# HG changeset patch # User Christian Urban # Date 1360124823 0 # Node ID e995ae949731bc05cfeb465ac039d4d36c0a17bb # Parent 1e89c65f844b88e89bc7ec666088e2c3145a9716 updated diff -r 1e89c65f844b -r e995ae949731 paper.pdf Binary file paper.pdf has changed diff -r 1e89c65f844b -r e995ae949731 thys/UTM.thy --- a/thys/UTM.thy Wed Feb 06 04:11:06 2013 +0000 +++ b/thys/UTM.thy Wed Feb 06 04:27:03 2013 +0000 @@ -1,5 +1,5 @@ theory UTM -imports Main uncomputable recursive abacus UF GCD +imports Main recursive abacus UF GCD turing_hoare begin section {* Wang coding of input arguments *} @@ -24,7 +24,7 @@ \newcommand{\vsep}{5\baseheight} The TM used to generate the Wang's code of input arguments is divided into three TMs - executed sequentially, namely $prepare$, $mainwork$ and $adjust$¡£According to the + executed sequentially, namely $prepare$, $mainwork$ and $adjust$\\According to the convention, start state of ever TM is fixed to state $1$ while the final state is fixed to $0$. @@ -509,21 +509,27 @@ where "fourtimes_ly = layout_of abc_fourtimes" -definition t_twice :: "tprog" +definition t_twice_compile :: "instr list" +where + "t_twice_compile= (tm_of abc_twice @ (shift (mopup 1) (length (tm_of abc_twice) div 2)))" + +definition t_twice :: "instr list" where - "t_twice = change_termi_state (tm_of (abc_twice) @ (tMp 1 (start_of twice_ly (length abc_twice) - Suc 0)))" - -definition t_fourtimes :: "tprog" + "t_twice = adjust t_twice_compile" + +definition t_fourtimes_compile :: "instr list" +where + "t_fourtimes_compile= (tm_of abc_fourtimes @ (shift (mopup 1) (length (tm_of abc_fourtimes) div 2)))" + +definition t_fourtimes :: "instr list" where - "t_fourtimes = change_termi_state (tm_of (abc_fourtimes) @ - (tMp 1 (start_of fourtimes_ly (length abc_fourtimes) - Suc 0)))" - + "t_fourtimes = adjust t_fourtimes_compile" definition t_twice_len :: "nat" where "t_twice_len = length t_twice div 2" -definition t_wcode_main_first_part:: "tprog" +definition t_wcode_main_first_part:: "instr list" where "t_wcode_main_first_part \ [(L, 1), (L, 2), (L, 7), (R, 3), @@ -533,12 +539,12 @@ (R, 10), (W0, 9), (R, 10), (R, 11), (W1, 12), (R, 11), (R, t_twice_len + 14), (L, 12)]" -definition t_wcode_main :: "tprog" +definition t_wcode_main :: "instr list" where - "t_wcode_main = (t_wcode_main_first_part @ tshift t_twice 12 @ [(L, 1), (L, 1)] - @ tshift t_fourtimes (t_twice_len + 13) @ [(L, 1), (L, 1)])" - -fun bl_bin :: "block list \ nat" + "t_wcode_main = (t_wcode_main_first_part @ shift t_twice 12 @ [(L, 1), (L, 1)] + @ shift t_fourtimes (t_twice_len + 13) @ [(L, 1), (L, 1)])" + +fun bl_bin :: "cell list \ nat" where "bl_bin [] = 0" | "bl_bin (Bk # xs) = 2 * bl_bin xs" @@ -546,29 +552,29 @@ declare bl_bin.simps[simp del] -type_synonym bin_inv_t = "block list \ nat \ tape \ bool" +type_synonym bin_inv_t = "cell list \ nat \ tape \ bool" fun wcode_before_double :: "bin_inv_t" where "wcode_before_double ires rs (l, r) = - (\ ln rn. l = Bk # Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires \ - r = Oc\<^bsup>(Suc (Suc rs))\<^esup> @ Bk\<^bsup>rn \<^esup>)" + (\ ln rn. l = Bk # Bk # Bk\(ln) @ Oc # ires \ + r = Oc\((Suc (Suc rs))) @ Bk\(rn ))" declare wcode_before_double.simps[simp del] fun wcode_after_double :: "bin_inv_t" where "wcode_after_double ires rs (l, r) = - (\ ln rn. l = Bk # Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires \ - r = Oc\<^bsup>Suc (Suc (Suc 2*rs))\<^esup> @ Bk\<^bsup>rn\<^esup>)" + (\ ln rn. l = Bk # Bk # Bk\(ln) @ Oc # ires \ + r = Oc\(Suc (Suc (Suc 2*rs))) @ Bk\(rn))" declare wcode_after_double.simps[simp del] fun wcode_on_left_moving_1_B :: "bin_inv_t" where "wcode_on_left_moving_1_B ires rs (l, r) = - (\ ml mr rn. l = Bk\<^bsup>ml\<^esup> @ Oc # Oc # ires \ - r = Bk\<^bsup>mr\<^esup> @ Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup> \ + (\ ml mr rn. l = Bk\(ml) @ Oc # Oc # ires \ + r = Bk\(mr) @ Oc\(Suc rs) @ Bk\(rn) \ ml + mr > Suc 0 \ mr > 0)" declare wcode_on_left_moving_1_B.simps[simp del] @@ -578,7 +584,7 @@ "wcode_on_left_moving_1_O ires rs (l, r) = (\ ln rn. l = Oc # ires \ - r = Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" + r = Oc # Bk\(ln) @ Bk # Bk # Oc\(Suc rs) @ Bk\(rn))" declare wcode_on_left_moving_1_O.simps[simp del] @@ -593,13 +599,13 @@ where "wcode_on_checking_1 ires rs (l, r) = (\ ln rn. l = ires \ - r = Oc # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" + r = Oc # Oc # Bk\(ln) @ Bk # Bk # Oc\(Suc rs) @ Bk\(rn))" fun wcode_erase1 :: "bin_inv_t" where "wcode_erase1 ires rs (l, r) = (\ ln rn. l = Oc # ires \ - tl r = Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" + tl r = Bk\(ln) @ Bk # Bk # Oc\(Suc rs) @ Bk\(rn))" declare wcode_erase1.simps [simp del] @@ -607,8 +613,8 @@ where "wcode_on_right_moving_1 ires rs (l, r) = (\ ml mr rn. - l = Bk\<^bsup>ml\<^esup> @ Oc # ires \ - r = Bk\<^bsup>mr\<^esup> @ Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup> \ + l = Bk\(ml) @ Oc # ires \ + r = Bk\(mr) @ Oc\(Suc rs) @ Bk\(rn) \ ml + mr > Suc 0)" declare wcode_on_right_moving_1.simps [simp del] @@ -619,8 +625,8 @@ where "wcode_goon_right_moving_1 ires rs (l, r) = (\ ml mr ln rn. - l = Oc\<^bsup>ml\<^esup> @ Bk # Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires \ - r = Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> \ + l = Oc\(ml) @ Bk # Bk # Bk\(ln) @ Oc # ires \ + r = Oc\(mr) @ Bk\(rn) \ ml + mr = Suc rs)" declare wcode_goon_right_moving_1.simps[simp del] @@ -628,8 +634,8 @@ fun wcode_backto_standard_pos_B :: "bin_inv_t" where "wcode_backto_standard_pos_B ires rs (l, r) = - (\ ln rn. l = Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires \ - r = Bk # Oc\<^bsup>(Suc (Suc rs))\<^esup> @ Bk\<^bsup>rn \<^esup>)" + (\ ln rn. l = Bk # Bk\(ln) @ Oc # ires \ + r = Bk # Oc\((Suc (Suc rs))) @ Bk\(rn ))" declare wcode_backto_standard_pos_B.simps[simp del] @@ -637,8 +643,8 @@ where "wcode_backto_standard_pos_O ires rs (l, r) = (\ ml mr ln rn. - l = Oc\<^bsup>ml\<^esup> @ Bk # Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires \ - r = Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> \ + l = Oc\(ml) @ Bk # Bk # Bk\(ln) @ Oc # ires \ + r = Oc\(mr) @ Bk\(rn) \ ml + mr = Suc (Suc rs) \ mr > 0)" declare wcode_backto_standard_pos_O.simps[simp del] @@ -651,13 +657,11 @@ declare wcode_backto_standard_pos.simps[simp del] lemma [simp]: "<0::nat> = [Oc]" -apply(simp add: tape_of_nat_abv exponent_def tape_of_nat_list.simps) +apply(simp add: tape_of_nat_abv tape_of_nat_list.simps) done lemma tape_of_Suc_nat: " = replicate a Oc @ [Oc, Oc]" -apply(simp add: tape_of_nat_abv exp_ind tape_of_nat_list.simps) -apply(simp only: exp_ind_def[THEN sym]) -apply(simp only: exp_ind, simp, simp add: exponent_def) +apply(simp only: tape_of_nat_abv exp_ind, simp) done lemma [simp]: "length () = Suc a" @@ -665,8 +669,8 @@ done lemma [simp]: "<[a::nat]> = " -apply(simp add: tape_of_nat_abv tape_of_nl_abv exponent_def - tape_of_nat_list.simps) +apply(simp add: tape_of_nat_abv tape_of_nl_abv + tape_of_nat_list.simps) done lemma bin_wc_eq: "bl_bin xs = bl2wc xs" @@ -683,27 +687,30 @@ done qed -declare exp_def[simp del] - lemma bl_bin_nat_Suc: "bl_bin () = bl_bin () + 2^(Suc a)" -apply(simp add: tape_of_nat_abv bin_wc_eq) -apply(simp add: bl2wc.simps) -done -lemma [simp]: " rev (a\<^bsup>aa\<^esup>) = a\<^bsup>aa\<^esup>" -apply(simp add: exponent_def) -done - -declare tape_of_nl_abv_cons[simp del] +apply(simp add: tape_of_nat_abv bl_bin.simps) +apply(induct a, auto simp: bl_bin.simps) +done + +lemma [simp]: " rev (a\(aa)) = a\(aa)" +apply(simp) +done + +lemma tape_of_nl_append_one: "lm \ [] \ = @ Bk # Oc\Suc a" +apply(induct lm, auto simp: tape_of_nl_cons split:if_splits) +done lemma tape_of_nl_rev: "rev () = ()" -apply(induct lm rule: list_tl_induct, simp) -apply(case_tac "list = []", simp add: tape_of_nl_abv tape_of_nat_list.simps) -apply(simp add: tape_of_nat_list_butlast_last tape_of_nl_abv_cons) -done -lemma [simp]: "a\<^bsup>Suc 0\<^esup> = [a]" -by(simp add: exp_def) -lemma tape_of_nl_cons_app1: "() = (Oc\<^bsup>Suc a\<^esup> @ Bk # ())" +apply(induct lm, simp, auto) +apply(auto simp: tape_of_nl_cons tape_of_nl_append_one split: if_splits) +apply(simp add: exp_ind[THEN sym]) +done + +lemma [simp]: "a\(Suc 0) = [a]" +by(simp) + +lemma tape_of_nl_cons_app1: "() = (Oc\(Suc a) @ Bk # ())" apply(case_tac xs, simp add: tape_of_nl_abv tape_of_nat_list.simps) apply(simp add: tape_of_nl_abv tape_of_nat_list.simps) done @@ -716,26 +723,27 @@ apply(simp add: bl2nat_cons_bk bl2wc.simps) done -lemma tape_of_nat[simp]: "() = Oc\<^bsup>Suc a\<^esup>" +lemma tape_of_nat[simp]: "() = Oc\(Suc a)" apply(simp add: tape_of_nat_abv) done -lemma tape_of_nl_cons_app2: "() = ( @ Bk # Oc\<^bsup>Suc b\<^esup>)" + +lemma tape_of_nl_cons_app2: "() = ( @ Bk # Oc\(Suc b))" proof(induct "length xs" arbitrary: xs c, simp add: tape_of_nl_abv tape_of_nat_list.simps) fix x xs c assume ind: "\xs c. x = length xs \ = - @ Bk # Oc\<^bsup>Suc b\<^esup>" + @ Bk # Oc\(Suc b)" and h: "Suc x = length (xs::nat list)" - show " = @ Bk # Oc\<^bsup>Suc b\<^esup>" + show " = @ Bk # Oc\(Suc b)" proof(case_tac xs, simp add: tape_of_nl_abv tape_of_nat_list.simps) fix a list assume g: "xs = a # list" - hence k: " = @ Bk # Oc\<^bsup>Suc b\<^esup>" + hence k: " = @ Bk # Oc\(Suc b)" apply(rule_tac ind) using h apply(simp) done - from g and k show " = @ Bk # Oc\<^bsup>Suc b\<^esup>" + from g and k show " = @ Bk # Oc\(Suc b)" apply(simp add: tape_of_nl_abv tape_of_nat_list.simps) done qed @@ -745,21 +753,24 @@ apply(simp add: tape_of_nl_abv tape_of_nat_list.simps) done -lemma [simp]: "bl_bin (Oc\<^bsup>Suc aa\<^esup> @ Bk # tape_of_nat_list (a # lista) @ [Bk, Oc]) = - bl_bin (Oc\<^bsup>Suc aa\<^esup> @ Bk # tape_of_nat_list (a # lista)) + - 2* 2^(length (Oc\<^bsup>Suc aa\<^esup> @ Bk # tape_of_nat_list (a # lista)))" -using bl_bin_bk_oc[of "Oc\<^bsup>Suc aa\<^esup> @ Bk # tape_of_nat_list (a # lista)"] +lemma [simp]: "bl_bin (Oc\(Suc aa) @ Bk # tape_of_nat_list (a # lista) @ [Bk, Oc]) = + bl_bin (Oc\(Suc aa) @ Bk # tape_of_nat_list (a # lista)) + + 2* 2^(length (Oc\(Suc aa) @ Bk # tape_of_nat_list (a # lista)))" +using bl_bin_bk_oc[of "Oc\(Suc aa) @ Bk # tape_of_nat_list (a # lista)"] apply(simp) done +declare replicate_Suc[simp del] + lemma [simp]: "bl_bin () + (4 * rs + 4) * 2 ^ (length () - Suc 0) - = bl_bin (Oc\<^bsup>Suc aa\<^esup> @ Bk # ) + rs * (2 * 2 ^ (aa + length ()))" -apply(case_tac "list", simp add: add_mult_distrib, simp) + = bl_bin (Oc\(Suc aa) @ Bk # ) + rs * (2 * 2 ^ (aa + length ()))" + +apply(case_tac "list", simp add: add_mult_distrib) apply(simp add: tape_of_nl_cons_app2 add_mult_distrib) apply(simp add: tape_of_nl_abv tape_of_nat_list.simps) done - + lemma tape_of_nl_app_Suc: "(()) = () @ [Oc]" apply(induct list) apply(simp add: tape_of_nl_abv tape_of_nat_list.simps exp_ind) @@ -767,17 +778,17 @@ apply(simp_all add:tape_of_nl_abv tape_of_nat_list.simps exp_ind) done -lemma [simp]: "bl_bin (Oc # Oc\<^bsup>aa\<^esup> @ Bk # @ [Oc]) - = bl_bin (Oc # Oc\<^bsup>aa\<^esup> @ Bk # ) + - 2^(length (Oc # Oc\<^bsup>aa\<^esup> @ Bk # ))" +lemma [simp]: "bl_bin (Oc # Oc\(aa) @ Bk # @ [Oc]) + = bl_bin (Oc # Oc\(aa) @ Bk # ) + + 2^(length (Oc # Oc\(aa) @ Bk # ))" apply(simp add: bin_wc_eq) apply(simp add: bl2nat_cons_oc bl2wc.simps) -using bl2nat_cons_oc[of "Oc # Oc\<^bsup>aa\<^esup> @ Bk # "] +using bl2nat_cons_oc[of "Oc # Oc\(aa) @ Bk # "] apply(simp) done -lemma [simp]: "bl_bin (Oc # Oc\<^bsup>aa\<^esup> @ Bk # ) + (4 * 2 ^ (aa + length ()) + +lemma [simp]: "bl_bin (Oc # Oc\(aa) @ Bk # ) + (4 * 2 ^ (aa + length ()) + 4 * (rs * 2 ^ (aa + length ()))) = - bl_bin (Oc # Oc\<^bsup>aa\<^esup> @ Bk # ) + + bl_bin (Oc # Oc\(aa) @ Bk # ) + rs * (2 * 2 ^ (aa + length ()))" apply(simp add: tape_of_nl_app_Suc) done @@ -798,12 +809,12 @@ declare wcode_double_case_inv.simps[simp del] -fun wcode_double_case_state :: "t_conf \ nat" +fun wcode_double_case_state :: "config \ nat" where "wcode_double_case_state (st, l, r) = 13 - st" -fun wcode_double_case_step :: "t_conf \ nat" +fun wcode_double_case_step :: "config \ nat" where "wcode_double_case_step (st, l, r) = (if st = Suc 0 then (length l) @@ -815,13 +826,13 @@ else if st = 6 then (length l) else 0)" -fun wcode_double_case_measure :: "t_conf \ nat \ nat" +fun wcode_double_case_measure :: "config \ nat \ nat" where "wcode_double_case_measure (st, l, r) = (wcode_double_case_state (st, l, r), wcode_double_case_step (st, l, r))" -definition wcode_double_case_le :: "(t_conf \ t_conf) set" +definition wcode_double_case_le :: "(config \ config) set" where "wcode_double_case_le \ (inv_image lex_pair wcode_double_case_measure)" lemma [intro]: "wf lex_pair" @@ -857,42 +868,49 @@ done lemma [simp]: "fetch t_wcode_main 4 Bk = (R, 4)" -apply(simp add: t_wcode_main_def t_wcode_main_first_part_def - fetch.simps nth_of.simps) +apply(subgoal_tac "4 = Suc 3") +apply(simp only: t_wcode_main_def t_wcode_main_first_part_def + fetch.simps nth_of.simps, auto) done lemma [simp]: "fetch t_wcode_main 4 Oc = (R, 5)" -apply(simp add: t_wcode_main_def t_wcode_main_first_part_def - fetch.simps nth_of.simps) +apply(subgoal_tac "4 = Suc 3") +apply(simp only: t_wcode_main_def t_wcode_main_first_part_def + fetch.simps nth_of.simps, auto) done lemma [simp]: "fetch t_wcode_main 5 Oc = (R, 5)" -apply(simp add: t_wcode_main_def t_wcode_main_first_part_def - fetch.simps nth_of.simps) +apply(subgoal_tac "5 = Suc 4") +apply(simp only: t_wcode_main_def t_wcode_main_first_part_def + fetch.simps nth_of.simps, auto) done lemma [simp]: "fetch t_wcode_main 5 Bk = (W1, 6)" -apply(simp add: t_wcode_main_def t_wcode_main_first_part_def - fetch.simps nth_of.simps) +apply(subgoal_tac "5 = Suc 4") +apply(simp only: t_wcode_main_def t_wcode_main_first_part_def + fetch.simps nth_of.simps, auto) done lemma [simp]: "fetch t_wcode_main 6 Bk = (R, 13)" -apply(simp add: t_wcode_main_def t_wcode_main_first_part_def - fetch.simps nth_of.simps) -done - +apply(subgoal_tac "6 = Suc 5") +apply(simp only: t_wcode_main_def t_wcode_main_first_part_def + fetch.simps nth_of.simps, auto) +done + lemma [simp]: "fetch t_wcode_main 6 Oc = (L, 6)" -apply(simp add: t_wcode_main_def t_wcode_main_first_part_def - fetch.simps nth_of.simps) -done -lemma [elim]: "Bk\<^bsup>mr\<^esup> = [] \ mr = 0" -apply(case_tac mr, auto simp: exponent_def) +apply(subgoal_tac "6 = Suc 5") +apply(simp only: t_wcode_main_def t_wcode_main_first_part_def + fetch.simps nth_of.simps, auto) +done + +lemma [elim]: "Bk\(mr) = [] \ mr = 0" +apply(case_tac mr, auto) done lemma [simp]: "wcode_on_left_moving_1 ires rs (b, []) = False" apply(simp add: wcode_on_left_moving_1.simps wcode_on_left_moving_1_B.simps - wcode_on_left_moving_1_O.simps, auto) -done + wcode_on_left_moving_1_O.simps) +done declare wcode_on_checking_1.simps[simp del] @@ -921,11 +939,12 @@ apply(case_tac mr, simp, case_tac nat, simp, simp add: exp_ind) apply(rule_tac disjI1) apply(rule_tac x = nat in exI, rule_tac x = "Suc mr" in exI, rule_tac x = rn in exI, - simp add: exp_ind_def) + simp, simp add: replicate_Suc) apply(erule_tac exE)+ apply(simp) done +declare replicate_Suc[simp] lemma [elim]: "\wcode_on_left_moving_1 ires rs (b, Oc # list); tl b = aa \ hd b # Oc # list = ba\ @@ -933,10 +952,8 @@ apply(simp only: wcode_double_case_inv_simps) apply(erule_tac disjE) apply(erule_tac [!] exE)+ -apply(case_tac mr, simp, simp add: exp_ind_def) -apply(rule_tac x = ln in exI, rule_tac x = rn in exI, simp) -done - +apply(case_tac mr, simp, auto) +done lemma [simp]: "wcode_on_checking_1 ires rs (b, []) = False" apply(auto simp: wcode_double_case_inv_simps) @@ -967,11 +984,11 @@ done lemma [simp]: "wcode_on_right_moving_1 ires rs (b, []) = False" -apply(simp add: wcode_double_case_inv_simps exp_ind_def) +apply(simp add: wcode_double_case_inv_simps) done lemma [simp]: "wcode_on_right_moving_1 ires rs (b, []) = False" -apply(simp add: wcode_double_case_inv_simps exp_ind_def) +apply(simp add: wcode_double_case_inv_simps) done lemma [elim]: "\wcode_on_right_moving_1 ires rs (b, Bk # ba); Bk # b = aa \ list = b\ \ @@ -980,8 +997,8 @@ apply(erule_tac exE)+ apply(rule_tac x = "Suc ml" in exI, rule_tac x = "mr - Suc 0" in exI, rule_tac x = rn in exI) -apply(simp add: exp_ind_def) -apply(case_tac mr, simp, simp add: exp_ind_def) +apply(simp) +apply(case_tac mr, simp, simp) done lemma [elim]: @@ -991,14 +1008,13 @@ apply(erule_tac exE)+ apply(rule_tac x = "Suc 0" in exI, rule_tac x = "rs" in exI, rule_tac x = "ml - Suc (Suc 0)" in exI, rule_tac x = rn in exI) -apply(case_tac mr, simp_all add: exp_ind_def) +apply(case_tac mr, simp_all) apply(case_tac ml, simp, case_tac nat, simp, simp) -apply(simp add: exp_ind_def) done lemma [simp]: "wcode_on_right_moving_1 ires rs (b, []) \ False" -apply(simp add: wcode_double_case_inv_simps exponent_def) +apply(simp add: wcode_double_case_inv_simps) done lemma [elim]: "\wcode_erase1 ires rs (b, Bk # ba); Bk # b = aa \ list = ba; c = Bk # ba\ @@ -1006,7 +1022,7 @@ apply(simp only: wcode_double_case_inv_simps) apply(erule_tac exE)+ apply(rule_tac x = "Suc 0" in exI, rule_tac x = "Suc (Suc ln)" in exI, - rule_tac x = rn in exI, simp add: exp_ind) + rule_tac x = rn in exI, simp add: exp_ind del: replicate_Suc) done lemma [elim]: "\wcode_erase1 ires rs (aa, Oc # list); b = aa \ Bk # list = ba\ \ @@ -1024,7 +1040,6 @@ apply(simp only:wcode_backto_standard_pos_O.simps) apply(rule_tac x = ml in exI, rule_tac x = "Suc 0" in exI, rule_tac x = ln in exI, rule_tac x = rn in exI, simp) -apply(case_tac mr, simp_all add: exponent_def) done lemma [elim]: @@ -1036,7 +1051,7 @@ apply(simp only:wcode_backto_standard_pos_O.simps) apply(rule_tac x = ml in exI, rule_tac x = "Suc 0" in exI, rule_tac x = ln in exI, rule_tac x = "rn - Suc 0" in exI, simp) -apply(case_tac mr, simp, case_tac rn, simp, simp_all add: exp_ind_def) +apply(case_tac mr, simp, case_tac rn, simp, simp_all) done lemma [elim]: "\wcode_goon_right_moving_1 ires rs (b, Oc # ba); Oc # b = aa \ list = ba\ @@ -1045,14 +1060,13 @@ apply(erule_tac exE)+ apply(rule_tac x = "Suc ml" in exI, rule_tac x = "mr - Suc 0" in exI, rule_tac x = ln in exI, rule_tac x = rn in exI) -apply(simp add: exp_ind_def) -apply(case_tac mr, simp, case_tac rn, simp_all add: exp_ind_def) +apply(simp) +apply(case_tac mr, simp, case_tac rn, simp_all) done lemma [elim]: "\wcode_backto_standard_pos ires rs (b, []); Bk # b = aa\ \ False" apply(auto simp: wcode_double_case_inv_simps wcode_backto_standard_pos_O.simps wcode_backto_standard_pos_B.simps) -apply(case_tac mr, simp_all add: exp_ind_def) done lemma [elim]: "\wcode_backto_standard_pos ires rs (b, Bk # ba); Bk # b = aa \ list = ba\ @@ -1063,7 +1077,7 @@ apply(erule_tac exE)+ apply(rule_tac x = ln in exI, rule_tac x = rn in exI, simp) apply(auto) -apply(case_tac [!] mr, simp_all add: exp_ind_def) +apply(case_tac [!] mr, simp_all) done lemma [simp]: "wcode_backto_standard_pos ires rs ([], Oc # list) = False" @@ -1074,7 +1088,6 @@ lemma [simp]: "wcode_backto_standard_pos ires rs (b, []) = False" apply(auto simp: wcode_backto_standard_pos.simps wcode_backto_standard_pos_B.simps wcode_backto_standard_pos_O.simps) -apply(case_tac mr, simp, simp add: exp_ind_def) done lemma [elim]: "\wcode_backto_standard_pos ires rs (b, Oc # list); tl b = aa; hd b # Oc # list = ba\ @@ -1090,19 +1103,18 @@ apply(rule_tac disjI2) apply(rule_tac x = nat in exI, rule_tac x = "Suc mr" in exI, rule_tac x = ln in exI, rule_tac x = rn in exI, simp) -apply(simp add: exp_ind_def) -done - -declare new_tape.simps[simp del] nth_of.simps[simp del] fetch.simps[simp del] +done + +declare nth_of.simps[simp del] fetch.simps[simp del] lemma wcode_double_case_first_correctness: "let P = (\ (st, l, r). st = 13) in let Q = (\ (st, l, r). wcode_double_case_inv st ires rs (l, r)) in - let f = (\ stp. steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Oc # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp) in + let f = (\ stp. steps0 (Suc 0, Bk # Bk\(m) @ Oc # Oc # ires, Bk # Oc\(Suc rs) @ Bk\(n)) t_wcode_main stp) in \ n .P (f n) \ Q (f (n::nat))" proof - let ?P = "(\ (st, l, r). st = 13)" let ?Q = "(\ (st, l, r). wcode_double_case_inv st ires rs (l, r))" - let ?f = "(\ stp. steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Oc # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp)" + let ?f = "(\ stp. steps0 (Suc 0, Bk # Bk\(m) @ Oc # Oc # ires, Bk # Oc\(Suc rs) @ Bk\(n)) t_wcode_main stp)" have "\ n. ?P (?f n) \ ?Q (?f (n::nat))" proof(rule_tac halt_lemma2) show "wf wcode_double_case_le" @@ -1110,16 +1122,16 @@ next show "\ na. \ ?P (?f na) \ ?Q (?f na) \ ?Q (?f (Suc na)) \ (?f (Suc na), ?f na) \ wcode_double_case_le" - proof(rule_tac allI, case_tac "?f na", simp add: tstep_red) + proof(rule_tac allI, case_tac "?f na", simp add: step_red) fix na a b c show "a \ 13 \ wcode_double_case_inv a ires rs (b, c) \ - (case tstep (a, b, c) t_wcode_main of (st, x) \ + (case step0 (a, b, c) t_wcode_main of (st, x) \ wcode_double_case_inv st ires rs x) \ - (tstep (a, b, c) t_wcode_main, a, b, c) \ wcode_double_case_le" + (step0 (a, b, c) t_wcode_main, a, b, c) \ wcode_double_case_le" apply(rule_tac impI, simp add: wcode_double_case_inv.simps) - apply(auto split: if_splits simp: tstep.simps, - case_tac [!] c, simp_all, case_tac [!] "(c::block list)!0") - apply(simp_all add: new_tape.simps wcode_double_case_inv.simps wcode_double_case_le_def + apply(auto split: if_splits simp: step.simps, + case_tac [!] c, simp_all, case_tac [!] "(c::cell list)!0") + apply(simp_all add: wcode_double_case_inv.simps wcode_double_case_le_def lex_pair_def) apply(auto split: if_splits) done @@ -1130,9 +1142,8 @@ wcode_on_left_moving_1.simps wcode_on_left_moving_1_B.simps) apply(rule_tac disjI1) - apply(rule_tac x = "Suc m" in exI, simp add: exp_ind_def) - apply(rule_tac x = "Suc 0" in exI, simp add: exp_ind_def) - apply(auto) + apply(rule_tac x = "Suc m" in exI, simp) + apply(rule_tac x = "Suc 0" in exI, simp) done next show "\ ?P (?f 0)" @@ -1141,101 +1152,39 @@ qed thus "let P = \(st, l, r). st = 13; Q = \(st, l, r). wcode_double_case_inv st ires rs (l, r); - f = steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Oc # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main + f = steps0 (Suc 0, Bk # Bk\(m) @ Oc # Oc # ires, Bk # Oc\(Suc rs) @ Bk\(n)) t_wcode_main in \n. P (f n) \ Q (f n)" apply(simp add: Let_def) done qed -lemma [elim]: "t_ncorrect tp - \ t_ncorrect (tshift tp a)" -apply(simp add: t_ncorrect.simps shift_length) -done - -lemma tshift_fetch: "\ fetch tp a b = (aa, st'); 0 < st'\ - \ fetch (tshift tp (length tp1 div 2)) a b - = (aa, st' + length tp1 div 2)" -apply(subgoal_tac "a > 0") -apply(auto simp: fetch.simps nth_of.simps shift_length nth_map - tshift.simps split: block.splits if_splits) -done - -lemma t_steps_steps_eq: "\steps (st, l, r) tp stp = (st', l', r'); - 0 < st'; - 0 < st \ st \ length tp div 2; - t_ncorrect tp1; - t_ncorrect tp\ - \ t_steps (st + length tp1 div 2, l, r) (tshift tp (length tp1 div 2), - length tp1 div 2) stp - = (st' + length tp1 div 2, l', r')" -apply(induct stp arbitrary: st' l' r', simp add: steps.simps t_steps.simps, - simp add: tstep_red stepn) -apply(case_tac "(steps (st, l, r) tp stp)", simp) +lemma tm_append_shift_append_steps: +"\steps0 (st, l, r) tp stp = (st', l', r'); + 0 < st'; + length tp1 mod 2 = 0 + \ + \ steps0 (st + length tp1 div 2, l, r) (tp1 @ shift tp (length tp1 div 2) @ tp2) stp + = (st' + length tp1 div 2, l', r')" proof - - fix stp st' l' r' a b c - assume ind: "\st' l' r'. - \a = st' \ b = l' \ c = r'; 0 < st'\ - \ t_steps (st + length tp1 div 2, l, r) - (tshift tp (length tp1 div 2), length tp1 div 2) stp = - (st' + length tp1 div 2, l', r')" - and h: "tstep (a, b, c) tp = (st', l', r')" "0 < st'" "t_ncorrect tp1" "t_ncorrect tp" - have k: "t_steps (st + length tp1 div 2, l, r) (tshift tp (length tp1 div 2), - length tp1 div 2) stp = (a + length tp1 div 2, b, c)" - apply(rule_tac ind, simp) + assume h: + "steps0 (st, l, r) tp stp = (st', l', r')" + "0 < st'" + "length tp1 mod 2 = 0 " + from h have + "steps (st + length tp1 div 2, l, r) (tp1 @ shift tp (length tp1 div 2), 0) stp = + (st' + length tp1 div 2, l', r')" + by(rule_tac tm_append_second_steps_eq, simp_all) + then have "steps (st + length tp1 div 2, l, r) ((tp1 @ shift tp (length tp1 div 2)) @ tp2, 0) stp = + (st' + length tp1 div 