lt perm_s_update)
|
|
1425 |
apply (subst perm_s_commut, subst (2) perm_s_commut, rule_tac perm_s_update, auto)
|
|
1426 |
by (rule_tac perm_s_update_neq, auto)
|
|
1427 |
|
|
1428 |
lemma perm_s_id: "perm_s i i sts = sts" (is "?L = ?R")
|
|
1429 |
proof -
|
|
1430 |
from map_idx_id have "?R = map_idx id sts" by metis
|
|
1431 |
also have "\<dots> = ?L"
|
|
1432 |
by (unfold perm_s_def, rule map_idx_eq, unfold perm_b_def, auto)
|
|
1433 |
finally show ?thesis by simp
|
|
1434 |
qed
|
|
1435 |
|
|
1436 |
lemma upto_map:
|
|
1437 |
assumes "i \<le> j"
|
|
1438 |
shows "[i .. j] = i # map (\<lambda> x. x + 1) [i .. (j - 1)]"
|
|
1439 |
using assms
|
|
1440 |
proof(induct i j rule:upto.induct)
|
|
1441 |
case (1 i j)
|
|
1442 |
show ?case (is "?L = ?R")
|
|
1443 |
proof -
|
|
1444 |
from 1(2)
|
|
1445 |
have eq_l: "?L = i # [i+1 .. j]" by (simp add:upto.simps)
|
|
1446 |
show ?thesis
|
|
1447 |
proof(cases "i + 1 \<le> j")
|
|
1448 |
case False
|
|
1449 |
with eq_l show ?thesis by (auto simp:upto.simps)
|
|
1450 |
next
|
|
1451 |
case True
|
|
1452 |
have "[i + 1..j] = map (\<lambda>x. x + 1) [i..j - 1]"
|
|
1453 |
by (smt "1.hyps" Cons_eq_map_conv True upto.simps)
|
|
1454 |
with eq_l
|
|
1455 |
show ?thesis by simp
|
|
1456 |
qed
|
|
1457 |
qed
|
|
1458 |
qed
|
|
1459 |
|
|
1460 |
lemma perm_s_cons: "(perm_s (Suc i) (Suc j) (s # sts)) = s#perm_s i j sts"
|
|
1461 |
proof -
|
|
1462 |
have le_0: "0 \<le> int (length (s # sts)) - 1" by simp
|
|
1463 |
have "map (\<lambda>k. (s # sts) ! perm_b (length (s # sts)) (Suc i) (Suc j) (nat k))
|
|
1464 |
[0..int (length (s # sts)) - 1] =
|
|
1465 |
s # map (\<lambda>k. sts ! perm_b (length sts) i j (nat k)) [0..int (length sts) - 1]"
|
|
1466 |
by (unfold upto_map[OF le_0], auto simp:perm_b_def, smt+)
|
|
1467 |
thus ?thesis by (unfold perm_s_def map_idx_def, simp)
|
|
1468 |
qed
|
|
1469 |
|
|
1470 |
lemma perm_wf_cpg_test:
|
|
1471 |
assumes "wf_cpg_test sts cpg = (True, sts')"
|
|
1472 |
shows "wf_cpg_test (perm_s i j sts) (perm (length sts) i j cpg) =
|
|
1473 |
(True, perm_s i j sts')"
|
|
1474 |
using assms
|
|
1475 |
proof(induct cpg arbitrary:t i j sts sts')
|
|
1476 |
case (CInstr instr i j sts sts')
|
|
1477 |
obtain a0 l0 a1 l1 where eq_instr: "instr = ((a0, St l0), (a1, St l1))"
|
|
1478 |
by (metis surj_pair tstate.exhaust)
|
|
1479 |
from CInstr
|
|
1480 |
show ?case
|
|
1481 |
apply (unfold eq_instr, clarsimp)
|
|
1482 |
by (unfold perm_s_len perm_b_def, clarsimp)
|
|
1483 |
next
|
|
1484 |
case (CLabel l i j sts sts')
|
|
1485 |
have "(perm_s i j sts)[perm_b (length sts) i j l := Bound] = perm_s i j (sts[l := Bound])"
|
|
1486 |
by (metis perm_sb)
|
|
1487 |
with CLabel
|
|
1488 |
show ?case
|
|
1489 |
apply (auto simp:perm_s_len perm_sb)
|
|
1490 |
apply (subst perm_b_def, auto simp:perm_sb)
|
|
1491 |
apply (subst perm_b_def, auto simp:perm_s_lt perm_s_update_i)
|
|
1492 |
apply (unfold perm_s_id, subst perm_s_commut, simp add: perm_s_update_i[symmetric])
|
|
1493 |
apply (simp add:perm_s_update_i[symmetric])
|
|
1494 |
by (simp add: nth_perm_s_neq[symmetric])
|
|
1495 |
next
|
|
1496 |
case (CSeq c1 c2 i j sts sts')
|
|
1497 |
thus ?case
|
|
1498 |
apply (auto split:prod.splits)
|
|
1499 |
apply (metis (hide_lams, no_types) less_eq_list_def prod.inject wf_cpg_test_le)
|
|
1500 |
by (metis (hide_lams, no_types) less_eq_list_def prod.inject wf_cpg_test_le)
|
|
1501 |
next
|
|
1502 |
case (CLocal body i j sts sts')
|
|
1503 |
from this(2) obtain sts1 where h: "wf_cpg_test (Free # sts) body = (True, sts1)" "tl sts1 = sts'"
|
|
1504 |
by (auto simp:lift0_def lift_b_def split:prod.splits)
|
|
1505 |
from wf_cpg_test_le[OF h(1)] have "length (Free#sts) = length sts1"
|
|
1506 |
by (unfold less_eq_list_def, simp)
|
|
1507 |
hence eq_sts1: "sts1 = hd sts1 # tl sts1"
|
|
1508 |
by (metis append_Nil append_eq_conv_conj hd.simps list.exhaust tl.simps(2))
|
|
1509 |
from CLocal(1)[OF h(1), of "Suc i" "Suc j"] h(2) eq_sts1
|
|
1510 |
show ?case
|
|
1511 |
apply (auto split:prod.splits simp:perm_s_cons)
|
|
1512 |
by (metis perm_s_cons tl.simps(2))
|
|
1513 |
qed
|
|
1514 |
|
|
1515 |
lemma nth_perm_sb:
|
|
1516 |
assumes "l0 < length env"
|
|
1517 |
shows "perm_s i j env ! perm_b (length env) i j l0 = env ! l0"
|
|
1518 |
by (metis assms nth_perm_s_neq perm_b_def perm_s_commut perm_s_lt perm_s_update_i)
|
|
1519 |
|
|
1520 |
|
|
1521 |
lemma perm_c2t:
|
|
1522 |
assumes "wf_cpg_test sts cpg = (True, sts')"
|
|
1523 |
and "length env = length sts"
|
|
1524 |
shows "c2t (perm_s i j env) (perm (length env) i j cpg) =
|
|
1525 |
c2t env cpg"
|
|
1526 |
using assms
|
|
1527 |
proof(induct cpg arbitrary:i j env sts sts')
|
|
1528 |
case (CInstr instr i j env sts sts')
|
|
1529 |
obtain a0 l0 a1 l1 where eq_instr: "instr = ((a0, St l0), (a1, St l1))"
|
|
1530 |
by (metis surj_pair tstate.exhaust)
|
|
1531 |
from CInstr have h: "l0 < length env" "l1 < length env"
|
|
1532 |
by (auto simp:eq_instr)
|
|
1533 |
with CInstr(2)
|
|
1534 |
show ?case
|
|
1535 |
apply (auto simp:eq_instr)
|
|
1536 |
by (metis nth_perm_sb)+
|
|
1537 |
next
|
|
1538 |
case (CLabel l t env es sts sts')
|
|
1539 |
thus ?case
|
|
1540 |
apply (auto)
|
|
1541 |
by (metis nth_perm_sb)
|
|
1542 |
next
|
|
1543 |
case (CSeq c1 c2 i j env sts sts')
|
|
1544 |
from CSeq(3) obtain sts1
|
|
1545 |
where h: "wf_cpg_test sts c1 = (True, sts1)" "wf_cpg_test sts1 c2 = (True, sts')"
|
|
1546 |
by (auto split:prod.splits)
|
|
1547 |
from wf_cpg_test_le[OF h(1)] have "length sts = length sts1"
|
|
1548 |
by (auto simp:less_eq_list_def)
|
|
1549 |
from CSeq(4)[unfolded this] have eq_len_env: "length env = length sts1" .
|
|
1550 |
from CSeq(1)[OF h(1) CSeq(4)]
|
|
1551 |
CSeq(2)[OF h(2) eq_len_env]
|
|
1552 |
show ?case by auto
|
|
1553 |
next
|
|
1554 |
case (CLocal body i j env sts sts')
|
|
1555 |
{ fix x
|
|
1556 |
from CLocal(2, 3)
|
|
1557 |
obtain sts1 where "wf_cpg_test (Free # sts) body = (True, sts1)"
|
|
1558 |
"length (x#env) = length (Free # sts)"
|
|
1559 |
by (auto split:prod.splits)
|
|
1560 |
from CLocal(1)[OF this]
|
|
1561 |
have "(c2t (x # perm_s i j env) (perm (Suc (length env)) (Suc i) (Suc j) body)) =
|
|
1562 |
(c2t (x # env) body)"
|
|
1563 |
by (metis Suc_length_conv perm_s_cons)
|
|
1564 |
} thus ?case by simp
|
|
1565 |
qed
|
|
1566 |
|
|
1567 |
lemma wf_cpg_test_disj_aux1:
|
|
1568 |
assumes "sts_disj sts1 (sts[l := Bound] - sts)"
|
|
1569 |
"l < length sts"
|
|
1570 |
"sts ! l = Free"
|
|
1571 |
shows "(sts1 + sts) ! l = Free"
|
|
1572 |
proof -
|
|
1573 |
from assms(1)[unfolded sts_disj_def]
|
|
1574 |
have h: "length sts1 = length (sts[l := Bound] - sts)"
|
|
1575 |
"(\<forall>i<length sts1. \<not> (sts1 ! i = Bound \<and> (sts[l := Bound] - sts) ! i = Bound))"
|
|
1576 |
by auto
|
|
1577 |
from h(1) assms(2)
|
|
1578 |
have lt_l: "l < length sts1"
|
|
1579 |
"l < length (sts[l := Bound] - sts)"
|
|
1580 |
"l < length (sts1 + sts)"
|
|
1581 |
apply (smt length_list_update minus_list_len)
|
|
1582 |
apply (smt assms(2) length_list_update minus_list_len)
|
|
1583 |
by (smt assms(2) h(1) length_list_update length_sts_plus minus_list_len)
|
|
1584 |
from h(2)[rule_format, of l, OF this(1)]
|
|
1585 |
have " \<not> (sts1 ! l = Bound \<and> (sts[l := Bound] - sts) ! l = Bound)" .
