--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Tests/Rec_Def.thy Sun Mar 03 14:08:33 2013 +0000
@@ -0,0 +1,84 @@
+header {* Definition of Recursive Functions *}
+
+theory Rec_Def
+imports Main "~~/src/HOL/Library/Monad_Syntax"
+begin
+
+type_synonym heap = "nat \<Rightarrow> nat"
+type_synonym exception = nat
+
+datatype 'a Heap = Heap "heap \<Rightarrow> (('a + exception) * heap)"
+
+definition return
+where "return x = Heap (Pair (Inl x))"
+
+fun exec
+where "exec (Heap f) = f"
+
+definition bind ("_ >>= _")
+where "bind f g = Heap (\<lambda>h. case (exec f h) of
+ (Inl x, h') \<Rightarrow> exec (g x) h'
+ | (Inr exn, h') \<Rightarrow> (Inr exn, h')
+ )"
+
+datatype recf =
+ Zero
+| Succ
+| Id nat nat --"Projection"
+| Cn nat recf "recf list" --"Composition"
+| Pr nat recf recf --"Primitive recursion"
+| Mn nat recf --"Minimisation"
+
+partial_function (tailrec)
+ findzero :: "(nat \<Rightarrow> nat) \<Rightarrow> nat \<Rightarrow> nat"
+where
+ "findzero f n = (if f n = 0 then n else findzero f (Suc n))"
+
+print_theorems
+
+declare findzero.simps[simp del]
+
+lemma "findzero (\<lambda>n. if n = 3 then 0 else 1) 0 = 3"
+apply(simp add: findzero.simps)
+done
+
+lemma "findzero (\<lambda>n. if n = 3 then 0 else 1) 0 \<noteq> 2"
+apply(simp add: findzero.simps)
+done
+
+
+fun
+ least :: "(nat \<Rightarrow> bool) \<Rightarrow> nat"
+where
+ "least P = (SOME n. (P n \<and> (\<forall>m. m < n \<longrightarrow> \<not> P m)))"
+
+lemma [partial_function_mono]:
+ "mono_option (\<lambda>eval. if \<forall>g\<in>set list. case eval (g, ba) of None \<Rightarrow> False | Some a \<Rightarrow> True
+ then eval (recf, map (\<lambda>g. the (eval (g, ba))) list) else None)"
+apply(rule monotoneI)
+unfolding flat_ord_def
+apply(auto)
+oops
+
+partial_function (option)
+ eval :: "recf \<Rightarrow> nat list \<Rightarrow> nat option"
+where
+ "eval f ns = (case (f, ns) of
+ (Zero, [n]) \<Rightarrow> Some 0
+ | (Succ, [n]) \<Rightarrow> Some (n + 1)
+ | (Id i j, ns) \<Rightarrow> if (j < i) then Some (ns ! j) else None
+ | (Pr n f g, 0 # ns) \<Rightarrow> eval f ns
+ | (Pr n f g, Suc k # ns) \<Rightarrow>
+ do { r \<leftarrow> eval (Pr n f g) (k # ns); eval g (r # k # ns) }
+ | (Cn n f gs, ns) \<Rightarrow> if (\<forall>g \<in> set gs. case (eval g ns) of None => False | _ => True)
+ then eval f (map (\<lambda>g. the (eval g ns)) gs) else None
+ | (_, _) \<Rightarrow> None)"
+
+(*
+ | (Cn n f gs, ns) \<Rightarrow> if (\<forall>g \<in> set gs. case (eval g ns) of None => False | _ => True)
+ then eval f (map (\<lambda>g. the (eval g ns)) gs) else None
+*)
+(*
+ | (Mn n f, ns) \<Rightarrow> Some (least (\<lambda>r. eval f (r # ns) = Some 0))
+*)
+end
\ No newline at end of file