2, l', r')" using h - apply(case_tac a, simp_all add: tstep.simps fetch.simps) + apply(rule_tac tm_append_first_steps_eq, simp_all) done - from h and this show "t_step (t_steps (st + length tp1 div 2, l, r) (tshift tp (length tp1 div 2), length tp1 div 2) stp) - (tshift tp (length tp1 div 2), length tp1 div 2) = - (st' + length tp1 div 2, l', r')" - apply(simp add: k) - apply(simp add: tstep.simps t_step.simps) - apply(case_tac "fetch tp a (case c of [] \ Bk | x # xs \ x)", simp) - apply(subgoal_tac "fetch (tshift tp (length tp1 div 2)) a - (case c of [] \ Bk | x # xs \ x) = (aa, st' + length tp1 div 2)", simp) - apply(simp add: tshift_fetch) - done + thus "?thesis" + by simp qed -lemma t_tshift_lemma: "\ steps (st, l, r) tp stp = (st', l', r'); - st' \ 0; - stp > 0; - 0 < st \ st \ length tp div 2; - t_ncorrect tp1; - t_ncorrect tp; - t_ncorrect tp2 - \ - \ \ stp>0. steps (st + length tp1 div 2, l, r) (tp1 @ tshift tp (length tp1 div 2) @ tp2) stp - = (st' + length tp1 div 2, l', r')" -proof - - assume h: "steps (st, l, r) tp stp = (st', l', r')" - "st' \ 0" "stp > 0" - "0 < st \ st \ length tp div 2" - "t_ncorrect tp1" - "t_ncorrect tp" - "t_ncorrect tp2" - from h have - "\stp>0. t_steps (st + length tp1 div 2, l, r) (tp1 @ tshift tp (length tp1 div 2) @ tp2, 0) stp = - (st' + length tp1 div 2, l', r')" - apply(rule_tac stp = stp in turing_shift, simp_all add: shift_length) - apply(simp add: t_steps_steps_eq) - apply(simp add: t_ncorrect.simps shift_length) - done - thus "\ stp>0. steps (st + length tp1 div 2, l, r) (tp1 @ tshift tp (length tp1 div 2) @ tp2) stp - = (st' + length tp1 div 2, l', r')" - apply(erule_tac exE) - apply(rule_tac x = stp in exI, simp) - apply(subgoal_tac "length (tp1 @ tshift tp (length tp1 div 2) @ tp2) mod 2 = 0") - apply(simp only: steps_eq) - using h - apply(auto simp: t_ncorrect.simps shift_length) - apply arith - done -qed - - lemma t_twice_len_ge: "Suc 0 \ length t_twice div 2" -apply(simp add: t_twice_def tMp.simps shift_length) +apply(simp add: t_twice_def mopup.simps t_twice_compile_def) done lemma [intro]: "rec_calc_rel (recf.id (Suc 0) 0) [rs] rs" @@ -1251,15 +1200,19 @@ using prime_rel_exec_eq[of "rec_mult" "[rs, 2]" "2*rs"] apply(subgoal_tac "primerec rec_mult (Suc (Suc 0))", auto) done -lemma t_twice_correct: "\stp ln rn. steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) - (tm_of abc_twice @ tMp (Suc 0) (start_of twice_ly (length abc_twice) - Suc 0)) stp = - (0, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (2 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" + +declare start_of.simps[simp del] + +lemma t_twice_correct: + "\stp ln rn. steps0 (Suc 0, Bk # Bk # ires, Oc\(Suc rs) @ Bk\(n)) + (tm_of abc_twice @ shift (mopup (Suc 0)) ((length (tm_of abc_twice) div 2))) stp = + (0, Bk\(ln) @ Bk # Bk # ires, Oc\(Suc (2 * rs)) @ Bk\(rn))" proof(case_tac "rec_ci rec_twice") fix a b c assume h: "rec_ci rec_twice = (a, b, c)" - have "\stp m l. steps (Suc 0, Bk # Bk # ires, <[rs]> @ Bk\<^bsup>n\<^esup>) (tm_of abc_twice @ tMp (Suc 0) - (start_of twice_ly (length abc_twice) - 1)) stp = (0, Bk\<^bsup>m\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (2*rs)\<^esup> @ Bk\<^bsup>l\<^esup>)" - proof(rule_tac t_compiled_by_rec) + have "\stp m l. steps0 (Suc 0, Bk # Bk # ires, <[rs]> @ Bk\(n)) (tm_of abc_twice @ shift (mopup 1) + (length (tm_of abc_twice) div 2)) stp = (0, Bk\(m) @ Bk # Bk # ires, Oc\(Suc (2*rs)) @ Bk\(l))" + proof(rule_tac recursive_compile_to_tm_correct) show "rec_ci rec_twice = (a, b, c)" by (simp add: h) next show "rec_calc_rel rec_twice [rs] (2 * rs)" @@ -1268,187 +1221,221 @@ apply(rule_tac allI, case_tac k, auto) done next - show "length [rs] = Suc 0" by simp - next - show "layout_of (a [+] dummy_abc (Suc 0)) = layout_of (a [+] dummy_abc (Suc 0))" - by simp + show "length [rs] = 1" by simp + next + show "layout_of (a [+] dummy_abc 1) = layout_of (a [+] dummy_abc 1)" by simp next - show "start_of twice_ly (length abc_twice) = - start_of (layout_of (a [+] dummy_abc (Suc 0))) (length (a [+] dummy_abc (Suc 0)))" - using h - apply(simp add: twice_ly_def abc_twice_def) - done - next - show "tm_of abc_twice = tm_of (a [+] dummy_abc (Suc 0))" + show "tm_of abc_twice = tm_of (a [+] dummy_abc 1)" using h apply(simp add: abc_twice_def) done qed - thus "\stp ln rn. steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) - (tm_of abc_twice @ tMp (Suc 0) (start_of twice_ly (length abc_twice) - Suc 0)) stp = - (0, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (2 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" + thus "?thesis" apply(simp add: tape_of_nl_abv tape_of_nat_list.simps) done qed -lemma change_termi_state_fetch: "\fetch ap a b = (aa, st); st > 0\ - \ fetch (change_termi_state ap) a b = (aa, st)" -apply(case_tac b, auto simp: fetch.simps nth_of.simps change_termi_state.simps nth_map - split: if_splits block.splits) -done - -lemma change_termi_state_exec_in_range: - "\steps (st, l, r) ap stp = (st', l', r'); st' \ 0\ - \ steps (st, l, r) (change_termi_state ap) stp = (st', l', r')" -proof(induct stp arbitrary: st l r st' l' r', simp add: steps.simps) - fix stp st l r st' l' r' - assume ind: "\st l r st' l' r'. - \steps (st, l, r) ap stp = (st', l', r'); st' \ 0\ \ - steps (st, l, r) (change_termi_state ap) stp = (st', l', r')" - and h: "steps (st, l, r) ap (Suc stp) = (st', l', r')" "st' \ 0" - from h show "steps (st, l, r) (change_termi_state ap) (Suc stp) = (st', l', r')" - proof(simp add: tstep_red, case_tac "steps (st, l, r) ap stp", simp) - fix a b c - assume g: "steps (st, l, r) ap stp = (a, b, c)" - "tstep (a, b, c) ap = (st', l', r')" "0 < st'" - hence "steps (st, l, r) (change_termi_state ap) stp = (a, b, c)" - apply(rule_tac ind, simp) - apply(case_tac a, simp_all add: tstep_0) - done - from g and this show "tstep (steps (st, l, r) (change_termi_state ap) stp) - (change_termi_state ap) = (st', l', r')" - apply(simp add: tstep.simps) - apply(case_tac "fetch ap a (case c of [] \ Bk | x # xs \ x)", simp) - apply(subgoal_tac "fetch (change_termi_state ap) a (case c of [] \ Bk | x # xs \ x) - = (aa, st')", simp) - apply(simp add: change_termi_state_fetch) - done - qed + +lemma adjust_fetch0: + "\0 < a; a \ length ap div 2; fetch ap a b = (aa, 0)\ + \ fetch (adjust ap) a b = (aa, Suc (length ap div 2))" +apply(case_tac b, auto simp: fetch.simps nth_of.simps nth_map + split: if_splits) +apply(case_tac [!] a, auto simp: fetch.simps nth_of.simps) +done + +lemma adjust_fetch_norm: + "\st > 0; st \ length tp div 2; fetch ap st b = (aa, ns); ns \ 0\ + \ fetch (turing_basic.adjust ap) st b = (aa, ns)" + apply(case_tac b, auto simp: fetch.simps nth_of.simps nth_map + split: if_splits) +apply(case_tac [!] st, auto simp: fetch.simps nth_of.simps) +done + +lemma adjust_step_eq: + assumes exec: "step0 (st,l,r) ap = (st', l', r')" + and wf_tm: "tm_wf (ap, 0)" + and notfinal: "st' > 0" + shows "step0 (st, l, r) (adjust ap) = (st', l', r')" + using assms +proof - + have "st > 0" + using assms + by(case_tac st, simp_all add: step.simps fetch.simps) + moreover hence "st \ (length ap) div 2" + using assms + apply(case_tac "st \ (length ap) div 2", simp) + apply(case_tac st, auto simp: step.simps fetch.simps) + apply(case_tac "read r", simp_all add: fetch.simps nth_of.simps) + done + ultimately have "fetch (adjust ap) st (read r) = fetch ap st (read r)" + using assms + apply(case_tac "fetch ap st (read r)") + apply(drule_tac adjust_fetch_norm, simp_all) + apply(simp add: step.simps) + done + thus "?thesis" + using exec + by(simp add: step.simps) qed -lemma change_termi_state_fetch0: - "\0 < a; a \ length ap div 2; t_correct ap; fetch ap a b = (aa, 0)\ - \ fetch (change_termi_state ap) a b = (aa, Suc (length ap div 2))" -apply(case_tac b, auto simp: fetch.simps nth_of.simps change_termi_state.simps nth_map - split: if_splits block.splits) -done - -lemma turing_change_termi_state: - "\steps (Suc 0, l, r) ap stp = (0, l', r'); t_correct ap\ - \ \ stp. steps (Suc 0, l, r) (change_termi_state ap) stp = +declare adjust.simps[simp del] + +lemma adjust_steps_eq: + assumes exec: "steps0 (st,l,r) ap stp = (st', l', r')" + and wf_tm: "tm_wf (ap, 0)" + and notfinal: "st' > 0" + shows "steps0 (st, l, r) (adjust ap) stp = (st', l', r')" + using exec notfinal +proof(induct stp arbitrary: st' l' r') + case 0 + thus "?case" + by(simp add: steps.simps) +next + case (Suc stp st' l' r') + have ind: "\st' l' r'. \steps0 (st, l, r) ap stp = (st', l', r'); 0 < st'\ + \ steps0 (st, l, r) (turing_basic.adjust ap) stp = (st', l', r')" by fact + have h: "steps0 (st, l, r) ap (Suc stp) = (st', l', r')" by fact + have g: "0 < st'" by fact + obtain st'' l'' r'' where a: "steps0 (st, l, r) ap stp = (st'', l'', r'')" + by (metis prod_cases3) + hence c:"0 < st''" + using h g + apply(simp add: step_red) + apply(case_tac st'', auto) + done + hence b: "steps0 (st, l, r) (turing_basic.adjust ap) stp = (st'', l'', r'')" + using a + by(rule_tac ind, simp_all) + thus "?case" + using assms a b h g + apply(simp add: step_red) + apply(rule_tac adjust_step_eq, simp_all) + done +qed + +lemma adjust_halt_eq: + assumes exec: "steps0 (1, l, r) ap stp = (0, l', r')" + and tm_wf: "tm_wf (ap, 0)" + shows "\ stp. steps0 (Suc 0, l, r) (adjust ap) stp = (Suc (length ap div 2), l', r')" -apply(drule first_halt_point) -apply(erule_tac exE) -apply(rule_tac x = "Suc stp" in exI, simp add: tstep_red) -apply(case_tac "steps (Suc 0, l, r) ap stp") -apply(simp add: isS0_def change_termi_state_exec_in_range) -apply(subgoal_tac "steps (Suc 0, l, r) (change_termi_state ap) stp = (a, b, c)", simp) -apply(simp add: tstep.simps) -apply(case_tac "fetch ap a (case c of [] \ Bk | x # xs \ x)", simp) -apply(subgoal_tac "fetch (change_termi_state ap) a - (case c of [] \ Bk | x # xs \ x) = (aa, Suc (length ap div 2))", simp) -apply(rule_tac ap = ap in change_termi_state_fetch0, simp_all) -apply(rule_tac tp = "(l, r)" and l = b and r = c and stp = stp and A = ap in s_keep, simp_all) -apply(simp add: change_termi_state_exec_in_range) +proof - + have "\ stp. \ is_final (steps0 (1, l, r) ap stp) \ (steps0 (1, l, r) ap (Suc stp) = (0, l', r'))" + thm before_final using exec + by(erule_tac before_final) + then obtain stpa where a: + "\ is_final (steps0 (1, l, r) ap stpa) \ (steps0 (1, l, r) ap (Suc stpa) = (0, l', r'))" .. + obtain sa la ra where b:"steps0 (1, l, r) ap stpa = (sa, la, ra)" by (metis prod_cases3) + hence c: "steps0 (Suc 0, l, r) (adjust ap) stpa = (sa, la, ra)" + using assms a + apply(rule_tac adjust_steps_eq, simp_all) + done + have d: "sa \ length ap div 2" + using steps_in_range[of "(l, r)" ap stpa] a tm_wf b + by(simp) + obtain ac ns where e: "fetch ap sa (read ra) = (ac, ns)" + by (metis prod.exhaust) + hence f: "ns = 0" + using b a + apply(simp add: step_red step.simps) + done + have k: "fetch (adjust ap) sa (read ra) = (ac, Suc (length ap div 2))" + using a b c d e f + apply(rule_tac adjust_fetch0, simp_all) + done + from a b e f k and c show "?thesis" + apply(rule_tac x = "Suc stpa" in exI) + apply(simp add: step_red, auto) + apply(simp add: step.simps) + done +qed + +declare tm_wf.simps[simp del] + +lemma [simp]: " tm_wf (t_twice_compile, 0)" +apply(simp only: t_twice_compile_def) +apply(rule_tac t_compiled_correct) +apply(simp_all add: abc_twice_def) done lemma t_twice_change_term_state: - "\ stp ln rn. steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_twice stp - = (Suc t_twice_len, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (2 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" -using t_twice_correct[of ires rs n] -apply(erule_tac exE) -apply(erule_tac exE) -apply(erule_tac exE) -proof(drule_tac turing_change_termi_state) - fix stp ln rn - show "t_correct (tm_of abc_twice @ tMp (Suc 0) (start_of twice_ly (length abc_twice) - Suc 0))" - apply(rule_tac t_compiled_correct, simp_all) - apply(simp add: twice_ly_def) + "\ stp ln rn. steps0 (Suc 0, Bk # Bk # ires, Oc\(Suc rs) @ Bk\(n)) t_twice stp + = (Suc t_twice_len, Bk\(ln) @ Bk # Bk # ires, Oc\(Suc (2 * rs)) @ Bk\(rn))" +proof - + have "\stp ln rn. steps0 (Suc 0, Bk # Bk # ires, Oc\(Suc rs) @ Bk\(n)) + (tm_of abc_twice @ shift (mopup (Suc 0)) ((length (tm_of abc_twice) div 2))) stp = + (0, Bk\(ln) @ Bk # Bk # ires, Oc\(Suc (2 * rs)) @ Bk\(rn))" + by(rule_tac t_twice_correct) + then obtain stp ln rn where " steps0 (Suc 0, Bk # Bk # ires, Oc\(Suc rs) @ Bk\(n)) + (tm_of abc_twice @ shift (mopup (Suc 0)) ((length (tm_of abc_twice) div 2))) stp = + (0, Bk\(ln) @ Bk # Bk # ires, Oc\(Suc (2 * rs)) @ Bk\(rn))" by blast + hence "\ stp. steps0 (Suc 0, Bk # Bk # ires, Oc\(Suc rs) @ Bk\(n)) + (adjust t_twice_compile) stp + = (Suc (length t_twice_compile div 2), Bk\(ln) @ Bk # Bk # ires, Oc\(Suc (2 * rs)) @ Bk\(rn))" + thm adjust_halt_eq + apply(rule_tac stp = stp in adjust_halt_eq) + apply(simp add: t_twice_compile_def, auto) done -next - fix stp ln rn - show "\stp. steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) - (change_termi_state (tm_of abc_twice @ tMp (Suc 0) - (start_of twice_ly (length abc_twice) - Suc 0))) stp = - (Suc (length (tm_of abc_twice @ tMp (Suc 0) (start_of twice_ly (length abc_twice) - Suc 0)) div 2), - Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (2 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>) \ - \stp ln rn. steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_twice stp = - (Suc t_twice_len, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (2 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" - apply(erule_tac exE) - apply(simp add: t_twice_len_def t_twice_def) - apply(rule_tac x = stp in exI, rule_tac x = ln in exI, rule_tac x = rn in exI, simp) - done + then obtain stpb where + "steps0 (Suc 0, Bk # Bk # ires, Oc\(Suc rs) @ Bk\(n)) + (adjust t_twice_compile) stpb + = (Suc (length t_twice_compile div 2), Bk\(ln) @ Bk # Bk # ires, Oc\(Suc (2 * rs)) @ Bk\(rn))" .. + thus "?thesis" + apply(simp add: t_twice_def t_twice_len_def) + by metis qed +lemma [intro]: "length t_wcode_main_first_part mod 2 = 0" +apply(auto simp: t_wcode_main_first_part_def) +done + lemma t_twice_append_pre: - "steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_twice stp - = (Suc t_twice_len, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (2 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>) - \ \ stp>0. steps (Suc 0 + length t_wcode_main_first_part div 2, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) - (t_wcode_main_first_part @ tshift t_twice (length t_wcode_main_first_part div 2) @ - ([(L, 1), (L, 1)] @ tshift t_fourtimes (t_twice_len + 13) @ [(L, 1), (L, 1)])) stp - = (Suc (t_twice_len) + length t_wcode_main_first_part div 2, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (2 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" -proof(rule_tac t_tshift_lemma, simp_all add: t_twice_len_ge) - assume "steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_twice stp = - (Suc t_twice_len, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (2 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" - thus "0 < stp" - apply(case_tac stp, simp add: steps.simps t_twice_len_ge t_twice_len_def) - using t_twice_len_ge - apply(simp, simp) - done -next - show "t_ncorrect t_wcode_main_first_part" - apply(simp add: t_ncorrect.simps t_wcode_main_first_part_def) - done -next - show "t_ncorrect t_twice" - using length_tm_even[of abc_twice] - apply(auto simp: t_ncorrect.simps t_twice_def) - apply(arith) - done -next - show "t_ncorrect ((L, Suc 0) # (L, Suc 0) # - tshift t_fourtimes (t_twice_len + 13) @ [(L, Suc 0), (L, Suc 0)])" - using length_tm_even[of abc_fourtimes] - apply(simp add: t_ncorrect.simps shift_length t_fourtimes_def) - apply arith - done -qed - + "steps0 (Suc 0, Bk # Bk # ires, Oc\(Suc rs) @ Bk\(n)) t_twice stp + = (Suc t_twice_len, Bk\(ln) @ Bk # Bk # ires, Oc\(Suc (2 * rs)) @ Bk\(rn)) + \ steps0 (Suc 0 + length t_wcode_main_first_part div 2, Bk # Bk # ires, Oc\(Suc rs) @ Bk\(n)) + (t_wcode_main_first_part @ shift t_twice (length t_wcode_main_first_part div 2) @ + ([(L, 1), (L, 1)] @ shift t_fourtimes (t_twice_len + 13) @ [(L, 1), (L, 1)])) stp + = (Suc (t_twice_len) + length t_wcode_main_first_part div 2, + Bk\(ln) @ Bk # Bk # ires, Oc\(Suc (2 * rs)) @ Bk\(rn))" +by(rule_tac tm_append_shift_append_steps, auto) + lemma t_twice_append: - "\ stp ln rn. steps (Suc 0 + length t_wcode_main_first_part div 2, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) - (t_wcode_main_first_part @ tshift t_twice (length t_wcode_main_first_part div 2) @ - ([(L, 1), (L, 1)] @ tshift t_fourtimes (t_twice_len + 13) @ [(L, 1), (L, 1)])) stp - = (Suc (t_twice_len) + length t_wcode_main_first_part div 2, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (2 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" + "\ stp ln rn. steps0 (Suc 0 + length t_wcode_main_first_part div 2, Bk # Bk # ires, Oc\(Suc rs) @ Bk\(n)) + (t_wcode_main_first_part @ shift t_twice (length t_wcode_main_first_part div 2) @ + ([(L, 1), (L, 1)] @ shift t_fourtimes (t_twice_len + 13) @ [(L, 1), (L, 1)])) stp + = (Suc (t_twice_len) + length t_wcode_main_first_part div 2, Bk\(ln) @ Bk # Bk # ires, Oc\(Suc (2 * rs)) @ Bk\(rn))" using t_twice_change_term_state[of ires rs n] apply(erule_tac exE) apply(erule_tac exE) apply(erule_tac exE) apply(drule_tac t_twice_append_pre) - apply(erule_tac exE) - apply(rule_tac x = stpa in exI, rule_tac x = ln in exI, rule_tac x = rn in exI) + apply(rule_tac x = stp in exI, rule_tac x = ln in exI, rule_tac x = rn in exI) apply(simp) done +lemma mopup_mod2: "length (mopup k) mod 2 = 0" +apply(auto simp: mopup.simps) +by arith + lemma [simp]: "fetch t_wcode_main (Suc (t_twice_len + length t_wcode_main_first_part div 2)) Oc = (L, Suc 0)" apply(subgoal_tac "length (t_twice) mod 2 = 0") apply(simp add: t_wcode_main_def nth_append fetch.simps t_wcode_main_first_part_def - nth_of.simps shift_length t_twice_len_def, auto) -apply(simp add: t_twice_def) -apply(subgoal_tac "length (tm_of abc_twice) mod 2 = 0") -apply arith -apply(rule_tac tm_even) -done + nth_of.simps t_twice_len_def, auto) +apply(simp add: t_twice_def t_twice_compile_def) +using mopup_mod2[of 1] +apply(simp) +by arith lemma wcode_jump1: - "\ stp ln rn. steps (Suc (t_twice_len) + length t_wcode_main_first_part div 2, - Bk\<^bsup>m\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (2 * rs)\<^esup> @ Bk\<^bsup>n\<^esup>) + "\ stp ln rn. steps0 (Suc (t_twice_len) + length t_wcode_main_first_part div 2, + Bk\(m) @ Bk # Bk # ires, Oc\(Suc (2 * rs)) @ Bk\(n)) t_wcode_main stp - = (Suc 0, Bk\<^bsup>ln\<^esup> @ Bk # ires, Bk # Oc\<^bsup>Suc (2 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" + = (Suc 0, Bk\(ln) @ Bk # ires, Bk # Oc\(Suc (2 * rs)) @ Bk\(rn))" apply(rule_tac x = "Suc 0" in exI, rule_tac x = "m" in exI, rule_tac x = n in exI) -apply(simp add: steps.simps tstep.simps exp_ind_def new_tape.simps) -apply(case_tac m, simp, simp add: exp_ind_def) -apply(simp add: exp_ind_def[THEN sym] exp_ind[THEN sym]) +apply(simp add: steps.simps step.simps exp_ind) +apply(case_tac m, simp_all) +apply(simp add: exp_ind[THEN sym]) done lemma wcode_main_first_part_len: @@ -1457,27 +1444,27 @@ done lemma wcode_double_case: - shows "\stp ln rn. steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Oc # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = - (Suc 0, Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires, Bk # Oc\<^bsup>Suc (2 * rs + 2)\<^esup> @ Bk\<^bsup>rn\<^esup>)" + shows "\stp ln rn. steps0 (Suc 0, Bk # Bk\(m) @ Oc # Oc # ires, Bk # Oc\(Suc rs) @ Bk\(n)) t_wcode_main stp = + (Suc 0, Bk # Bk\(ln) @ Oc # ires, Bk # Oc\(Suc (2 * rs + 2)) @ Bk\(rn))" proof - - have "\stp ln rn. steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Oc # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = - (13, Bk # Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires, Oc\<^bsup>Suc (Suc rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" + have "\stp ln rn. steps0 (Suc 0, Bk # Bk\(m) @ Oc # Oc # ires, Bk # Oc\(Suc rs) @ Bk\(n)) t_wcode_main stp = + (13, Bk # Bk # Bk\(ln) @ Oc # ires, Oc\(Suc (Suc rs)) @ Bk\(rn))" using wcode_double_case_first_correctness[of ires rs m n] apply(simp) apply(erule_tac exE) - apply(case_tac "steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Oc # ires, - Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main na", + apply(case_tac "steps0 (Suc 0, Bk # Bk\(m) @ Oc # Oc # ires, + Bk # Oc\(Suc rs) @ Bk\(n)) t_wcode_main na", auto simp: wcode_double_case_inv.simps wcode_before_double.simps) apply(rule_tac x = na in exI, rule_tac x = ln in exI, rule_tac x = rn in exI) apply(simp) done from this obtain stpa lna rna where stp1: - "steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Oc # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stpa = - (13, Bk # Bk # Bk\<^bsup>lna\<^esup> @ Oc # ires, Oc\<^bsup>Suc (Suc rs)\<^esup> @ Bk\<^bsup>rna\<^esup>)" by blast - have "\ stp ln rn. steps (13, Bk # Bk # Bk\<^bsup>lna\<^esup> @ Oc # ires, Oc\<^bsup>Suc (Suc rs)\<^esup> @ Bk\<^bsup>rna\<^esup>) t_wcode_main stp = - (13 + t_twice_len, Bk # Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires, Oc\<^bsup>Suc (Suc (Suc (2 *rs)))\<^esup> @ Bk\<^bsup>rn\<^esup>)" - using t_twice_append[of "Bk\<^bsup>lna\<^esup> @ Oc # ires" "Suc rs" rna] + "steps0 (Suc 0, Bk # Bk\(m) @ Oc # Oc # ires, Bk # Oc\(Suc rs) @ Bk\(n)) t_wcode_main stpa = + (13, Bk # Bk # Bk\(lna) @ Oc # ires, Oc\(Suc (Suc rs)) @ Bk\(rna))" by blast + have "\ stp ln rn. steps0 (13, Bk # Bk # Bk\(lna) @ Oc # ires, Oc\(Suc (Suc rs)) @ Bk\(rna)) t_wcode_main stp = + (13 + t_twice_len, Bk # Bk # Bk\(ln) @ Oc # ires, Oc\(Suc (Suc (Suc (2 *rs)))) @ Bk\(rn))" + using t_twice_append[of "Bk\(lna) @ Oc # ires" "Suc rs" rna] apply(erule_tac exE) apply(erule_tac exE) apply(erule_tac exE) @@ -1485,14 +1472,14 @@ apply(rule_tac x = stp in exI, rule_tac x = "ln + lna" in exI, rule_tac x = rn in exI) apply(simp add: t_wcode_main_def) - apply(simp add: exp_ind_def[THEN sym] exp_add[THEN sym]) + apply(simp add: replicate_Suc[THEN sym] exp_add[THEN sym] del: replicate_Suc) done from this obtain stpb lnb rnb where stp2: - "steps (13, Bk # Bk # Bk\<^bsup>lna\<^esup> @ Oc # ires, Oc\<^bsup>Suc (Suc rs)\<^esup> @ Bk\<^bsup>rna\<^esup>) t_wcode_main stpb = - (13 + t_twice_len, Bk # Bk # Bk\<^bsup>lnb\<^esup> @ Oc # ires, Oc\<^bsup>Suc (Suc (Suc (2 *rs)))\<^esup> @ Bk\<^bsup>rnb\<^esup>)" by blast - have "\stp ln rn. steps (13 + t_twice_len, Bk # Bk # Bk\<^bsup>lnb\<^esup> @ Oc # ires, - Oc\<^bsup>Suc (Suc (Suc (2 *rs)))\<^esup> @ Bk\<^bsup>rnb\<^esup>) t_wcode_main stp = - (Suc 0, Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires, Bk # Oc\<^bsup>Suc (Suc (Suc (2 *rs)))\<^esup> @ Bk\<^bsup>rn\<^esup>)" + "steps0 (13, Bk # Bk # Bk\(lna) @ Oc # ires, Oc\(Suc (Suc rs)) @ Bk\(rna)) t_wcode_main stpb = + (13 + t_twice_len, Bk # Bk # Bk\(lnb) @ Oc # ires, Oc\(Suc (Suc (Suc (2 *rs)))) @ Bk\(rnb))" by blast + have "\stp ln rn. steps0 (13 + t_twice_len, Bk # Bk # Bk\(lnb) @ Oc # ires, + Oc\(Suc (Suc (Suc (2 *rs)))) @ Bk\(rnb)) t_wcode_main stp = + (Suc 0, Bk # Bk\(ln) @ Oc # ires, Bk # Oc\(Suc (Suc (Suc (2 *rs)))) @ Bk\(rn))" using wcode_jump1[of lnb "Oc # ires" "Suc rs" rnb] apply(erule_tac exE) apply(erule_tac exE) @@ -1500,15 +1487,15 @@ apply(rule_tac x = stp in exI, rule_tac x = ln in exI, rule_tac x = rn in exI, simp add:wcode_main_first_part_len t_wcode_main_def) - apply(subgoal_tac "Bk\<^bsup>lnb\<^esup> @ Bk # Bk # Oc # ires = Bk # Bk # Bk\<^bsup>lnb\<^esup> @ Oc # ires", simp) - apply(simp add: exp_ind_def[THEN sym] exp_ind[THEN sym]) + apply(subgoal_tac "Bk\(lnb) @ Bk # Bk # Oc # ires = Bk # Bk # Bk\(lnb) @ Oc # ires", simp) + apply(simp add: replicate_Suc[THEN sym] exp_ind[THEN sym] del: replicate_Suc) apply(simp) - apply(case_tac lnb, simp, simp add: exp_ind_def[THEN sym] exp_ind) + apply(simp add: replicate_Suc[THEN sym] exp_ind del: replicate_Suc) done from this obtain stpc lnc rnc where stp3: - "steps (13 + t_twice_len, Bk # Bk # Bk\<^bsup>lnb\<^esup> @ Oc # ires, - Oc\<^bsup>Suc (Suc (Suc (2 *rs)))\<^esup> @ Bk\<^bsup>rnb\<^esup>) t_wcode_main stpc = - (Suc 0, Bk # Bk\<^bsup>lnc\<^esup> @ Oc # ires, Bk # Oc\<^bsup>Suc (Suc (Suc (2 *rs)))\<^esup> @ Bk\<^bsup>rnc\<^esup>)" + "steps0 (13 + t_twice_len, Bk # Bk # Bk\(lnb) @ Oc # ires, + Oc\(Suc (Suc (Suc (2 *rs)))) @ Bk\(rnb)) t_wcode_main stpc = + (Suc 0, Bk # Bk\(lnc) @ Oc # ires, Bk # Oc\(Suc (Suc (Suc (2 *rs)))) @ Bk\(rnc))" by blast from stp1 stp2 stp3 show "?thesis" apply(rule_tac x = "stpa + stpb + stpc" in exI, rule_tac x = lnc in exI, @@ -1522,15 +1509,15 @@ fun wcode_on_left_moving_2_B :: "bin_inv_t" where "wcode_on_left_moving_2_B ires rs (l, r) = - (\ ml mr rn. l = Bk\<^bsup>ml\<^esup> @ Oc # Bk # Oc # ires \ - r = Bk\<^bsup>mr\<^esup> @ Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup> \ + (\ ml mr rn. l = Bk\(ml) @ Oc # Bk # Oc # ires \ + r = Bk\(mr) @ Oc\(Suc rs) @ Bk\(rn) \ ml + mr > Suc 0 \ mr > 0)" fun wcode_on_left_moving_2_O :: "bin_inv_t" where "wcode_on_left_moving_2_O ires rs (l, r) = (\ ln rn. l = Bk # Oc # ires \ - r = Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" + r = Oc # Bk\(ln) @ Bk # Bk # Oc\(Suc rs) @ Bk\(rn))" fun wcode_on_left_moving_2 :: "bin_inv_t" where @@ -1542,49 +1529,49 @@ where "wcode_on_checking_2 ires rs (l, r) = (\ ln rn. l = Oc#ires \ - r = Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" + r = Bk # Oc # Bk\(ln) @ Bk # Bk # Oc\(Suc rs) @ Bk\(rn))" fun wcode_goon_checking :: "bin_inv_t" where "wcode_goon_checking ires rs (l, r) = (\ ln rn. l = ires \ - r = Oc # Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" + r = Oc # Bk # Oc # Bk\(ln) @ Bk # Bk # Oc\(Suc rs) @ Bk\(rn))" fun wcode_right_move :: "bin_inv_t" where "wcode_right_move ires rs (l, r) = (\ ln rn. l = Oc # ires \ - r = Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" + r = Bk # Oc # Bk\(ln) @ Bk # Bk # Oc\(Suc rs) @ Bk\(rn))" fun wcode_erase2 :: "bin_inv_t" where "wcode_erase2 ires rs (l, r) = (\ ln rn. l = Bk # Oc # ires \ - tl r = Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" + tl r = Bk\(ln) @ Bk # Bk # Oc\(Suc rs) @ Bk\(rn))" fun wcode_on_right_moving_2 :: "bin_inv_t" where "wcode_on_right_moving_2 ires rs (l, r) = - (\ ml mr rn. l = Bk\<^bsup>ml\<^esup> @ Oc # ires \ - r = Bk\<^bsup>mr\<^esup> @ Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup> \ ml + mr > Suc 0)" + (\ ml mr rn. l = Bk\(ml) @ Oc # ires \ + r = Bk\(mr) @ Oc\(Suc rs) @ Bk\(rn) \ ml + mr > Suc 0)" fun wcode_goon_right_moving_2 :: "bin_inv_t" where "wcode_goon_right_moving_2 ires rs (l, r) = - (\ ml mr ln rn. l = Oc\<^bsup>ml\<^esup> @ Bk # Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires \ - r = Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> \ ml + mr = Suc rs)" + (\ ml mr ln rn. l = Oc\(ml) @ Bk # Bk # Bk\(ln) @ Oc # ires \ + r = Oc\(mr) @ Bk\(rn) \ ml + mr = Suc rs)" fun wcode_backto_standard_pos_2_B :: "bin_inv_t" where "wcode_backto_standard_pos_2_B ires rs (l, r) = - (\ ln rn. l = Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires \ - r = Bk # Oc\<^bsup>Suc (Suc rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" + (\ ln rn. l = Bk # Bk\(ln) @ Oc # ires \ + r = Bk # Oc\(Suc (Suc rs)) @ Bk\(rn))" fun wcode_backto_standard_pos_2_O :: "bin_inv_t" where "wcode_backto_standard_pos_2_O ires rs (l, r) = - (\ ml mr ln rn. l = Oc\<^bsup>ml \<^esup>@ Bk # Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires \ - r = Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> \ + (\ ml mr ln rn. l = Oc\(ml )@ Bk # Bk # Bk\(ln) @ Oc # ires \ + r = Oc\(mr) @ Bk\(rn) \ ml + mr = (Suc (Suc rs)) \ mr > 0)" fun wcode_backto_standard_pos_2 :: "bin_inv_t" @@ -1596,8 +1583,8 @@ fun wcode_before_fourtimes :: "bin_inv_t" where "wcode_before_fourtimes ires rs (l, r) = - (\ ln rn. l = Bk # Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires \ - r = Oc\<^bsup>Suc (Suc rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" + (\ ln rn. l = Bk # Bk # Bk\(ln) @ Oc # ires \ + r = Oc\(Suc (Suc rs)) @ Bk\(rn))" declare wcode_on_left_moving_2_B.simps[simp del] wcode_on_left_moving_2.simps[simp del] wcode_on_left_moving_2_O.simps[simp del] wcode_on_checking_2.simps[simp del] @@ -1632,11 +1619,11 @@ declare wcode_fourtimes_case_inv.simps[simp del] -fun wcode_fourtimes_case_state :: "t_conf \ nat" +fun wcode_fourtimes_case_state :: "config \ nat" where "wcode_fourtimes_case_state (st, l, r) = 13 - st" -fun wcode_fourtimes_case_step :: "t_conf \ nat" +fun wcode_fourtimes_case_step :: "config \ nat" where "wcode_fourtimes_case_step (st, l, r) = (if st = Suc 0 then length l @@ -1648,13 +1635,13 @@ else if st = 12 then length l else 0)" -fun wcode_fourtimes_case_measure :: "t_conf \ nat \ nat" +fun wcode_fourtimes_case_measure :: "config \ nat \ nat" where "wcode_fourtimes_case_measure (st, l, r) = (wcode_fourtimes_case_state (st, l, r), wcode_fourtimes_case_step (st, l, r))" -definition wcode_fourtimes_case_le :: "(t_conf \ t_conf) set" +definition wcode_fourtimes_case_le :: "(config \ config) set" where "wcode_fourtimes_case_le \ (inv_image lex_pair wcode_fourtimes_case_measure)" lemma wf_wcode_fourtimes_case_le[intro]: "wf wcode_fourtimes_case_le" @@ -1666,55 +1653,75 @@ done lemma [simp]: "fetch t_wcode_main 7 Oc = (R, 8)" -apply(simp add: t_wcode_main_def fetch.simps +apply(subgoal_tac "7 = Suc 6") +apply(simp only: t_wcode_main_def fetch.simps t_wcode_main_first_part_def nth_of.simps) +apply(auto) done lemma [simp]: "fetch t_wcode_main 8 Bk = (R, 9)" -apply(simp add: t_wcode_main_def fetch.simps +apply(subgoal_tac "8 = Suc 7") +apply(simp only: t_wcode_main_def fetch.simps t_wcode_main_first_part_def nth_of.simps) -done +apply(auto) +done + lemma [simp]: "fetch t_wcode_main 9 Bk = (R, 10)" -apply(simp add: t_wcode_main_def fetch.simps +apply(subgoal_tac "9 = Suc 8") +apply(simp only: t_wcode_main_def fetch.simps t_wcode_main_first_part_def nth_of.simps) +apply(auto) done lemma [simp]: "fetch t_wcode_main 9 Oc = (W0, 9)" -apply(simp add: t_wcode_main_def fetch.simps +apply(subgoal_tac "9 = Suc 8") +apply(simp only: t_wcode_main_def fetch.simps t_wcode_main_first_part_def nth_of.simps) +apply(auto) done lemma [simp]: "fetch t_wcode_main 10 Bk = (R, 10)" -apply(simp add: t_wcode_main_def fetch.simps +apply(subgoal_tac "10 = Suc 9") +apply(simp only: t_wcode_main_def fetch.simps t_wcode_main_first_part_def nth_of.simps) +apply(auto) done lemma [simp]: "fetch t_wcode_main 10 Oc = (R, 11)" -apply(simp add: t_wcode_main_def fetch.simps +apply(subgoal_tac "10 = Suc 9") +apply(simp only: t_wcode_main_def fetch.simps t_wcode_main_first_part_def nth_of.simps) -done +apply(auto) +done lemma [simp]: "fetch t_wcode_main 11 Bk = (W1, 12)" -apply(simp add: t_wcode_main_def fetch.simps +apply(subgoal_tac "11 = Suc 10") +apply(simp only: t_wcode_main_def fetch.simps t_wcode_main_first_part_def nth_of.simps) +apply(auto) done lemma [simp]: "fetch t_wcode_main 11 Oc = (R, 11)" -apply(simp add: t_wcode_main_def fetch.simps +apply(subgoal_tac "11 = Suc 10") +apply(simp only: t_wcode_main_def fetch.simps t_wcode_main_first_part_def nth_of.simps) -done +apply(auto) +done lemma [simp]: "fetch t_wcode_main 12 Oc = (L, 12)" -apply(simp add: t_wcode_main_def fetch.simps +apply(subgoal_tac "12 = Suc 11") +apply(simp only: t_wcode_main_def fetch.simps t_wcode_main_first_part_def nth_of.simps) -done +apply(auto) +done lemma [simp]: "fetch t_wcode_main 12 Bk = (R, t_twice_len + 14)" -apply(simp add: t_wcode_main_def fetch.simps +apply(subgoal_tac "12 = Suc 11") +apply(simp only: t_wcode_main_def fetch.simps t_wcode_main_first_part_def nth_of.simps) -done - +apply(auto) +done lemma [simp]: "wcode_on_left_moving_2 ires rs (b, []) = False" apply(auto simp: wcode_fourtimes_invs) @@ -1737,27 +1744,27 @@ done lemma [simp]: "wcode_on_right_moving_2 ires rs (b, []) = False" -apply(auto simp: wcode_fourtimes_invs exponent_def) +apply(auto simp: wcode_fourtimes_invs) done lemma [simp]: "wcode_backto_standard_pos_2 ires rs (b, []) = False" -apply(auto simp: wcode_fourtimes_invs exponent_def) +apply(auto simp: wcode_fourtimes_invs) done lemma [simp]: "wcode_on_left_moving_2 ires rs (b, Bk # list) \ b \ []" apply(simp add: wcode_fourtimes_invs, auto) -done - +done + lemma [simp]: "wcode_on_left_moving_2 ires rs (b, Bk # list) \ wcode_on_left_moving_2 ires rs (tl b, hd b # Bk # list)" apply(simp only: wcode_fourtimes_invs) apply(erule_tac disjE) apply(erule_tac exE)+ apply(case_tac ml, simp) apply(rule_tac x = "mr - (Suc (Suc 0))" in exI, rule_tac x = rn in exI, simp) -apply(case_tac mr, simp, case_tac nat, simp, simp add: exp_ind) +apply(case_tac mr, simp, case_tac nat, simp, simp add: exp_ind del: replicate_Suc) apply(rule_tac disjI1) apply(rule_tac x = nat in exI, rule_tac x = "Suc mr" in exI, rule_tac x = rn in exI, - simp add: exp_ind_def) + simp add: replicate_Suc) apply(simp) done @@ -1791,7 +1798,7 @@ lemma [simp]: "wcode_erase2 ires rs (b, Bk # list) \ wcode_on_right_moving_2 ires rs (Bk # b, list)" apply(auto simp:wcode_fourtimes_invs ) apply(rule_tac x = "Suc (Suc 0)" in exI, simp add: exp_ind) -apply(rule_tac x = "Suc (Suc ln)" in exI, simp add: exp_ind, auto) +apply(rule_tac x = "Suc (Suc ln)" in exI, simp add: exp_ind del: replicate_Suc) done lemma [simp]: "wcode_on_right_moving_2 ires rs (b, Bk # list) \ b \ []" @@ -1801,8 +1808,8 @@ lemma [simp]: "wcode_on_right_moving_2 ires rs (b, Bk # list) \ wcode_on_right_moving_2 ires rs (Bk # b, list)" apply(auto simp: wcode_fourtimes_invs) -apply(rule_tac x = "Suc ml" in exI, simp add: exp_ind_def) -apply(rule_tac x = "mr - 1" in exI, case_tac mr, auto simp: exp_ind_def) +apply(rule_tac x = "Suc ml" in exI, simp) +apply(rule_tac x = "mr - 1" in exI, case_tac mr,auto) done lemma [simp]: "wcode_goon_right_moving_2 ires rs (b, Bk # list) \ b \ []" @@ -1814,9 +1821,9 @@ apply(simp add: wcode_fourtimes_invs, auto) apply(rule_tac x = ml in exI, auto) apply(rule_tac x = "Suc 0" in exI, simp) -apply(case_tac mr, simp_all add: exp_ind_def) +apply(case_tac mr, simp_all) apply(rule_tac x = "rn - 1" in exI, simp) -apply(case_tac rn, simp, simp add: exp_ind_def) +apply(case_tac rn, simp, simp) done lemma [simp]: "wcode_backto_standard_pos_2 ires rs (b, Bk # list) \ b \ []" @@ -1830,7 +1837,7 @@ lemma [simp]: "wcode_on_left_moving_2 ires rs (b, Oc # list) \ wcode_on_checking_2 ires rs (tl b, hd b # Oc # list)" apply(auto simp: wcode_fourtimes_invs) -apply(case_tac [!] mr, simp_all add: exp_ind_def) +apply(case_tac [!] mr, simp_all) done lemma [simp]: "wcode_goon_right_moving_2 ires rs (b, []) \ b \ []" @@ -1844,13 +1851,12 @@ apply(rule_tac disjI1) apply(rule_tac x = ml in exI, rule_tac x = "Suc 0" in exI, rule_tac x = ln in exI, rule_tac x = rn in exI, simp) -apply(case_tac mr, simp, simp add: exp_ind_def) done lemma "wcode_backto_standard_pos_2 ires rs (b, Bk # list) - \ (\ln. b = Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires) \ (\rn. list = Oc\<^bsup>Suc (Suc rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" + \ (\ln. b = Bk # Bk\(ln) @ Oc # ires) \ (\rn. list = Oc\(Suc (Suc rs)) @ Bk\(rn))" apply(auto simp: wcode_fourtimes_invs) -apply(case_tac [!] mr, auto simp: exp_ind_def) +apply(case_tac [!] mr, auto) done @@ -1887,10 +1893,10 @@ lemma [simp]: "wcode_on_right_moving_2 ires rs (b, Oc # list) \ wcode_goon_right_moving_2 ires rs (Oc # b, list)" apply(auto simp: wcode_fourtimes_invs) -apply(case_tac mr, simp_all add: exp_ind_def) +apply(case_tac mr, simp_all) apply(rule_tac x = "Suc 0" in exI, auto) apply(rule_tac x = "ml - 2" in exI) -apply(case_tac ml, simp, case_tac nat, simp_all add: exp_ind_def) +apply(case_tac ml, simp, case_tac nat, simp_all) done lemma [simp]: "wcode_goon_right_moving_2 ires rs (b, Oc # list) \ b \ []" @@ -1898,9 +1904,9 @@ done lemma [simp]: "wcode_backto_standard_pos_2 ires rs (b, Bk # list) - \ (\ln. b = Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires) \ (\rn. list = Oc\<^bsup>Suc (Suc rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" + \ (\ln. b = Bk # Bk\(ln) @ Oc # ires) \ (\rn. list = Oc\(Suc (Suc rs)) @ Bk\(rn))" apply(simp add: wcode_fourtimes_invs, auto) -apply(case_tac [!] mr, simp_all add: exp_ind_def) +apply(case_tac [!] mr, simp_all) done lemma [simp]: "wcode_on_checking_2 ires rs (b, Oc # list) = False" @@ -1910,9 +1916,9 @@ lemma [simp]: "wcode_goon_right_moving_2 ires rs (b, Oc # list) \ wcode_goon_right_moving_2 ires rs (Oc # b, list)" apply(simp only:wcode_fourtimes_invs, auto) -apply(rule_tac x = "Suc ml" in exI, auto simp: exp_ind_def) +apply(rule_tac x = "Suc ml" in exI, simp) apply(rule_tac x = "mr - 1" in exI) -apply(case_tac mr, case_tac rn, auto simp: exp_ind_def) +apply(case_tac mr, case_tac rn, auto) done lemma [simp]: "wcode_backto_standard_pos_2 ires rs (b, Oc # list) \ b \ []" @@ -1924,25 +1930,20 @@ apply(simp only: wcode_fourtimes_invs) apply(erule_tac disjE) apply(erule_tac exE)+ -apply(case_tac ml, simp) -apply(rule_tac disjI2) -apply(rule_tac conjI, rule_tac x = ln in exI, simp) -apply(rule_tac x = rn in exI, simp) -apply(rule_tac disjI1) -apply(rule_tac x = nat in exI, rule_tac x = "Suc mr" in exI, - rule_tac x = ln in exI, rule_tac x = rn in exI, simp add: exp_ind_def) -apply(simp) +apply(case_tac ml, auto) +apply(rule_tac x = nat in exI, auto) +apply(rule_tac x = "Suc mr" in exI, simp) done lemma wcode_fourtimes_case_first_correctness: shows "let P = (\ (st, l, r). st = t_twice_len + 14) in let Q = (\ (st, l, r). wcode_fourtimes_case_inv st ires rs (l, r)) in - let f = (\ stp. steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # Oc # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp) in + let f = (\ stp. steps0 (Suc 0, Bk # Bk\(m) @ Oc # Bk # Oc # ires, Bk # Oc\(Suc rs) @ Bk\(n)) t_wcode_main stp) in \ n .P (f n) \ Q (f (n::nat))" proof - let ?P = "(\ (st, l, r). st = t_twice_len + 14)" let ?Q = "(\ (st, l, r). wcode_fourtimes_case_inv st ires rs (l, r))" - let ?f = "(\ stp. steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # Oc # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp)" + let ?f = "(\ stp. steps0 (Suc 0, Bk # Bk\(m) @ Oc # Bk # Oc # ires, Bk # Oc\(Suc rs) @ Bk\(n)) t_wcode_main stp)" have "\ n . ?P (?f n) \ ?Q (?f (n::nat))" proof(rule_tac halt_lemma2) show "wf wcode_fourtimes_case_le" @@ -1951,19 +1952,21 @@ show "\ na. \ ?P (?f na) \ ?Q (?f na) \ ?Q (?f (Suc na)) \ (?f (Suc na), ?f na) \ wcode_fourtimes_case_le" apply(rule_tac allI, - case_tac "steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # Oc # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main na", simp, + case_tac "steps0 (Suc 0, Bk # Bk\(m) @ Oc # Bk # Oc # ires, Bk # Oc\(Suc rs) @ Bk\(n)) t_wcode_main na", simp, rule_tac impI) - apply(simp add: tstep_red tstep.simps, case_tac c, simp, case_tac [2] aa, simp_all) - - apply(simp_all add: wcode_fourtimes_case_inv.simps new_tape.simps + apply(simp add: step_red step.simps, case_tac c, simp, case_tac [2] aa, simp_all) + apply(simp_all add: wcode_fourtimes_case_inv.simps wcode_fourtimes_case_le_def lex_pair_def split: if_splits) + apply(auto simp: wcode_backto_standard_pos_2.simps wcode_backto_standard_pos_2_O.simps + wcode_backto_standard_pos_2_B.simps) + apply(case_tac mr, simp_all) done next show "?Q (?f 0)" apply(simp add: steps.simps wcode_fourtimes_case_inv.simps) apply(simp add: wcode_on_left_moving_2.simps wcode_on_left_moving_2_B.simps wcode_on_left_moving_2_O.simps) - apply(rule_tac x = "Suc m" in exI, simp add: exp_ind_def) + apply(rule_tac x = "Suc m" in exI, simp ) apply(rule_tac x ="Suc 0" in exI, auto) done next @@ -1981,196 +1984,199 @@ "t_fourtimes_len = (length t_fourtimes div 2)" lemma t_fourtimes_len_gr: "t_fourtimes_len > 0" -apply(simp add: t_fourtimes_len_def t_fourtimes_def) +apply(simp add: t_fourtimes_len_def t_fourtimes_def mopup.simps t_fourtimes_compile_def) +done + +lemma [intro]: "rec_calc_rel (constn 4) [rs] 4" +using prime_rel_exec_eq[of "constn 4" "[rs]" 4] +apply(subgoal_tac "primerec (constn 4) 1", auto) +done + +lemma [intro]: "rec_calc_rel rec_mult [rs, 4] (4 * rs)" +using prime_rel_exec_eq[of "rec_mult" "[rs, 4]" "4*rs"] +apply(subgoal_tac "primerec rec_mult 2", auto simp: numeral_2_eq_2) done lemma t_fourtimes_correct: - "\stp ln rn. steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) - (tm_of abc_fourtimes @ tMp (Suc 0) (start_of fourtimes_ly (length abc_fourtimes) - Suc 0)) stp = - (0, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (4 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" + "\stp ln rn. steps0 (Suc 0, Bk # Bk # ires, Oc\(Suc rs) @ Bk\(n)) + (tm_of abc_fourtimes @ shift (mopup 1) (length (tm_of abc_fourtimes) div 2)) stp = + (0, Bk\(ln) @ Bk # Bk # ires, Oc\(Suc (4 * rs)) @ Bk\(rn))" proof(case_tac "rec_ci rec_fourtimes") fix a b c assume h: "rec_ci rec_fourtimes = (a, b, c)" - have "\stp m l. steps (Suc 0, Bk # Bk # ires, <[rs]> @ Bk\<^bsup>n\<^esup>) (tm_of abc_fourtimes @ tMp (Suc 0) - (start_of fourtimes_ly (length abc_fourtimes) - 1)) stp = (0, Bk\<^bsup>m\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (4*rs)\<^esup> @ Bk\<^bsup>l\<^esup>)" - proof(rule_tac t_compiled_by_rec) + have "\stp m l. steps0 (Suc 0, Bk # Bk # ires, <[rs]> @ Bk\(n)) (tm_of abc_fourtimes @ shift (mopup 1) + (length (tm_of abc_fourtimes) div 2)) stp = (0, Bk\(m) @ Bk # Bk # ires, Oc\(Suc (4*rs)) @ Bk\(l))" + proof(rule_tac recursive_compile_to_tm_correct) show "rec_ci rec_fourtimes = (a, b, c)" by (simp add: h) next show "rec_calc_rel rec_fourtimes [rs] (4 * rs)" - using prime_rel_exec_eq [of rec_fourtimes "[rs]" "4 * rs"] - apply(subgoal_tac "primerec rec_fourtimes (length [rs])") - apply(simp_all add: rec_fourtimes_def rec_exec.simps) - apply(auto) - apply(simp only: Nat.One_nat_def[THEN sym], auto) + apply(simp add: rec_fourtimes_def) + apply(rule_tac rs = "[rs, 4]" in calc_cn, simp_all) + apply(rule_tac allI, case_tac k, auto simp: mult_lemma) done next - show "length [rs] = Suc 0" by simp - next - show "layout_of (a [+] dummy_abc (Suc 0)) = layout_of (a [+] dummy_abc (Suc 0))" - by simp + show "length [rs] = 1" by simp + next + show "layout_of (a [+] dummy_abc 1) = layout_of (a [+] dummy_abc 1)" by simp next - show "start_of fourtimes_ly (length abc_fourtimes) = - start_of (layout_of (a [+] dummy_abc (Suc 0))) (length (a [+] dummy_abc (Suc 0)))" - using h - apply(simp add: fourtimes_ly_def abc_fourtimes_def) - done - next - show "tm_of abc_fourtimes = tm_of (a [+] dummy_abc (Suc 0))" + show "tm_of abc_fourtimes = tm_of (a [+] dummy_abc 1)" using h apply(simp add: abc_fourtimes_def) done qed - thus "\stp ln rn. steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) - (tm_of abc_fourtimes @ tMp (Suc 0) (start_of fourtimes_ly (length abc_fourtimes) - Suc 0)) stp = - (0, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (4 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" + thus "?thesis" apply(simp add: tape_of_nl_abv tape_of_nat_list.simps) done qed +lemma wf_fourtimes[intro]: "tm_wf (t_fourtimes_compile, 0)" +apply(simp only: t_fourtimes_compile_def) +apply(rule_tac t_compiled_correct) +apply(simp_all add: abc_twice_def) +done + lemma t_fourtimes_change_term_state: - "\ stp ln rn. steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_fourtimes stp - = (Suc t_fourtimes_len, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (4 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" -using t_fourtimes_correct[of ires rs n] -apply(erule_tac exE) -apply(erule_tac exE) -apply(erule_tac exE) -proof(drule_tac turing_change_termi_state) - fix stp ln rn - show "t_correct (tm_of abc_fourtimes @ tMp (Suc 0) - (start_of fourtimes_ly (length abc_fourtimes) - Suc 0))" - apply(rule_tac t_compiled_correct, auto simp: fourtimes_ly_def) + "\ stp ln rn. steps0 (Suc 0, Bk # Bk # ires, Oc\(Suc rs) @ Bk\(n)) t_fourtimes stp + = (Suc t_fourtimes_len, Bk\(ln) @ Bk # Bk # ires, Oc\(Suc (4 * rs)) @ Bk\(rn))" +proof - + have "\stp ln rn. steps0 (Suc 0, Bk # Bk # ires, Oc\(Suc rs) @ Bk\(n)) + (tm_of abc_fourtimes @ shift (mopup 1) ((length (tm_of abc_fourtimes) div 2))) stp = + (0, Bk\(ln) @ Bk # Bk # ires, Oc\(Suc (4 * rs)) @ Bk\(rn))" + by(rule_tac t_fourtimes_correct) + then obtain stp ln rn where + "steps0 (Suc 0, Bk # Bk # ires, Oc\(Suc rs) @ Bk\(n)) + (tm_of abc_fourtimes @ shift (mopup 1) ((length (tm_of abc_fourtimes) div 2))) stp = + (0, Bk\(ln) @ Bk # Bk # ires, Oc\(Suc (4 * rs)) @ Bk\(rn))" by blast + hence "\ stp. steps0 (Suc 0, Bk # Bk # ires, Oc\(Suc rs) @ Bk\(n)) + (adjust t_fourtimes_compile) stp + = (Suc (length t_fourtimes_compile div 2), Bk\(ln) @ Bk # Bk # ires, Oc\(Suc (4 * rs)) @ Bk\(rn))" + apply(rule_tac stp = stp in adjust_halt_eq) + apply(simp add: t_fourtimes_compile_def, auto) done -next - fix stp ln rn - show "\stp. steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) - (change_termi_state (tm_of abc_fourtimes @ tMp (Suc 0) - (start_of fourtimes_ly (length abc_fourtimes) - Suc 0))) stp = - (Suc (length (tm_of abc_fourtimes @ tMp (Suc 0) (start_of fourtimes_ly - (length abc_fourtimes) - Suc 0)) div 2), Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (4 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>) \ - \stp ln rn. steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_fourtimes stp = - (Suc t_fourtimes_len, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (4 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" - apply(erule_tac exE) - apply(simp add: t_fourtimes_len_def t_fourtimes_def) - apply(rule_tac x = stp in exI, rule_tac x = ln in exI, rule_tac x = rn in exI, simp) - done + then obtain stpb where + "steps0 (Suc 0, Bk # Bk # ires, Oc\(Suc rs) @ Bk\(n)) + (adjust t_fourtimes_compile) stpb + = (Suc (length t_fourtimes_compile div 2), Bk\(ln) @ Bk # Bk # ires, Oc\(Suc (4 * rs)) @ Bk\(rn))" .. + thus "?thesis" + apply(simp add: t_fourtimes_def t_fourtimes_len_def) + by metis qed +lemma [intro]: "length t_twice mod 2 = 0" +apply(auto simp: t_twice_def t_twice_compile_def) +done + lemma t_fourtimes_append_pre: - "steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_fourtimes stp - = (Suc t_fourtimes_len, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (4 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>) - \ \ stp>0. steps (Suc 0 + length (t_wcode_main_first_part @ - tshift t_twice (length t_wcode_main_first_part div 2) @ [(L, 1), (L, 1)]) div 2, - Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) + "steps0 (Suc 0, Bk # Bk # ires, Oc\(Suc rs) @ Bk\(n)) t_fourtimes stp + = (Suc t_fourtimes_len, Bk\(ln) @ Bk # Bk # ires, Oc\(Suc (4 * rs)) @ Bk\(rn)) + \ steps0 (Suc 0 + length (t_wcode_main_first_part @ + shift t_twice (length t_wcode_main_first_part div 2) @ [(L, 1), (L, 1)]) div 2, + Bk # Bk # ires, Oc\(Suc rs) @ Bk\(n)) ((t_wcode_main_first_part @ - tshift t_twice (length t_wcode_main_first_part div 2) @ [(L, 1), (L, 1)]) @ - tshift t_fourtimes (length (t_wcode_main_first_part @ - tshift t_twice (length t_wcode_main_first_part div 2) @ [(L, 1), (L, 1)]) div 2) @ ([(L, 1), (L, 1)])) stp - = (Suc t_fourtimes_len + length (t_wcode_main_first_part @ - tshift t_twice (length t_wcode_main_first_part div 2) @ [(L, 1), (L, 1)]) div 2, - Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (4 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" -proof(rule_tac t_tshift_lemma, auto) - assume "steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_fourtimes stp = - (Suc t_fourtimes_len, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (4 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" - thus "0 < stp" - using t_fourtimes_len_gr - apply(case_tac stp, simp_all add: steps.simps) - done -next - show "Suc 0 \ length t_fourtimes div 2" - apply(simp add: t_fourtimes_def shift_length tMp.simps) - done -next - show "t_ncorrect (t_wcode_main_first_part @ - tshift t_twice (length t_wcode_main_first_part div 2) @ - [(L, Suc 0), (L, Suc 0)])" - apply(simp add: t_ncorrect.simps t_wcode_main_first_part_def shift_length - t_twice_def) - using tm_even[of abc_twice] - by arith -next - show "t_ncorrect t_fourtimes" - apply(simp add: t_fourtimes_def steps.simps t_ncorrect.simps) - using tm_even[of abc_fourtimes] - by arith -next - show "t_ncorrect [(L, Suc 0), (L, Suc 0)]" - apply(simp add: t_ncorrect.simps) - done -qed + shift t_twice (length t_wcode_main_first_part div 2) @ [(L, 1), (L, 1)]) @ + shift t_fourtimes (length (t_wcode_main_first_part @ + shift t_twice (length t_wcode_main_first_part div 2) @ [(L, 1), (L, 1)]) div 2) @ ([(L, 1), (L, 1)])) stp + = ((Suc t_fourtimes_len) + length (t_wcode_main_first_part @ + shift t_twice (length t_wcode_main_first_part div 2) @ [(L, 1), (L, 1)]) div 2, + Bk\(ln) @ Bk # Bk # ires, Oc\(Suc (4 * rs)) @ Bk\(rn))" +apply(rule_tac tm_append_shift_append_steps, simp_all) +apply(auto simp: t_wcode_main_first_part_def) +done + lemma [simp]: "length t_wcode_main_first_part = 24" apply(simp add: t_wcode_main_first_part_def) done lemma [simp]: "(26 + length t_twice) div 2 = (length t_twice) div 2 + 13" -using tm_even[of abc_twice] -apply(simp add: t_twice_def) -done - -lemma [simp]: "((26 + length (tshift t_twice 12)) div 2) - = (length (tshift t_twice 12) div 2 + 13)" -using tm_even[of abc_twice] +apply(simp add: t_twice_def t_twice_def) +done + +lemma [simp]: "((26 + length (shift t_twice 12)) div 2) + = (length (shift t_twice 12) div 2 + 13)" apply(simp add: t_twice_def) done -lemma [simp]: "t_twice_len + 14 = 14 + length (tshift t_twice 12) div 2" -using tm_even[of abc_twice] -apply(simp add: t_twice_def t_twice_len_def shift_length) +lemma [simp]: "t_twice_len + 14 = 14 + length (shift t_twice 12) div 2" +apply(simp add: t_twice_def t_twice_len_def) done lemma t_fourtimes_append: "\ stp ln rn. - steps (Suc 0 + length (t_wcode_main_first_part @ tshift t_twice + steps0 (Suc 0 + length (t_wcode_main_first_part @ shift t_twice (length t_wcode_main_first_part div 2) @ [(L, 1), (L, 1)]) div 2, - Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) - ((t_wcode_main_first_part @ tshift t_twice (length t_wcode_main_first_part div 2) @ - [(L, 1), (L, 1)]) @ tshift t_fourtimes (t_twice_len + 13) @ [(L, 1), (L, 1)]) stp - = (Suc t_fourtimes_len + length (t_wcode_main_first_part @ tshift t_twice - (length t_wcode_main_first_part div 2) @ [(L, 1), (L, 1)]) div 2, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, - Oc\<^bsup>Suc (4 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" + Bk # Bk # ires, Oc\(Suc rs) @ Bk\(n)) + ((t_wcode_main_first_part @ shift t_twice (length t_wcode_main_first_part div 2) @ + [(L, 1), (L, 1)]) @ shift t_fourtimes (t_twice_len + 13) @ [(L, 1), (L, 1)]) stp + = (Suc t_fourtimes_len + length (t_wcode_main_first_part @ shift t_twice + (length t_wcode_main_first_part div 2) @ [(L, 1), (L, 1)]) div 2, Bk\(ln) @ Bk # Bk # ires, + Oc\(Suc (4 * rs)) @ Bk\(rn))" using t_fourtimes_change_term_state[of ires rs n] apply(erule_tac exE) apply(erule_tac exE) apply(erule_tac exE) apply(drule_tac t_fourtimes_append_pre) - apply(erule_tac exE) - apply(rule_tac x = stpa in exI, rule_tac x = ln in exI, rule_tac x = rn in exI) - apply(simp add: t_twice_len_def shift_length) + apply(rule_tac x = stp in exI, rule_tac x = ln in exI, rule_tac x = rn in exI) + apply(simp add: t_twice_len_def) done lemma t_wcode_main_len: "length t_wcode_main = length t_twice + length t_fourtimes + 28" -apply(simp add: t_wcode_main_def shift_length) -done - +apply(simp add: t_wcode_main_def) +done + +lemma even_twice_len: "length t_twice mod 2 = 0" +apply(auto simp: t_twice_def t_twice_compile_def) +done + +lemma even_fourtimes_len: "length t_fourtimes mod 2 = 0" +apply(auto simp: t_fourtimes_def t_fourtimes_compile_def) +done + +lemma [simp]: "2 * (length t_twice div 2) = length t_twice" +using even_twice_len +by arith + +lemma [simp]: "2 * (length t_fourtimes div 2) = length t_fourtimes" +using even_fourtimes_len +by arith + +lemma [simp]: "fetch t_wcode_main (14 + length t_twice div 2 + t_fourtimes_len) Oc + = (L, Suc 0)" +apply(subgoal_tac "14 = Suc 13") +apply(simp only: fetch.simps add_Suc nth_of.simps t_wcode_main_def) +apply(simp add:length_append length_shift Parity.two_times_even_div_two even_twice_len t_fourtimes_len_def) +by arith + +lemma [simp]: "fetch t_wcode_main (14 + length t_twice div 2 + t_fourtimes_len) Bk + = (L, Suc 0)" +apply(subgoal_tac "14 = Suc 13") +apply(simp only: fetch.simps add_Suc nth_of.simps t_wcode_main_def) +apply(simp add:length_append length_shift Parity.two_times_even_div_two even_twice_len t_fourtimes_len_def nth_append) +by arith + lemma [simp]: "fetch t_wcode_main (14 + length t_twice div 2 + t_fourtimes_len) b = (L, Suc 0)" -using tm_even[of "abc_twice"] tm_even[of "abc_fourtimes"] -apply(case_tac b) -apply(simp_all only: fetch.simps) -apply(auto simp: nth_of.simps t_wcode_main_len t_twice_len_def - t_fourtimes_def t_twice_def t_fourtimes_def t_fourtimes_len_def) -apply(auto simp: t_wcode_main_def t_wcode_main_first_part_def shift_length t_twice_def nth_append - t_fourtimes_def) +apply(case_tac b, simp_all) done lemma wcode_jump2: - "\ stp ln rn. steps (t_twice_len + 14 + t_fourtimes_len - , Bk # Bk # Bk\<^bsup>lnb\<^esup> @ Oc # ires, Oc\<^bsup>Suc (4 * rs + 4)\<^esup> @ Bk\<^bsup>rnb\<^esup>) t_wcode_main stp = - (Suc 0, Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires, Bk # Oc\<^bsup>Suc (4 * rs + 4)\<^esup> @ Bk\<^bsup>rn\<^esup>)" + "\ stp ln rn. steps0 (t_twice_len + 14 + t_fourtimes_len + , Bk # Bk # Bk\(lnb) @ Oc # ires, Oc\(Suc (4 * rs + 4)) @ Bk\(rnb)) t_wcode_main stp = + (Suc 0, Bk # Bk\(ln) @ Oc # ires, Bk # Oc\(Suc (4 * rs + 4)) @ Bk\(rn))" apply(rule_tac x = "Suc 0" in exI) -apply(simp add: steps.simps shift_length) +apply(simp add: steps.simps) apply(rule_tac x = lnb in exI, rule_tac x = rnb in exI) -apply(simp add: tstep.simps new_tape.simps) +apply(simp add: step.simps) done lemma wcode_fourtimes_case: shows "\stp ln rn. - steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # Oc # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = - (Suc 0, Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires, Bk # Oc\<^bsup>Suc (4*rs + 4)\<^esup> @ Bk\<^bsup>rn\<^esup>)" + steps0 (Suc 0, Bk # Bk\(m) @ Oc # Bk # Oc # ires, Bk # Oc\(Suc rs) @ Bk\(n)) t_wcode_main stp = + (Suc 0, Bk # Bk\(ln) @ Oc # ires, Bk # Oc\(Suc (4*rs + 4)) @ Bk\(rn))" proof - have "\stp ln rn. - steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # Oc # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = - (t_twice_len + 14, Bk # Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires, Oc\<^bsup>Suc (rs + 1)\<^esup> @ Bk\<^bsup>rn\<^esup>)" + steps0 (Suc 0, Bk # Bk\(m) @ Oc # Bk # Oc # ires, Bk # Oc\(Suc rs) @ Bk\(n)) t_wcode_main stp = + (t_twice_len + 14, Bk # Bk # Bk\(ln) @ Oc # ires, Oc\(Suc (rs + 1)) @ Bk\(rn))" using wcode_fourtimes_case_first_correctness[of ires rs m n] apply(simp add: wcode_fourtimes_case_inv.simps, auto) apply(rule_tac x = na in exI, rule_tac x = ln in exI, @@ -2178,12 +2184,12 @@ apply(simp) done from this obtain stpa lna rna where stp1: - "steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # Oc # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stpa = - (t_twice_len + 14, Bk # Bk # Bk\<^bsup>lna\<^esup> @ Oc # ires, Oc\<^bsup>Suc (rs + 1)\<^esup> @ Bk\<^bsup>rna\<^esup>)" by blast - have "\stp ln rn. steps (t_twice_len + 14, Bk # Bk # Bk\<^bsup>lna\<^esup> @ Oc # ires, Oc\<^bsup>Suc (rs + 1)\<^esup> @ Bk\<^bsup>rna\<^esup>) + "steps0 (Suc 0, Bk # Bk\(m) @ Oc # Bk # Oc # ires, Bk # Oc\(Suc rs) @ Bk\(n)) t_wcode_main stpa = + (t_twice_len + 14, Bk # Bk # Bk\(lna) @ Oc # ires, Oc\(Suc (rs + 1)) @ Bk\(rna))" by blast + have "\stp ln rn. steps0 (t_twice_len + 14, Bk # Bk # Bk\(lna) @ Oc # ires, Oc\(Suc (rs + 1)) @ Bk\(rna)) t_wcode_main stp = - (t_twice_len + 14 + t_fourtimes_len, Bk # Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires, Oc\<^bsup>Suc (4*rs + 4)\<^esup> @ Bk\<^bsup>rn\<^esup>)" - using t_fourtimes_append[of " Bk\<^bsup>lna\<^esup> @ Oc # ires" "rs + 1" rna] + (t_twice_len + 14 + t_fourtimes_len, Bk # Bk # Bk\(ln) @ Oc # ires, Oc\(Suc (4*rs + 4)) @ Bk\(rn))" + using t_fourtimes_append[of " Bk\(lna) @ Oc # ires" "rs + 1" rna] apply(erule_tac exE) apply(erule_tac exE) apply(erule_tac exE) @@ -2191,24 +2197,24 @@ apply(rule_tac x = stp in exI, rule_tac x = "ln + lna" in exI, rule_tac x = rn in exI, simp) - apply(simp add: exp_ind_def[THEN sym] exp_add[THEN sym]) + apply(simp add: replicate_Suc[THEN sym] exp_add[THEN sym] del: replicate_Suc) done from this obtain stpb lnb rnb where stp2: - "steps (t_twice_len + 14, Bk # Bk # Bk\<^bsup>lna\<^esup> @ Oc # ires, Oc\<^bsup>Suc (rs + 1)\<^esup> @ Bk\<^bsup>rna\<^esup>) + "steps0 (t_twice_len + 14, Bk # Bk # Bk\(lna) @ Oc # ires, Oc\(Suc (rs + 1)) @ Bk\(rna)) t_wcode_main stpb = - (t_twice_len + 14 + t_fourtimes_len, Bk # Bk # Bk\<^bsup>lnb\<^esup> @ Oc # ires, Oc\<^bsup>Suc (4*rs + 4)\<^esup> @ Bk\<^bsup>rnb\<^esup>)" + (t_twice_len + 14 + t_fourtimes_len, Bk # Bk # Bk\(lnb) @ Oc # ires, Oc\(Suc (4*rs + 4)) @ Bk\(rnb))" by blast - have "\stp ln rn. steps (t_twice_len + 14 + t_fourtimes_len, - Bk # Bk # Bk\<^bsup>lnb\<^esup> @ Oc # ires, Oc\<^bsup>Suc (4*rs + 4)\<^esup> @ Bk\<^bsup>rnb\<^esup>) + have "\stp ln rn. steps0 (t_twice_len + 14 + t_fourtimes_len, + Bk # Bk # Bk\(lnb) @ Oc # ires, Oc\(Suc (4*rs + 4)) @ Bk\(rnb)) t_wcode_main stp = - (Suc 0, Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires, Bk # Oc\<^bsup>Suc (4*rs + 4)\<^esup> @ Bk\<^bsup>rn\<^esup>)" + (Suc 0, Bk # Bk\(ln) @ Oc # ires, Bk # Oc\(Suc (4*rs + 4)) @ Bk\(rn))" apply(rule wcode_jump2) done from this obtain stpc lnc rnc where stp3: - "steps (t_twice_len + 14 + t_fourtimes_len, - Bk # Bk # Bk\<^bsup>lnb\<^esup> @ Oc # ires, Oc\<^bsup>Suc (4*rs + 4)\<^esup> @ Bk\<^bsup>rnb\<^esup>) + "steps0 (t_twice_len + 14 + t_fourtimes_len, + Bk # Bk # Bk\(lnb) @ Oc # ires, Oc\(Suc (4*rs + 4)) @ Bk\(rnb)) t_wcode_main stpc = - (Suc 0, Bk # Bk\<^bsup>lnc\<^esup> @ Oc # ires, Bk # Oc\<^bsup>Suc (4*rs + 4)\<^esup> @ Bk\<^bsup>rnc\<^esup>)" + (Suc 0, Bk # Bk\(lnc) @ Oc # ires, Bk # Oc\(Suc (4*rs + 4)) @ Bk\(rnc))" by blast from stp1 stp2 stp3 show "?thesis" apply(rule_tac x = "stpa + stpb + stpc" in exI, @@ -2222,15 +2228,15 @@ fun wcode_on_left_moving_3_B :: "bin_inv_t" where "wcode_on_left_moving_3_B ires rs (l, r) = - (\ ml mr rn. l = Bk\<^bsup>ml\<^esup> @ Oc # Bk # Bk # ires \ - r = Bk\<^bsup>mr\<^esup> @ Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup> \ + (\ ml mr rn. l = Bk\(ml) @ Oc # Bk # Bk # ires \ + r = Bk\(mr) @ Oc\(Suc rs) @ Bk\(rn) \ ml + mr > Suc 0 \ mr > 0 )" fun wcode_on_left_moving_3_O :: "bin_inv_t" where "wcode_on_left_moving_3_O ires rs (l, r) = (\ ln rn. l = Bk # Bk # ires \ - r = Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" + r = Oc # Bk\(ln) @ Bk # Bk # Oc\(Suc rs) @ Bk\(rn))" fun wcode_on_left_moving_3 :: "bin_inv_t" where @@ -2242,19 +2248,19 @@ where "wcode_on_checking_3 ires rs (l, r) = (\ ln rn. l = Bk # ires \ - r = Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" + r = Bk # Oc # Bk\(ln) @ Bk # Bk # Oc\(Suc rs) @ Bk\(rn))" fun wcode_goon_checking_3 :: "bin_inv_t" where "wcode_goon_checking_3 ires rs (l, r) = (\ ln rn. l = ires \ - r = Bk # Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" + r = Bk # Bk # Oc # Bk\(ln) @ Bk # Bk # Oc\(Suc rs) @ Bk\(rn))" fun wcode_stop :: "bin_inv_t" where "wcode_stop ires rs (l, r) = (\ ln rn. l = Bk # ires \ - r = Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" + r = Bk # Oc # Bk\(ln) @ Bk # Bk # Oc\(Suc rs) @ Bk\(rn))" fun wcode_halt_case_inv :: "nat \ bin_inv_t" where @@ -2265,7 +2271,7 @@ else if st = 7 then wcode_goon_checking_3 ires rs (l, r) else False)" -fun wcode_halt_case_state :: "t_conf \ nat" +fun wcode_halt_case_state :: "config \ nat" where "wcode_halt_case_state (st, l, r) = (if st = 1 then 5 @@ -2273,19 +2279,19 @@ else if st = 7 then 3 else 0)" -fun wcode_halt_case_step :: "t_conf \ nat" +fun wcode_halt_case_step :: "config \ nat" where "wcode_halt_case_step (st, l, r) = (if st = 1 then length l else 0)" -fun wcode_halt_case_measure :: "t_conf \ nat \ nat" +fun wcode_halt_case_measure :: "config \ nat \ nat" where "wcode_halt_case_measure (st, l, r) = (wcode_halt_case_state (st, l, r), wcode_halt_case_step (st, l, r))" -definition wcode_halt_case_le :: "(t_conf \ t_conf) set" +definition wcode_halt_case_le :: "(config \ config) set" where "wcode_halt_case_le \ (inv_image lex_pair wcode_halt_case_measure)" lemma wf_wcode_halt_case_le[intro]: "wf wcode_halt_case_le" @@ -2301,13 +2307,15 @@ wcode_on_left_moving_3.simps wcode_stop.simps lemma [simp]: "fetch t_wcode_main 7 Bk = (R, 0)" -apply(simp add: fetch.simps t_wcode_main_def nth_append nth_of.simps +apply(subgoal_tac "7 = Suc 6") +apply(simp only: fetch.simps t_wcode_main_def nth_append nth_of.simps t_wcode_main_first_part_def) +apply(auto) done lemma [simp]: "wcode_on_left_moving_3 ires rs (b, []) = False" apply(simp only: wcode_halt_invs) -apply(simp add: exp_ind_def) +apply(simp) done lemma [simp]: "wcode_on_checking_3 ires rs (b, []) = False" @@ -2325,10 +2333,11 @@ apply(erule_tac exE)+ apply(case_tac ml, simp) apply(rule_tac x = "mr - 2" in exI, rule_tac x = rn in exI) -apply(case_tac mr, simp, simp add: exp_ind, simp add: exp_ind[THEN sym]) +apply(case_tac mr, simp, simp add: exp_ind del: replicate_Suc) +apply(case_tac nat, simp, simp add: exp_ind del: replicate_Suc) apply(rule_tac disjI1) apply(rule_tac x = nat in exI, rule_tac x = "Suc mr" in exI, - rule_tac x = rn in exI, simp add: exp_ind_def) + rule_tac x = rn in exI, simp) apply(simp) done @@ -2345,7 +2354,7 @@ lemma [simp]: "wcode_on_left_moving_3 ires rs (b, Oc # list) \ wcode_on_checking_3 ires rs (tl b, hd b # Oc # list)" apply(simp add:wcode_halt_invs, auto) -apply(case_tac [!] mr, simp_all add: exp_ind_def) +apply(case_tac [!] mr, simp_all) done lemma [simp]: "wcode_on_checking_3 ires rs (b, Oc # list) = False" @@ -2356,7 +2365,6 @@ apply(simp add: wcode_halt_invs, auto) done - lemma [simp]: "wcode_on_checking_3 ires rs (b, Bk # list) \ b \ []" apply(auto simp: wcode_halt_invs) done @@ -2373,12 +2381,12 @@ lemma t_halt_case_correctness: shows "let P = (\ (st, l, r). st = 0) in let Q = (\ (st, l, r). wcode_halt_case_inv st ires rs (l, r)) in - let f = (\ stp. steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # Bk # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp) in + let f = (\ stp. steps0 (Suc 0, Bk # Bk\(m) @ Oc # Bk # Bk # ires, Bk # Oc\(Suc rs) @ Bk\(n)) t_wcode_main stp) in \ n .P (f n) \ Q (f (n::nat))" proof - let ?P = "(\ (st, l, r). st = 0)" let ?Q = "(\ (st, l, r). wcode_halt_case_inv st ires rs (l, r))" - let ?f = "(\ stp. steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # Bk # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp)" + let ?f = "(\ stp. steps0 (Suc 0, Bk # Bk\(m) @ Oc # Bk # Bk # ires, Bk # Oc\(Suc rs) @ Bk\(n)) t_wcode_main stp)" have "\ n. ?P (?f n) \ ?Q (?f (n::nat))" proof(rule_tac halt_lemma2) show "wf wcode_halt_case_le" by auto @@ -2386,14 +2394,14 @@ show "\ na. \ ?P (?f na) \ ?Q (?f na) \ ?Q (?f (Suc na)) \ (?f (Suc na), ?f na) \ wcode_halt_case_le" apply(rule_tac allI, rule_tac impI, case_tac "?f na") - apply(simp add: tstep_red tstep.simps) + apply(simp add: step_red step.simps) apply(case_tac c, simp, case_tac [2] aa) - apply(simp_all split: if_splits add: new_tape.simps wcode_halt_case_le_def lex_pair_def) + apply(simp_all split: if_splits add: wcode_halt_case_le_def lex_pair_def) done next show "?Q (?f 0)" apply(simp add: steps.simps wcode_halt_invs) - apply(rule_tac x = "Suc m" in exI, simp add: exp_ind_def) + apply(rule_tac x = "Suc m" in exI, simp) apply(rule_tac x = "Suc 0" in exI, auto) done next @@ -2407,20 +2415,19 @@ qed declare wcode_halt_case_inv.simps[simp del] -lemma [intro]: "\ xs. ( :: block list) = Oc # xs" +lemma [intro]: "\ xs. ( :: cell list) = Oc # xs" apply(case_tac "rev list", simp) -apply(simp add: tape_of_nat_abv tape_of_nat_list.simps exp_ind_def) -apply(case_tac list, simp, simp) +apply(simp add: tape_of_nl_cons) done lemma wcode_halt_case: - "\stp ln rn. steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # Bk # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) - t_wcode_main stp = (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" + "\stp ln rn. steps0 (Suc 0, Bk # Bk\(m) @ Oc # Bk # Bk # ires, Bk # Oc\(Suc rs) @ Bk\(n)) + t_wcode_main stp = (0, Bk # ires, Bk # Oc # Bk\(ln) @ Bk # Bk # Oc\(Suc rs) @ Bk\(rn))" using t_halt_case_correctness[of ires rs m n] apply(simp) apply(erule_tac exE) -apply(case_tac "steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # Bk # ires, - Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main na") +apply(case_tac "steps0 (Suc 0, Bk # Bk\(m) @ Oc # Bk # Bk # ires, + Bk # Oc\(Suc rs) @ Bk\(n)) t_wcode_main na") apply(auto simp: wcode_halt_case_inv.simps wcode_stop.simps) apply(rule_tac x = na in exI, rule_tac x = ln in exI, rule_tac x = rn in exI, simp) @@ -2430,20 +2437,28 @@ apply(simp add: bl_bin.simps) done +lemma [simp]: "bl_bin [Oc] = 1" +apply(simp add: bl_bin.simps) +done + +lemma [intro]: "2 * 2 ^ a = Suc (Suc (2 * bl_bin (Oc \ a)))" +apply(induct a, auto simp: bl_bin.simps) +done +declare replicate_Suc[simp del] + lemma t_wcode_main_lemma_pre: "\args \ []; lm = \ \ - \ stp ln rn. steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ rev lm @ Bk # Bk # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main + \ stp ln rn. steps0 (Suc 0, Bk # Bk\(m) @ rev lm @ Bk # Bk # ires, Bk # Oc\(Suc rs) @ Bk\(n)) t_wcode_main stp - = (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin lm + rs * 2^(length lm - 1) \<^esup> @ Bk\<^bsup>rn\<^esup>)" + = (0, Bk # ires, Bk # Oc # Bk\(ln) @ Bk # Bk # Oc\(bl_bin lm + rs * 2^(length lm - 1) ) @ Bk\(rn))" proof(induct "length args" arbitrary: args lm rs m n, simp) fix x args lm rs m n assume ind: "\args lm rs m n. \x = length args; (args::nat list) \ []; lm = \ \ \stp ln rn. - steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ rev lm @ Bk # Bk # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = - (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin lm + rs * 2 ^ (length lm - 1)\<^esup> @ Bk\<^bsup>rn\<^esup>)" - + steps0 (Suc 0, Bk # Bk\(m) @ rev lm @ Bk # Bk # ires, Bk # Oc\(Suc rs) @ Bk\(n)) t_wcode_main stp = + (0, Bk # ires, Bk # Oc # Bk\(ln) @ Bk # Bk # Oc\(bl_bin lm + rs * 2 ^ (length lm - 1)) @ Bk\(rn))" and h: "Suc x = length args" "(args::nat list) \ []" "lm = " from h have "\ (a::nat) xs. args = xs @ [a]" apply(rule_tac x = "last args" in exI) @@ -2452,103 +2467,104 @@ from this obtain a xs where "args = xs @ [a]" by blast from h and this show "\stp ln rn. - steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ rev lm @ Bk # Bk # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = - (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin lm + rs * 2 ^ (length lm - 1)\<^esup> @ Bk\<^bsup>rn\<^esup>)" + steps0 (Suc 0, Bk # Bk\(m) @ rev lm @ Bk # Bk # ires, Bk # Oc\(Suc rs) @ Bk\(n)) t_wcode_main stp = + (0, Bk # ires, Bk # Oc # Bk\(ln) @ Bk # Bk # Oc\(bl_bin lm + rs * 2 ^ (length lm - 1)) @ Bk\(rn))" proof(case_tac "xs::nat list", simp) show "\stp ln rn. - steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ rev () @ Bk # Bk # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = - (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin () + rs * 2 ^ a\<^esup> @ Bk\<^bsup>rn\<^esup>)" + steps0 (Suc 0, Bk # Bk \ m @ Oc \ Suc a @ Bk # Bk # ires, Bk # Oc \ Suc rs @ Bk \ n) t_wcode_main stp = + (0, Bk # ires, Bk # Oc # Bk \ ln @ Bk # Bk # Oc \ (bl_bin (Oc \ Suc a) + rs * 2 ^ a) @ Bk \ rn)" proof(induct "a" arbitrary: m n rs ires, simp) fix m n rs ires - show "\stp ln rn. steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # Bk # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) - t_wcode_main stp = (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin [Oc] + rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" - apply(simp add: bl_bin_one) - apply(rule_tac wcode_halt_case) + show "\stp ln rn. + steps0 (Suc 0, Bk # Bk \ m @ Oc # Bk # Bk # ires, Bk # Oc \ Suc rs @ Bk \ n) t_wcode_main stp = + (0, Bk # ires, Bk # Oc # Bk \ ln @ Bk # Bk # Oc \ Suc rs @ Bk \ rn)" + apply(rule_tac wcode_halt_case) done next fix a m n rs ires - assume ind2: + assume ind2: "\m n rs ires. - \stp ln rn. - steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ rev () @ Bk # Bk # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = - (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin () + rs * 2 ^ a\<^esup> @ Bk\<^bsup>rn\<^esup>)" - show "\stp ln rn. - steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ rev () @ Bk # Bk # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = - (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin () + rs * 2 ^ Suc a\<^esup> @ Bk\<^bsup>rn\<^esup>)" + \stp ln rn. + steps0 (Suc 0, Bk # Bk \ m @ Oc \ Suc a @ Bk # Bk # ires, Bk # Oc \ Suc rs @ Bk \ n) t_wcode_main stp = + (0, Bk # ires, Bk # Oc # Bk \ ln @ Bk # Bk # Oc \ (bl_bin (Oc \ Suc a) + rs * 2 ^ a) @ Bk \ rn)" + show " \stp ln rn. + steps0 (Suc 0, Bk # Bk \ m @ Oc \ Suc (Suc a) @ Bk # Bk # ires, Bk # Oc \ Suc rs @ Bk \ n) t_wcode_main stp = + (0, Bk # ires, Bk # Oc # Bk \ ln @ Bk # Bk # Oc \ (bl_bin (Oc \ Suc (Suc a)) + rs * 2 ^ Suc a) @ Bk \ rn)" proof - have "\stp ln rn. - steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ rev () @ Bk # Bk # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = - (Suc 0, Bk # Bk\<^bsup>ln\<^esup> @ rev () @ Bk # Bk # ires, Bk # Oc\<^bsup>Suc (2 * rs + 2)\<^esup> @ Bk\<^bsup>rn\<^esup>)" + steps0 (Suc 0, Bk # Bk\(m) @ rev () @ Bk # Bk # ires, Bk # Oc\(Suc rs) @ Bk\(n)) t_wcode_main stp = + (Suc 0, Bk # Bk\(ln) @ rev () @ Bk # Bk # ires, Bk # Oc\(Suc (2 * rs + 2)) @ Bk\(rn))" apply(simp add: tape_of_nat) - using wcode_double_case[of m "Oc\<^bsup>a\<^esup> @ Bk # Bk # ires" rs n] - apply(simp add: exp_ind_def) + using wcode_double_case[of m "Oc\(a) @ Bk # Bk # ires" rs n] + apply(simp add: replicate_Suc) done from this obtain stpa lna rna where stp1: - "steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ rev () @ Bk # Bk # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stpa = - (Suc 0, Bk # Bk\<^bsup>lna\<^esup> @ rev () @ Bk # Bk # ires, Bk # Oc\<^bsup>Suc (2 * rs + 2)\<^esup> @ Bk\<^bsup>rna\<^esup>)" by blast + "steps0 (Suc 0, Bk # Bk\(m) @ rev () @ Bk # Bk # ires, Bk # Oc\(Suc rs) @ Bk\(n)) t_wcode_main stpa = + (Suc 0, Bk # Bk\(lna) @ rev () @ Bk # Bk # ires, Bk # Oc\(Suc (2 * rs + 2)) @ Bk\(rna))" by blast moreover have "\stp ln rn. - steps (Suc 0, Bk # Bk\<^bsup>lna\<^esup> @ rev () @ Bk # Bk # ires, Bk # Oc\<^bsup>Suc (2 * rs + 2)\<^esup> @ Bk\<^bsup>rna\<^esup>) t_wcode_main stp = - (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin () + (2*rs + 2) * 2 ^ a\<^esup> @ Bk\<^bsup>rn\<^esup>)" - using ind2[of lna ires "2*rs + 2" rna] by simp + steps0 (Suc 0, Bk # Bk\(lna) @ rev () @ Bk # Bk # ires, Bk # Oc\(Suc (2 * rs + 2)) @ Bk\(rna)) t_wcode_main stp = + (0, Bk # ires, Bk # Oc # Bk\(ln) @ Bk # Bk # Oc\(bl_bin () + (2*rs + 2) * 2 ^ a) @ Bk\(rn))" + using ind2[of lna ires "2*rs + 2" rna] by(simp add: tape_of_nl_abv tape_of_nat_abv) from this obtain stpb lnb rnb where stp2: - "steps (Suc 0, Bk # Bk\<^bsup>lna\<^esup> @ rev () @ Bk # Bk # ires, Bk # Oc\<^bsup>Suc (2 * rs + 2)\<^esup> @ Bk\<^bsup>rna\<^esup>) t_wcode_main stpb = - (0, Bk # ires, Bk # Oc # Bk\<^bsup>lnb\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin () + (2*rs + 2) * 2 ^ a\<^esup> @ Bk\<^bsup>rnb\<^esup>)" + "steps0 (Suc 0, Bk # Bk\(lna) @ rev () @ Bk # Bk # ires, Bk # Oc\(Suc (2 * rs + 2)) @ Bk\(rna)) t_wcode_main stpb = + (0, Bk # ires, Bk # Oc # Bk\(lnb) @ Bk # Bk # Oc\(bl_bin () + (2*rs + 2) * 2 ^ a) @ Bk\(rnb))" by blast from stp1 and stp2 show "?thesis" apply(rule_tac x = "stpa + stpb" in exI, - rule_tac x = lnb in exI, rule_tac x = rnb in exI, simp) - apply(simp add: steps_add bl_bin_nat_Suc exponent_def) + rule_tac x = lnb in exI, rule_tac x = rnb in exI, simp add: tape_of_nat_abv) + apply(simp add: bl_bin.simps replicate_Suc) + apply(auto) done qed qed next fix aa list assume g: "Suc x = length args" "args \ []" "lm = " "args = xs @ [a::nat]" "xs = (aa::nat) # list" - thus "\stp ln rn. steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ rev lm @ Bk # Bk # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = - (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin lm + rs * 2 ^ (length lm - 1)\<^esup> @ Bk\<^bsup>rn\<^esup>)" + thus "\stp ln rn. steps0 (Suc 0, Bk # Bk\(m) @ rev lm @ Bk # Bk # ires, Bk # Oc\(Suc rs) @ Bk\(n)) t_wcode_main stp = + (0, Bk # ires, Bk # Oc # Bk\(ln) @ Bk # Bk # Oc\(bl_bin lm + rs * 2 ^ (length lm - 1)) @ Bk\(rn))" proof(induct a arbitrary: m n rs args lm, simp_all add: tape_of_nl_rev, simp only: tape_of_nl_cons_app1, simp) fix m n rs args lm have "\stp ln rn. - steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # rev (<(aa::nat) # list>) @ Bk # Bk # ires, - Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = - (Suc 0, Bk # Bk\<^bsup>ln\<^esup> @ rev () @ Bk # Bk # ires, - Bk # Oc\<^bsup>Suc (4*rs + 4)\<^esup> @ Bk\<^bsup>rn\<^esup>)" + steps0 (Suc 0, Bk # Bk\(m) @ Oc # Bk # rev (<(aa::nat) # list>) @ Bk # Bk # ires, + Bk # Oc\(Suc rs) @ Bk\(n)) t_wcode_main stp = + (Suc 0, Bk # Bk\(ln) @ rev () @ Bk # Bk # ires, + Bk # Oc\(Suc (4*rs + 4)) @ Bk\(rn))" proof(simp add: tape_of_nl_rev) have "\ xs. () = Oc # xs" by auto from this obtain xs where "() = Oc # xs" .. thus "\stp ln rn. - steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # @ Bk # Bk # ires, - Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = - (Suc 0, Bk # Bk\<^bsup>ln\<^esup> @ @ Bk # Bk # ires, Bk # Oc\<^bsup>5 + 4 * rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" + steps0 (Suc 0, Bk # Bk\(m) @ Oc # Bk # @ Bk # Bk # ires, + Bk # Oc\(Suc rs) @ Bk\(n)) t_wcode_main stp = + (Suc 0, Bk # Bk\(ln) @ @ Bk # Bk # ires, Bk # Oc\(5 + 4 * rs) @ Bk\(rn))" apply(simp) using wcode_fourtimes_case[of m "xs @ Bk # Bk # ires" rs n] apply(simp) done qed from this obtain stpa lna rna where stp1: - "steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # rev () @ Bk # Bk # ires, - Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stpa = - (Suc 0, Bk # Bk\<^bsup>lna\<^esup> @ rev () @ Bk # Bk # ires, - Bk # Oc\<^bsup>Suc (4*rs + 4)\<^esup> @ Bk\<^bsup>rna\<^esup>)" by blast + "steps0 (Suc 0, Bk # Bk\(m) @ Oc # Bk # rev () @ Bk # Bk # ires, + Bk # Oc\(Suc rs) @ Bk\(n)) t_wcode_main stpa = + (Suc 0, Bk # Bk\(lna) @ rev () @ Bk # Bk # ires, + Bk # Oc\(Suc (4*rs + 4)) @ Bk\(rna))" by blast from g have - "\ stp ln rn. steps (Suc 0, Bk # Bk\<^bsup>lna\<^esup> @ rev (<(aa::nat) # list>) @ Bk # Bk # ires, - Bk # Oc\<^bsup>Suc (4*rs + 4)\<^esup> @ Bk\<^bsup>rna\<^esup>) t_wcode_main stp = (0, Bk # ires, - Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin ()+ (4*rs + 4) * 2^(length () - 1) \<^esup> @ Bk\<^bsup>rn\<^esup>)" + "\ stp ln rn. steps0 (Suc 0, Bk # Bk\(lna) @ rev (<(aa::nat) # list>) @ Bk # Bk # ires, + Bk # Oc\(Suc (4*rs + 4)) @ Bk\(rna)) t_wcode_main stp = (0, Bk # ires, + Bk # Oc # Bk\(ln) @ Bk # Bk # Oc\(bl_bin ()+ (4*rs + 4) * 2^(length () - 1) ) @ Bk\(rn))" apply(rule_tac args = "(aa::nat)#list" in ind, simp_all) done from this obtain stpb lnb rnb where stp2: - "steps (Suc 0, Bk # Bk\<^bsup>lna\<^esup> @ rev (<(aa::nat) # list>) @ Bk # Bk # ires, - Bk # Oc\<^bsup>Suc (4*rs + 4)\<^esup> @ Bk\<^bsup>rna\<^esup>) t_wcode_main stpb = (0, Bk # ires, - Bk # Oc # Bk\<^bsup>lnb\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin ()+ (4*rs + 4) * 2^(length () - 1) \<^esup> @ Bk\<^bsup>rnb\<^esup>)" + "steps0 (Suc 0, Bk # Bk\(lna) @ rev (<(aa::nat) # list>) @ Bk # Bk # ires, + Bk # Oc\(Suc (4*rs + 4)) @ Bk\(rna)) t_wcode_main stpb = (0, Bk # ires, + Bk # Oc # Bk\(lnb) @ Bk # Bk # Oc\(bl_bin ()+ (4*rs + 4) * 2^(length () - 1) ) @ Bk\(rnb))" by blast from stp1 and stp2 and h show "\stp ln rn. - steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # @ Bk # Bk # ires, - Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = - (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # - Bk # Oc\<^bsup>bl_bin (Oc\<^bsup>Suc aa\<^esup> @ Bk # ) + rs * (2 * 2 ^ (aa + length ()))\<^esup> @ Bk\<^bsup>rn\<^esup>)" + steps0 (Suc 0, Bk # Bk\(m) @ Oc # Bk # @ Bk # Bk # ires, + Bk # Oc\(Suc rs) @ Bk\(n)) t_wcode_main stp = + (0, Bk # ires, Bk # Oc # Bk\(ln) @ Bk # + Bk # Oc\(bl_bin (Oc\(Suc aa) @ Bk # ) + rs * (2 * 2 ^ (aa + length ()))) @ Bk\(rn))" apply(rule_tac x = "stpa + stpb" in exI, rule_tac x = lnb in exI, rule_tac x = rnb in exI, simp add: steps_add tape_of_nl_rev) done @@ -2558,53 +2574,53 @@ "\ m n rs args lm. \lm = ; args = aa # list @ [ab]\ \ \stp ln rn. - steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ @ Bk # Bk # ires, - Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = - (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # - Bk # Oc\<^bsup>bl_bin () + rs * 2 ^ (length () - Suc 0)\<^esup> @ Bk\<^bsup>rn\<^esup>)" + steps0 (Suc 0, Bk # Bk\(m) @ @ Bk # Bk # ires, + Bk # Oc\(Suc rs) @ Bk\(n)) t_wcode_main stp = + (0, Bk # ires, Bk # Oc # Bk\(ln) @ Bk # + Bk # Oc\(bl_bin () + rs * 2 ^ (length () - Suc 0)) @ Bk\(rn))" and k: "args = aa # list @ [Suc ab]" "lm = " show "\stp ln rn. - steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ @ Bk # Bk # ires, - Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = - (0, Bk # ires,Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # - Bk # Oc\<^bsup>bl_bin () + rs * 2 ^ (length () - Suc 0)\<^esup> @ Bk\<^bsup>rn\<^esup>)" + steps0 (Suc 0, Bk # Bk\(m) @ @ Bk # Bk # ires, + Bk # Oc\(Suc rs) @ Bk\(n)) t_wcode_main stp = + (0, Bk # ires,Bk # Oc # Bk\(ln) @ Bk # + Bk # Oc\(bl_bin () + rs * 2 ^ (length () - Suc 0)) @ Bk\(rn))" proof(simp add: tape_of_nl_cons_app1) have "\stp ln rn. - steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc\<^bsup>Suc (Suc ab)\<^esup> @ Bk # @ Bk # Bk # ires, - Bk # Oc # Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp - = (Suc 0, Bk # Bk\<^bsup>ln\<^esup> @ Oc\<^bsup>Suc ab\<^esup> @ Bk # @ Bk # Bk # ires, - Bk # Oc\<^bsup>Suc (2*rs + 2)\<^esup> @ Bk\<^bsup>rn\<^esup>)" - using wcode_double_case[of m "Oc\<^bsup>ab\<^esup> @ Bk # @ Bk # Bk # ires" + steps0 (Suc 0, Bk # Bk\(m) @ Oc\(Suc (Suc ab)) @ Bk # @ Bk # Bk # ires, + Bk # Oc # Oc\(rs) @ Bk\(n)) t_wcode_main stp + = (Suc 0, Bk # Bk\(ln) @ Oc\(Suc ab) @ Bk # @ Bk # Bk # ires, + Bk # Oc\(Suc (2*rs + 2)) @ Bk\(rn))" + using wcode_double_case[of m "Oc\(ab) @ Bk # @ Bk # Bk # ires" rs n] - apply(simp add: exp_ind_def) + apply(simp add: replicate_Suc) done from this obtain stpa lna rna where stp1: - "steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc\<^bsup>Suc (Suc ab)\<^esup> @ Bk # @ Bk # Bk # ires, - Bk # Oc # Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stpa - = (Suc 0, Bk # Bk\<^bsup>lna\<^esup> @ Oc\<^bsup>Suc ab\<^esup> @ Bk # @ Bk # Bk # ires, - Bk # Oc\<^bsup>Suc (2*rs + 2)\<^esup> @ Bk\<^bsup>rna\<^esup>)" by blast + "steps0 (Suc 0, Bk # Bk\(m) @ Oc\(Suc (Suc ab)) @ Bk # @ Bk # Bk # ires, + Bk # Oc # Oc\(rs) @ Bk\(n)) t_wcode_main stpa + = (Suc 0, Bk # Bk\(lna) @ Oc\(Suc ab) @ Bk # @ Bk # Bk # ires, + Bk # Oc\(Suc (2*rs + 2)) @ Bk\(rna))" by blast from k have - "\ stp ln rn. steps (Suc 0, Bk # Bk\<^bsup>lna\<^esup> @ @ Bk # Bk # ires, - Bk # Oc\<^bsup>Suc (2*rs + 2)\<^esup> @ Bk\<^bsup>rna\<^esup>) t_wcode_main stp - = (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # - Bk # Oc\<^bsup>bl_bin ( ) + (2*rs + 2)* 2^(length () - Suc 0)\<^esup> @ Bk\<^bsup>rn\<^esup>)" + "\ stp ln rn. steps0 (Suc 0, Bk # Bk\(lna) @ @ Bk # Bk # ires, + Bk # Oc\(Suc (2*rs + 2)) @ Bk\(rna)) t_wcode_main stp + = (0, Bk # ires, Bk # Oc # Bk\(ln) @ Bk # + Bk # Oc\(bl_bin ( ) + (2*rs + 2)* 2^(length () - Suc 0)) @ Bk\(rn))" apply(rule_tac ind2, simp_all) done from this obtain stpb lnb rnb where stp2: - "steps (Suc 0, Bk # Bk\<^bsup>lna\<^esup> @ @ Bk # Bk # ires, - Bk # Oc\<^bsup>Suc (2*rs + 2)\<^esup> @ Bk\<^bsup>rna\<^esup>) t_wcode_main stpb - = (0, Bk # ires, Bk # Oc # Bk\<^bsup>lnb\<^esup> @ Bk # - Bk # Oc\<^bsup>bl_bin ( ) + (2*rs + 2)* 2^(length () - Suc 0)\<^esup> @ Bk\<^bsup>rnb\<^esup>)" + "steps0 (Suc 0, Bk # Bk\(lna) @ @ Bk # Bk # ires, + Bk # Oc\(Suc (2*rs + 2)) @ Bk\(rna)) t_wcode_main stpb + = (0, Bk # ires, Bk # Oc # Bk\(lnb) @ Bk # + Bk # Oc\(bl_bin ( ) + (2*rs + 2)* 2^(length () - Suc 0)) @ Bk\(rnb))" by blast from stp1 and stp2 show "\stp ln rn. - steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc\<^bsup>Suc (Suc ab)\<^esup> @ Bk # @ Bk # Bk # ires, - Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = - (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # - Oc\<^bsup>bl_bin (Oc\<^bsup>Suc aa\<^esup> @ Bk # ) + rs * (2 * 2 ^ (aa + length ()))\<^esup> - @ Bk\<^bsup>rn\<^esup>)" + steps0 (Suc 0, Bk # Bk\(m) @ Oc\(Suc (Suc ab)) @ Bk # @ Bk # Bk # ires, + Bk # Oc\(Suc rs) @ Bk\(n)) t_wcode_main stp = + (0, Bk # ires, Bk # Oc # Bk\(ln) @ Bk # Bk # + Oc\(bl_bin (Oc\(Suc aa) @ Bk # ) + rs * (2 * 2 ^ (aa + length ()))) + @ Bk\(rn))" apply(rule_tac x = "stpa + stpb" in exI, rule_tac x = lnb in exI, - rule_tac x = rnb in exI, simp add: steps_add tape_of_nl_cons_app1 exp_ind_def) + rule_tac x = rnb in exI, simp add: steps_add tape_of_nl_cons_app1 replicate_Suc) done qed qed @@ -2612,10 +2628,7 @@ qed - -(* turing_shift can be used*) -term t_wcode_main -definition t_wcode_prepare :: "tprog" +definition t_wcode_prepare :: "instr list" where "t_wcode_prepare \ [(W1, 2), (L, 1), (L, 3), (R, 2), (R, 4), (W0, 3), @@ -2626,33 +2639,33 @@ where "wprepare_add_one m lm (l, r) = (\ rn. l = [] \ - (r = @ Bk\<^bsup>rn\<^esup> \ - r = Bk # @ Bk\<^bsup>rn\<^esup>))" + (r = @ Bk\(rn) \ + r = Bk # @ Bk\(rn)))" fun wprepare_goto_first_end :: "nat \ nat list \ tape \ bool" where "wprepare_goto_first_end m lm (l, r) = - (\ ml mr rn. l = Oc\<^bsup>ml\<^esup> \ - r = Oc\<^bsup>mr\<^esup> @ Bk # @ Bk\<^bsup>rn\<^esup> \ + (\ ml mr rn. l = Oc\(ml) \ + r = Oc\(mr) @ Bk # @ Bk\(rn) \ ml + mr = Suc (Suc m))" fun wprepare_erase :: "nat \ nat list \ tape \ bool" where "wprepare_erase m lm (l, r) = - (\ rn. l = Oc\<^bsup>Suc m\<^esup> \ - tl r = Bk # @ Bk\<^bsup>rn\<^esup>)" + (\ rn. l = Oc\(Suc m) \ + tl r = Bk # @ Bk\(rn))" fun wprepare_goto_start_pos_B :: "nat \ nat list \ tape \ bool" where "wprepare_goto_start_pos_B m lm (l, r) = - (\ rn. l = Bk # Oc\<^bsup>Suc m\<^esup> \ - r = Bk # @ Bk\<^bsup>rn\<^esup>)" + (\ rn. l = Bk # Oc\(Suc m) \ + r = Bk # @ Bk\(rn))" fun wprepare_goto_start_pos_O :: "nat \ nat list \ tape \ bool" where "wprepare_goto_start_pos_O m lm (l, r) = - (\ rn. l = Bk # Bk # Oc\<^bsup>Suc m\<^esup> \ - r = @ Bk\<^bsup>rn\<^esup>)" + (\ rn. l = Bk # Bk # Oc\(Suc m) \ + r = @ Bk\(rn))" fun wprepare_goto_start_pos :: "nat \ nat list \ tape \ bool" where @@ -2663,15 +2676,15 @@ fun wprepare_loop_start_on_rightmost :: "nat \ nat list \ tape \ bool" where "wprepare_loop_start_on_rightmost m lm (l, r) = - (\ rn mr. rev l @ r = Oc\<^bsup>Suc m\<^esup> @ Bk # Bk # @ Bk\<^bsup>rn\<^esup> \ l \ [] \ - r = Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup>)" + (\ rn mr. rev l @ r = Oc\(Suc m) @ Bk # Bk # @ Bk\(rn) \ l \ [] \ + r = Oc\(mr) @ Bk\(rn))" fun wprepare_loop_start_in_middle :: "nat \ nat list \ tape \ bool" where "wprepare_loop_start_in_middle m lm (l, r) = (\ rn (mr:: nat) (lm1::nat list). - rev l @ r = Oc\<^bsup>Suc m\<^esup> @ Bk # Bk # @ Bk\<^bsup>rn\<^esup> \ l \ [] \ - r = Oc\<^bsup>mr\<^esup> @ Bk # @ Bk\<^bsup>rn\<^esup> \ lm1 \ [])" + rev l @ r = Oc\(Suc m) @ Bk # Bk # @ Bk\(rn) \ l \ [] \ + r = Oc\(mr) @ Bk # @ Bk\(rn) \ lm1 \ [])" fun wprepare_loop_start :: "nat \ nat list \ tape \ bool" where @@ -2681,16 +2694,16 @@ fun wprepare_loop_goon_on_rightmost :: "nat \ nat list \ tape \ bool" where "wprepare_loop_goon_on_rightmost m lm (l, r) = - (\ rn. l = Bk # @ Bk # Bk # Oc\<^bsup>Suc m\<^esup> \ - r = Bk\<^bsup>rn\<^esup>)" + (\ rn. l = Bk # @ Bk # Bk # Oc\(Suc m) \ + r = Bk\(rn))" fun wprepare_loop_goon_in_middle :: "nat \ nat list \ tape \ bool" where "wprepare_loop_goon_in_middle m lm (l, r) = (\ rn (mr:: nat) (lm1::nat list). - rev l @ r = Oc\<^bsup>Suc m\<^esup> @ Bk # Bk # @ Bk\<^bsup>rn\<^esup> \ l \ [] \ - (if lm1 = [] then r = Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> - else r = Oc\<^bsup>mr\<^esup> @ Bk # @ Bk\<^bsup>rn\<^esup>) \ mr > 0)" + rev l @ r = Oc\(Suc m) @ Bk # Bk # @ Bk\(rn) \ l \ [] \ + (if lm1 = [] then r = Oc\(mr) @ Bk\(rn) + else r = Oc\(mr) @ Bk # @ Bk\(rn)) \ mr > 0)" fun wprepare_loop_goon :: "nat \ nat list \ tape \ bool" where @@ -2701,14 +2714,14 @@ fun wprepare_add_one2 :: "nat \ nat list \ tape \ bool" where "wprepare_add_one2 m lm (l, r) = - (\ rn. l = Bk # Bk # @ Bk # Bk # Oc\<^bsup>Suc m\<^esup> \ - (r = [] \ tl r = Bk\<^bsup>rn\<^esup>))" + (\ rn. l = Bk # Bk # @ Bk # Bk # Oc\(Suc m) \ + (r = [] \ tl r = Bk\(rn)))" fun wprepare_stop :: "nat \ nat list \ tape \ bool" where "wprepare_stop m lm (l, r) = - (\ rn. l = Bk # @ Bk # Bk # Oc\<^bsup>Suc m\<^esup> \ - r = Bk # Oc # Bk\<^bsup>rn\<^esup>)" + (\ rn. l = Bk # @ Bk # Bk # Oc\(Suc m) \ + r = Bk # Oc # Bk\(rn))" fun wprepare_inv :: "nat \ nat \ nat list \ tape \ bool" where @@ -2723,14 +2736,14 @@ else if st = 7 then wprepare_add_one2 m lm (l, r) else False)" -fun wprepare_stage :: "t_conf \ nat" +fun wprepare_stage :: "config \ nat" where "wprepare_stage (st, l, r) = (if st \ 1 \ st \ 4 then 3 else if st = 5 \ st = 6 then 2 else 1)" -fun wprepare_state :: "t_conf \ nat" +fun wprepare_state :: "config \ nat" where "wprepare_state (st, l, r) = (if st = 1 then 4 @@ -2740,7 +2753,7 @@ else if st = 7 then 2 else 0)" -fun wprepare_step :: "t_conf \ nat" +fun wprepare_step :: "config \ nat" where "wprepare_step (st, l, r) = (if st = 1 then (if hd r = Oc then Suc (length l) @@ -2755,14 +2768,14 @@ else 1) else 0)" -fun wcode_prepare_measure :: "t_conf \ nat \ nat \ nat" +fun wcode_prepare_measure :: "config \ nat \ nat \ nat" where "wcode_prepare_measure (st, l, r) = (wprepare_stage (st, l, r), wprepare_state (st, l, r), wprepare_step (st, l, r))" -definition wcode_prepare_le :: "(t_conf \ t_conf) set" +definition wcode_prepare_le :: "(config \ config) set" where "wcode_prepare_le \ (inv_image lex_triple wcode_prepare_measure)" lemma [intro]: "wf lex_pair" @@ -2770,7 +2783,7 @@ lemma wf_wcode_prepare_le[intro]: "wf wcode_prepare_le" by(auto intro:wf_inv_image simp: wcode_prepare_le_def - recursive.lex_triple_def) + lex_triple_def) declare wprepare_add_one.simps[simp del] wprepare_goto_first_end.simps[simp del] wprepare_erase.simps[simp del] wprepare_goto_start_pos.simps[simp del] @@ -2808,45 +2821,56 @@ done lemma [simp]: "fetch t_wcode_prepare 4 Bk = (R, 4)" -apply(simp add: fetch.simps t_wcode_prepare_def nth_of.simps) +apply(subgoal_tac "4 = Suc 3") +apply(simp_all only: fetch.simps t_wcode_prepare_def nth_of.simps) +apply(auto) done lemma [simp]: "fetch t_wcode_prepare 4 Oc = (R, 5)" -apply(simp add: fetch.simps t_wcode_prepare_def nth_of.simps) -done +apply(subgoal_tac "4 = Suc 3") +apply(simp_all only: fetch.simps t_wcode_prepare_def nth_of.simps) +apply(auto) +done + lemma [simp]: "fetch t_wcode_prepare 5 Oc = (R, 5)" -apply(simp add: fetch.simps t_wcode_prepare_def nth_of.simps) +apply(subgoal_tac "5 = Suc 4") +apply(simp_all only: fetch.simps t_wcode_prepare_def nth_of.simps) +apply(auto) done lemma [simp]: "fetch t_wcode_prepare 5 Bk = (R, 6)" -apply(simp add: fetch.simps t_wcode_prepare_def nth_of.simps) +apply(subgoal_tac "5 = Suc 4") +apply(simp_all only: fetch.simps t_wcode_prepare_def nth_of.simps) +apply(auto) done lemma [simp]: "fetch t_wcode_prepare 6 Oc = (R, 5)" -apply(simp add: fetch.simps t_wcode_prepare_def nth_of.simps) +apply(subgoal_tac "6 = Suc 5") +apply(simp_all only: fetch.simps t_wcode_prepare_def nth_of.simps) +apply(auto) done lemma [simp]: "fetch t_wcode_prepare 6 Bk = (R, 7)" -apply(simp add: fetch.simps t_wcode_prepare_def nth_of.simps) +apply(subgoal_tac "6 = Suc 5") +apply(simp_all only: fetch.simps t_wcode_prepare_def nth_of.simps) +apply(auto) done lemma [simp]: "fetch t_wcode_prepare 7 Oc = (L, 0)" -apply(simp add: fetch.simps t_wcode_prepare_def nth_of.simps) +apply(subgoal_tac "7 = Suc 6") +apply(simp_all only: fetch.simps t_wcode_prepare_def nth_of.simps) +apply(auto) done lemma [simp]: "fetch t_wcode_prepare 7 Bk = (W1, 7)" -apply(simp add: fetch.simps t_wcode_prepare_def nth_of.simps) -done - -lemma tape_of_nl_not_null: "lm \ [] \ \ []" -apply(case_tac lm, auto) -apply(case_tac list, auto simp: tape_of_nl_abv tape_of_nat_list.simps exp_ind_def) +apply(subgoal_tac "7 = Suc 6") +apply(simp_all only: fetch.simps t_wcode_prepare_def nth_of.simps) +apply(auto) done lemma [simp]: "lm \ [] \ wprepare_add_one m lm (b, []) = False" apply(simp add: wprepare_invs) -apply(simp add: tape_of_nl_not_null) done lemma [simp]: "lm \ [] \ wprepare_goto_first_end m lm (b, []) = False" @@ -2857,19 +2881,20 @@ apply(simp add: wprepare_invs) done - - lemma [simp]: "lm \ [] \ wprepare_goto_start_pos m lm (b, []) = False" -apply(simp add: wprepare_invs tape_of_nl_not_null) +apply(simp add: wprepare_invs) done lemma [simp]: "\lm \ []; wprepare_loop_start m lm (b, [])\ \ b \ []" -apply(simp add: wprepare_invs tape_of_nl_not_null, auto) -done +apply(simp add: wprepare_invs) +done + +lemma rev_eq: "rev xs = rev ys \ xs = ys" +by auto lemma [simp]: "\lm \ []; wprepare_loop_start m lm (b, [])\ \ wprepare_loop_goon m lm (Bk # b, [])" -apply(simp only: wprepare_invs tape_of_nl_not_null) +apply(simp only: wprepare_invs) apply(erule_tac disjE) apply(rule_tac disjI2) apply(simp add: wprepare_loop_start_on_rightmost.simps @@ -2878,50 +2903,50 @@ done lemma [simp]: "\lm \ []; wprepare_loop_goon m lm (b, [])\ \ b \ []" -apply(simp only: wprepare_invs tape_of_nl_not_null, auto) +apply(simp only: wprepare_invs, auto) done lemma [simp]:"\lm \ []; wprepare_loop_goon m lm (b, [])\ \ wprepare_add_one2 m lm (Bk # b, [])" -apply(simp only: wprepare_invs tape_of_nl_not_null, auto split: if_splits) -apply(case_tac mr, simp, simp add: exp_ind_def) +apply(simp only: wprepare_invs, auto split: if_splits) done lemma [simp]: "wprepare_add_one2 m lm (b, []) \ b \ []" -apply(simp only: wprepare_invs tape_of_nl_not_null, auto) +apply(simp only: wprepare_invs, auto) done lemma [simp]: "wprepare_add_one2 m lm (b, []) \ wprepare_add_one2 m lm (b, [Oc])" -apply(simp only: wprepare_invs tape_of_nl_not_null, auto) +apply(simp only: wprepare_invs, auto) done lemma [simp]: "Bk # list = <(m::nat) # lm> @ ys = False" -apply(case_tac lm, auto simp: tape_of_nl_abv tape_of_nat_list.simps exp_ind_def) +apply(case_tac lm, auto simp: tape_of_nl_cons replicate_Suc) done lemma [simp]: "\lm \ []; wprepare_add_one m lm (b, Bk # list)\ \ (b = [] \ wprepare_goto_first_end m lm ([], Oc # list)) \ (b \ [] \ wprepare_goto_first_end m lm (b, Oc # list))" -apply(simp only: wprepare_invs, auto) -apply(rule_tac x = 0 in exI, simp add: exp_ind_def) -apply(case_tac lm, simp, simp add: tape_of_nl_abv tape_of_nat_list.simps exp_ind_def) -apply(rule_tac x = rn in exI, simp) +apply(simp only: wprepare_invs) +apply(auto simp: tape_of_nl_cons split: if_splits) +apply(rule_tac x = 0 in exI, simp add: replicate_Suc) +apply(case_tac lm, simp, simp add: tape_of_nl_abv tape_of_nat_list.simps replicate_Suc) done lemma [simp]: "wprepare_goto_first_end m lm (b, Bk # list) \ b \ []" -apply(simp only: wprepare_invs tape_of_nl_not_null, auto) -apply(case_tac mr, simp_all add: exp_ind_def) -done +apply(simp only: wprepare_invs , auto simp: replicate_Suc) +done + +declare replicate_Suc[simp] lemma [simp]: "wprepare_goto_first_end m lm (b, Bk # list) \ wprepare_erase m lm (tl b, hd b # Bk # list)" -apply(simp only: wprepare_invs tape_of_nl_not_null, auto) -apply(case_tac mr, simp_all add: exp_ind_def) -apply(case_tac mr, auto simp: exp_ind_def) +apply(simp only: wprepare_invs, auto) +apply(case_tac mr, simp_all) +apply(case_tac mr, auto) done lemma [simp]: "wprepare_erase m lm (b, Bk # list) \ b \ []" -apply(simp only: wprepare_invs exp_ind_def, auto) +apply(simp only: wprepare_invs, auto) done lemma [simp]: "wprepare_erase m lm (b, Bk # list) \ @@ -2932,18 +2957,16 @@ lemma [simp]: "\wprepare_add_one m lm (b, Bk # list)\ \ list \ []" apply(simp only: wprepare_invs) apply(case_tac lm, simp_all add: tape_of_nl_abv - tape_of_nat_list.simps exp_ind_def, auto) + tape_of_nat_list.simps, auto) done lemma [simp]: "\lm \ []; wprepare_goto_first_end m lm (b, Bk # list)\ \ list \ []" apply(simp only: wprepare_invs, auto) -apply(case_tac mr, simp_all add: exp_ind_def) -apply(simp add: tape_of_nl_not_null) +apply(case_tac mr, simp_all) done lemma [simp]: "\lm \ []; wprepare_goto_first_end m lm (b, Bk # list)\ \ b \ []" apply(simp only: wprepare_invs, auto) -apply(case_tac mr, simp_all add: exp_ind_def tape_of_nl_not_null) done lemma [simp]: "\lm \ []; wprepare_erase m lm (b, Bk # list)\ \ list \ []" @@ -2951,14 +2974,13 @@ done lemma [simp]: "\lm \ []; wprepare_erase m lm (b, Bk # list)\ \ b \ []" -apply(simp only: wprepare_invs, auto simp: exp_ind_def) +apply(simp only: wprepare_invs, auto) done lemma [simp]: "\lm \ []; wprepare_goto_start_pos m lm (b, Bk # list)\ \ list \ []" apply(simp only: wprepare_invs, auto) -apply(simp add: tape_of_nl_not_null) apply(case_tac lm, simp, case_tac list) -apply(simp_all add: tape_of_nl_abv tape_of_nat_list.simps exp_ind_def) +apply(simp_all add: tape_of_nl_abv tape_of_nat_list.simps) done lemma [simp]: "\lm \ []; wprepare_goto_start_pos m lm (b, Bk # list)\ \ b \ []" @@ -2975,10 +2997,10 @@ (list \ [] \ wprepare_add_one2 m lm (Bk # b, list))" apply(simp only: wprepare_invs, simp) apply(case_tac list, simp_all split: if_splits, auto) -apply(case_tac [1-3] mr, simp_all add: exp_ind_def) -apply(case_tac mr, simp_all add: exp_ind_def tape_of_nl_not_null) -apply(case_tac [1-2] mr, simp_all add: exp_ind_def) -apply(case_tac rn, simp, case_tac nat, auto simp: exp_ind_def) +apply(case_tac [1-3] mr, simp_all add: ) +apply(case_tac mr, simp_all) +apply(case_tac [1-2] mr, simp_all add: ) +apply(case_tac rn, simp, case_tac nat, auto simp: ) done lemma [simp]: "wprepare_add_one2 m lm (b, Bk # list) \ b \ []" @@ -2996,21 +3018,19 @@ (b \ [] \ wprepare_goto_first_end m lm (Oc # b, list))" apply(simp only: wprepare_invs, auto) apply(rule_tac x = 1 in exI, auto) -apply(case_tac mr, simp_all add: exp_ind_def) -apply(case_tac ml, simp_all add: exp_ind_def) -apply(rule_tac x = rn in exI, simp) -apply(rule_tac x = "Suc ml" in exI, simp_all add: exp_ind_def) +apply(case_tac mr, simp_all add: ) +apply(case_tac ml, simp_all add: ) +apply(rule_tac x = "Suc ml" in exI, simp_all add: ) apply(rule_tac x = "mr - 1" in exI, simp) -apply(case_tac mr, simp_all add: exp_ind_def, auto) done lemma [simp]: "wprepare_erase m lm (b, Oc # list) \ b \ []" -apply(simp only: wprepare_invs, auto simp: exp_ind_def) +apply(simp only: wprepare_invs, auto simp: ) done lemma [simp]: "wprepare_erase m lm (b, Oc # list) \ wprepare_erase m lm (b, Bk # list)" -apply(simp only:wprepare_invs, auto simp: exp_ind_def) +apply(simp only:wprepare_invs, auto simp: ) done lemma [simp]: "\lm \ []; wprepare_goto_start_pos m lm (b, Bk # list)\ @@ -3022,26 +3042,25 @@ lemma [simp]: "wprepare_loop_start m lm (b, aa) \ b \ []" apply(simp only:wprepare_invs, auto) done -lemma [elim]: "Bk # list = Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> \ \rn. list = Bk\<^bsup>rn\<^esup>" +lemma [elim]: "Bk # list = Oc\(mr) @ Bk\(rn) \ \rn. list = Bk\(rn)" apply(case_tac mr, simp_all) -apply(case_tac rn, simp_all add: exp_ind_def, auto) +apply(case_tac rn, simp_all) done lemma rev_equal_iff: "x = y \ rev x = rev y" by simp lemma tape_of_nl_false1: - "lm \ [] \ rev b @ [Bk] \ Bk\<^bsup>ln\<^esup> @ Oc # Oc\<^bsup>m\<^esup> @ Bk # Bk # " + "lm \ [] \ rev b @ [Bk] \ Bk\(ln) @ Oc # Oc\(m) @ Bk # Bk # " apply(auto) apply(drule_tac rev_equal_iff, simp add: tape_of_nl_rev) apply(case_tac "rev lm") -apply(case_tac [2] list, auto simp: tape_of_nl_abv tape_of_nat_list.simps exp_ind_def) +apply(case_tac [2] list, auto simp: tape_of_nl_abv tape_of_nat_list.simps ) done lemma [simp]: "wprepare_loop_start_in_middle m lm (b, [Bk]) = False" apply(simp add: wprepare_loop_start_in_middle.simps, auto) -apply(case_tac mr, simp_all add: exp_ind_def) -apply(case_tac lm1, simp, simp add: tape_of_nl_not_null) +apply(case_tac mr, simp_all add: ) done declare wprepare_loop_start_in_middle.simps[simp del] @@ -3059,39 +3078,39 @@ apply(simp only: wprepare_invs, simp) apply(simp add: wprepare_loop_goon_on_rightmost.simps wprepare_loop_start_on_rightmost.simps, auto) -apply(case_tac mr, simp_all add: exp_ind_def) +apply(case_tac mr, simp_all add: ) apply(rule_tac rev_eq) apply(simp add: tape_of_nl_rev) -apply(simp add: exp_ind_def[THEN sym] exp_ind) +apply(simp add: exp_ind replicate_Suc[THEN sym] del: replicate_Suc) done lemma [simp]: "wprepare_loop_start_on_rightmost m lm (b, Bk # a # lista) \ wprepare_loop_goon_in_middle m lm (Bk # b, a # lista) = False" apply(auto simp: wprepare_loop_start_on_rightmost.simps wprepare_loop_goon_in_middle.simps) -apply(case_tac [!] mr, simp_all add: exp_ind_def) +apply(case_tac [!] mr, simp_all) done lemma [simp]: "\lm \ []; wprepare_loop_start_on_rightmost m lm (b, Bk # a # lista)\ \ wprepare_loop_goon_on_rightmost m lm (Bk # b, a # lista)" apply(simp