|
|
1586 |
with assms(3) nth_sts_minus[OF lt_l(2)] nth_sts_plus[OF lt_l(3)] assms(2)
|
|
1587 |
show ?thesis
|
|
1588 |
by (cases "sts1!l", auto)
|
|
1589 |
qed
|
|
1590 |
|
|
1591 |
lemma wf_cpg_test_disj_aux2:
|
|
1592 |
assumes "sts_disj sts1 (sts[l := Bound] - sts)"
|
|
1593 |
" l < length sts"
|
|
1594 |
shows "(sts1 + sts)[l := Bound] = sts1 + sts[l := Bound]"
|
|
1595 |
proof -
|
|
1596 |
from assms have lt_l: "l < length (sts1 + sts[l:=Bound])"
|
|
1597 |
"l < length (sts1 + sts)"
|
|
1598 |
apply (smt length_list_update length_sts_plus minus_list_len sts_disj_def)
|
|
1599 |
by (smt assms(1) assms(2) length_list_update length_sts_plus minus_list_len sts_disj_def)
|
|
1600 |
show ?thesis
|
|
1601 |
proof(induct rule:nth_equalityI)
|
|
1602 |
case 1
|
|
1603 |
show ?case
|
|
1604 |
by (smt assms(1) length_list_update length_sts_plus minus_list_len sts_disj_def)
|
|
1605 |
next
|
|
1606 |
case 2
|
|
1607 |
{ fix i
|
|
1608 |
assume lt_i: "i < length ((sts1 + sts)[l := Bound])"
|
|
1609 |
have " (sts1 + sts)[l := Bound] ! i = (sts1 + sts[l := Bound]) ! i"
|
|
1610 |
proof(cases "i = l")
|
|
1611 |
case True
|
|
1612 |
with nth_sts_plus[OF lt_l(1)] assms(2) nth_sts_plus[OF lt_l(2)] lt_l
|
|
1613 |
show ?thesis
|
|
1614 |
by (cases "sts1 ! l", auto)
|
|
1615 |
next
|
|
1616 |
case False
|
|
1617 |
from lt_i have "i < length (sts1 + sts)" "i < length (sts1 + sts[l := Bound])"
|
|
1618 |
apply auto
|
|
1619 |
by (metis length_list_update plus_list_len)
|
|
1620 |
from nth_sts_plus[OF this(1)] nth_sts_plus[OF this(2)] lt_i lt_l False
|
|
1621 |
show ?thesis
|
|
1622 |
by simp
|
|
1623 |
qed
|
|
1624 |
} thus ?case by auto
|
|
1625 |
qed
|
|
1626 |
qed
|
|
1627 |
|
|
1628 |
lemma sts_list_plus_commut:
|
|
1629 |
shows "sts1 + sts2 = sts2 + (sts1:: status list)"
|
|
1630 |
proof(induct rule:nth_equalityI)
|
|
1631 |
case 1
|
|
1632 |
show ?case
|
|
1633 |
by (metis min_max.inf.commute plus_list_len)
|
|
1634 |
next
|
|
1635 |
case 2
|
|
1636 |
{ fix i
|
|
1637 |
assume lt_i1: "i<length (sts1 + sts2)"
|
|
1638 |
hence lt_i2: "i < length (sts2 + sts1)"
|
|
1639 |
by (smt plus_list_len)
|
|
1640 |
from nth_sts_plus[OF this] nth_sts_plus[OF lt_i1]
|
|
1641 |
have "(sts1 + sts2) ! i = (sts2 + sts1) ! i"
|
|
1642 |
apply simp
|
|
1643 |
apply (cases "sts1!i", cases "sts2!i", auto)
|
|
1644 |
by (cases "sts2!i", auto)
|
|
1645 |
} thus ?case by auto
|
|
1646 |
qed
|
|
1647 |
|
|
1648 |
lemma sts_disj_cons:
|
|
1649 |
assumes "sts_disj sts1 sts2"
|
|
1650 |
shows "sts_disj (Free # sts1) (s # sts2)"
|
|
1651 |
using assms
|
|
1652 |
proof -
|
|
1653 |
from assms
|
|
1654 |
have h: "length sts1 = length sts2"
|
|
1655 |
"(\<forall>i<length sts1. \<not> (sts1 ! i = Bound \<and> sts2 ! i = Bound))"
|
|
1656 |
by (unfold sts_disj_def, auto)
|
|
1657 |
from h(1) have "length (Free # sts1) = length (s # sts2)" by simp
|
|
1658 |
moreover {
|
|
1659 |
fix i
|
|
1660 |
assume lt_i: "i<length (Free # sts1)"
|
|
1661 |
have "\<not> ((Free # sts1) ! i = Bound \<and> (s # sts2) ! i = Bound)"
|
|
1662 |
proof(cases "i")
|
|
1663 |
case 0
|
|
1664 |
thus ?thesis by simp
|
|
1665 |
next
|
|
1666 |
case (Suc k)
|
|
1667 |
from h(2)[rule_format, of k] lt_i[unfolded Suc] Suc
|
|
1668 |
show ?thesis by auto
|
|
1669 |
qed
|
|
1670 |
}
|
|
1671 |
ultimately show ?thesis by (auto simp:sts_disj_def)
|
|
1672 |
qed
|
|
1673 |
|
|
1674 |
lemma sts_disj_uncomb:
|
|
1675 |
assumes "sts_disj sts (sts1 + sts2)"
|
|
1676 |
and "sts_disj sts1 sts2"
|
|
1677 |
shows "sts_disj sts sts1" "sts_disj sts sts2"
|
|
1678 |
using assms
|
|
1679 |
apply (smt assms(1) assms(2) length_sts_plus nth_sts_plus plus_status.simps(2) sts_disj_def)
|
|
1680 |
by (smt assms(1) assms(2) length_sts_plus nth_sts_plus
|
|
1681 |
plus_status.simps(2) sts_disj_def sts_list_plus_commut)
|
|
1682 |
|
|
1683 |
lemma wf_cpg_test_disj:
|
|
1684 |
assumes "wf_cpg_test sts cpg = (True, sts')"
|
|
1685 |
and "sts_disj sts1 (sts' - sts)"
|
|
1686 |
shows "wf_cpg_test (sts1 + sts) cpg = (True, sts1 + sts')"
|
|
1687 |
using assms
|
|
1688 |
proof(induct cpg arbitrary:sts sts1 sts')
|
|
1689 |
case (CInstr instr sts sts1 sts')
|
|
1690 |
obtain a0 l0 a1 l1 where eq_instr: "instr = ((a0, St l0), (a1, St l1))"
|
|
1691 |
by (metis nat_of.cases surj_pair)
|
|
1692 |
with CInstr(1) have h: "l0 < length sts" "l1 < length sts" "sts = sts'" by auto
|
|
1693 |
with CInstr eq_instr
|
|
1694 |
show ?case
|
|
1695 |
apply (auto)
|
|
1696 |
by (smt length_sts_plus minus_list_len sts_disj_def)+
|
|
1697 |
next
|
|
1698 |
case (CLabel l sts sts1 sts')
|
|
1699 |
thus ?case
|
|
1700 |
apply auto
|
|
1701 |
apply (smt length_list_update length_sts_plus minus_list_len sts_disj_def)
|
|
1702 |
by (auto simp: wf_cpg_test_disj_aux1 wf_cpg_test_disj_aux2)
|
|
1703 |
next
|
|
1704 |
case (CSeq c1 c2 sts sts1 sts')
|
|
1705 |
from CSeq(3) obtain sts''
|
|
1706 |
where h: "wf_cpg_test sts c1 = (True, sts'')" "wf_cpg_test sts'' c2 = (True, sts')"
|
|
1707 |
by (auto split:prod.splits)
|
|
1708 |
from wf_cpg_test_le[OF h(1)] have "length sts = length sts''"
|
|
1709 |
by (auto simp:less_eq_list_def)
|
|
1710 |
from sts_le_comb[OF wf_cpg_test_le[OF h(1)] wf_cpg_test_le[OF h(2)]]
|
|
1711 |
have " sts' - sts = (sts'' - sts) + (sts' - sts'')" "sts_disj (sts'' - sts) (sts' - sts'')"
|
|
1712 |
by auto
|
|
1713 |
from sts_disj_uncomb[OF CSeq(4)[unfolded this(1)] this(2)]
|
|
1714 |
have "sts_disj sts1 (sts'' - sts)" "sts_disj sts1 (sts' - sts'')" .
|
|
1715 |
from CSeq(1)[OF h(1) this(1)] CSeq(2)[OF h(2) this(2)]
|
|
1716 |
have "wf_cpg_test (sts1 + sts) c1 = (True, sts1 + sts'')"
|
|
1717 |
"wf_cpg_test (sts1 + sts'') c2 = (True, sts1 + sts')" .
|
|
1718 |
thus ?case
|
|
1719 |
by simp
|
|
1720 |
next
|
|
1721 |
case (CLocal body sts sts1 sts')
|
|
1722 |
from this(2)
|
|
1723 |
obtain sts'' where h: "wf_cpg_test (Free # sts) body = (True, sts'')" "sts' = tl sts''"
|
|
1724 |
by (auto split:prod.splits)
|
|
1725 |
from wf_cpg_test_le[OF h(1), unfolded less_eq_list_def] h(2)
|
|
1726 |
obtain s where eq_sts'': "sts'' = s#sts'"
|
|
1727 |
by (metis Suc_length_conv list.size(4) tl.simps(2))
|
|
1728 |
let ?sts = "Free#sts1"
|
|
1729 |
from CLocal(3) have "sts_disj ?sts (sts'' - (Free # sts))"
|
|
1730 |
apply (unfold eq_sts'', simp)
|
|
1731 |
by (metis sts_disj_cons)
|
|
1732 |
from CLocal(1)[OF h(1) this] eq_sts''
|
|
1733 |
show ?case
|
|
1734 |
by (auto split:prod.splits)
|
|
1735 |
qed
|
|
1736 |
|
|
1737 |
lemma sts_disj_free:
|
|
1738 |
assumes "list_all (op = Free) sts"
|
|
1739 |
and "length sts' = length sts"
|
|
1740 |
shows "sts_disj sts' sts"
|
|
1741 |
by (metis (full_types) assms(1) assms(2) list_all_length
|
|
1742 |
status.distinct(1) sts_disj_def)
|
|
1743 |
|
|
1744 |
lemma all_free_plus:
|
|
1745 |
assumes "length sts' = length sts"
|
|
1746 |
and "list_all (op = Free) sts"
|
|
1747 |
shows "sts' + sts = sts'"
|
|
1748 |
using assms
|
|
1749 |
proof(induct sts' arbitrary:sts)
|
|
1750 |
case (Cons s sts' sts)
|
|
1751 |
note cs = Cons
|
|
1752 |
thus ?case
|
|
1753 |
proof(cases "sts")
|
|
1754 |
case (Cons s1 sts1)
|
|
1755 |
with cs
|
|
1756 |
show ?thesis
|
|
1757 |
by (smt list.size(4) list_all_simps(1)
|
|
1758 |
plus_list.simps(3) plus_status.simps(1) sts_list_plus_commut)
|
|
1759 |
qed auto
|
|
1760 |
qed auto
|
|
1761 |
|
|
1762 |
lemma wf_cpg_test_extrapo:
|
|
1763 |
assumes "wf_cpg_test sts cpg = (True, sts)"
|
|
1764 |
and "list_all (op = Free) sts"
|
|
1765 |
and "length sts' = length sts"
|
|
1766 |
shows "wf_cpg_test sts' cpg = (True, sts')"
|
|
1767 |
proof -
|
|
1768 |
have "sts_disj sts' (sts - sts)"
|
|
1769 |
proof(rule sts_disj_free)
|
|
1770 |
from assms(2)
|
|
1771 |
show "list_all (op = Free) (sts - sts)"
|
|
1772 |
by (induct sts, auto)
|
|
1773 |
next
|
|
1774 |
from assms(3) show "length sts' = length (sts - sts)"
|
|
1775 |
by (metis length_sts_plus minus_list_len plus_list_len)
|
|
1776 |
qed
|
|
1777 |
from wf_cpg_test_disj [OF assms(1) this]
|
|
1778 |
have "wf_cpg_test (sts' + sts) cpg = (True, sts' + sts)" .
|
|
1779 |
moreover from all_free_plus[OF assms(3, 2)] have "sts' + sts = sts'" .
|
|
1780 |
finally show ?thesis by simp
|
|
1781 |
qed
|
|
1782 |
|
|
1783 |
lemma perms_wf_cpg_test:
|
|
1784 |
assumes "wf_cpg_test sts cpg = (True, sts')"
|
|
1785 |
shows "wf_cpg_test (perm_ss ops sts) (perms (length sts) ops cpg) =
|
|
1786 |
(True, perm_ss ops sts')"
|
|
1787 |
using assms
|
|
1788 |
proof(induct ops arbitrary:sts cpg sts')
|
|
1789 |
case (Cons sp ops sts cpg sts')
|
|
1790 |
show ?case
|
|
1791 |
proof(cases "sp")
|
|
1792 |
case (Pair i j)
|
|
1793 |
show ?thesis
|
|
1794 |
proof -
|
|
1795 |
let ?sts = "(perm_s i j sts)" and ?cpg = "(perm (length sts) i j cpg)"
|
|
1796 |
and ?sts' = "perm_s i j sts'"
|
|
1797 |
have "wf_cpg_test (perm_ss ops ?sts) (perms (length ?sts) ops ?cpg) =
|
|
1798 |
(True, perm_ss ops ?sts')"
|
|
1799 |
proof(rule Cons(1))
|
|
1800 |
show "wf_cpg_test (perm_s i j sts) (perm (length sts) i j cpg) = (True, perm_s i j sts')"
|
|
1801 |
by (metis Cons.prems perm_wf_cpg_test)
|
|
1802 |
qed
|
|
1803 |
thus ?thesis
|
|
1804 |
apply (unfold Pair)
|
|
1805 |
apply simp
|
|
1806 |
by (metis perm_s_len)
|
|
1807 |
qed
|
|
1808 |
qed
|
|
1809 |
qed auto
|
|
1810 |
|
|
1811 |
lemma perm_ss_len: "length (perm_ss ops xs) = length xs"
|
|
1812 |
proof(induct ops arbitrary:xs)
|
|
1813 |
case (Cons sp ops xs)
|
|
1814 |
show ?case
|
|
1815 |
proof(cases "sp")
|
|
1816 |
case (Pair i j)
|
|
1817 |
show ?thesis
|
|
1818 |
proof -
|
|
1819 |
let ?xs = "(perm_s i j xs)"
|
|
1820 |
have "length (perm_ss ops ?xs) = length ?xs"
|
|
1821 |
by (metis Cons.hyps)
|
|
1822 |
also have "\<dots> = length xs"
|
|
1823 |
by (metis perm_s_len)
|
|
1824 |
finally show ?thesis
|
|
1825 |
by (unfold Pair, simp)
|
|
1826 |
qed
|
|
1827 |
qed
|
|
1828 |
qed auto
|
|
1829 |
|
|
1830 |
lemma perms_c2t:
|
|
1831 |
assumes "wf_cpg_test sts cpg = (True, sts')"
|
|
1832 |
and "length env = length sts"
|
|
1833 |
shows "c2t (perm_ss ops env) (perms (length env) ops cpg) = c2t env cpg"
|
|
1834 |
using assms
|
|
1835 |
proof(induct ops arbitrary:sts cpg sts' env)
|
|
1836 |
case (Cons sp ops sts cpg sts' env)
|
|
1837 |
show ?case
|
|
1838 |
proof(cases "sp")
|
|
1839 |
case (Pair i j)
|
|
1840 |
show ?thesis
|
|
1841 |
proof -
|
|
1842 |
let ?env = "(perm_s i j env)" and ?cpg = "(perm (length env) i j cpg)"
|
|
1843 |
have " c2t (perm_ss ops ?env) (perms (length ?env) ops ?cpg) = c2t ?env ?cpg"
|
|
1844 |
proof(rule Cons(1))
|
|
1845 |
from perm_wf_cpg_test[OF Cons(2), of i j, folded Cons(3)]
|
|
1846 |
show "wf_cpg_test (perm_s i j sts) (perm (length env) i j cpg) = (True, perm_s i j sts')" .
|
|
1847 |
next
|
|
1848 |
show "length (perm_s i j env) = length (perm_s i j sts)"
|
|
1849 |
by (metis Cons.prems(2) perm_s_len)
|
|
1850 |
qed
|
|
1851 |
also have "\<dots> = c2t env cpg"
|
|
1852 |
by (metis Cons.prems(1) Cons.prems(2) perm_c2t)
|
|
1853 |
finally show ?thesis
|
|
1854 |
apply (unfold Pair)
|
|
1855 |
apply simp
|
|
1856 |
by (metis perm_s_len)
|
|
1857 |
qed
|
|
1858 |
qed
|
|
1859 |
qed auto
|
|
1860 |
|
|
1861 |
lemma red_lfs_nil: "red_lfs [] = []"
|
|
1862 |
by (simp add:red_lfs_def)
|
|
1863 |
|
|
1864 |
lemma red_lfs_cons: "red_lfs ((env, t)#lfs) = (length env, t)#(red_lfs lfs)"
|
|
1865 |
by (simp add:red_lfs_def)
|
|
1866 |
|
|
1867 |
lemmas red_lfs_simps [simp] = red_lfs_nil red_lfs_cons
|
|
1868 |
|
|
1869 |
lemma lifts_wf_cpg_test:
|
|
1870 |
assumes "wf_cpg_test sts cpg = (True, sts')"
|
|
1871 |
shows "wf_cpg_test (lift_ss ops sts) (lift_ts (red_lfs ops) cpg)
|
|
1872 |
= (True, lift_ss ops sts')"
|
|
1873 |
using assms
|
|
1874 |
proof(induct ops arbitrary:sts cpg sts')
|
|
1875 |
case (Cons sp ops sts cpg sts')
|
|
1876 |
show ?case
|
|
1877 |
proof(cases "sp")
|
|
1878 |
case (Pair env' t)
|
|
1879 |
thus ?thesis
|
|
1880 |
proof -
|
|
1881 |
let ?sts = "(take t sts @ map (\<lambda>x. Free) env' @ drop t sts)"
|
|
1882 |
and ?sts' = "(take t sts' @ map (\<lambda>x. Free) env' @ drop t sts')"
|
|
1883 |
and ?cpg = "(lift_t t (length env') cpg)"
|
|
1884 |
have "wf_cpg_test (lift_ss ops ?sts) (lift_ts (red_lfs ops) ?cpg) = (True, lift_ss ops ?sts')"
|
|
1885 |
proof(induct rule: Cons(1))
|
|
1886 |
case 1
|
|
1887 |
show ?case
|
|
1888 |
by (metis Cons.prems length_map lift_wf_cpg_test)
|
|
1889 |
qed
|
|
1890 |
thus ?thesis
|
|
1891 |
by (unfold Pair, simp)
|
|
1892 |
qed
|
|
1893 |
qed
|
|
1894 |
qed auto
|
|
1895 |
|
|
1896 |
lemma lifts_c2t:
|
|
1897 |
assumes "wf_cpg_test sts cpg = (True, sts')"
|
|
1898 |
and "length env = length sts"
|
|
1899 |
shows "c2t (lift_es ops env) (lift_ts (red_lfs ops) cpg) = c2t env cpg"
|
|
1900 |
using assms
|
|
1901 |
proof(induct ops arbitrary:sts cpg sts' env)
|
|
1902 |
case (Cons sp ops sts cpg sts' env)
|
|
1903 |
show ?case
|
|
1904 |
proof(cases "sp")
|
|
1905 |
case (Pair env' t)
|
|
1906 |
show ?thesis
|
|
1907 |
proof -
|
|
1908 |
let ?env = "(take t env @ env' @ drop t env)"
|
|
1909 |
and ?cpg = "(lift_t t (length env') cpg)"
|
|
1910 |
have "c2t (lift_es ops ?env) (lift_ts (red_lfs ops) ?cpg) = c2t ?env ?cpg"
|
|
1911 |
proof(rule Cons(1))
|
|
1912 |
from lift_wf_cpg_test[OF Cons(2), of t "map (\<lambda> x. Free) env'", simplified length_map]
|
|
1913 |
show "wf_cpg_test (take t sts @ map (\<lambda>x. Free) env' @ drop t sts)
|
|
1914 |
(lift_t t (length env') cpg) =
|
|
1915 |
(True, take t sts' @ map (\<lambda>x. Free) env' @ drop t sts')" .
|
|
1916 |
next
|
|
1917 |
show "length (take t env @ env' @ drop t env) =
|
|
1918 |
length (take t sts @ map (\<lambda>x. Free) env' @ drop t sts)"
|
|
1919 |
by (metis (full_types) Cons.prems(2) Pair assms(2) length_append
|
|
1920 |
length_drop length_map length_take)
|
|
1921 |
qed
|
|
1922 |
also have "\<dots> = c2t env cpg"
|
|
1923 |
by (metis Cons.prems(1) Cons.prems(2) lift_c2t)
|
|
1924 |
finally show ?thesis
|
|
1925 |
by (unfold Pair, simp)
|
|
1926 |
qed
|
|
1927 |
qed
|
|
1928 |
qed auto
|
|
1929 |
|
|
1930 |
lemma adjust_c2t:
|
|
1931 |
assumes "wf_cpg_test sts cpg = (True, sts')"
|
|
1932 |
and "length env = length sts"
|
|
1933 |
shows "c2t (adjust_env sps lfs env) (adjust_cpg (length sts) sps (red_lfs lfs) cpg) = c2t env cpg"
|
|
1934 |
proof -
|
|
1935 |
let ?cpg = "(perms (length sts) sps cpg)"
|
|
1936 |
and ?env = "(perm_ss sps env)"
|
|
1937 |
have "c2t (lift_es lfs ?env)
|
|
1938 |
(lift_ts (red_lfs lfs) ?cpg) = c2t ?env ?cpg"
|
|
1939 |
proof (rule lifts_c2t)
|
|
1940 |
from perms_wf_cpg_test[OF assms(1), of sps]
|
|
1941 |
show "wf_cpg_test (perm_ss sps sts) (perms (length sts) sps cpg) = (True, perm_ss sps sts')" .
|
|
1942 |
next
|
|
1943 |
show "length (perm_ss sps env) = length (perm_ss sps sts)"
|
|
1944 |
by (metis assms(2) perm_ss_len)
|
|
1945 |
qed
|
|
1946 |
also have "\<dots> = c2t env cpg"
|
|
1947 |
proof(fold assms(2), rule perms_c2t)
|
|
1948 |
from assms(1) show " wf_cpg_test sts cpg = (True, sts')" .
|
|
1949 |
next
|
|
1950 |
from assms(2) show "length env = length sts" .
|
|
1951 |
qed
|
|
1952 |
finally show ?thesis
|
|
1953 |
by (unfold adjust_env_def adjust_cpg_def, simp)
|
|
1954 |
qed
|
|
1955 |
|
|
1956 |
lemma adjust_wf_cpg_test:
|
|
1957 |
assumes "wf_cpg_test sts cpg = (True, sts')"
|
|
1958 |
shows "wf_cpg_test (adjust_sts sps lfs sts) (adjust_cpg (length sts) sps (red_lfs lfs) cpg) =
|
|
1959 |
(True, adjust_sts sps lfs sts')"
|
|
1960 |
proof -
|
|
1961 |
have " wf_cpg_test (lift_ss lfs (perm_ss sps sts)) (lift_ts (red_lfs lfs) (perms (length sts) sps cpg)) =
|
|
1962 |
(True, lift_ss lfs (perm_ss sps sts'))"
|
|
1963 |
proof(rule lifts_wf_cpg_test)
|
|
1964 |
show " wf_cpg_test (perm_ss sps sts) (perms (length sts) sps cpg) = (True, perm_ss sps sts')"
|
|
1965 |
by (rule perms_wf_cpg_test[OF assms])
|
|
1966 |
qed
|
|
1967 |
thus ?thesis
|
|
1968 |
by (unfold adjust_sts_def adjust_cpg_def, simp)
|
|
1969 |
qed
|
|
1970 |
|
|
1971 |
lemma sts_disj_test_correct:
|
|
1972 |
assumes "sts_disj_test sts1 sts2"
|
|
1973 |
shows "sts_disj sts1 sts2"
|
|
1974 |
using assms
|
|
1975 |
proof(induct sts1 arbitrary:sts2)
|
|
1976 |
case (Nil sts2)
|
|
1977 |
note Nil_1 = Nil
|
|
1978 |
show ?case
|
|
1979 |
proof(cases sts2)
|
|
1980 |
case Nil
|
|
1981 |
with Nil_1
|
|
1982 |
show ?thesis by (simp add:sts_disj_def)
|
|
1983 |
next
|
|
1984 |
case (Cons s2 ss2)
|
|
1985 |
with Nil_1 show ?thesis by simp
|
|
1986 |
qed
|
|
1987 |
next
|
|
1988 |
case (Cons s1 ss1 sts2)
|
|
1989 |
note Cons_1 = Cons
|
|
1990 |
show ?case
|
|
1991 |
proof(cases "sts2")
|
|
1992 |
case Nil
|
|
1993 |
with Cons_1 show ?thesis by simp
|
|
1994 |
next
|
|
1995 |
case (Cons s2 ss2)
|
|
1996 |
show ?thesis
|
|
1997 |
proof(cases "s1 = Bound \<and> s2 = Bound")
|
|
1998 |
case True
|
|
1999 |
with Cons_1 Cons
|
|
2000 |
show ?thesis by simp
|
|
2001 |
next
|
|
2002 |
case False
|
|
2003 |
with Cons_1 Cons
|
|
2004 |
have "sts_disj_test ss1 ss2" by (auto split:status.splits)
|
|
2005 |
from Cons_1(1) [OF this] False
|
|
2006 |
show ?thesis
|
|
2007 |
apply (unfold Cons)
|
|
2008 |
apply (unfold sts_disj_def)
|
|
2009 |
by (smt False length_Suc_conv list.size(4) nth_Cons')
|
|
2010 |
qed
|
|
2011 |
qed
|
|
2012 |
qed
|
|
2013 |
|
|
2014 |
lemma sts_minus_free:
|
|
2015 |
assumes "length sts1 = length sts2"
|
|
2016 |
and "list_all (op = Free) sts2"
|
|
2017 |
shows "sts1 - sts2 = sts1"
|
|
2018 |
using assms
|
|
2019 |
proof(induct sts1 arbitrary:sts2)
|
|
2020 |
case (Nil sts2)
|
|
2021 |
thus ?case by simp
|
|
2022 |
next
|
|
2023 |
case (Cons s1 ss1 sts2)
|
|
2024 |
note Cons_1 = Cons
|
|
2025 |
thus ?case
|
|
2026 |
proof(cases sts2)
|
|
2027 |
case Nil
|
|
2028 |
with Cons
|
|
2029 |
show ?thesis by simp
|
|
2030 |
next
|
|
2031 |
case (Cons s2 ss2)
|
|
2032 |
have "ss1 - ss2 = ss1"
|
|
2033 |
proof(rule Cons_1(1))
|
|
2034 |
show "length ss1 = length ss2"
|
|
2035 |
by (metis Cons Cons_1(2) Suc_length_conv list.inject)
|
|
2036 |
next
|
|
2037 |
show "list_all (op = Free) ss2"
|
|
2038 |
by (metis Cons Cons_1(3) list_all_simps(1))
|
|
2039 |
qed
|
|
2040 |
moreover from Cons_1(3) Cons have "s2 = Free"
|
|
2041 |
by (metis (full_types) list_all_simps(1))
|
|
2042 |
ultimately show ?thesis using Cons
|
|
2043 |
apply simp
|
|
2044 |
by (metis (hide_lams, mono_tags) minus_status.simps(2) minus_status.simps(3) status.exhaust)
|
|
2045 |
qed
|
|
2046 |
qed
|
|
2047 |
|
|
2048 |
lemma st_simp [simp]: "St (nat_of x) = x"
|
|
2049 |
by (metis nat_of.simps tstate.exhaust)
|
|
2050 |
|
|
2051 |
lemma wf_cpg_test_len:
|
|
2052 |
assumes "wf_cpg_test sts cpg = (b, sts')"
|
|
2053 |
shows "length sts' = length sts"
|
|
2054 |
using assms
|
|
2055 |
proof(induct cpg arbitrary:sts sts' b)
|
|
2056 |
case (CInstr instr sts sts' b)
|
|
2057 |
then obtain a1 s1 a2 s2 where
|
|
2058 |
eq_instr: "instr = ((a1, St s1), (a2, St s2))"
|
|
2059 |
by (metis st_simp surj_pair)
|
|
2060 |
with CInstr
|
|
2061 |
show ?case by simp
|
|
2062 |
qed (auto split:prod.splits)
|
|
2063 |
|
|
2064 |
lemma wf_cpg_test_seq:
|
|
2065 |
assumes "wf_cpg_test sts1 c1 = (True, sts1')"
|
|
2066 |
and "wf_cpg_test sts2 c2 = (True, sts2')"
|
|
2067 |
and "length sts1 = length sts2"
|
|
2068 |
and "list_all (op = Free) sts1"
|
|
2069 |
and "list_all (op = Free) sts2"
|
|
2070 |
and "sts_disj_test sts1' sts2'"
|
|
2071 |
shows "wf_cpg_test sts1 (CSeq c1 c2) = (True, sts1' + sts2')"
|
|
2072 |
proof -
|
|
2073 |
have "wf_cpg_test (sts1' + sts2) c2 = (True, sts1' + sts2')"
|
|
2074 |
by (metis add_imp_eq assms(2) assms(5) assms(6) length_sts_plus
|
|
2075 |
plus_list_len sts_disj_test_correct sts_minus_free wf_cpg_test_disj wf_cpg_test_extrapo wf_cpg_test_len)
|
|
2076 |
hence "wf_cpg_test sts1' c2 = (True, sts1' + sts2')"
|
|
2077 |
by (metis all_free_plus assms(1) assms(3) assms(5) wf_cpg_test_len)
|
|
2078 |
with assms(1)
|
|
2079 |
show ?thesis by simp
|
|
2080 |
qed
|
|
2081 |
|
|
2082 |
lemma c2t_seq:
|
|
2083 |
assumes "c2t env c1 = t1"
|
|
2084 |
and "c2t env c2 = t2"
|
|
2085 |
shows "c2t env (CSeq c1 c2) = (t1; t2)"
|
|
2086 |
using assms by simp
|
|
2087 |
|
|
2088 |
lemma c2t_local:
|
|
2089 |
assumes "\<And>x. (c2t (x#xs) cpg = body x)"
|
|
2090 |
shows "c2t xs (CLocal cpg) = (TL x. body x)"
|
|
2091 |
using assms
|
|
2092 |
by simp
|
|
2093 |
|
|
2094 |
lemma wf_cpg_test_local:
|
|
2095 |
assumes "wf_cpg_test (Free#sts) cpg = (b, s'#sts')"
|
|
2096 |
shows "wf_cpg_test sts (CLocal cpg) = (b, sts')"
|
|
2097 |
by (simp add:assms)
|
|
2098 |
|
|
2099 |
lemma wf_c2t_combined:
|
|
2100 |
assumes "wf_cpg_test sts cpg = (True, sts)"
|
|
2101 |
and "c2t env cpg = tpg"
|
|
2102 |
and "list_all (op = Free) sts"
|
|
2103 |
and "length env = length sts"
|
|
2104 |
shows "\<forall> i. \<exists> j s. ((i:[tpg]:j) s)"
|
|
2105 |
proof
|
|
2106 |
fix i
|
|
2107 |
from wf_cpg_test_correct[OF assms(1), rule_format, of i]
|
|
2108 |
obtain j where "c2p (sts - sts) i cpg j" by metis
|
|
2109 |
from this[unfolded c2p_def]
|
|
2110 |
obtain f where h: "\<forall>x. length x = length (sts - sts) \<and>
|
|
2111 |
(\<forall>k<length (sts - sts). (sts - sts) ! k = Bound \<longrightarrow> x ! k = f i k) \<longrightarrow>
|
|
2112 |
Ex (i :[ c2t x cpg ]: j)" by metis
|
|
2113 |
have "\<exists> s. (i :[ c2t env cpg ]: j) s"
|
|
2114 |
proof(rule h[rule_format], rule conjI)
|
|
2115 |
show "length env = length (sts - sts)"
|
|
2116 |
by (smt assms(4) minus_list_len)
|
|
2117 |
next
|
|
2118 |
show "\<forall>k<length (sts - sts). (sts - sts) ! k = Bound \<longrightarrow> env ! k = f i k"
|
|
2119 |
by (metis assms(3) minus_status.simps(1) nth_sts_minus status.distinct(1) sts_minus_free)
|
|
2120 |
qed
|
|
2121 |
show "\<exists> j s. ((i:[tpg]:j) s)"
|
|
2122 |
by (metis `\<exists>s. (i :[ c2t env cpg ]: j) s` assms(2))
|
|
2123 |
qed
|
|
2124 |
|
|
2125 |
subsection {* The Checker *}
|
|
2126 |
|
|
2127 |
ML {*
|
|
2128 |
print_depth 200
|
|
2129 |
*}
|
|
2130 |
|
|
2131 |
subsubsection {* Auxilary functions *}
|
|
2132 |
|
|
2133 |
ML {*
|
|
2134 |
local
|
|
2135 |
fun clear_binds ctxt = (ctxt |> Variable.binds_of |> Vartab.keys |> map (fn xi => (xi, NONE))
|
|
2136 |
|> fold Variable.bind_term) ctxt
|
|
2137 |
fun get_binds ctxt = ctxt |> Variable.binds_of |> Vartab.dest |> map (fn (xi, (_, tm)) => (xi, SOME tm))
|
|
2138 |
fun set_binds blist ctxt = (fold Variable.bind_term blist) (clear_binds ctxt)
|
|
2139 |
in
|
|
2140 |
fun blocalM f = liftM (m2M (fn ctxt => returnM (get_binds ctxt)))
|
|
2141 |
:|-- (fn binds =>
|
|
2142 |
f
|
|
2143 |
:|-- (fn result =>
|
|
2144 |
liftM (m2M (fn ctxt' => s2M (set_binds binds ctxt') |-- returnM result
|
|
2145 |
)))
|
|
2146 |
)
|
|
2147 |
end
|
|
2148 |
|
|
2149 |
fun condM bf scan = (fn v => m0M (fn st => if (bf (v, st)) then scan v else returnM v))
|
|
2150 |
|
|
2151 |
local
|
|
2152 |
val counter = Unsynchronized.ref 0
|
|
2153 |
in
|
|
2154 |
fun init_counter n = (counter := n)
|
|
2155 |
fun counter_test x =
|
|
2156 |
if !counter <= 1 then true
|
|
2157 |
else (counter := !counter - 1; false)
|
|
2158 |
end
|
|
2159 |
|
|
2160 |
(* break point monad *)
|
|
2161 |
fun bpM v' = (fn v => m0M (fn st => raiseM (v', (v, st))))
|
|
2162 |
|
|
2163 |
fun the_theory () = ML_Context.the_local_context () |> Proof_Context.theory_of
|
|
2164 |
fun the_context () = ML_Context.the_local_context ()
|
|
2165 |
|
|
2166 |
(* Calculating the numberal of integer [i] *)
|
|
2167 |
fun nat_of i = if i = 0 then @{term "0::nat"} else
|
|
2168 |
(Const ("Num.numeral_class.numeral", @{typ "num \<Rightarrow> nat"}) $
|
|
2169 |
(Numeral.mk_cnumeral i |> term_of))
|
|
2170 |
|
|
2171 |
fun vfixM nm typ = (m2M' (fn ctxt => let
|
|
2172 |
val ([x], ctxt') = Variable.variant_fixes [nm] ctxt
|
|
2173 |
val tm_x = Free (x, typ)
|
|
2174 |
in s2M ctxt' |-- returnM tm_x end))
|
|
2175 |
fun fixM nm typ = (m2M' (fn ctxt => let
|
|
2176 |
val ([x], ctxt') = Variable.add_fixes [nm] ctxt
|
|
2177 |
val tm_x = Free (x, typ)
|
|
2178 |
in s2M ctxt' |-- returnM tm_x end))
|
|
2179 |
local
|
|
2180 |
fun mk_listM l =
|
|
2181 |
case l of
|
|
2182 |
[] => @{fterm "[]"}
|
|
2183 |
| (tm::tms) => localM (@{match "?x"} tm
|
|
2184 |
|-- (mk_listM tms)
|
|
2185 |
:|-- @{match "?xs"}
|
|
2186 |
|-- @{fterm "?x#?xs"})
|
|
2187 |
in
|
|
2188 |
fun mk_list_term ctxt l = [((), ctxt)] |> mk_listM l |> normVal |> fst
|
|
2189 |
end
|
|
2190 |
fun term_name (Const (x, _)) = Long_Name.base_name x
|
|
2191 |
| term_name (Free (x, _)) = x
|
|
2192 |
| term_name (Var ((x, _), _)) = x
|
|
2193 |
| term_name _ = Name.uu;
|
|
2194 |
|
|
2195 |
val rew_conv = Raw_Simplifier.rewrite_cterm (true, false, false) (K (K NONE));
|
|
2196 |
|
|
2197 |
fun simpl_conv ss thl ctm =
|
|
2198 |
rew_conv (ss addsimps thl) ctm RS meta_eq_to_obj_eq;
|
|
2199 |
|
|
2200 |
fun find_thms ctxt pats =
|
|
2201 |
Find_Theorems.find_theorems ctxt NONE NONE true
|
|
2202 |
(map (fn pat =>(true, Find_Theorems.Pattern
|
|
2203 |
(Proof_Context.read_term_pattern ctxt pat))) pats) |> snd |> map snd
|
|
2204 |
|
|
2205 |
|
|
2206 |
fun local_on arg rhs = [((), @{context})] |>
|
|
2207 |
@{match "?body"} (Term.lambda arg rhs) |--
|
|
2208 |
@{fterm "TL x. ?body x"} |> normVal |> fst
|
|
2209 |
fun find_idx vars l = (nat_of (find_index (equal l) vars))
|
|
2210 |
|
|
2211 |
local
|
|
2212 |
fun mk_pair_term (i, j) = [((), @{context})] |>
|
|
2213 |
@{match "?i"} (nat_of i)
|
|
2214 |
|-- @{match "?j"} (nat_of j)
|
|
2215 |
|-- @{fterm "(?i, ?j)"} |> normVal |> fst
|
|
2216 |
in
|
|
2217 |
fun mk_npair_list_term ctxt pair_list =
|
|
2218 |
if pair_list = [] then @{term "[]::(nat \<times> nat) list"}
|
|
2219 |
else pair_list |> map mk_pair_term |> mk_list_term ctxt
|
|
2220 |
end
|
|
2221 |
|
|
2222 |
fun list_of_array ary = let
|
|
2223 |
val len = Array.length ary
|
|
2224 |
val idx = upto (0, len - 1)
|
|
2225 |
in map (fn i => Array.sub (ary, i)) idx end
|
|
2226 |
|
|
2227 |
local
|
|
2228 |
fun mk_env_term ctxt lst =
|
|
2229 |
if lst = [] then @{term "[]::tstate list"} else (mk_list_term ctxt lst)
|
|
2230 |
fun mk_pair_term ctxt (i, j) = [((), ctxt)] |>
|
|
2231 |
@{match "?i"} (mk_env_term ctxt i)
|
|
2232 |
|-- @{match "?j"} (nat_of j)
|
|
2233 |
|-- @{fterm "(?i, ?j)"} |> normVal |> fst
|
|
2234 |
in
|
|
2235 |
fun mk_tpair_list_term ctxt pair_list =
|
|
2236 |
if pair_list = [] then @{term "[] :: (tstate list \<times> nat) list"}
|
|
2237 |
else pair_list |> map (mk_pair_term ctxt) |> mk_list_term ctxt
|
|
2238 |
end
|
|
2239 |
|
|
2240 |
*}
|
|
2241 |
|
|
2242 |
subsubsection {* The reifier *}
|
|
2243 |
|
|
2244 |
ML {*
|
|
2245 |
fun locM (c2t_thm, test_thm) = (m1M' (fn env =>
|
|
2246 |
let
|
|
2247 |
val Free (x, _) = hd env
|
|
2248 |
val c2t_thm = Drule.generalize ([], [x]) c2t_thm
|
|
2249 |
val c2t_thm = @{thm c2t_local} OF [c2t_thm]
|
|
2250 |
val test_thm = @{thm wf_cpg_test_local} OF [test_thm]
|
|
2251 |
in
|
|
2252 |
s1M (tl env) |-- returnM (c2t_thm, test_thm)
|
|
2253 |
end))
|
|
2254 |
|
|
2255 |
fun reify_local reify t =
|
|
2256 |
( @{match "TL x . ?body (x::tstate)"} t
|
|
2257 |
|-- vfixM "x" @{typ "tstate"}
|
|
2258 |
:|-- @{match "?x"}
|
|
2259 |
:|-- (fn tmx => m1M' (fn env => s1M (tmx::env)))
|
|
2260 |
|-- @{fterm "?body ?x"}
|
|
2261 |
:|-- reify
|
|
2262 |
:|-- locM
|
|
2263 |
(* :|-- condM counter_test (bpM ("local", t)) *)
|
|
2264 |
)
|
|
2265 |
|
|
2266 |
fun labelM exp = m0M' (fn (env, ctxt) => let
|
|
2267 |
(* The following three lines are used for debugging purpose
|
|
2268 |
(* (* The following two lines are used to set breakpoint counter
|
|
2269 |
and invoke the reifyer in debug mode *)
|
|
2270 |
val _ = init_counter 3
|
|
2271 |
val t = reify tpg_def_rhs [(rev tpg_def_largs_sufx, ctxt_tpg_def)] |> normExcp
|
|
2272 |
*)
|
|
2273 |
(* The following line is used to extract break point information and
|
|
2274 |
establish the environment to execute body statements *)
|
|
2275 |
val ((brc, exp), (_, (env, ctxt)::_)) = t
|
|
2276 |
*)
|
|
2277 |
val c2t_thm = [((), ctxt)] |>
|
|
2278 |
@{match "?cpg"} exp
|
|
2279 |
|-- @{match "?env"} (env |> mk_list_term ctxt)
|
|
2280 |
|-- @{fterm "c2t ?env ?cpg"} |> normVal |> fst |> cterm_of (Proof_Context.theory_of ctxt)
|
|
2281 |
|> simpl_conv (simpset_of ctxt) []
|
|
2282 |
val test_thm = [((), ctxt)] |>
|
|
2283 |
@{match "?cpg"} exp
|
|
2284 |
|-- @{match "?sts"} (env |> map (fn _ => @{term "Free"}) |> mk_list_term ctxt)
|
|
2285 |
|-- @{fterm "wf_cpg_test ?sts ?cpg"} |> normVal |> fst |> cterm_of (Proof_Context.theory_of ctxt)
|
|
2286 |
|> simpl_conv (simpset_of ctxt) []
|
|
2287 |
in returnM (c2t_thm, test_thm) end)
|
|
2288 |
|
|
2289 |
fun reify_label t =
|
|
2290 |
@{match "TLabel ?L"} t
|
|
2291 |
|-- @{fterm "?L"}
|
|
2292 |
:|-- (fn l => m1M' (fn st => returnM (find_idx st l)))
|
|
2293 |
:|-- @{match ?L1}
|
|
2294 |
|-- @{fterm "CLabel ?L1"}
|
|
2295 |
(* :|-- condM counter_test (bpM ("label", t)) *)
|
|
2296 |
:|-- labelM
|
|
2297 |
|
|
2298 |
fun seqM ((c2t_thm1, test_thm1), (c2t_thm2, test_thm2)) =
|
|
2299 |
m0M' (fn (env, ctxt) =>
|
|
2300 |
let
|
|
2301 |
val simp_trans = (simpset_of ctxt) delsimps @{thms wf_cpg_test.simps c2t.simps} |> full_simplify
|
|
2302 |
val ct2_thm = (@{thm c2t_seq} OF [c2t_thm1, c2t_thm2]) |> simp_trans
|
|
2303 |
val test_thm = (@{thm wf_cpg_test_seq} OF [test_thm1, test_thm2]) |> simp_trans
|
|
2304 |
in returnM (ct2_thm, test_thm) end)
|
|
2305 |
|
|
2306 |
fun reify_seq reify t =
|
|
2307 |
@{match "?c1; ?c2"} t
|
|
2308 |
|-- ((@{fterm "?c1"} :|-- reify) --
|
|
2309 |
(@{fterm "?c2"} :|-- reify))
|
|
2310 |
(* :|-- condM counter_test (bpM ("seq", t)) *)
|
|
2311 |
:|-- seqM
|
|
2312 |
|
|
2313 |
fun reify_instr t =
|
|
2314 |
@{match "\<guillemotright> ((?A0, ?L0), (?A1, ?L1))"} t
|
|
2315 |
|-- @{fterm "?L0"}
|
|
2316 |
:|-- (fn l => m1M' (fn st => returnM (find_idx st l)))
|
|
2317 |
:|-- @{match ?L0'}
|
|
2318 |
|-- @{fterm "?L1"}
|
|
2319 |
:|-- (fn l => m1M' (fn st => returnM (find_idx st l)))
|
|
2320 |
:|-- @{match ?L1'}
|
|
2321 |
|-- @{fterm "CInstr ((?A0, ?L0'), (?A1, St ?L1'))"}
|
|
2322 |
:|-- labelM
|
|
2323 |
(* :|-- condM counter_test (bpM ("instr", t)) *)
|
|
2324 |
|
|
2325 |
fun reify_var var =
|
|
2326 |
(* condM counter_test (bpM ("var", var)) () |-- *)
|
|
2327 |
(m0M' (fn (env, ctxt) => let
|
|
2328 |
(* The following three lines are used for debugging purpose
|
|
2329 |
(* (* The following two lines are used to set breakpoint counter
|
|
2330 |
and invoke the reifyer in debug mode *)
|
|
2331 |
val _ = init_counter 3
|
|
2332 |
val t = reify tpg_def_rhs [(rev tpg_def_largs_sufx, ctxt_tpg_def)] |> normExcp
|
|
2333 |
*)
|
|
2334 |
(* The following line is used to extract break point information and
|
|
2335 |
establish the environment to execute body statements *)
|
|
2336 |
val ((brc, var), (_, (env, ctxt)::_)) = t
|
|
2337 |
*)
|
|
2338 |
val (var_hd, var_args) = Term.strip_comb var
|
|
2339 |
val (var_args_prefx, var_args_sufx) =
|
|
2340 |
take_suffix (fn tm => type_of tm = @{typ "tstate"}) var_args
|
|
2341 |
val var_skel_hd_typ = var_args_prefx |> map type_of |> (fn typs => typs ---> @{typ "cpg"})
|
|
2342 |
(* We discriminate two cases, one for tpg constants; the other for argument variable *)
|
|
2343 |
val ([var_skel_hd_name], ctxt1) =
|
|
2344 |
case var_hd of
|
|
2345 |
(Const (nm, _)) => ([((nm |> Long_Name.base_name)^"_skel")], ctxt)
|
|
2346 |
| _ => Variable.variant_fixes [(term_name var_hd^"_skel_")] ctxt
|
|
2347 |
(* If [var_hd] is a constant, a corresponding skeleton constant is assumed to exist alrady *)
|
|
2348 |
val var_skel_hd = if (Term.is_Const var_hd) then Syntax.read_term ctxt1 var_skel_hd_name
|
|
2349 |
else Free (var_skel_hd_name, var_skel_hd_typ)
|
|
2350 |
(* [skel_tm] is the skeleton object the properties of which will either be assumed (in case of
|
|
2351 |
argument variable), or proved (in case of global constants ) *)
|
|
2352 |
val skel_tm = Term.list_comb (var_skel_hd, var_args_prefx)
|
|
2353 |
(* Start to prove or assume [c2t] property (named [c2t_thm]) of the skeleton object,
|
|
2354 |
since the [c2t] property needs to be universally qantified, we
|
|
2355 |
need to invent quantifier names: *)
|
|
2356 |
val (var_skel_args_sufx_names, ctxt2) =
|
|
2357 |
Variable.variant_fixes (var_args_sufx |> map term_name) ctxt1
|
|
2358 |
val var_skel_args_sufx = var_skel_args_sufx_names |> map (fn nm => Free (nm, @{typ "tstate"}))
|
|
2359 |
val c2t_rhs = Term.list_comb (var_hd, var_args_prefx@var_skel_args_sufx)
|
|
2360 |
val c2t_env = mk_list_term ctxt2 (var_skel_args_sufx |> rev)
|
|
2361 |
val eqn = [((), ctxt2)] |>
|
|
2362 |
@{match ?env} c2t_env
|
|
2363 |
|-- @{match ?skel_tm} skel_tm
|
|
2364 |
|-- @{match ?c2t_rhs} c2t_rhs
|
|
2365 |
|-- @{fterm "Trueprop (c2t ?env ?skel_tm = ?c2t_rhs)"} |> normVal |> fst
|
|
2366 |
fun all_on ctxt arg body = Const ("all", dummyT) $ (Term.lambda arg body) |>
|
|
2367 |
Syntax.check_term ctxt
|
|
2368 |
val c2t_eqn = fold (all_on ctxt2) (rev var_skel_args_sufx) eqn |> cterm_of (Proof_Context.theory_of ctxt2)
|
|
2369 |
val ([c2t_thm], ctxt3) =
|
|
2370 |
if (Term.is_Const var_hd) then
|
|
2371 |
(* if [var_hd] is an constant, try to prove [c2t_eqn] by searching
|
|
2372 |
into the facts database *)
|
|
2373 |
let
|
|
2374 |
val pat_skel_args = fold (curry (op ^)) (map (K " _ ") var_args_prefx) ""
|
|
2375 |
val pat_skel_str = "( "^ var_skel_hd_name ^ pat_skel_args ^" )"
|
|
2376 |
val test_pat = ("wf_cpg_test _ "^ pat_skel_str ^" = (True, _)")
|
|
2377 |
val c2t_pat = ("c2t _ "^ pat_skel_str ^" = _")
|
|
2378 |
val (wf_test_thms, c2t_thms) = ([test_pat], [c2t_pat]) |> pairself (find_thms ctxt2)
|
|
2379 |
in
|
|
2380 |
([([((0, @{thm "refl"}), ctxt2)] |>
|
|
2381 |
goalM (c2t_eqn |> term_of)
|
|
2382 |
|-- tacM (fn ctxt => (Simplifier.simp_tac ((simpset_of ctxt) addsimps c2t_thms) 1))
|
|
2383 |
>> Goal.conclude |> normVal |> fst |> Raw_Simplifier.norm_hhf)], ctxt2)
|
|
2384 |
end
|
|
2385 |
else (* Otherwise, make [c2t_eqn] an assumption *)
|
|
2386 |
Assumption.add_assumes [c2t_eqn] ctxt2
|
|
2387 |
(* Start to prove or assume [wf_cpg_test] property (named [wf_test_thm]) of the skeleton object. *)
|
|
2388 |
val sts = map (fn tm => @{term "Free"}) var_args_sufx |> mk_list_term ctxt3
|
|
2389 |
val wf_test_eqn = [((), ctxt3)] |>
|
|
2390 |
@{match ?cpg} skel_tm
|
|
2391 |
|-- @{match ?sts} sts
|
|
2392 |
|-- @{fterm "Trueprop (wf_cpg_test ?sts ?cpg = (True, ?sts))"} |> normVal |> fst
|
|
2393 |
|> cterm_of (Proof_Context.theory_of ctxt3)
|
|
2394 |
val ([wf_test_thm], ctxt4) =
|
|
2395 |
if (Term.is_Const var_hd) then
|
|
2396 |
let
|
|
2397 |
val pat_skel_args = fold (curry (op ^)) (map (K " _ ") var_args_prefx) ""
|
|
2398 |
val pat_skel_str = "( "^ var_skel_hd_name ^ pat_skel_args ^ " )"
|
|
2399 |
val test_pat = ("wf_cpg_test _ "^ pat_skel_str ^" = (True, _)")
|
|
2400 |
val c2t_pat = ("c2t _ "^ pat_skel_str ^" = _")
|
|
2401 |
val wf_test_thms = [test_pat] |> (find_thms ctxt2)
|
|
2402 |
in
|
|
2403 |
([([((0, @{thm "refl"}), ctxt2)] |>
|
|
2404 |
goalM (wf_test_eqn |> term_of)
|
|
2405 |
|-- tacM (fn ctxt => (Simplifier.simp_tac ((simpset_of ctxt) addsimps wf_test_thms) 1))
|
|
2406 |
>> Goal.conclude |> normVal |> fst |> Raw_Simplifier.norm_hhf)], ctxt3)
|
|
2407 |
end
|
|
2408 |
else Assumption.add_assumes [wf_test_eqn] ctxt3
|
|
2409 |
(* Start the derivation of the length theorem *)
|
|
2410 |
val length_env = mk_list_term ctxt4 (var_args_sufx |> rev)
|
|
2411 |
val length_thm = [((0, @{thm "init"}), ctxt4)] |>
|
|
2412 |
@{match "(?env)"} length_env
|
|
2413 |
|-- @{match "(?sts)"} sts
|
|
2414 |
|-- @{fterm "Trueprop (length (?env::tstate list) = length (?sts::status list))"}
|
|
2415 |
:|-- goalM
|
|
2416 |
|-- tacM (fn ctxt => (Simplifier.simp_tac (simpset_of ctxt) 1))
|
|
2417 |
>> Goal.conclude |> normVal |> fst
|
|
2418 |
(* Start compute two adjust operations, namely [sps] and [lfs] *)
|
|
2419 |
val locs = var_args_sufx |> map (fn arg => find_index (equal arg) env) |> rev
|
|
2420 |
val swaps = swaps_of locs
|
|
2421 |
val sps = swaps |> mk_npair_list_term @{context}
|
|
2422 |
val locs' = sexec swaps (Array.fromList locs) |> list_of_array
|
|
2423 |
val pairs = ((~1::locs') ~~ (locs' @ [length env]))
|
|
2424 |
fun lfs_of (t, ops) [] = ops |> rev
|
|
2425 |
| lfs_of (t, ops) ((i, j)::pairs) = let
|
|
2426 |
val stuf = upto (i + 1, j - 1) |> map (fn idx => nth env idx)
|
|
2427 |
in if (stuf <> []) then lfs_of (t + length stuf + 1, (stuf, t)::ops) pairs
|
|
2428 |
else lfs_of (t + length stuf + 1, ops) pairs
|
|
2429 |
end
|
|
2430 |
val lfs = lfs_of (0, []) pairs |> mk_tpair_list_term @{context}
|
|
2431 |
(* [simp_trans] is the simplification procedure used to simply the theorem after
|
|
2432 |
instantiation.
|
|
2433 |
*)
|
|
2434 |
val simp_trans = full_simplify ((simpset_of @{context}) addsimps @{thms adjust_sts_def
|
|
2435 |
adjust_env_def perm_s_def perm_b_def map_idx_len
|
|
2436 |
map_idx_def upto_map upto_empty} @ [c2t_thm])
|
|
2437 |
(* Instantiating adjust theorems *)
|
|
2438 |
val adjust_c2t_thm = [((), ctxt4)] |>
|
|
2439 |
@{match "?sps"} sps
|
|
2440 |
|-- @{match "?lfs"} lfs
|
|
2441 |
|-- thm_instM (@{thm adjust_c2t} OF [wf_test_thm, length_thm])
|
|
2442 |
|> normVal |> fst |> simp_trans
|
|
2443 |
val adjust_test_thm = [((), ctxt4)] |>
|
|
2444 |
@{match "?sps"} sps
|
|
2445 |
|-- @{match "?lfs"} lfs
|
|
2446 |
|-- thm_instM (@{thm adjust_wf_cpg_test} OF [wf_test_thm])
|
|
2447 |
|> normVal |> fst |> simp_trans
|
|
2448 |
in
|
|
2449 |
(* s2M ctxt4 |-- *) returnM (adjust_c2t_thm, adjust_test_thm)
|
|
2450 |
end))
|
|
2451 |
|
|
2452 |
fun reify t =
|
|
2453 |
localM (reify_seq reify t ||
|
|
2454 |
reify_local reify t ||
|
|
2455 |
reify_label t ||
|
|
2456 |
reify_instr t ||
|
|
2457 |
reify_var t
|
|
2458 |
)
|
|
2459 |
*}
|
|
2460 |
|
|
2461 |
subsubsection {* The Checker packed up as the asmb attribute *}
|
|
2462 |
|
|
2463 |
ML {*
|
|
2464 |
fun asmb_attrib def_thm =
|
|
2465 |
Context.cases (fn thy =>
|
|
2466 |
(* val thy = @{theory} *) let
|
|
2467 |
fun thy_exit ctxt =
|
|
2468 |
Context.Theory (Local_Theory.exit_global (Local_Theory.assert_bottom true ctxt))
|
|
2469 |
val ctxt0 = Named_Target.theory_init thy
|
|
2470 |
val (((x, y), [tpg_def]), ctxt_tpg_def) = Variable.import true [def_thm] ctxt0
|
|
2471 |
val (tpg_def_lhs, tpg_def_rhs) = [((), ctxt_tpg_def)] |>
|
|
2472 |
@{match "Trueprop (?L = ?R)"} (prop_of tpg_def)
|
|
2473 |
|-- @{fterm "?L"} -- @{fterm "?R"} |> normVal |> fst
|
|
2474 |
val (tpg_def_lhd, tpg_def_largs) = Term.strip_comb tpg_def_lhs
|
|
2475 |
val (tpg_def_largs_prefx, tpg_def_largs_sufx) =
|
|
2476 |
take_suffix (fn tm => type_of tm = @{typ "tstate"}) tpg_def_largs
|
|
2477 |
(* Invoking the reifyer in normal mode *)
|
|
2478 |
val ((c2t_thm_1, test_thm_1), ((_, ctxt_r)::y)) =
|
|
2479 |
reify tpg_def_rhs [(rev tpg_def_largs_sufx, ctxt_tpg_def)]
|
|
2480 |
|> normVal
|
|
2481 |
val asmb_thm_1 = (@{thm wf_c2t_combined} OF [test_thm_1, c2t_thm_1]) |> (full_simplify (simpset_of ctxt_r))
|
|
2482 |
val (r_cpg, r_tpg) = [((), ctxt_r)] |>
|
|
2483 |
@{match "Trueprop (c2t _ ?X = ?tpg)"} (c2t_thm_1 |> prop_of)
|
|
2484 |
|-- (@{fterm "?X"} -- @{fterm "?tpg"}) |> normVal |> fst
|
|
2485 |
val tpg_def_params = Variable.add_fixed ctxt_tpg_def (tpg_def_lhs) [] |> map fst
|
|
2486 |
|> sort (Variable.fixed_ord ctxt_tpg_def)
|
|
2487 |
val r_cpg_frees = Term.add_frees r_cpg []
|
|
2488 |
local fun condense [] = []
|
|
2489 |
| condense xs = [hd xs]
|
|
2490 |
in
|
|
2491 |
val skel_def_params =
|
|
2492 |
tpg_def_params |> map (fn nm => condense
|
|
2493 |
(filter (fn (tnm, _) => String.isPrefix nm tnm) r_cpg_frees))
|
|
2494 |
|> flat |> map Free
|
|
2495 |
end
|
|
2496 |
val skel_def_rhs = fold Term.lambda (skel_def_params |> rev) r_cpg
|
|
2497 |
local
|
|
2498 |
val Const (nm, _) = tpg_def_lhs |> Term.head_of
|
|
2499 |
in
|
|
2500 |
val tpg_def_name = nm |> Long_Name.base_name
|
|
2501 |
val skel_def_lhs = Free (tpg_def_name^"_skel", type_of skel_def_rhs)
|
|
2502 |
end
|
|
2503 |
val skel_def_eqn = [((), ctxt_r)] |>
|
|
2504 |
@{match "?lhs"} skel_def_lhs
|
|
2505 |
|-- @{match "?rhs"} skel_def_rhs
|
|
2506 |
|-- @{fterm "Trueprop (?lhs = ?rhs)"} |> normVal |> fst
|
|
2507 |
val ((skel_def_lhs, (skel_def_name, skel_def_thm)), lthy2) =
|
|
2508 |
Specification.definition (NONE, (Attrib.empty_binding, skel_def_eqn)) ctxt_r
|
|
2509 |
val c2t_thm_final = [((0, @{thm refl}), lthy2)] |>
|
|
2510 |
@{match "?env"} (mk_list_term lthy2 (rev tpg_def_largs_sufx))
|
|
2511 |
|-- @{match "?skel"} (Term.list_comb (skel_def_lhs, skel_def_params))
|
|
2512 |
val c2t_thm_final = [((0, @{thm refl}), lthy2)] |>
|
|
2513 |
@{match "?env"} (mk_list_term lthy2 (rev tpg_def_largs_sufx))
|
|
2514 |
|-- @{match "?skel"} (Term.list_comb (skel_def_lhs, skel_def_params))
|
|
2515 |
|-- @{match "?tpg"} tpg_def_lhs
|
|
2516 |
|-- @{fterm "Trueprop (c2t ?env ?skel = ?tpg)"}
|
|
2517 |
:|-- goalM
|
|
2518 |
|-- tacM (fn ctxt => (Simplifier.simp_tac ((simpset_of ctxt |> Simplifier.clear_ss)
|
|
2519 |
addsimps [skel_def_thm, c2t_thm_1]) 1))
|
|
2520 |
|-- tacM (fn ctxt => (Simplifier.simp_tac ((simpset_of ctxt |> Simplifier.clear_ss)
|
|
2521 |
addsimps [def_thm]) 1))
|
|
2522 |
>> Goal.conclude |> normVal |> fst
|
|
2523 |
val test_thm_final = [((0, @{thm refl}), lthy2)] |>
|
|
2524 |
@{match "?sts"} (tpg_def_largs_sufx |> map (fn _ => @{term "Free"}) |> mk_list_term lthy2)
|
|
2525 |
|-- @{match "?skel"} (Term.list_comb (skel_def_lhs, skel_def_params))
|
|
2526 |
|-- @{fterm "Trueprop (wf_cpg_test ?sts ?skel = (True, ?sts))"}
|
|
2527 |
:|-- goalM
|
|
2528 |
|-- tacM (fn ctxt => (Simplifier.simp_tac ((simpset_of ctxt |> Simplifier.clear_ss)
|
|
2529 |
addsimps [skel_def_thm, test_thm_1]) 1))
|
|
2530 |
>> Goal.conclude |> normVal |> fst
|
|
2531 |
val asmb_thm_final = [((0, @{thm refl}), lthy2)] |>
|
|
2532 |
@{match "?tpg"} tpg_def_lhs
|
|
2533 |
|-- @{fterm "Trueprop (\<forall> i. \<exists> j s. (i:[?tpg]:j) s)"}
|
|
2534 |
:|-- goalM
|
|
2535 |
|-- tacM (fn ctxt => (Simplifier.simp_tac ((simpset_of ctxt)
|
|
2536 |
addsimps [tpg_def, asmb_thm_1]) 1))
|
|
2537 |
>> Goal.conclude |> normVal |> fst
|
|
2538 |
fun generalize thm = let
|
|
2539 |
val hyps = (#hyps (thm |> Thm.crep_thm))
|
|
2540 |
val thm' = if (length hyps = 0) then thm
|
|
2541 |
else (fold Thm.implies_intr (#hyps (thm |> Thm.crep_thm) |> rev |> tl |> rev) thm)
|
|
2542 |
in
|
|
2543 |
thm' |> Thm.forall_intr_frees
|
|
2544 |
end
|
|
2545 |
val lthy3 =
|
|
2546 |
Local_Theory.note ((Binding.name ("c2t_" ^ tpg_def_name ^ "_skel"), []),
|
|
2547 |
[c2t_thm_final |> generalize]) lthy2 |> snd
|
|
2548 |
val lthy4 =
|
|
2549 |
Local_Theory.note ((Binding.name ("wf_" ^ tpg_def_name ^ "_skel"), []),
|
|
2550 |
[test_thm_final |> generalize]) lthy3 |> snd
|
|
2551 |
val lthy5 =
|
|
2552 |
Local_Theory.note ((Binding.name ("asmb_" ^ tpg_def_name), []),
|
|
2553 |
[asmb_thm_final |> Drule.export_without_context]) lthy4 |> snd
|
|
2554 |
in
|
|
2555 |
thy_exit lthy5
|
|
2556 |
end) (fn ctxt => Context.Proof ctxt)
|
|
2557 |
*}
|
|
2558 |
|
|
2559 |
setup {*
|
|
2560 |
Attrib.setup @{binding asmb} (Scan.succeed (Thm.declaration_attribute asmb_attrib)) "asmb attribute"
|
|
2561 |
*}
|
|
2562 |
|
|
2563 |
|
|
2564 |
section {* Basic macros for TM *}
|
|
2565 |
|
|
2566 |
definition [asmb]: "write_zero = (TL exit. \<guillemotright>((W0, exit), (W0, exit)); TLabel exit)"
|
|
2567 |
|
|
2568 |
definition [asmb]: "write_one = (TL exit. \<guillemotright>((W1, exit), (W1, exit)); TLabel exit)"
|
|
2569 |
|
|
2570 |
definition [asmb]: "move_left = (TL exit . \<guillemotright>((L, exit), (L, exit)); TLabel exit)"
|
|
2571 |
|
|
2572 |
definition [asmb]: "move_right = (TL exit . \<guillemotright>((R, exit), (R, exit)); TLabel exit)"
|
|
2573 |
|
|
2574 |
definition [asmb]: "if_one e = (TL exit . \<guillemotright>((W0, exit), (W1, e)); TLabel exit)"
|
|
2575 |
|
|
2576 |
definition [asmb]: "if_zero e = (TL exit . \<guillemotright>((W0, e), (W1, exit)); TLabel exit)"
|
|
2577 |
|
|
2578 |
definition [asmb]: "jmp e = \<guillemotright>((W0, e), (W1, e))"
|
|
2579 |
|
|
2580 |
definition [asmb]:
|
|
2581 |
"right_until_zero =
|
|
2582 |
(TL start exit.
|
|
2583 |
TLabel start;
|
|
2584 |
if_zero exit;
|
|
2585 |
move_right;
|
|
2586 |
jmp start;
|
|
2587 |
TLabel exit
|
|
2588 |
)"
|
|
2589 |
|
|
2590 |
definition [asmb]:
|
|
2591 |
"left_until_zero =
|
|
2592 |
(TL start exit.
|
|
2593 |
TLabel start;
|
|
2594 |
if_zero exit;
|
|
2595 |
move_left;
|
|
2596 |
jmp start;
|
|
2597 |
TLabel exit
|
|
2598 |
)"
|
|
2599 |
|
|
2600 |
definition [asmb]:
|
|
2601 |
"right_until_one =
|
|
2602 |
(TL start exit.
|
|
2603 |
TLabel start;
|
|
2604 |
if_one exit;
|
|
2605 |
move_right;
|
|
2606 |
jmp start;
|
|
2607 |
TLabel exit
|
|
2608 |
)"
|
|
2609 |
|
|
2610 |
definition [asmb]:
|
|
2611 |
"left_until_one =
|
|
2612 |
(TL start exit.
|
|
2613 |
TLabel start;
|
|
2614 |
if_one exit;
|
|
2615 |
move_left;
|
|
2616 |
jmp start;
|
|
2617 |
TLabel exit
|
|
2618 |
)"
|
|
2619 |
|
|
2620 |
definition [asmb]:
|
|
2621 |
"left_until_double_zero =
|
|
2622 |
(TL start exit.
|
|
2623 |
TLabel start;
|
|
2624 |
if_zero exit;
|
|
2625 |
left_until_zero;
|
|
2626 |
move_left;
|
|
2627 |
if_one start;
|
|
2628 |
TLabel exit)"
|
|
2629 |
|
|
2630 |
definition [asmb]:
|
|
2631 |
"shift_right =
|
|
2632 |
(TL start exit.
|
|
2633 |
TLabel start;
|
|
2634 |
if_zero exit;
|
|
2635 |
write_zero;
|
|
2636 |
move_right;
|
|
2637 |
right_until_zero;
|
|
2638 |
write_one;
|
|
2639 |
move_right;
|
|
2640 |
jmp start;
|
|
2641 |
TLabel exit
|
|
2642 |
)"
|
|
2643 |
|
|
2644 |
definition [asmb]:
|
|
2645 |
"clear_until_zero =
|
|
2646 |
(TL start exit.
|
|
2647 |
TLabel start;
|
|
2648 |
if_zero exit;
|
|
2649 |
write_zero;
|
|
2650 |
move_right;
|
|
2651 |
jmp start;
|
|
2652 |
TLabel exit)"
|
|
2653 |
|
|
2654 |
definition [asmb]:
|
|
2655 |
"shift_left =
|
|
2656 |
(TL start exit.
|
|
2657 |
TLabel start;
|
|
2658 |
if_zero exit;
|
|
2659 |
move_left;
|
|
2660 |
write_one;
|
|
2661 |
right_until_zero;
|
|
2662 |
move_left;
|
|
2663 |
write_zero;
|
|
2664 |
move_right;
|
|
2665 |
move_right;
|
|
2666 |
jmp start;
|
|
2667 |
TLabel exit)
|
|
2668 |
"
|
|
2669 |
|
|
2670 |
definition [asmb]:
|
|
2671 |
"bone c1 c2 = (TL exit l_one.
|
|
2672 |
if_one l_one;
|
|
2673 |
(c1;
|
|
2674 |
jmp exit);
|
|
2675 |
TLabel l_one;
|
|
2676 |
c2;
|
|
2677 |
TLabel exit
|
|
2678 |
)"
|
|
2679 |
|
|
2680 |
definition [asmb]:
|
|
2681 |
"cfill_until_one = (TL start exit.
|
|
2682 |
TLabel start;
|
|
2683 |
if_one exit;
|
|
2684 |
write_one;
|
|
2685 |
move_left;
|
|
2686 |
jmp start;
|
|
2687 |
TLabel exit
|
|
2688 |
)"
|
|
2689 |
|
|
2690 |
definition [asmb]:
|
|
2691 |
"cmove = (TL start exit.
|
|
2692 |
TLabel start;
|
|
2693 |
left_until_zero;
|
|
2694 |
left_until_one;
|
|
2695 |
move_left;
|
|
2696 |
if_zero exit;
|
|
2697 |
move_right;
|
|
2698 |
write_zero;
|
|
2699 |
right_until_one;
|
|
2700 |
right_until_zero;
|
|
2701 |
write_one;
|
|
2702 |
jmp start;
|
|
2703 |
TLabel exit
|
|
2704 |
)"
|
|
2705 |
|
|
2706 |
definition [asmb]:
|
|
2707 |
"cinit = (right_until_zero; move_right; write_one)"
|
|
2708 |
|
|
2709 |
definition [asmb]:
|
|
2710 |
"copy = (cinit; cmove; move_right; move_right; right_until_one;
|
|
2711 |
move_left; move_left; cfill_until_one)"
|
|
2712 |
|
|
2713 |
definition
|
|
2714 |
"bzero c1 c2 = (TL exit l_zero.
|
|
2715 |
if_zero l_zero;
|
|
2716 |
(c1;
|
|
2717 |
jmp exit);
|
|
2718 |
TLabel l_zero;
|
|
2719 |
c2;
|
|
2720 |
TLabel exit
|
|
2721 |
)"
|
|
2722 |
|
|
2723 |
definition "if_reps_nz e = (move_right;
|
|
2724 |
bzero (move_left; jmp e) (move_left)
|
|
2725 |
)"
|
|
2726 |
|
|
2727 |
declare if_reps_nz_def[unfolded bzero_def, asmb]
|
|
2728 |
|
|
2729 |
definition "if_reps_z e = (move_right;
|
|
2730 |
bone (move_left; jmp e) (move_left)
|
|
2731 |
)"
|
|
2732 |
|
|
2733 |
declare if_reps_z_def [unfolded bone_def, asmb]
|
|
2734 |
|
|
2735 |
definition
|
|
2736 |
"skip_or_set = bone (write_one; move_right; move_right)
|
|
2737 |
(right_until_zero; move_right)"
|
|
2738 |
|
|
2739 |
declare skip_or_set_def[unfolded bone_def, asmb]
|
|
2740 |
|
|
2741 |
definition "tpg_fold tpgs = foldr TSeq (butlast tpgs) (last tpgs)"
|
|
2742 |
|
|
2743 |
definition "cpg_fold cpgs = foldr CSeq (butlast cpgs) (last cpgs)"
|
|
2744 |
|
|
2745 |
definition "skip_or_sets n = tpg_fold (replicate n skip_or_set)"
|
|
2746 |
|
|
2747 |
definition "skip_or_sets_skel n = cpg_fold (replicate n skip_or_set_skel)"
|
|
2748 |
|
|
2749 |
lemma c2t_skip_or_sets_skel:
|
|
2750 |
"c2t [] (skip_or_sets_skel (Suc n)) = skip_or_sets (Suc n)"
|
|
2751 |
proof(induct n)
|
|
2752 |
case (Suc k)
|
|
2753 |
thus ?case
|
|
2754 |
apply (unfold skip_or_sets_skel_def cpg_fold_def skip_or_sets_def tpg_fold_def)
|
|
2755 |
my_block
|
|
2756 |
fix x k
|
|
2757 |
have "(last (replicate (Suc k) x)) = x"
|
|
2758 |
by (metis Suc_neq_Zero last_replicate)
|
|
2759 |
my_block_end
|
|
2760 |
apply (unfold this)
|
|
2761 |
my_block
|
|
2762 |
fix x k
|
|
2763 |
have "(butlast (replicate (Suc k) x)) = replicate k x"
|
|
2764 |
by (metis butlast_snoc replicate_Suc replicate_append_same)
|
|
2765 |
my_block_end
|
|
2766 |
apply (unfold this)
|
|
2767 |
my_block
|
|
2768 |
fix x k f y
|
|
2769 |
have "foldr f (replicate (Suc k) x) y = f x (foldr f (replicate k x) y)"
|
|
2770 |
by simp
|
|
2771 |
my_block_end
|
|
2772 |
apply (unfold this)
|
|
2773 |
by (simp add:c2t_skip_or_set_skel)
|
|
2774 |
next
|
|
2775 |
case 0
|
|
2776 |
show ?case
|
|
2777 |
by (simp add:skip_or_sets_skel_def cpg_fold_def skip_or_sets_def tpg_fold_def
|
|
2778 |
c2t_skip_or_set_skel)
|
|
2779 |
qed
|
|
2780 |
|
|
2781 |
lemma wf_skip_or_sets_skel:
|
|
2782 |
"wf_cpg_test [] (skip_or_sets_skel (Suc n)) = (True, [])"
|
|
2783 |
proof(induct n)
|
|
2784 |
case (Suc k)
|
|
2785 |
thus ?case
|
|
2786 |
apply (unfold skip_or_sets_skel_def cpg_fold_def)
|
|
2787 |
my_block
|
|
2788 |
fix x k
|
|
2789 |
have "(last (replicate (Suc k) x)) = x"
|
|
2790 |
by (metis Suc_neq_Zero last_replicate)
|
|
2791 |
my_block_end
|
|
2792 |
apply (unfold this)
|
|
2793 |
my_block
|
|
2794 |
fix x k
|
|
2795 |
have "(butlast (replicate (Suc k) x)) = replicate k x"
|
|
2796 |
by (metis butlast_snoc replicate_Suc replicate_append_same)
|
|
2797 |
my_block_end
|
|
2798 |
apply (unfold this)
|
|
2799 |
my_block
|
|
2800 |
fix x k f y
|
|
2801 |
have "foldr f (replicate (Suc k) x) y = f x (foldr f (replicate k x) y)"
|
|
2802 |
by simp
|
|
2803 |
my_block_end
|
|
2804 |
apply (unfold this)
|
|
2805 |
by (simp add:wf_skip_or_set_skel)
|
|
2806 |
next
|
|
2807 |
case 0
|
|
2808 |
thus ?case
|
|
2809 |
apply (unfold skip_or_sets_skel_def cpg_fold_def)
|
|
2810 |
by (simp add:wf_skip_or_set_skel)
|
|
2811 |
qed
|
|
2812 |
|
|
2813 |
lemma asmb_skip_or_sets:
|
|
2814 |
"\<forall>i. \<exists>j s. (i :[ skip_or_sets (Suc n) ]: j) s"
|
|
2815 |
by (rule wf_c2t_combined[OF wf_skip_or_sets_skel c2t_skip_or_sets_skel], auto)
|
|
2816 |
|
|
2817 |
definition [asmb]: "locate n = (skip_or_sets (Suc n);
|
|
2818 |
move_left;
|
|
2819 |
move_left;
|
|
2820 |
left_until_zero;
|
|
2821 |
move_right
|
|
2822 |
)"
|
|
2823 |
|
|
2824 |
definition [asmb]: "Inc a = locate a;
|
|
2825 |
right_until_zero;
|
|
2826 |
move_right;
|
|
2827 |
shift_right;
|
|
2828 |
move_left;
|
|
2829 |
left_until_double_zero;
|
|
2830 |
write_one;
|
|
2831 |
left_until_double_zero;
|
|
2832 |
move_right;
|
|
2833 |
move_right
|
|
2834 |
"
|
|
2835 |
|
|
2836 |
definition [asmb]: "Dec a e = (TL continue.
|
|
2837 |
(locate a;
|
|
2838 |
if_reps_nz continue;
|
|
2839 |
left_until_double_zero;
|
|
2840 |
move_right;
|
|
2841 |
move_right;
|
|
2842 |
jmp e);
|
|
2843 |
(TLabel continue;
|
|
2844 |
right_until_zero;
|
|
2845 |
move_left;
|
|
2846 |
write_zero;
|
|
2847 |
move_right;
|
|
2848 |
move_right;
|
|
2849 |
shift_left;
|
|
2850 |
move_left;
|
|
2851 |
move_left;
|
|
2852 |
move_left;
|
|
2853 |
left_until_double_zero;
|
|
2854 |
move_right;
|
|
2855 |
move_right))"
|
|
2856 |
|
|
2857 |
end |