only: wprepare_loop_start_on_rightmost.simps wprepare_loop_goon_on_rightmost.simps, auto) -apply(case_tac mr, simp_all add: exp_ind_def) +apply(case_tac mr, simp_all add: ) apply(simp add: tape_of_nl_rev) -apply(simp add: exp_ind_def[THEN sym] exp_ind) +apply(simp add: replicate_Suc[THEN sym] exp_ind del: replicate_Suc) done lemma [simp]: "\lm \ []; wprepare_loop_start_in_middle m lm (b, Bk # a # lista)\ \ wprepare_loop_goon_on_rightmost m lm (Bk # b, a # lista) = False" apply(simp add: wprepare_loop_start_in_middle.simps wprepare_loop_goon_on_rightmost.simps, auto) -apply(case_tac mr, simp_all add: exp_ind_def) +apply(case_tac mr, simp_all add: ) apply(case_tac "lm1::nat list", simp_all, case_tac list, simp) -apply(simp add: tape_of_nl_abv tape_of_nat_list.simps tape_of_nat_abv exp_ind_def) -apply(case_tac [!] rna, simp_all add: exp_ind_def) -apply(case_tac mr, simp_all add: exp_ind_def) +apply(simp add: tape_of_nl_abv tape_of_nat_list.simps tape_of_nat_abv ) +apply(case_tac [!] rna, simp_all add: ) +apply(case_tac mr, simp_all add: ) apply(case_tac lm1, simp, case_tac list, simp) -apply(simp_all add: tape_of_nl_abv tape_of_nat_list.simps exp_ind_def tape_of_nat_abv) +apply(simp_all add: tape_of_nl_abv tape_of_nat_list.simps tape_of_nat_abv) done lemma [simp]: @@ -3100,7 +3119,7 @@ apply(simp add: wprepare_loop_start_in_middle.simps wprepare_loop_goon_in_middle.simps, auto) apply(rule_tac x = rn in exI, simp) -apply(case_tac mr, simp_all add: exp_ind_def) +apply(case_tac mr, simp_all add: ) apply(case_tac lm1, simp) apply(rule_tac x = "Suc aa" in exI, simp) apply(rule_tac x = list in exI) @@ -3137,15 +3156,14 @@ wprepare_loop_start_on_rightmost m lm (Oc # b, list)" apply(simp add: wprepare_loop_start_on_rightmost.simps, auto) apply(rule_tac x = rn in exI, auto) -apply(case_tac mr, simp_all add: exp_ind_def) -apply(case_tac rn, auto simp: exp_ind_def) +apply(case_tac mr, simp_all add: ) done lemma [simp]: "wprepare_loop_start_in_middle m lm (b, Oc # list) \ wprepare_loop_start_in_middle m lm (Oc # b, list)" apply(simp add: wprepare_loop_start_in_middle.simps, auto) apply(rule_tac x = rn in exI, auto) -apply(case_tac mr, simp, simp add: exp_ind_def) +apply(case_tac mr, simp, simp add: ) apply(rule_tac x = nat in exI, simp) apply(rule_tac x = lm1 in exI, simp) done @@ -3170,20 +3188,20 @@ lemma [simp]: "wprepare_loop_goon_on_rightmost m lm (b, Oc # list) = False" apply(simp add: wprepare_loop_goon_on_rightmost.simps) done -lemma wprepare_loop1: "\rev b @ Oc\<^bsup>mr\<^esup> = Oc\<^bsup>Suc m\<^esup> @ Bk # Bk # ; - b \ []; 0 < mr; Oc # list = Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup>\ +lemma wprepare_loop1: "\rev b @ Oc\(mr) = Oc\(Suc m) @ Bk # Bk # ; + b \ []; 0 < mr; Oc # list = Oc\(mr) @ Bk\(rn)\ \ wprepare_loop_start_on_rightmost m lm (Oc # b, list)" apply(simp add: wprepare_loop_start_on_rightmost.simps) apply(rule_tac x = rn in exI, simp) -apply(case_tac mr, simp, simp add: exp_ind_def, auto) -done - -lemma wprepare_loop2: "\rev b @ Oc\<^bsup>mr\<^esup> @ Bk # = Oc\<^bsup>Suc m\<^esup> @ Bk # Bk # ; - b \ []; Oc # list = Oc\<^bsup>mr\<^esup> @ Bk # <(a::nat) # lista> @ Bk\<^bsup>rn\<^esup>\ +apply(case_tac mr, simp, simp) +done + +lemma wprepare_loop2: "\rev b @ Oc\(mr) @ Bk # = Oc\(Suc m) @ Bk # Bk # ; + b \ []; Oc # list = Oc\(mr) @ Bk # <(a::nat) # lista> @ Bk\(rn)\ \ wprepare_loop_start_in_middle m lm (Oc # b, list)" apply(simp add: wprepare_loop_start_in_middle.simps) apply(rule_tac x = rn in exI, simp) -apply(case_tac mr, simp_all add: exp_ind_def) +apply(case_tac mr, simp_all add: ) apply(rule_tac x = nat in exI, simp) apply(rule_tac x = "a#lista" in exI, simp) done @@ -3212,7 +3230,7 @@ apply(auto simp: wprepare_goto_start_pos.simps wprepare_loop_start_on_rightmost.simps) apply(rule_tac x = rn in exI, simp) -apply(simp add: tape_of_nat_abv tape_of_nat_list.simps exp_ind_def, auto) +apply(simp add: replicate_Suc[THEN sym] exp_ind del: replicate_Suc) done lemma [simp]: "wprepare_goto_start_pos m (a # aa # listaa) (b, Oc # list) @@ -3220,8 +3238,9 @@ apply(auto simp: wprepare_goto_start_pos.simps wprepare_loop_start_in_middle.simps) apply(rule_tac x = rn in exI, simp) -apply(simp add: tape_of_nl_abv tape_of_nat_list.simps exp_ind_def) +apply(simp add: exp_ind[THEN sym]) apply(rule_tac x = a in exI, rule_tac x = "aa#listaa" in exI, simp) +apply(simp add: tape_of_nl_cons) done lemma [simp]: "\lm \ []; wprepare_goto_start_pos m lm (b, Oc # list)\ @@ -3246,12 +3265,12 @@ assumes h: "lm \ []" shows "let P = (\ (st, l, r). st = 0) in let Q = (\ (st, l, r). wprepare_inv st m lm (l, r)) in - let f = (\ stp. steps (Suc 0, [], ()) t_wcode_prepare stp) in + let f = (\ stp. steps0 (Suc 0, [], ()) t_wcode_prepare stp) in \ n .P (f n) \ Q (f n)" proof - let ?P = "(\ (st, l, r). st = 0)" let ?Q = "(\ (st, l, r). wprepare_inv st m lm (l, r))" - let ?f = "(\ stp. steps (Suc 0, [], ()) t_wcode_prepare stp)" + let ?f = "(\ stp. steps0 (Suc 0, [], ()) t_wcode_prepare stp)" have "\ n. ?P (?f n) \ ?Q (?f n)" proof(rule_tac halt_lemma2) show "wf wcode_prepare_le" by auto @@ -3260,11 +3279,9 @@ ?Q (?f (Suc n)) \ (?f (Suc n), ?f n) \ wcode_prepare_le" using h apply(rule_tac allI, rule_tac impI, case_tac "?f n", - simp add: tstep_red tstep.simps) + simp add: step_red step.simps) apply(case_tac c, simp, case_tac [2] aa) - apply(simp_all add: wprepare_inv.simps wcode_prepare_le_def new_tape.simps - lex_triple_def lex_pair_def - + apply(simp_all add: wprepare_inv.simps wcode_prepare_le_def lex_triple_def lex_pair_def split: if_splits) apply(simp_all add: start_2_goon start_2_start add_one_2_add_one add_one_2_stop) @@ -3284,35 +3301,27 @@ done qed -lemma [intro]: "t_correct t_wcode_prepare" -apply(simp add: t_correct.simps t_wcode_prepare_def iseven_def) -apply(rule_tac x = 7 in exI, simp) -done - -lemma twice_len_even: "length (tm_of abc_twice) mod 2 = 0" -apply(simp add: tm_even) -done - -lemma fourtimes_len_even: "length (tm_of abc_fourtimes) mod 2 = 0" -apply(simp add: tm_even) -done - +lemma [intro]: "tm_wf (t_wcode_prepare, 0)" +apply(simp add:tm_wf.simps t_wcode_prepare_def) +done + +(* lemma t_correct_termi: "t_correct tp \ list_all (\(acn, st). (st \ Suc (length tp div 2))) (change_termi_state tp)" apply(auto simp: t_correct.simps List.list_all_length) apply(erule_tac x = n in allE, simp) apply(case_tac "tp!n", auto simp: change_termi_state.simps split: if_splits) done - +*) lemma t_correct_shift: "list_all (\(acn, st). (st \ y)) tp \ - list_all (\(acn, st). (st \ y + off)) (tshift tp off) " -apply(auto simp: t_correct.simps List.list_all_length) -apply(erule_tac x = n in allE, simp add: shift_length) -apply(case_tac "tp!n", auto simp: tshift.simps) -done - + list_all (\(acn, st). (st \ y + off)) (shift tp off) " +apply(auto simp: List.list_all_length) +apply(erule_tac x = n in allE, simp add: length_shift) +apply(case_tac "tp!n", auto simp: shift.simps) +done +(* lemma [intro]: "t_correct (tm_of abc_twice @ tMp (Suc 0) (start_of twice_ly (length abc_twice) - Suc 0))" @@ -3325,177 +3334,237 @@ apply(rule_tac t_compiled_correct, simp_all) apply(simp add: fourtimes_ly_def) done - - -lemma [intro]: "t_correct t_wcode_main" -apply(auto simp: t_wcode_main_def t_correct.simps shift_length - t_twice_def t_fourtimes_def) +*) + +lemma [intro]: "(28 + (length t_twice_compile + length t_fourtimes_compile)) mod 2 = 0" +apply(auto simp: t_twice_compile_def t_fourtimes_compile_def) +by arith + +lemma [elim]: "(a, b) \ set t_wcode_main_first_part \ + b \ (28 + (length t_twice_compile + length t_fourtimes_compile)) div 2" +apply(auto simp: t_wcode_main_first_part_def t_twice_def) +done + + + +lemma tm_wf_change_termi: "tm_wf (tp, 0) \ + list_all (\(acn, st). (st \ Suc (length tp div 2))) (adjust tp)" +apply(auto simp: tm_wf.simps List.list_all_length) +apply(case_tac "tp!n", auto simp: adjust.simps split: if_splits) +apply(erule_tac x = "(a, b)" in ballE, auto) +by (metis in_set_conv_nth) + +lemma tm_wf_shift: + "list_all (\(acn, st). (st \ y)) tp \ + list_all (\(acn, st). (st \ y + off)) (shift tp off) " +apply(auto simp: tm_wf.simps List.list_all_length) +apply(erule_tac x = n in allE, simp add: length_shift) +apply(case_tac "tp!n", auto simp: shift.simps) +done + +declare length_tp'[simp del] + +lemma [simp]: "length (mopup (Suc 0)) = 16" +apply(auto simp: mopup.simps) +done + +lemma [elim]: "(a, b) \ set (shift (turing_basic.adjust t_twice_compile) 12) \ + b \ (28 + (length t_twice_compile + length t_fourtimes_compile)) div 2" +apply(simp add: t_twice_compile_def t_fourtimes_compile_def) proof - - show "iseven (60 + (length (tm_of abc_twice) + - length (tm_of abc_fourtimes)))" - using twice_len_even fourtimes_len_even - apply(auto simp: iseven_def) - apply(rule_tac x = "30 + q + qa" in exI, simp) - done -next - show " list_all (\(acn, s). s \ (60 + (length (tm_of abc_twice) + - length (tm_of abc_fourtimes))) div 2) t_wcode_main_first_part" - apply(auto simp: t_wcode_main_first_part_def shift_length t_twice_def) - done -next - have "list_all (\(acn, s). s \ Suc (length (tm_of abc_twice @ tMp (Suc 0) - (start_of twice_ly (length abc_twice) - Suc 0)) div 2)) - (change_termi_state (tm_of abc_twice @ tMp (Suc 0) - (start_of twice_ly (length abc_twice) - Suc 0)))" - apply(rule_tac t_correct_termi, auto) + assume g: "(a, b) \ set (shift (turing_basic.adjust (tm_of abc_twice @ shift (mopup (Suc 0)) (length (tm_of abc_twice) div 2))) 12)" + moreover have "length (tm_of abc_twice) mod 2 = 0" by auto + moreover have "length (tm_of abc_fourtimes) mod 2 = 0" by auto + ultimately have "list_all (\(acn, st). (st \ (60 + (length (tm_of abc_twice) + length (tm_of abc_fourtimes))) div 2)) + (shift (turing_basic.adjust t_twice_compile) 12)" + proof(auto simp: mod_ex1) + fix q qa + assume h: "length (tm_of abc_twice) = 2 * q" "length (tm_of abc_fourtimes) = 2 * qa" + hence "list_all (\(acn, st). st \ (18 + (q + qa)) + 12) (shift (turing_basic.adjust t_twice_compile) 12)" + proof(rule_tac tm_wf_shift t_twice_compile_def) + have "list_all (\(acn, st). st \ Suc (length t_twice_compile div 2)) (adjust t_twice_compile)" + by(rule_tac tm_wf_change_termi, auto) + thus "list_all (\(acn, st). st \ 18 + (q + qa)) (turing_basic.adjust t_twice_compile)" + using h + apply(simp add: t_twice_compile_def, auto simp: List.list_all_length) + done + qed + thus "list_all (\(acn, st). st \ 30 + (q + qa)) (shift (turing_basic.adjust t_twice_compile) 12)" + by simp + qed + thus "b \ (60 + (length (tm_of abc_twice) + length (tm_of abc_fourtimes))) div 2" + using g + apply(auto simp:t_twice_compile_def) + apply(simp add: Ball_set[THEN sym]) + apply(erule_tac x = "(a, b)" in ballE, simp, simp) done - hence "list_all (\(acn, s). s \ Suc (length (tm_of abc_twice @ tMp (Suc 0) - (start_of twice_ly (length abc_twice) - Suc 0)) div 2) + 12) - (tshift (change_termi_state (tm_of abc_twice @ tMp (Suc 0) - (start_of twice_ly (length abc_twice) - Suc 0))) 12)" - apply(rule_tac t_correct_shift, simp) - done - thus "list_all (\(acn, s). s \ - (60 + (length (tm_of abc_twice) + length (tm_of abc_fourtimes))) div 2) - (tshift (change_termi_state (tm_of abc_twice @ tMp (Suc 0) - (start_of twice_ly (length abc_twice) - Suc 0))) 12)" - apply(simp) - apply(simp add: list_all_length, auto) - done -next - have "list_all (\(acn, s). s \ Suc (length (tm_of abc_fourtimes @ tMp (Suc 0) - (start_of fourtimes_ly (length abc_fourtimes) - Suc 0)) div 2)) - (change_termi_state (tm_of abc_fourtimes @ tMp (Suc 0) - (start_of fourtimes_ly (length abc_fourtimes) - Suc 0))) " - apply(rule_tac t_correct_termi, auto) - done - hence "list_all (\(acn, s). s \ Suc (length (tm_of abc_fourtimes @ tMp (Suc 0) - (start_of fourtimes_ly (length abc_fourtimes) - Suc 0)) div 2) + (t_twice_len + 13)) - (tshift (change_termi_state (tm_of abc_fourtimes @ tMp (Suc 0) - (start_of fourtimes_ly (length abc_fourtimes) - Suc 0))) (t_twice_len + 13))" - apply(rule_tac t_correct_shift, simp) - done - thus "list_all (\(acn, s). s \ (60 + (length (tm_of abc_twice) + length (tm_of abc_fourtimes))) div 2) - (tshift (change_termi_state (tm_of abc_fourtimes @ tMp (Suc 0) - (start_of fourtimes_ly (length abc_fourtimes) - Suc 0))) (t_twice_len + 13))" - apply(simp add: t_twice_len_def t_twice_def) - using twice_len_even fourtimes_len_even - apply(auto simp: list_all_length) +qed + +lemma [elim]: "(a, b) \ set (shift (turing_basic.adjust t_fourtimes_compile) (t_twice_len + 13)) + \ b \ (28 + (length t_twice_compile + length t_fourtimes_compile)) div 2" +apply(simp add: t_twice_compile_def t_fourtimes_compile_def t_twice_len_def) +proof - + assume g: "(a, b) \ set (shift (turing_basic.adjust (tm_of abc_fourtimes @ shift (mopup (Suc 0)) + (length (tm_of abc_fourtimes) div 2))) (length t_twice div 2 + 13))" + moreover have "length (tm_of abc_twice) mod 2 = 0" by auto + moreover have "length (tm_of abc_fourtimes) mod 2 = 0" by auto + ultimately have "list_all (\(acn, st). (st \ (60 + (length (tm_of abc_twice) + length (tm_of abc_fourtimes))) div 2)) + (shift (turing_basic.adjust (tm_of abc_fourtimes @ shift (mopup (Suc 0)) + (length (tm_of abc_fourtimes) div 2))) (length t_twice div 2 + 13))" + proof(auto simp: mod_ex1 t_twice_def t_twice_compile_def) + fix q qa + assume h: "length (tm_of abc_twice) = 2 * q" "length (tm_of abc_fourtimes) = 2 * qa" + hence "list_all (\(acn, st). st \ (9 + qa + (21 + q))) + (shift (turing_basic.adjust (tm_of abc_fourtimes @ shift (mopup (Suc 0)) qa)) (21 + q))" + proof(rule_tac tm_wf_shift t_twice_compile_def) + have "list_all (\(acn, st). st \ Suc (length (tm_of abc_fourtimes @ shift + (mopup (Suc 0)) qa) div 2)) (adjust (tm_of abc_fourtimes @ shift (mopup (Suc 0)) qa))" + apply(rule_tac tm_wf_change_termi) + using wf_fourtimes h + apply(simp add: t_fourtimes_compile_def) + done + thus "list_all (\(acn, st). st \ 9 + qa) ((turing_basic.adjust (tm_of abc_fourtimes @ shift (mopup (Suc 0)) qa)))" + using h + apply(simp) + done + qed + thus "list_all (\(acn, st). st \ 30 + (q + qa)) (shift (turing_basic.adjust (tm_of abc_fourtimes @ shift (mopup (Suc 0)) qa)) (21 + q))" + apply(subgoal_tac "qa + q = q + qa") + apply(simp, simp) + done + qed + thus "b \ (60 + (length (tm_of abc_twice) + length (tm_of abc_fourtimes))) div 2" + using g + apply(simp add: Ball_set[THEN sym]) + apply(erule_tac x = "(a, b)" in ballE, simp, simp) done qed -lemma [intro]: "t_correct (t_wcode_prepare |+| t_wcode_main)" -apply(auto intro: t_correct_add) +lemma [intro]: "tm_wf (t_wcode_main, 0)" +apply(auto simp: t_wcode_main_def tm_wf.simps + t_twice_def t_fourtimes_def del: List.list_all_iff) +done + +declare tm_comp.simps[simp del] +lemma tm_wf_comp: "\tm_wf (A, 0); tm_wf (B, 0)\ \ tm_wf (A |+| B, 0)" +apply(auto simp: tm_wf.simps shift.simps adjust.simps tm_comp_length + tm_comp.simps) +done + +lemma [intro]: "tm_wf (t_wcode_prepare |+| t_wcode_main, 0)" +apply(rule_tac tm_wf_comp, auto) done lemma prepare_mainpart_lemma: "args \ [] \ - \ stp ln rn. steps (Suc 0, [], ) (t_wcode_prepare |+| t_wcode_main) stp - = (0, Bk # Oc\<^bsup>Suc m\<^esup>, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin ()\<^esup> @ Bk\<^bsup>rn\<^esup>)" + \ stp ln rn. steps0 (Suc 0, [], ) (t_wcode_prepare |+| t_wcode_main) stp + = (0, Bk # Oc\(Suc m), Bk # Oc # Bk\(ln) @ Bk # Bk # Oc\(bl_bin ()) @ Bk\(rn))" proof - - let ?P1 = "\ (l, r). l = [] \ r = " - let ?Q1 = "\ (l, r). wprepare_stop m args (l, r)" + let ?P1 = "(\ (l, r). (l::cell list) = [] \ r = )" + let ?Q1 = "(\ (l, r). wprepare_stop m args (l, r))" let ?P2 = ?Q1 - let ?Q2 = "\ (l, r). (\ ln rn. l = Bk # Oc\<^bsup>Suc m\<^esup> \ - r = Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin ()\<^esup> @ Bk\<^bsup>rn\<^esup>)" + let ?Q2 = "(\ (l, r). (\ ln rn. l = Bk # Oc\(Suc m) \ + r = Bk # Oc # Bk\(ln) @ Bk # Bk # Oc\(bl_bin ()) @ Bk\(rn)))" let ?P3 = "\ tp. False" assume h: "args \ []" - have "?P1 \-> \ tp. (\ stp tp'. steps (Suc 0, tp) - (t_wcode_prepare |+| t_wcode_main) stp = (0, tp') \ ?Q2 tp')" - proof(rule_tac turing_merge.t_merge_halt[of t_wcode_prepare t_wcode_main ?P1 ?P2 ?P3 ?P3 ?Q1 ?Q2], - auto simp: turing_merge_def) - show "\stp. case steps (Suc 0, [], ) t_wcode_prepare stp of (st, tp') - \ st = 0 \ wprepare_stop m args tp'" - using wprepare_correctness[of args m] h - apply(simp, auto) - apply(rule_tac x = n in exI, simp add: wprepare_inv.simps) - done + have "{?P1} t_wcode_prepare |+| t_wcode_main {?Q2}" + proof(rule_tac Hoare_plus_halt) + show "?Q1 \ ?P2" + by(simp add: assert_imp_def) + next + show "tm_wf (t_wcode_prepare, 0)" + by auto + next + show "{?P1} t_wcode_prepare {?Q1}" + proof(rule_tac HoareI, auto) + show "\n. is_final (steps0 (Suc 0, [], ) t_wcode_prepare n) \ + wprepare_stop m args holds_for steps0 (Suc 0, [], ) t_wcode_prepare n" + using wprepare_correctness[of args m] h + apply(auto) + apply(rule_tac x = n in exI, simp add: wprepare_inv.simps) + done + qed next - fix a b - assume "wprepare_stop m args (a, b)" - thus "\stp. case steps (Suc 0, a, b) t_wcode_main stp of - (st, tp') \ (st = 0) \ (case tp' of (l, r) \ l = Bk # Oc\<^bsup>Suc m\<^esup> \ - (\ln rn. r = Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin ()\<^esup> @ Bk\<^bsup>rn\<^esup>))" - proof(simp only: wprepare_stop.simps, erule_tac exE) + show "{?P2} t_wcode_main {?Q2}" + proof(rule_tac HoareI, auto) + fix l r + assume "wprepare_stop m args (l, r)" + thus "\n. is_final (steps0 (Suc 0, l, r) t_wcode_main n) \ + (\(l, r). l = Bk # Oc # Oc \ m \ (\ln rn. r = Bk # Oc # Bk \ ln @ + Bk # Bk # Oc \ bl_bin () @ Bk \ rn)) holds_for steps0 (Suc 0, l, r) t_wcode_main n" + proof(auto simp: wprepare_stop.simps) fix rn - assume "a = Bk # @ Bk # Bk # Oc\<^bsup>Suc m\<^esup> \ - b = Bk # Oc # Bk\<^bsup>rn\<^esup>" - thus "?thesis" - using t_wcode_main_lemma_pre[of "args" "" 0 "Oc\<^bsup>Suc m\<^esup>" 0 rn] h - apply(simp) - apply(erule_tac exE)+ - apply(rule_tac x = stp in exI, simp add: tape_of_nl_rev, auto) + show " \n. is_final (steps0 (Suc 0, Bk # @ Bk # Bk # Oc # Oc \ m, Bk # Oc # Bk \ rn) t_wcode_main n) \ + (\(l, r). l = Bk # Oc # Oc \ m \ + (\ln rn. r = Bk # Oc # Bk \ ln @ + Bk # Bk # Oc \ bl_bin () @ + Bk \ rn)) holds_for steps0 (Suc 0, Bk # @ Bk # Bk # Oc # Oc \ m, Bk # Oc # Bk \ rn) t_wcode_main n" + using t_wcode_main_lemma_pre[of "args" "" 0 "Oc\(Suc m)" 0 rn] h + apply(auto simp: tape_of_nl_rev) + apply(rule_tac x = stp in exI, auto) done qed - next - show "wprepare_stop m args \-> wprepare_stop m args" - by(simp add: t_imply_def) + qed qed - thus "\ stp ln rn. steps (Suc 0, [], ) (t_wcode_prepare |+| t_wcode_main) stp - = (0, Bk # Oc\<^bsup>Suc m\<^esup>, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin ()\<^esup> @ Bk\<^bsup>rn\<^esup>)" - apply(simp add: t_imply_def) - apply(erule_tac exE)+ - apply(auto) + thus "?thesis" + apply(auto simp: Hoare_def) + apply(rule_tac x = n in exI) + apply(case_tac "(steps0 (Suc 0, [], ) + (turing_basic.adjust t_wcode_prepare @ shift t_wcode_main (length t_wcode_prepare div 2)) n)") + apply(auto simp: tm_comp.simps) done qed - - + lemma [simp]: "tinres r r' \ - fetch t ss (case r of [] \ Bk | x # xs \ x) = - fetch t ss (case r' of [] \ Bk | x # xs \ x)" + fetch t ss (read r) = + fetch t ss (read r')" apply(simp add: fetch.simps, auto split: if_splits simp: tinres_def) -apply(case_tac [!] r', simp_all) -apply(case_tac [!] n, simp_all add: exp_ind_def) -apply(case_tac [!] r, simp_all) -done - -lemma [intro]: "\ n. (a::block)\<^bsup>n\<^esup> = []" +apply(case_tac [!] n, simp_all) +done + +lemma [intro]: "\ n. (a::cell)\(n) = []" by auto lemma [simp]: "\tinres r r'; r \ []; r' \ []\ \ hd r = hd r'" apply(auto simp: tinres_def) done -lemma [intro]: "hd (Bk\<^bsup>Suc n\<^esup>) = Bk" -apply(simp add: exp_ind_def) +lemma [intro]: "hd (Bk\(Suc n)) = Bk" +apply(simp add: ) done lemma [simp]: "\tinres r []; r \ []\ \ hd r = Bk" apply(auto simp: tinres_def) -apply(case_tac n, auto) done lemma [simp]: "\tinres [] r'; r' \ []\ \ hd r' = Bk" apply(auto simp: tinres_def) done -lemma [intro]: "\na. tl r = tl (r @ Bk\<^bsup>n\<^esup>) @ Bk\<^bsup>na\<^esup> \ tl (r @ Bk\<^bsup>n\<^esup>) = tl r @ Bk\<^bsup>na\<^esup>" +lemma [intro]: "\na. tl r = tl (r @ Bk\(n)) @ Bk\(na) \ tl (r @ Bk\(n)) = tl r @ Bk\(na)" apply(case_tac r, simp) -apply(case_tac n, simp) -apply(rule_tac x = 0 in exI, simp) -apply(rule_tac x = nat in exI, simp add: exp_ind_def) -apply(simp) +apply(case_tac n, simp, simp) +apply(rule_tac x = nat in exI, simp) apply(rule_tac x = n in exI, simp) done lemma [simp]: "tinres r r' \ tinres (tl r) (tl r')" apply(auto simp: tinres_def) -apply(case_tac r', simp_all) -apply(case_tac n, simp_all add: exp_ind_def) -apply(rule_tac x = 0 in exI, simp) -apply(rule_tac x = nat in exI, simp_all) +apply(case_tac r', simp) +apply(case_tac n, simp_all) +apply(rule_tac x = nat in exI, simp) apply(rule_tac x = n in exI, simp) done lemma [simp]: "\tinres r []; r \ []\ \ tinres (tl r) []" apply(case_tac r, auto simp: tinres_def) -apply(case_tac n, simp_all add: exp_ind_def) +apply(case_tac n, simp_all add: ) apply(rule_tac x = nat in exI, simp) done lemma [simp]: "\tinres [] r'\ \ tinres [] (tl r')" apply(case_tac r', auto simp: tinres_def) -apply(case_tac n, simp_all add: exp_ind_def) +apply(case_tac n, simp_all add: ) apply(rule_tac x = nat in exI, simp) done @@ -3503,32 +3572,38 @@ apply(auto simp: tinres_def) done +lemma [simp]: "tinres r [] \ tinres (Bk # tl r) [Bk]" +apply(auto simp: tinres_def) +done + +lemma [simp]: "tinres r [] \ tinres (Oc # tl r) [Oc]" +apply(auto simp: tinres_def) +done + lemma tinres_step2: - "\tinres r r'; tstep (ss, l, r) t = (sa, la, ra); tstep (ss, l, r') t = (sb, lb, rb)\ + "\tinres r r'; step0 (ss, l, r) t = (sa, la, ra); step0 (ss, l, r') t = (sb, lb, rb)\ \ la = lb \ tinres ra rb \ sa = sb" -apply(case_tac "ss = 0", simp add: tstep_0) -apply(simp add: tstep.simps [simp del]) -apply(case_tac "fetch t ss (case r of [] \ Bk | x # xs \ x)", simp) -apply(auto simp: new_tape.simps) -apply(simp_all split: taction.splits if_splits) -apply(auto) -done - +apply(case_tac "ss = 0", simp add: step_0) +apply(simp add: step.simps [simp del], auto) +apply(case_tac [!] "fetch t ss (read r')", simp) +apply(auto simp: update.simps) +apply(case_tac [!] a, auto split: if_splits) +done lemma tinres_steps2: - "\tinres r r'; steps (ss, l, r) t stp = (sa, la, ra); steps (ss, l, r') t stp = (sb, lb, rb)\ + "\tinres r r'; steps0 (ss, l, r) t stp = (sa, la, ra); steps0 (ss, l, r') t stp = (sb, lb, rb)\ \ la = lb \ tinres ra rb \ sa = sb" apply(induct stp arbitrary: sa la ra sb lb rb, simp add: steps.simps) -apply(simp add: tstep_red) -apply(case_tac "(steps (ss, l, r) t stp)") -apply(case_tac "(steps (ss, l, r') t stp)") +apply(simp add: step_red) +apply(case_tac "(steps0 (ss, l, r) t stp)") +apply(case_tac "(steps0 (ss, l, r') t stp)") proof - fix stp sa la ra sb lb rb a b c aa ba ca - assume ind: "\sa la ra sb lb rb. \steps (ss, l, r) t stp = (sa, la, ra); - steps (ss, l, r') t stp = (sb, lb, rb)\ \ la = lb \ tinres ra rb \ sa = sb" - and h: " tinres r r'" "tstep (steps (ss, l, r) t stp) t = (sa, la, ra)" - "tstep (steps (ss, l, r') t stp) t = (sb, lb, rb)" "steps (ss, l, r) t stp = (a, b, c)" - "steps (ss, l, r') t stp = (aa, ba, ca)" + assume ind: "\sa la ra sb lb rb. \steps0 (ss, l, r) t stp = (sa, la, ra); + steps0 (ss, l, r') t stp = (sb, lb, rb)\ \ la = lb \ tinres ra rb \ sa = sb" + and h: " tinres r r'" "step0 (steps0 (ss, l, r) t stp) t = (sa, la, ra)" + "step0 (steps0 (ss, l, r') t stp) t = (sb, lb, rb)" "steps0 (ss, l, r) t stp = (a, b, c)" + "steps0 (ss, l, r') t stp = (aa, ba, ca)" have "b = ba \ tinres c ca \ a = aa" apply(rule_tac ind, simp_all add: h) done @@ -3539,8 +3614,8 @@ apply(simp, simp, simp) done qed - -definition t_wcode_adjust :: "tprog" + +definition t_wcode_adjust :: "instr list" where "t_wcode_adjust = [(W1, 1), (R, 2), (Nop, 2), (R, 3), (R, 3), (R, 4), (L, 8), (L, 5), (L, 6), (W0, 5), (L, 6), (R, 7), @@ -3566,112 +3641,115 @@ lemma [simp]: "fetch t_wcode_adjust (Suc (Suc (Suc 0))) Bk = (R, 3)" apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) done - -lemma [simp]: "fetch t_wcode_adjust 4 Bk = (L, 8)" -apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) -done - -lemma [simp]: "fetch t_wcode_adjust 4 Oc = (L, 5)" -apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) -done + +lemma [simp]: "fetch t_wcode_adjust (Suc (Suc (Suc (Suc 0)))) Bk = (L, 8)" +apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps numeral_4_eq_4) +done + +lemma [simp]: "fetch t_wcode_adjust (Suc (Suc (Suc (Suc 0)))) Oc = (L, 5)" +apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps numeral_4_eq_4) +done + +thm numeral_5_eq_5 lemma [simp]: "fetch t_wcode_adjust 5 Oc = (W0, 5)" -apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) +apply(simp only: fetch.simps t_wcode_adjust_def nth_of.simps numeral_5_eq_5, simp) done lemma [simp]: "fetch t_wcode_adjust 5 Bk = (L, 6)" -apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) -done - +apply(simp only: fetch.simps t_wcode_adjust_def nth_of.simps numeral_5_eq_5, auto) +done + +thm numeral_6_eq_6 lemma [simp]: "fetch t_wcode_adjust 6 Oc = (R, 7)" -apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) +apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps numeral_6_eq_6) done lemma [simp]: "fetch t_wcode_adjust 6 Bk = (L, 6)" -apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) +apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps numeral_6_eq_6) done lemma [simp]: "fetch t_wcode_adjust 7 Bk = (W1, 2)" -apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) +apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps numeral_7_eq_7) done lemma [simp]: "fetch t_wcode_adjust 8 Bk = (L, 9)" -apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) +apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps numeral_8_eq_8) done lemma [simp]: "fetch t_wcode_adjust 8 Oc = (W0, 8)" -apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) +apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps numeral_8_eq_8) done lemma [simp]: "fetch t_wcode_adjust 9 Oc = (L, 10)" -apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) +apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps numeral_9_eq_9) done lemma [simp]: "fetch t_wcode_adjust 9 Bk = (L, 9)" -apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) +apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps numeral_9_eq_9) done lemma [simp]: "fetch t_wcode_adjust 10 Bk = (L, 11)" -apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) +apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps numeral_10_eq_10) done lemma [simp]: "fetch t_wcode_adjust 10 Oc = (L, 10)" -apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) +apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps eval_nat_numeral) done lemma [simp]: "fetch t_wcode_adjust 11 Oc = (L, 11)" -apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) +apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps eval_nat_numeral) done lemma [simp]: "fetch t_wcode_adjust 11 Bk = (R, 0)" -apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) +apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps eval_nat_numeral) done fun wadjust_start :: "nat \ nat \ tape \ bool" where "wadjust_start m rs (l, r) = - (\ ln rn. l = Bk # Oc\<^bsup>Suc m\<^esup> \ - tl r = Oc # Bk\<^bsup>ln\<^esup> @ Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" + (\ ln rn. l = Bk # Oc\(Suc m) \ + tl r = Oc # Bk\(ln) @ Bk # Oc\(Suc rs) @ Bk\(rn))" fun wadjust_loop_start :: "nat \ nat \ tape \ bool" where "wadjust_loop_start m rs (l, r) = - (\ ln rn ml mr. l = Oc\<^bsup>ml\<^esup> @ Bk # Oc\<^bsup>Suc m\<^esup> \ - r = Oc # Bk\<^bsup>ln\<^esup> @ Bk # Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> \ + (\ ln rn ml mr. l = Oc\(ml) @ Bk # Oc\(Suc m) \ + r = Oc # Bk\(ln) @ Bk # Oc\(mr) @ Bk\(rn) \ ml + mr = Suc (Suc rs) \ mr > 0)" fun wadjust_loop_right_move :: "nat \ nat \ tape \ bool" where "wadjust_loop_right_move m rs (l, r) = - (\ ml mr nl nr rn. l = Bk\<^bsup>nl\<^esup> @ Oc # Oc\<^bsup>ml\<^esup> @ Bk # Oc\<^bsup>Suc m\<^esup> \ - r = Bk\<^bsup>nr\<^esup> @ Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> \ + (\ ml mr nl nr rn. l = Bk\(nl) @ Oc # Oc\(ml) @ Bk # Oc\(Suc m) \ + r = Bk\(nr) @ Oc\(mr) @ Bk\(rn) \ ml + mr = Suc (Suc rs) \ mr > 0 \ nl + nr > 0)" fun wadjust_loop_check :: "nat \ nat \ tape \ bool" where "wadjust_loop_check m rs (l, r) = - (\ ml mr ln rn. l = Oc # Bk\<^bsup>ln\<^esup> @ Bk # Oc # Oc\<^bsup>ml\<^esup> @ Bk # Oc\<^bsup>Suc m\<^esup> \ - r = Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> \ ml + mr = (Suc rs))" + (\ ml mr ln rn. l = Oc # Bk\(ln) @ Bk # Oc # Oc\(ml) @ Bk # Oc\(Suc m) \ + r = Oc\(mr) @ Bk\(rn) \ ml + mr = (Suc rs))" fun wadjust_loop_erase :: "nat \ nat \ tape \ bool" where "wadjust_loop_erase m rs (l, r) = - (\ ml mr ln rn. l = Bk\<^bsup>ln\<^esup> @ Bk # Oc # Oc\<^bsup>ml\<^esup> @ Bk # Oc\<^bsup>Suc m\<^esup> \ - tl r = Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> \ ml + mr = (Suc rs) \ mr > 0)" + (\ ml mr ln rn. l = Bk\(ln) @ Bk # Oc # Oc\(ml) @ Bk # Oc\(Suc m) \ + tl r = Oc\(mr) @ Bk\(rn) \ ml + mr = (Suc rs) \ mr > 0)" fun wadjust_loop_on_left_moving_O :: "nat \ nat \ tape \ bool" where "wadjust_loop_on_left_moving_O m rs (l, r) = - (\ ml mr ln rn. l = Oc\<^bsup>ml\<^esup> @ Bk # Oc\<^bsup>Suc m \<^esup>\ - r = Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> \ + (\ ml mr ln rn. l = Oc\(ml) @ Bk # Oc\(Suc m )\ + r = Oc # Bk\(ln) @ Bk # Bk # Oc\(mr) @ Bk\(rn) \ ml + mr = Suc rs \ mr > 0)" fun wadjust_loop_on_left_moving_B :: "nat \ nat \ tape \ bool" where "wadjust_loop_on_left_moving_B m rs (l, r) = - (\ ml mr nl nr rn. l = Bk\<^bsup>nl\<^esup> @ Oc # Oc\<^bsup>ml\<^esup> @ Bk # Oc\<^bsup>Suc m\<^esup> \ - r = Bk\<^bsup>nr\<^esup> @ Bk # Bk # Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> \ + (\ ml mr nl nr rn. l = Bk\(nl) @ Oc # Oc\(ml) @ Bk # Oc\(Suc m) \ + r = Bk\(nr) @ Bk # Bk # Oc\(mr) @ Bk\(rn) \ ml + mr = Suc rs \ mr > 0)" fun wadjust_loop_on_left_moving :: "nat \ nat \ tape \ bool" @@ -3683,27 +3761,27 @@ fun wadjust_loop_right_move2 :: "nat \ nat \ tape \ bool" where "wadjust_loop_right_move2 m rs (l, r) = - (\ ml mr ln rn. l = Oc # Oc\<^bsup>ml\<^esup> @ Bk # Oc\<^bsup>Suc m\<^esup> \ - r = Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> \ + (\ ml mr ln rn. l = Oc # Oc\(ml) @ Bk # Oc\(Suc m) \ + r = Bk\(ln) @ Bk # Bk # Oc\(mr) @ Bk\(rn) \ ml + mr = Suc rs \ mr > 0)" fun wadjust_erase2 :: "nat \ nat \ tape \ bool" where "wadjust_erase2 m rs (l, r) = - (\ ln rn. l = Bk\<^bsup>ln\<^esup> @ Bk # Oc # Oc\<^bsup>Suc rs\<^esup> @ Bk # Oc\<^bsup>Suc m\<^esup> \ - tl r = Bk\<^bsup>rn\<^esup>)" + (\ ln rn. l = Bk\(ln) @ Bk # Oc # Oc\(Suc rs) @ Bk # Oc\(Suc m) \ + tl r = Bk\(rn))" fun wadjust_on_left_moving_O :: "nat \ nat \ tape \ bool" where "wadjust_on_left_moving_O m rs (l, r) = - (\ rn. l = Oc\<^bsup>Suc rs\<^esup> @ Bk # Oc\<^bsup>Suc m\<^esup> \ - r = Oc # Bk\<^bsup>rn\<^esup>)" + (\ rn. l = Oc\(Suc rs) @ Bk # Oc\(Suc m) \ + r = Oc # Bk\(rn))" fun wadjust_on_left_moving_B :: "nat \ nat \ tape \ bool" where "wadjust_on_left_moving_B m rs (l, r) = - (\ ln rn. l = Bk\<^bsup>ln\<^esup> @ Oc # Oc\<^bsup>Suc rs\<^esup> @ Bk # Oc\<^bsup>Suc m\<^esup> \ - r = Bk\<^bsup>rn\<^esup>)" + (\ ln rn. l = Bk\(ln) @ Oc # Oc\(Suc rs) @ Bk # Oc\(Suc m) \ + r = Bk\(rn))" fun wadjust_on_left_moving :: "nat \ nat \ tape \ bool" where @@ -3714,14 +3792,14 @@ fun wadjust_goon_left_moving_B :: "nat \ nat \ tape \ bool" where "wadjust_goon_left_moving_B m rs (l, r) = - (\ rn. l = Oc\<^bsup>Suc m\<^esup> \ - r = Bk # Oc\<^bsup>Suc (Suc rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" + (\ rn. l = Oc\(Suc m) \ + r = Bk # Oc\(Suc (Suc rs)) @ Bk\(rn))" fun wadjust_goon_left_moving_O :: "nat \ nat \ tape \ bool" where "wadjust_goon_left_moving_O m rs (l, r) = - (\ ml mr rn. l = Oc\<^bsup>ml\<^esup> @ Bk # Oc\<^bsup>Suc m\<^esup> \ - r = Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> \ + (\ ml mr rn. l = Oc\(ml) @ Bk # Oc\(Suc m) \ + r = Oc\(mr) @ Bk\(rn) \ ml + mr = Suc (Suc rs) \ mr > 0)" fun wadjust_goon_left_moving :: "nat \ nat \ tape \ bool" @@ -3734,13 +3812,13 @@ where "wadjust_backto_standard_pos_B m rs (l, r) = (\ rn. l = [] \ - r = Bk # Oc\<^bsup>Suc m \<^esup>@ Bk # Oc\<^bsup>Suc (Suc rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" + r = Bk # Oc\(Suc m )@ Bk # Oc\(Suc (Suc rs)) @ Bk\(rn))" fun wadjust_backto_standard_pos_O :: "nat \ nat \ tape \ bool" where "wadjust_backto_standard_pos_O m rs (l, r) = - (\ ml mr rn. l = Oc\<^bsup>ml\<^esup> \ - r = Oc\<^bsup>mr\<^esup> @ Bk # Oc\<^bsup>Suc (Suc rs)\<^esup> @ Bk\<^bsup>rn\<^esup> \ + (\ ml mr rn. l = Oc\(ml) \ + r = Oc\(mr) @ Bk # Oc\(Suc (Suc rs)) @ Bk\(rn) \ ml + mr = Suc m \ mr > 0)" fun wadjust_backto_standard_pos :: "nat \ nat \ tape \ bool" @@ -3753,7 +3831,7 @@ where "wadjust_stop m rs (l, r) = (\ rn. l = [Bk] \ - r = Oc\<^bsup>Suc m \<^esup>@ Bk # Oc\<^bsup>Suc (Suc rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" + r = Oc\(Suc m )@ Bk # Oc\(Suc (Suc rs)) @ Bk\(rn))" declare wadjust_start.simps[simp del] wadjust_loop_start.simps[simp del] wadjust_loop_right_move.simps[simp del] wadjust_loop_check.simps[simp del] @@ -3785,7 +3863,7 @@ declare wadjust_inv.simps[simp del] -fun wadjust_phase :: "nat \ t_conf \ nat" +fun wadjust_phase :: "nat \ config \ nat" where "wadjust_phase rs (st, l, r) = (if st = 1 then 3 @@ -3793,9 +3871,7 @@ else if st \ 8 \ st \ 11 then 1 else 0)" -thm dropWhile.simps - -fun wadjust_stage :: "nat \ t_conf \ nat" +fun wadjust_stage :: "nat \ config \ nat" where "wadjust_stage rs (st, l, r) = (if st \ 2 \ st \ 7 then @@ -3803,14 +3879,14 @@ (tl (dropWhile (\ a. a = Oc) (rev l @ r)))) else 0)" -fun wadjust_state :: "nat \ t_conf \ nat" +fun wadjust_state :: "nat \ config \ nat" where "wadjust_state rs (st, l, r) = (if st \ 2 \ st \ 7 then 8 - st else if st \ 8 \ st \ 11 then 12 - st else 0)" -fun wadjust_step :: "nat \ t_conf \ nat" +fun wadjust_step :: "nat \ config \ nat" where "wadjust_step rs (st, l, r) = (if st = 1 then (if hd r = Bk then 1 @@ -3827,7 +3903,7 @@ else Suc (length l)) else 0)" -fun wadjust_measure :: "(nat \ t_conf) \ nat \ nat \ nat \ nat" +fun wadjust_measure :: "(nat \ config) \ nat \ nat \ nat \ nat" where "wadjust_measure (rs, (st, l, r)) = (wadjust_phase rs (st, l, r), @@ -3835,7 +3911,7 @@ wadjust_state rs (st, l, r), wadjust_step rs (st, l, r))" -definition wadjust_le :: "((nat \ t_conf) \ nat \ t_conf) set" +definition wadjust_le :: "((nat \ config) \ nat \ config) set" where "wadjust_le \ (inv_image lex_square wadjust_measure)" lemma [intro]: "wf lex_square" @@ -3858,7 +3934,6 @@ \ wadjust_loop_check m rs (Bk # c, [])" apply(simp only: wadjust_loop_right_move.simps wadjust_loop_check.simps) apply(auto) -apply(case_tac [!] mr, simp_all add: exp_ind_def) done lemma [simp]: "wadjust_loop_check m rs (c, []) \ c \ []" @@ -3874,19 +3949,16 @@ apply(simp only: wadjust_loop_right_move.simps) apply(erule_tac exE)+ apply(auto) -apply(case_tac [!] mr, simp_all add: exp_ind_def) done lemma [simp]: "wadjust_loop_check m rs (c, []) \ wadjust_erase2 m rs (tl c, [hd c])" apply(simp only: wadjust_loop_check.simps wadjust_erase2.simps, auto) -apply(case_tac mr, simp_all add: exp_ind_def, auto) done lemma [simp]: " wadjust_loop_erase m rs (c, []) \ (c = [] \ wadjust_loop_on_left_moving m rs ([], [Bk])) \ (c \ [] \ wadjust_loop_on_left_moving m rs (tl c, [hd c]))" -apply(simp add: wadjust_loop_erase.simps, auto) -apply(case_tac [!] mr, simp_all add: exp_ind_def) +apply(simp add: wadjust_loop_erase.simps) done lemma [simp]: "wadjust_loop_on_left_moving m rs (c, []) = False" @@ -3903,22 +3975,21 @@ done lemma [simp]: "wadjust_on_left_moving_B m rs - (Oc # Oc # Oc\<^bsup>rs\<^esup> @ Bk # Oc # Oc\<^bsup>m\<^esup>, [Bk])" + (Oc # Oc # Oc\(rs) @ Bk # Oc # Oc\(m), [Bk])" apply(simp add: wadjust_on_left_moving_B.simps, auto) -apply(rule_tac x = 0 in exI, simp add: exp_ind_def) done lemma [simp]: "wadjust_on_left_moving_B m rs - (Bk\<^bsup>n\<^esup> @ Bk # Oc # Oc # Oc\<^bsup>rs\<^esup> @ Bk # Oc # Oc\<^bsup>m\<^esup>, [Bk])" -apply(simp add: wadjust_on_left_moving_B.simps exp_ind_def, auto) -apply(rule_tac x = "Suc n" in exI, simp add: exp_ind) + (Bk\(n) @ Bk # Oc # Oc # Oc\(rs) @ Bk # Oc # Oc\(m), [Bk])" +apply(simp add: wadjust_on_left_moving_B.simps , auto) +apply(rule_tac x = "Suc n" in exI, simp add: exp_ind del: replicate_Suc) done lemma [simp]: "\wadjust_erase2 m rs (c, []); c \ []\ \ wadjust_on_left_moving m rs (tl c, [hd c])" apply(simp only: wadjust_erase2.simps) apply(erule_tac exE)+ -apply(case_tac ln, simp_all add: exp_ind_def wadjust_on_left_moving.simps) +apply(case_tac ln, simp_all add: wadjust_on_left_moving.simps) done lemma [simp]: "wadjust_erase2 m rs (c, []) @@ -3939,13 +4010,13 @@ lemma [simp]: " \wadjust_on_left_moving_B m rs (c, []); c \ []; hd c = Bk\ \ wadjust_on_left_moving_B m rs (tl c, [Bk])" apply(simp add: wadjust_on_left_moving_B.simps, auto) -apply(case_tac [!] ln, simp_all add: exp_ind_def, auto) +apply(case_tac [!] ln, simp_all) done lemma [simp]: "\wadjust_on_left_moving_B m rs (c, []); c \ []; hd c = Oc\ \ wadjust_on_left_moving_O m rs (tl c, [Oc])" apply(simp add: wadjust_on_left_moving_B.simps wadjust_on_left_moving_O.simps, auto) -apply(case_tac [!] ln, simp_all add: exp_ind_def) +apply(case_tac [!] ln, simp_all add: ) done lemma [simp]: "\wadjust_on_left_moving m rs (c, []); c \ []\ \ @@ -3991,8 +4062,8 @@ apply(erule_tac exE)+ apply(rule_tac x = ml in exI, simp) apply(rule_tac x = mr in exI, simp) -apply(rule_tac x = "Suc nl" in exI, simp add: exp_ind_def) -apply(case_tac nr, simp, case_tac mr, simp_all add: exp_ind_def) +apply(rule_tac x = "Suc nl" in exI, simp add: ) +apply(case_tac nr, simp, case_tac mr, simp_all add: ) apply(rule_tac x = nat in exI, auto) done @@ -4003,7 +4074,7 @@ lemma [simp]: "wadjust_loop_check m rs (c, Bk # list) \ wadjust_erase2 m rs (tl c, hd c # Bk # list)" apply(auto simp: wadjust_loop_check.simps wadjust_erase2.simps) -apply(case_tac [!] mr, simp_all add: exp_ind_def, auto) +apply(case_tac [!] mr, simp_all) done lemma [simp]: "wadjust_loop_erase m rs (c, b) \ c \ []" @@ -4020,15 +4091,15 @@ apply(erule_tac exE)+ apply(rule_tac x = ml in exI, rule_tac x = mr in exI, rule_tac x = ln in exI, rule_tac x = 0 in exI, simp) -apply(case_tac ln, simp_all add: exp_ind_def, auto) -apply(simp add: exp_ind exp_ind_def[THEN sym]) +apply(case_tac ln, simp_all add: , auto) +apply(simp add: exp_ind [THEN sym]) done lemma [simp]: "\wadjust_loop_erase m rs (c, Bk # list); c \ []; hd c = Oc\ \ wadjust_loop_on_left_moving_O m rs (tl c, Oc # Bk # list)" apply(simp only: wadjust_loop_erase.simps wadjust_loop_on_left_moving_O.simps, auto) -apply(case_tac [!] ln, simp_all add: exp_ind_def) +apply(case_tac [!] ln, simp_all add: ) done lemma [simp]: "\wadjust_loop_erase m rs (c, Bk # list); c \ []\ \ @@ -4050,8 +4121,8 @@ apply(simp only: wadjust_loop_on_left_moving_B.simps) apply(erule_tac exE)+ apply(rule_tac x = ml in exI, rule_tac x = mr in exI) -apply(case_tac nl, simp_all add: exp_ind_def, auto) -apply(rule_tac x = "Suc nr" in exI, auto simp: exp_ind_def) +apply(case_tac nl, simp_all add: , auto) +apply(rule_tac x = "Suc nr" in exI, auto simp: ) done lemma [simp]: "\wadjust_loop_on_left_moving_B m rs (c, Bk # list); hd c = Oc\ @@ -4060,7 +4131,7 @@ wadjust_loop_on_left_moving_B.simps) apply(erule_tac exE)+ apply(rule_tac x = ml in exI, rule_tac x = mr in exI) -apply(case_tac nl, simp_all add: exp_ind_def, auto) +apply(case_tac nl, simp_all add: , auto) done lemma [simp]: "wadjust_loop_on_left_moving m rs (c, Bk # list) @@ -4075,13 +4146,13 @@ lemma [simp]: "wadjust_loop_right_move2 m rs (c, Bk # list) \ wadjust_loop_start m rs (c, Oc # list)" apply(auto simp: wadjust_loop_right_move2.simps wadjust_loop_start.simps) -apply(case_tac ln, simp_all add: exp_ind_def) +apply(case_tac ln, simp_all add: ) apply(rule_tac x = 0 in exI, simp) apply(rule_tac x = rn in exI, simp) -apply(rule_tac x = "Suc ml" in exI, simp add: exp_ind_def, auto) -apply(rule_tac x = "Suc nat" in exI, simp add: exp_ind) +apply(rule_tac x = "Suc ml" in exI, simp add: , auto) +apply(rule_tac x = "Suc nat" in exI, simp add: exp_ind del: replicate_Suc) apply(rule_tac x = rn in exI, auto) -apply(rule_tac x = "Suc ml" in exI, auto simp: exp_ind_def) +apply(rule_tac x = "Suc ml" in exI, auto ) done lemma [simp]: "wadjust_erase2 m rs (c, Bk # list) \ c \ []" @@ -4091,12 +4162,12 @@ lemma [simp]: "wadjust_erase2 m rs (c, Bk # list) \ wadjust_on_left_moving m rs (tl c, hd c # Bk # list)" apply(auto simp: wadjust_erase2.simps) -apply(case_tac ln, simp_all add: exp_ind_def wadjust_on_left_moving.simps +apply(case_tac ln, simp_all add: wadjust_on_left_moving.simps wadjust_on_left_moving_O.simps wadjust_on_left_moving_B.simps) apply(auto) -apply(rule_tac x = "(Suc (Suc rn))" in exI, simp add: exp_ind_def) -apply(rule_tac x = "Suc nat" in exI, simp add: exp_ind) -apply(rule_tac x = "(Suc (Suc rn))" in exI, simp add: exp_ind_def) +apply(rule_tac x = "(Suc (Suc rn))" in exI, simp add: ) +apply(rule_tac x = "Suc nat" in exI, simp add: exp_ind del: replicate_Suc) +apply(rule_tac x = "(Suc (Suc rn))" in exI, simp add: ) done lemma [simp]: "wadjust_on_left_moving m rs (c,b) \ c \ []" @@ -4113,14 +4184,14 @@ lemma [simp]: "\wadjust_on_left_moving_B m rs (c, Bk # list); hd c = Bk\ \ wadjust_on_left_moving_B m rs (tl c, Bk # Bk # list)" apply(auto simp: wadjust_on_left_moving_B.simps) -apply(case_tac ln, simp_all add: exp_ind_def, auto) +apply(case_tac ln, simp_all) done lemma [simp]: "\wadjust_on_left_moving_B m rs (c, Bk # list); hd c = Oc\ \ wadjust_on_left_moving_O m rs (tl c, Oc # Bk # list)" apply(auto simp: wadjust_on_left_moving_O.simps wadjust_on_left_moving_B.simps) -apply(case_tac ln, simp_all add: exp_ind_def) +apply(case_tac ln, simp_all add: ) done lemma [simp]: "wadjust_on_left_moving m rs (c, Bk # list) \ @@ -4132,25 +4203,24 @@ lemma [simp]: "wadjust_goon_left_moving m rs (c, b) \ c \ []" apply(simp add: wadjust_goon_left_moving.simps wadjust_goon_left_moving_B.simps - wadjust_goon_left_moving_O.simps exp_ind_def, auto) + wadjust_goon_left_moving_O.simps , auto) done lemma [simp]: "wadjust_goon_left_moving_O m rs (c, Bk # list) = False" apply(simp add: wadjust_goon_left_moving_O.simps, auto) -apply(case_tac mr, simp_all add: exp_ind_def) +apply(case_tac mr, simp_all add: ) done lemma [simp]: "\wadjust_goon_left_moving_B m rs (c, Bk # list); hd c = Bk\ \ wadjust_backto_standard_pos_B m rs (tl c, Bk # Bk # list)" apply(auto simp: wadjust_goon_left_moving_B.simps - wadjust_backto_standard_pos_B.simps exp_ind_def) + wadjust_backto_standard_pos_B.simps ) done lemma [simp]: "\wadjust_goon_left_moving_B m rs (c, Bk # list); hd c = Oc\ \ wadjust_backto_standard_pos_O m rs (tl c, Oc # Bk # list)" apply(auto simp: wadjust_goon_left_moving_B.simps - wadjust_backto_standard_pos_O.simps exp_ind_def) -apply(rule_tac x = m in exI, simp, auto) + wadjust_backto_standard_pos_O.simps) done lemma [simp]: "wadjust_goon_left_moving m rs (c, Bk # list) \ @@ -4164,7 +4234,7 @@ apply(auto simp: wadjust_backto_standard_pos.simps wadjust_backto_standard_pos_B.simps wadjust_backto_standard_pos_O.simps wadjust_stop.simps) -apply(case_tac [!] mr, simp_all add: exp_ind_def) +apply(case_tac [!] mr, simp_all add: ) done lemma [simp]: "wadjust_start m rs (c, Oc # list) @@ -4184,17 +4254,17 @@ apply(simp add: wadjust_loop_start.simps wadjust_loop_right_move.simps, auto) apply(rule_tac x = ml in exI, rule_tac x = mr in exI, rule_tac x = 0 in exI, simp) -apply(rule_tac x = "Suc ln" in exI, simp add: exp_ind, auto) +apply(rule_tac x = "Suc ln" in exI, simp add: exp_ind del: replicate_Suc) done lemma [simp]: "wadjust_loop_right_move m rs (c, Oc # list) \ wadjust_loop_check m rs (Oc # c, list)" apply(simp add: wadjust_loop_right_move.simps wadjust_loop_check.simps, auto) -apply(rule_tac [!] x = ml in exI, simp_all, auto) -apply(case_tac nl, auto simp: exp_ind_def) -apply(rule_tac x = "mr - 1" in exI, case_tac mr, simp_all add: exp_ind_def) -apply(case_tac [!] nr, simp_all add: exp_ind_def, auto) +apply(rule_tac [!] x = ml in exI, simp_all add: exp_ind del: replicate_Suc, auto) +apply(case_tac nl, simp_all add: exp_ind del: replicate_Suc) +apply(rule_tac x = "mr - 1" in exI, case_tac mr, simp_all add: ) +apply(case_tac [!] nr, simp_all) done lemma [simp]: "wadjust_loop_check m rs (c, Oc # list) \ @@ -4202,8 +4272,7 @@ apply(simp only: wadjust_loop_check.simps wadjust_loop_erase.simps) apply(erule_tac exE)+ apply(rule_tac x = ml in exI, rule_tac x = mr in exI, auto) -apply(case_tac mr, simp_all add: exp_ind_def) -apply(case_tac rn, simp_all add: exp_ind_def) +apply(case_tac mr, simp_all add: ) done lemma [simp]: "wadjust_loop_erase m rs (c, Oc # list) \ @@ -4213,7 +4282,7 @@ lemma [simp]: "wadjust_loop_on_left_moving_B m rs (c, Oc # list) = False" apply(auto simp: wadjust_loop_on_left_moving_B.simps) -apply(case_tac nr, simp_all add: exp_ind_def) +apply(case_tac nr, simp_all add: ) done lemma [simp]: "wadjust_loop_on_left_moving m rs (c, Oc # list) @@ -4225,7 +4294,7 @@ lemma [simp]: "wadjust_loop_right_move2 m rs (c, Oc # list) = False" apply(auto simp: wadjust_loop_right_move2.simps ) -apply(case_tac ln, simp_all add: exp_ind_def) +apply(case_tac ln, simp_all add: ) done lemma [simp]: "wadjust_erase2 m rs (c, Oc # list) @@ -4241,15 +4310,14 @@ lemma [simp]: "\wadjust_on_left_moving_O m rs (c, Oc # list); hd c = Bk\ \ wadjust_goon_left_moving_B m rs (tl c, Bk # Oc # list)" apply(auto simp: wadjust_on_left_moving_O.simps - wadjust_goon_left_moving_B.simps exp_ind_def) + wadjust_goon_left_moving_B.simps ) done lemma [simp]: "\wadjust_on_left_moving_O m rs (c, Oc # list); hd c = Oc\ \ wadjust_goon_left_moving_O m rs (tl c, Oc # Oc # list)" apply(auto simp: wadjust_on_left_moving_O.simps - wadjust_goon_left_moving_O.simps exp_ind_def) -apply(rule_tac x = rs in exI, simp) -apply(auto simp: exp_ind_def numeral_2_eq_2) + wadjust_goon_left_moving_O.simps ) +apply(auto simp: numeral_2_eq_2) done @@ -4274,15 +4342,15 @@ lemma [simp]: "\wadjust_goon_left_moving_O m rs (c, Oc # list); hd c = Bk\ \ wadjust_goon_left_moving_B m rs (tl c, Bk # Oc # list)" apply(auto simp: wadjust_goon_left_moving_O.simps wadjust_goon_left_moving_B.simps) -apply(case_tac [!] ml, auto simp: exp_ind_def) +apply(case_tac [!] ml, auto simp: ) done lemma [simp]: "\wadjust_goon_left_moving_O m rs (c, Oc # list); hd c = Oc\ \ wadjust_goon_left_moving_O m rs (tl c, Oc # Oc # list)" apply(auto simp: wadjust_goon_left_moving_O.simps wadjust_goon_left_moving_B.simps) apply(rule_tac x = "ml - 1" in exI, simp) -apply(case_tac ml, simp_all add: exp_ind_def) -apply(rule_tac x = "Suc mr" in exI, auto simp: exp_ind_def) +apply(case_tac ml, simp_all add: ) +apply(rule_tac x = "Suc mr" in exI, auto simp: ) done lemma [simp]: "wadjust_goon_left_moving m rs (c, Oc # list) \ @@ -4297,33 +4365,26 @@ lemma [simp]: "wadjust_backto_standard_pos_O m rs (c, Bk # xs) = False" apply(simp add: wadjust_backto_standard_pos_O.simps, auto) -apply(case_tac mr, simp_all add: exp_ind_def) -done - - +apply(case_tac mr, simp_all add: ) +done lemma [simp]: "wadjust_backto_standard_pos_O m rs ([], Oc # list) \ wadjust_backto_standard_pos_B m rs ([], Bk # Oc # list)" apply(auto simp: wadjust_backto_standard_pos_O.simps wadjust_backto_standard_pos_B.simps) -apply(rule_tac x = rn in exI, simp) -apply(case_tac ml, simp_all add: exp_ind_def) -done - +done lemma [simp]: "\wadjust_backto_standard_pos_O m rs (c, Oc # list); c \ []; hd c = Bk\ \ wadjust_backto_standard_pos_B m rs (tl c, Bk # Oc # list)" apply(simp add:wadjust_backto_standard_pos_O.simps wadjust_backto_standard_pos_B.simps, auto) -apply(case_tac [!] ml, simp_all add: exp_ind_def) done lemma [simp]: "\wadjust_backto_standard_pos_O m rs (c, Oc # list); c \ []; hd c = Oc\ \ wadjust_backto_standard_pos_O m rs (tl c, Oc # Oc # list)" apply(simp add: wadjust_backto_standard_pos_O.simps, auto) -apply(case_tac ml, simp_all add: exp_ind_def, auto) -apply(rule_tac x = nat in exI, auto simp: exp_ind_def) +apply(case_tac ml, simp_all add: , auto) done lemma [simp]: "wadjust_backto_standard_pos m rs (c, Oc # list) @@ -4332,19 +4393,17 @@ apply(auto simp: wadjust_backto_standard_pos.simps) apply(case_tac "hd c", simp_all) done -thm wadjust_loop_right_move.simps lemma [simp]: "wadjust_loop_right_move m rs (c, []) = False" apply(simp only: wadjust_loop_right_move.simps) apply(rule_tac iffI) apply(erule_tac exE)+ -apply(case_tac nr, simp_all add: exp_ind_def) -apply(case_tac mr, simp_all add: exp_ind_def) +apply(case_tac nr, simp_all add: ) +apply(case_tac mr, simp_all add: ) done lemma [simp]: "wadjust_loop_erase m rs (c, []) = False" apply(simp only: wadjust_loop_erase.simps, auto) -apply(case_tac mr, simp_all add: exp_ind_def) done lemma [simp]: "\Suc (Suc rs) = a; wadjust_loop_erase m rs (c, Bk # list)\ @@ -4367,11 +4426,11 @@ apply(case_tac c, simp_all) done -lemma dropWhile_exp1: "dropWhile (\a. a = Oc) (Oc\<^bsup>n\<^esup> @ xs) = dropWhile (\a. a = Oc) xs" -apply(induct n, simp_all add: exp_ind_def) -done -lemma takeWhile_exp1: "takeWhile (\a. a = Oc) (Oc\<^bsup>n\<^esup> @ xs) = Oc\<^bsup>n\<^esup> @ takeWhile (\a. a = Oc) xs" -apply(induct n, simp_all add: exp_ind_def) +lemma dropWhile_exp1: "dropWhile (\a. a = Oc) (Oc\(n) @ xs) = dropWhile (\a. a = Oc) xs" +apply(induct n, simp_all add: ) +done +lemma takeWhile_exp1: "takeWhile (\a. a = Oc) (Oc\(n) @ xs) = Oc\(n) @ takeWhile (\a. a = Oc) xs" +apply(induct n, simp_all add: ) done lemma [simp]: "\Suc (Suc rs) = a; wadjust_loop_right_move2 m rs (c, Bk # list)\ @@ -4379,7 +4438,7 @@ < a - length (takeWhile (\a. a = Oc) (tl (dropWhile (\a. a = Oc) (rev c @ Bk # list))))" apply(simp add: wadjust_loop_right_move2.simps, auto) apply(simp add: dropWhile_exp1 takeWhile_exp1) -apply(case_tac ln, simp, simp add: exp_ind_def) +apply(case_tac ln, simp, simp add: ) done lemma [simp]: "wadjust_loop_check m rs ([], b) = False" @@ -4411,129 +4470,119 @@ lemma wadjust_correctness: shows "let P = (\ (len, st, l, r). st = 0) in let Q = (\ (len, st, l, r). wadjust_inv st m rs (l, r)) in - let f = (\ stp. (Suc (Suc rs), steps (Suc 0, Bk # Oc\<^bsup>Suc m\<^esup>, - Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>) t_wcode_adjust stp)) in + let f = (\ stp. (Suc (Suc rs), steps0 (Suc 0, Bk # Oc\(Suc m), + Bk # Oc # Bk\(ln) @ Bk # Oc\(Suc rs) @ Bk\(rn)) t_wcode_adjust stp)) in \ n .P (f n) \ Q (f n)" proof - let ?P = "(\ (len, st, l, r). st = 0)" let ?Q = "\ (len, st, l, r). wadjust_inv st m rs (l, r)" - let ?f = "\ stp. (Suc (Suc rs), steps (Suc 0, Bk # Oc\<^bsup>Suc m\<^esup>, - Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>) t_wcode_adjust stp)" + let ?f = "\ stp. (Suc (Suc rs), steps0 (Suc 0, Bk # Oc\(Suc m), + Bk # Oc # Bk\(ln) @ Bk # Oc\(Suc rs) @ Bk\(rn)) t_wcode_adjust stp)" have "\ n. ?P (?f n) \ ?Q (?f n)" proof(rule_tac halt_lemma2) show "wf wadjust_le" by auto next show "\ n. \ ?P (?f n) \ ?Q (?f n) \ ?Q (?f (Suc n)) \ (?f (Suc n), ?f n) \ wadjust_le" - proof(rule_tac allI, rule_tac impI, case_tac "?f n", - simp add: tstep_red tstep.simps, rule_tac conjI, erule_tac conjE, - erule_tac conjE) - fix n a b c d - assume "0 < b" "wadjust_inv b m rs (c, d)" "Suc (Suc rs) = a" - thus "case case fetch t_wcode_adjust b (case d of [] \ Bk | x # xs \ x) - of (ac, ns) \ (ns, new_tape ac (c, d)) of (st, x) \ wadjust_inv st m rs x" - apply(case_tac d, simp, case_tac [2] aa) - apply(simp_all add: wadjust_inv.simps wadjust_le_def new_tape.simps - abacus.lex_triple_def abacus.lex_pair_def lex_square_def - split: if_splits) - done - next - fix n a b c d - assume "0 < b \ wadjust_inv b m rs (c, d)" - "Suc (Suc rs) = a \ steps (Suc 0, Bk # Oc\<^bsup>Suc m\<^esup>, - Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>) t_wcode_adjust n = (b, c, d)" - thus "((a, case fetch t_wcode_adjust b (case d of [] \ Bk | x # xs \ x) - of (ac, ns) \ (ns, new_tape ac (c, d))), a, b, c, d) \ wadjust_le" - proof(erule_tac conjE, erule_tac conjE, erule_tac conjE) - assume "0 < b" "wadjust_inv b m rs (c, d)" "Suc (Suc rs) = a" - thus "?thesis" - apply(case_tac d, case_tac [2] aa) - apply(simp_all add: wadjust_inv.simps wadjust_le_def new_tape.simps - abacus.lex_triple_def abacus.lex_pair_def lex_square_def + apply(rule_tac allI, rule_tac impI, case_tac "?f n", simp) + apply(simp add: step.simps) + apply(case_tac d, case_tac [2] aa, simp_all) + apply(simp_all add: wadjust_inv.simps wadjust_le_def + abacus.lex_triple_def abacus.lex_pair_def lex_square_def numeral_4_eq_4 split: if_splits) - done - qed - qed + done next show "?Q (?f 0)" - apply(simp add: steps.simps wadjust_inv.simps wadjust_start.simps) - apply(rule_tac x = ln in exI,auto) + apply(simp add: steps.simps wadjust_inv.simps wadjust_start.simps, auto) done next show "\ ?P (?f 0)" apply(simp add: steps.simps) done qed - thus "?thesis" - apply(auto) + thus"?thesis" + apply(simp) done qed -lemma [intro]: "t_correct t_wcode_adjust" -apply(auto simp: t_wcode_adjust_def t_correct.simps iseven_def) -apply(rule_tac x = 11 in exI, simp) +lemma [intro]: "tm_wf (t_wcode_adjust, 0)" +apply(auto simp: t_wcode_adjust_def tm_wf.simps) +done + +declare tm_comp.simps[simp del] + +lemma [simp]: "args \ [] \ bl_bin () > 0" +apply(case_tac args) +apply(auto simp: tape_of_nl_cons bl_bin.simps split: if_splits) done lemma wcode_lemma_pre': "args \ [] \ - \ stp rn. steps (Suc 0, [], ) + \ stp rn. steps0 (Suc 0, [], ) ((t_wcode_prepare |+| t_wcode_main) |+| t_wcode_adjust) stp - = (0, [Bk], Oc\<^bsup>Suc m\<^esup> @ Bk # Oc\<^bsup>Suc (bl_bin ())\<^esup> @ Bk\<^bsup>rn\<^esup>)" + = (0, [Bk], Oc\(Suc m) @ Bk # Oc\(Suc (bl_bin ())) @ Bk\(rn))" proof - let ?P1 = "\ (l, r). l = [] \ r = " - let ?Q1 = "\(l, r). l = Bk # Oc\<^bsup>Suc m\<^esup> \ - (\ln rn. r = Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin ()\<^esup> @ Bk\<^bsup>rn\<^esup>)" + let ?Q1 = "\(l, r). l = Bk # Oc\(Suc m) \ + (\ln rn. r = Bk # Oc # Bk\(ln) @ Bk # Bk # Oc\(bl_bin ()) @ Bk\(rn))" let ?P2 = ?Q1 let ?Q2 = "\ (l, r). (wadjust_stop m (bl_bin () - 1) (l, r))" let ?P3 = "\ tp. False" assume h: "args \ []" - have "?P1 \-> \ tp. (\ stp tp'. steps (Suc 0, tp) - ((t_wcode_prepare |+| t_wcode_main) |+| t_wcode_adjust) stp = (0, tp') \ ?Q2 tp')" - proof(rule_tac turing_merge.t_merge_halt[of "t_wcode_prepare |+| t_wcode_main" - t_wcode_adjust ?P1 ?P2 ?P3 ?P3 ?Q1 ?Q2], - auto simp: turing_merge_def) - - show "\stp. case steps (Suc 0, [], ) (t_wcode_prepare |+| t_wcode_main) stp of - (st, tp') \ st = 0 \ (case tp' of (l, r) \ l = Bk # Oc\<^bsup>Suc m\<^esup> \ - (\ln rn. r = Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin ()\<^esup> @ Bk\<^bsup>rn\<^esup>))" - using h prepare_mainpart_lemma[of args m] - apply(auto) - apply(rule_tac x = stp in exI, simp) - apply(rule_tac x = ln in exI, auto) + hence a: "bl_bin () > 0" + using h by simp + hence "{?P1} (t_wcode_prepare |+| t_wcode_main) |+| t_wcode_adjust {?Q2}" + proof(rule_tac Hoare_plus_halt) + show "?Q1 \ ?P2" + by(simp add: assert_imp_def) + next + show "tm_wf (t_wcode_prepare |+| t_wcode_main, 0)" + apply(rule_tac tm_wf_comp, auto) done next - fix ln rn - show "\stp. case steps (Suc 0, Bk # Oc\<^bsup>Suc m\<^esup>, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # - Oc\<^bsup>bl_bin ()\<^esup> @ Bk\<^bsup>rn\<^esup>) t_wcode_adjust stp of - (st, tp') \ st = 0 \ wadjust_stop m (bl_bin () - Suc 0) tp'" - using wadjust_correctness[of m "bl_bin () - 1" "Suc ln" rn] - apply(subgoal_tac "bl_bin () > 0", auto simp: wadjust_inv.simps) - apply(rule_tac x = n in exI, simp add: exp_ind) - using h - apply(case_tac args, simp_all, case_tac list, - simp_all add: tape_of_nl_abv tape_of_nat_list.simps exp_ind_def - bl_bin.simps) - done + show "{?P1} t_wcode_prepare |+| t_wcode_main {?Q1}" + proof(rule_tac HoareI, auto) + show + "\n. is_final (steps0 (Suc 0, [], ) (t_wcode_prepare |+| t_wcode_main) n) \ + (\(l, r). l = Bk # Oc # Oc \ m \ + (\ln rn. r = Bk # Oc # Bk \ ln @ Bk # Bk # Oc \ bl_bin () @ Bk \ rn)) + holds_for steps0 (Suc 0, [], ) (t_wcode_prepare |+| t_wcode_main) n" + using h prepare_mainpart_lemma[of args m] + apply(auto) + apply(rule_tac x = stp in exI, simp) + apply(rule_tac x = ln in exI, auto) + done + qed next - show "?Q1 \-> ?P2" - by(simp add: t_imply_def) + show "{?P2} t_wcode_adjust {?Q2}" + proof(rule_tac HoareI, auto del: replicate_Suc) + fix ln rn + show "\n. is_final (steps0 (Suc 0, Bk # Oc # Oc \ m, + Bk # Oc # Bk \ ln @ Bk # Bk # Oc \ bl_bin () @ Bk \ rn) t_wcode_adjust n) \ + wadjust_stop m (bl_bin () - Suc 0) holds_for steps0 + (Suc 0, Bk # Oc # Oc \ m, Bk # Oc # Bk \ ln @ Bk # Bk # Oc \ bl_bin () @ Bk \ rn) t_wcode_adjust n" + using wadjust_correctness[of m "bl_bin () - 1" "Suc ln" rn] + apply(simp del: replicate_Suc add: replicate_Suc[THEN sym] exp_ind, auto) + apply(rule_tac x = n in exI) + using a + apply(case_tac "bl_bin ()", simp, simp del: replicate_Suc add: exp_ind wadjust_inv.simps) + done + qed qed - thus "\stp rn. steps (Suc 0, [], ) ((t_wcode_prepare |+| t_wcode_main) |+| - t_wcode_adjust) stp = (0, [Bk], Oc\<^bsup>Suc m\<^esup> @ Bk # Oc\<^bsup>Suc (bl_bin ())\<^esup> @ Bk\<^bsup>rn\<^esup>)" - apply(simp add: t_imply_def) - apply(erule_tac exE)+ - apply(subgoal_tac "bl_bin () > 0", auto simp: wadjust_stop.simps) - using h - apply(case_tac args, simp_all, case_tac list, - simp_all add: tape_of_nl_abv tape_of_nat_list.simps exp_ind_def - bl_bin.simps) + thus "?thesis" + apply(simp add: Hoare_def, auto) + apply(case_tac "(steps0 (Suc 0, [], <(m::nat) # args>) + ((t_wcode_prepare |+| t_wcode_main) |+| t_wcode_adjust) n)") + apply(rule_tac x = n in exI, auto simp: wadjust_stop.simps) + using a + apply(case_tac "bl_bin ()", simp_all) done qed - + text {* The initialization TM @{text "t_wcode"}. *} -definition t_wcode :: "tprog" +definition t_wcode :: "instr list" where "t_wcode = (t_wcode_prepare |+| t_wcode_main) |+| t_wcode_adjust" @@ -4541,17 +4590,18 @@ text {* The correctness of @{text "t_wcode"}. *} + lemma wcode_lemma_1: "args \ [] \ - \ stp ln rn. steps (Suc 0, [], ) (t_wcode) stp = - (0, [Bk], Oc\<^bsup>Suc m\<^esup> @ Bk # Oc\<^bsup>Suc (bl_bin ())\<^esup> @ Bk\<^bsup>rn\<^esup>)" -apply(simp add: wcode_lemma_pre' t_wcode_def) + \ stp ln rn. steps0 (Suc 0, [], ) (t_wcode) stp = + (0, [Bk], Oc\(Suc m) @ Bk # Oc\(Suc (bl_bin ())) @ Bk\(rn))" +apply(simp add: wcode_lemma_pre' t_wcode_def del: replicate_Suc) done lemma wcode_lemma: "args \ [] \ - \ stp ln rn. steps (Suc 0, [], ) (t_wcode) stp = - (0, [Bk], <[m ,bl_bin ()]> @ Bk\<^bsup>rn\<^esup>)" + \ stp ln rn. steps0 (Suc 0, [], ) (t_wcode) stp = + (0, [Bk], <[m ,bl_bin ()]> @ Bk\(rn))" using wcode_lemma_1[of args m] apply(simp add: t_wcode_def tape_of_nl_abv tape_of_nat_list.simps) done @@ -4564,39 +4614,38 @@ *} -definition UTM :: "tprog" +definition UTM :: "instr list" where "UTM = (let (aprog, rs_pos, a_md) = rec_ci rec_F in let abc_F = aprog [+] dummy_abc (Suc (Suc 0)) in - (t_wcode |+| (tm_of abc_F @ tMp (Suc (Suc 0)) (start_of (layout_of abc_F) - (length abc_F) - Suc 0))))" + (t_wcode |+| (tm_of abc_F @ shift (mopup (Suc (Suc 0))) (length (tm_of abc_F) div 2))))" definition F_aprog :: "abc_prog" where "F_aprog \ (let (aprog, rs_pos, a_md) = rec_ci rec_F in aprog [+] dummy_abc (Suc (Suc 0)))" -definition F_tprog :: "tprog" +definition F_tprog :: "instr list" where "F_tprog = tm_of (F_aprog)" -definition t_utm :: "tprog" +definition t_utm :: "instr list" where "t_utm \ - (F_tprog) @ tMp (Suc (Suc 0)) (start_of (layout_of (F_aprog)) - (length (F_aprog)) - Suc 0)" - -definition UTM_pre :: "tprog" + F_tprog @ shift (mopup (Suc (Suc 0))) (length F_tprog div 2)" + +definition UTM_pre :: "instr list" where "UTM_pre = t_wcode |+| t_utm" +(* lemma F_abc_halt_eq: "\turing_basic.t_correct tp; length lm = k; - steps (Suc 0, Bk\<^bsup>l\<^esup>, ) tp stp = (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup>@Bk\<^bsup>n\<^esup>); + steps (Suc 0, Bk\(l), ) tp stp = (0, Bk\(m), Oc\(rs)@Bk\(n)); rs > 0\ \ \ stp m. abc_steps_l (0, [code tp, bl2wc ()]) (F_aprog) stp = - (length (F_aprog), code tp # bl2wc () # (rs - 1) # 0\<^bsup>m\<^esup>)" + (length (F_aprog), code tp # bl2wc () # (rs - 1) # 0\(m))" apply(drule_tac F_t_halt_eq, simp, simp, simp) apply(case_tac "rec_ci rec_F") apply(frule_tac abc_append_dummy_complie, simp, simp, erule_tac exE, @@ -4608,13 +4657,13 @@ lemma F_abc_utm_halt_eq: "\rs > 0; abc_steps_l (0, [code tp, bl2wc ()]) F_aprog stp = - (length F_aprog, code tp # bl2wc () # (rs - 1) # 0\<^bsup>m\<^esup>)\ + (length F_aprog, code tp # bl2wc () # (rs - 1) # 0\(m))\ \ \stp m n.(steps (Suc 0, [Bk, Bk], <[code tp, bl2wc ()]>) t_utm stp = - (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>))" + (0, Bk\(m), Oc\(rs) @ Bk\(n)))" thm abacus_turing_eq_halt using abacus_turing_eq_halt [of "layout_of F_aprog" "F_aprog" "F_tprog" "length (F_aprog)" - "[code tp, bl2wc ()]" stp "code tp # bl2wc () # (rs - 1) # 0\<^bsup>m\<^esup>" "Suc (Suc 0)" + "[code tp, bl2wc ()]" stp "code tp # bl2wc () # (rs - 1) # 0\(m)" "Suc (Suc 0)" "start_of (layout_of (F_aprog)) (length (F_aprog))" "[]" 0] apply(simp add: F_tprog_def t_utm_def abc_lm_v.simps nth_append) apply(erule_tac exE)+ @@ -4627,20 +4676,21 @@ lemma t_utm_halt_eq': "\turing_basic.t_correct tp; 0 < rs; - steps (Suc 0, Bk\<^bsup>l\<^esup>, ) tp stp = (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup>@Bk\<^bsup>n\<^esup>)\ + steps (Suc 0, Bk\(l), ) tp stp = (0, Bk\(m), Oc\(rs)@Bk\(n))\ \ \stp m n. steps (Suc 0, [Bk, Bk], <[code tp, bl2wc ()]>) t_utm stp = - (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>)" + (0, Bk\(m), Oc\(rs) @ Bk\(n))" apply(drule_tac l = l in F_abc_halt_eq, simp, simp, simp) apply(erule_tac exE, erule_tac exE) apply(rule_tac F_abc_utm_halt_eq, simp_all) done - -lemma [simp]: "tinres xs (xs @ Bk\<^bsup>i\<^esup>)" +*) +(* +lemma [simp]: "tinres xs (xs @ Bk\(i))" apply(auto simp: tinres_def) done -lemma [elim]: "\rs > 0; Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>na\<^esup> = c @ Bk\<^bsup>n\<^esup>\ - \ \n. c = Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>" +lemma [elim]: "\rs > 0; Oc\(rs) @ Bk\(na) = c @ Bk\(n)\ + \ \n. c = Oc\(rs) @ Bk\(n)" apply(case_tac "na > n") apply(subgoal_tac "\ d. na = d + n", auto simp: exp_add) apply(rule_tac x = "na - n" in exI, simp) @@ -4649,29 +4699,29 @@ simp_all add: exp_ind) apply(rule_tac x = "n - na" in exI, simp) done - - +*) +(* lemma t_utm_halt_eq'': "\turing_basic.t_correct tp; 0 < rs; - steps (Suc 0, Bk\<^bsup>l\<^esup>, ) tp stp = (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup>@Bk\<^bsup>n\<^esup>)\ - \ \stp m n. steps (Suc 0, [Bk, Bk], <[code tp, bl2wc ()]> @ Bk\<^bsup>i\<^esup>) t_utm stp = - (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>)" + steps (Suc 0, Bk\(l), ) tp stp = (0, Bk\(m), Oc\(rs)@Bk\(n))\ + \ \stp m n. steps (Suc 0, [Bk, Bk], <[code tp, bl2wc ()]> @ Bk\(i)) t_utm stp = + (0, Bk\(m), Oc\(rs) @ Bk\(n))" apply(drule_tac t_utm_halt_eq', simp_all) apply(erule_tac exE)+ proof - fix stpa ma na - assume "steps (Suc 0, [Bk, Bk], <[code tp, bl2wc ()]>) t_utm stpa = (0, Bk\<^bsup>ma\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>na\<^esup>)" + assume "steps (Suc 0, [Bk, Bk], <[code tp, bl2wc ()]>) t_utm stpa = (0, Bk\(ma), Oc\(rs) @ Bk\(na))" and gr: "rs > 0" - thus "\stp m n. steps (Suc 0, [Bk, Bk], <[code tp, bl2wc ()]> @ Bk\<^bsup>i\<^esup>) t_utm stp = (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>)" + thus "\stp m n. steps (Suc 0, [Bk, Bk], <[code tp, bl2wc ()]> @ Bk\(i)) t_utm stp = (0, Bk\(m), Oc\(rs) @ Bk\(n))" apply(rule_tac x = stpa in exI, rule_tac x = ma in exI, simp) - proof(case_tac "steps (Suc 0, [Bk, Bk], <[code tp, bl2wc ()]> @ Bk\<^bsup>i\<^esup>) t_utm stpa", simp) + proof(case_tac "steps (Suc 0, [Bk, Bk], <[code tp, bl2wc ()]> @ Bk\(i)) t_utm stpa", simp) fix a b c - assume "steps (Suc 0, [Bk, Bk], <[code tp, bl2wc ()]>) t_utm stpa = (0, Bk\<^bsup>ma\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>na\<^esup>)" - "steps (Suc 0, [Bk, Bk], <[code tp, bl2wc ()]> @ Bk\<^bsup>i\<^esup>) t_utm stpa = (a, b, c)" - thus " a = 0 \ b = Bk\<^bsup>ma\<^esup> \ (\n. c = Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>)" - using tinres_steps2[of "<[code tp, bl2wc ()]>" "<[code tp, bl2wc ()]> @ Bk\<^bsup>i\<^esup>" - "Suc 0" " [Bk, Bk]" t_utm stpa 0 "Bk\<^bsup>ma\<^esup>" "Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>na\<^esup>" a b c] + assume "steps (Suc 0, [Bk, Bk], <[code tp, bl2wc ()]>) t_utm stpa = (0, Bk\(ma), Oc\(rs) @ Bk\(na))" + "steps (Suc 0, [Bk, Bk], <[code tp, bl2wc ()]> @ Bk\(i)) t_utm stpa = (a, b, c)" + thus " a = 0 \ b = Bk\(ma) \ (\n. c = Oc\(rs) @ Bk\(n))" + using tinres_steps2[of "<[code tp, bl2wc ()]>" "<[code tp, bl2wc ()]> @ Bk\(i)" + "Suc 0" " [Bk, Bk]" t_utm stpa 0 "Bk\(ma)" "Oc\(rs) @ Bk\(na)" a b c] apply(simp) using gr apply(simp only: tinres_def, auto) @@ -4684,99 +4734,195 @@ apply(auto simp: tinres_def) done -lemma [elim]: "Bk\<^bsup>ma\<^esup> = b @ Bk\<^bsup>n\<^esup> \ \m. b = Bk\<^bsup>m\<^esup>" +lemma [elim]: "Bk\(ma) = b @ Bk\(n) \ \m. b = Bk\(m)" apply(subgoal_tac "ma = length b + n") apply(rule_tac x = "ma - n" in exI, simp add: exp_add) apply(drule_tac length_equal) apply(simp) done +*) + + + +lemma tinres_step1: + "\tinres l l'; step (ss, l, r) (t, 0) = (sa, la, ra); + step (ss, l', r) (t, 0) = (sb, lb, rb)\ + \ tinres la lb \ ra = rb \ sa = sb" +apply(case_tac ss, case_tac [!]r, case_tac [!] "a::cell") +apply(auto simp: step.simps fetch.simps nth_of.simps + split: if_splits ) +apply(case_tac [!] "t ! (2 * nat)", + auto simp: tinres_def split: if_splits) +apply(case_tac [1-8] a, auto split: if_splits) +apply(case_tac [!] "t ! (2 * nat)", + auto simp: tinres_def split: if_splits) +apply(case_tac [1-4] a, auto split: if_splits) +apply(case_tac [!] "t ! Suc (2 * nat)", + auto simp: if_splits) +apply(case_tac [!] aa, auto split: if_splits) +done + +lemma tinres_steps1: + "\tinres l l'; steps (ss, l, r) (t, 0) stp = (sa, la, ra); + steps (ss, l', r) (t, 0) stp = (sb, lb, rb)\ + \ tinres la lb \ ra = rb \ sa = sb" +apply(induct stp arbitrary: sa la ra sb lb rb, simp add: steps.simps) +apply(simp add: step_red) +apply(case_tac "(steps (ss, l, r) (t, 0) stp)") +apply(case_tac "(steps (ss, l', r) (t, 0) stp)") +proof - + fix stp sa la ra sb lb rb a b c aa ba ca + assume ind: "\sa la ra sb lb rb. \steps (ss, l, r) (t, 0) stp = (sa, (la::cell list), ra); + steps (ss, l', r) (t, 0) stp = (sb, lb, rb)\ \ tinres la lb \ ra = rb \ sa = sb" + and h: " tinres l l'" "step (steps (ss, l, r) (t, 0) stp) (t, 0) = (sa, la, ra)" + "step (steps (ss, l', r) (t, 0) stp) (t, 0) = (sb, lb, rb)" "steps (ss, l, r) (t, 0) stp = (a, b, c)" + "steps (ss, l', r) (t, 0) stp = (aa, ba, ca)" + have "tinres b ba \ c = ca \ a = aa" + apply(rule_tac ind, simp_all add: h) + done + thus "tinres la lb \ ra = rb \ sa = sb" + apply(rule_tac l = b and l' = ba and r = c and ss = a + and t = t in tinres_step1) + using h + apply(simp, simp, simp) + done +qed + +lemma [simp]: + "tinres (Bk \ m @ [Bk, Bk]) la \ \m. la = Bk \ m" +apply(auto simp: tinres_def) +apply(case_tac n, simp add: exp_ind) +apply(rule_tac x ="Suc (Suc m)" in exI, simp only: exp_ind, simp) +apply(simp add: exp_ind del: replicate_Suc) +apply(case_tac nat, simp add: exp_ind) +apply(rule_tac x = "Suc m" in exI, simp only: exp_ind) +apply(simp only: exp_ind, simp) +apply(subgoal_tac "m = length la + nata") +apply(rule_tac x = "m - nata" in exI, simp add: exp_add) +apply(drule_tac length_equal, simp) +apply(simp only: exp_ind[THEN sym] replicate_Suc[THEN sym] replicate_add[THEN sym]) +apply(rule_tac x = "m + Suc (Suc n)" in exI, simp) +done lemma t_utm_halt_eq: - "\turing_basic.t_correct tp; - 0 < rs; - steps (Suc 0, Bk\<^bsup>l\<^esup>, ) tp stp = (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup>@Bk\<^bsup>n\<^esup>)\ - \ \stp m n. steps (Suc 0, [Bk], <[code tp, bl2wc ()]> @ Bk\<^bsup>i\<^esup>) t_utm stp = - (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>)" -apply(drule_tac i = i in t_utm_halt_eq'', simp_all) -apply(erule_tac exE)+ + assumes tm_wf: "tm_wf (tp, 0)" + and exec: "steps0 (Suc 0, Bk\(l), ) tp stp = (0, Bk\(m), Oc\(rs)@Bk\(n))" + and resutl: "0 < rs" + shows "\stp m n. steps0 (Suc 0, [Bk], <[code tp, bl2wc ()]> @ Bk\(i)) t_utm stp = + (0, Bk\(m), Oc\(rs) @ Bk\(n))" proof - - fix stpa ma na - assume "steps (Suc 0, [Bk, Bk], <[code tp, bl2wc ()]> @ Bk\<^bsup>i\<^esup>) t_utm stpa = (0, Bk\<^bsup>ma\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>na\<^esup>)" - and gr: "rs > 0" - thus "\stp m n. steps (Suc 0, [Bk], <[code tp, bl2wc ()]> @ Bk\<^bsup>i\<^esup>) t_utm stp = (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>)" - apply(rule_tac x = stpa in exI) - proof(case_tac "steps (Suc 0, [Bk], <[code tp, bl2wc ()]> @ Bk\<^bsup>i\<^esup>) t_utm stpa", simp) - fix a b c - assume "steps (Suc 0, [Bk, Bk], <[code tp, bl2wc ()]> @ Bk\<^bsup>i\<^esup>) t_utm stpa = (0, Bk\<^bsup>ma\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>na\<^esup>)" - "steps (Suc 0, [Bk], <[code tp, bl2wc ()]> @ Bk\<^bsup>i\<^esup>) t_utm stpa = (a, b, c)" - thus "a = 0 \ (\m. b = Bk\<^bsup>m\<^esup>) \ (\n. c = Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>)" - using tinres_steps[of "[Bk, Bk]" "[Bk]" "Suc 0" "<[code tp, bl2wc ()]> @ Bk\<^bsup>i\<^esup>" t_utm stpa 0 - "Bk\<^bsup>ma\<^esup>" "Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>na\<^esup>" a b c] - apply(simp) - apply(auto simp: tinres_def) - apply(rule_tac x = "ma + n" in exI, simp add: exp_add) + obtain ap arity fp where a: "rec_ci rec_F = (ap, arity, fp)" + by (metis prod_cases3) + moreover have b: "rec_calc_rel rec_F [code tp, (bl2wc ())] (rs - Suc 0)" + using assms + apply(rule_tac F_correct, simp_all) + done + have "\ stp m l. steps0 (Suc 0, Bk # Bk # [], <[code tp, bl2wc ()]> @ Bk\i) + (F_tprog @ shift (mopup 2) (length F_tprog div 2)) stp + = (0, Bk\m @ Bk # Bk # [], Oc\Suc (rs - 1) @ Bk\l)" + proof(rule_tac recursive_compile_to_tm_correct) + show "rec_ci rec_F = (ap, arity, fp)" using a by simp + next + show "rec_calc_rel rec_F [code tp, bl2wc ()] (rs - 1)" + using b by simp + next + show "length [code tp, bl2wc ()] = 2" by simp + next + show "layout_of (ap [+] dummy_abc 2) = layout_of (ap [+] dummy_abc 2)" + by simp + next + show "F_tprog = tm_of (ap [+] dummy_abc 2)" + using a + apply(simp add: F_tprog_def F_aprog_def numeral_2_eq_2) done qed + then obtain stp m l where + "steps0 (Suc 0, Bk # Bk # [], <[code tp, bl2wc ()]> @ Bk\i) + (F_tprog @ shift (mopup 2) (length F_tprog div 2)) stp + = (0, Bk\m @ Bk # Bk # [], Oc\Suc (rs - 1) @ Bk\l)" by blast + hence "\ m. steps0 (Suc 0, [Bk], <[code tp, bl2wc ()]> @ Bk\i) + (F_tprog @ shift (mopup 2) (length F_tprog div 2)) stp + = (0, Bk\m, Oc\Suc (rs - 1) @ Bk\l)" + proof - + assume g: "steps0 (Suc 0, [Bk, Bk], <[code tp, bl2wc ()]> @ Bk \ i) + (F_tprog @ shift (mopup 2) (length F_tprog div 2)) stp = + (0, Bk \ m @ [Bk, Bk], Oc \ Suc (rs - 1) @ Bk \ l)" + moreover have "tinres [Bk, Bk] [Bk]" + apply(auto simp: tinres_def) + done + moreover obtain sa la ra where "steps0 (Suc 0, [Bk], <[code tp, bl2wc ()]> @ Bk\i) + (F_tprog @ shift (mopup 2) (length F_tprog div 2)) stp = (sa, la, ra)" + apply(case_tac "steps0 (Suc 0, [Bk], <[code tp, bl2wc ()]> @ Bk\i) + (F_tprog @ shift (mopup 2) (length F_tprog div 2)) stp", auto) + done + ultimately show "?thesis" + apply(drule_tac tinres_steps1, auto) + done + qed + thus "?thesis" + apply(auto) + apply(rule_tac x = stp in exI, simp add: t_utm_def) + using assms + apply(case_tac rs, simp_all add: numeral_2_eq_2) + done qed -lemma [intro]: "t_correct t_wcode" +lemma [intro]: "tm_wf (t_wcode, 0)" apply(simp add: t_wcode_def) -apply(auto) +apply(rule_tac tm_wf_comp) +apply(rule_tac tm_wf_comp, auto) done -lemma [intro]: "t_correct t_utm" -apply(simp add: t_utm_def F_tprog_def) +lemma [intro]: "tm_wf (t_utm, 0)" +apply(simp only: t_utm_def F_tprog_def) apply(rule_tac t_compiled_correct, auto) done lemma UTM_halt_lemma_pre: - "\turing_basic.t_correct tp; - 0 < rs; - args \ []; - steps (Suc 0, Bk\<^bsup>i\<^esup>, ) tp stp = (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup>@Bk\<^bsup>k\<^esup>)\ - \ \stp m n. steps (Suc 0, [], ) UTM_pre stp = - (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>)" + assumes wf_tm: "tm_wf (tp, 0)" + and result: "0 < rs" + and args: "args \ []" + and exec: "steps0 (Suc 0, Bk\(i), ) tp stp = (0, Bk\(m), Oc\(rs)@Bk\(k))" + shows "\stp m n. steps0 (Suc 0, [], ) UTM_pre stp = + (0, Bk\(m), Oc\(rs) @ Bk\(n))" proof - - let ?Q2 = "\ (l, r). (\ ln rn. l = Bk\<^bsup>ln\<^esup> \ r = Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" - term ?Q2 + let ?Q2 = "\ (l, r). (\ ln rn. l = Bk\(ln) \ r = Oc\(rs) @ Bk\(rn))" let ?P1 = "\ (l, r). l = [] \ r = " let ?Q1 = "\ (l, r). (l = [Bk] \ - (\ rn. r = Oc\<^bsup>Suc (code tp)\<^esup> @ Bk # Oc\<^bsup>Suc (bl_bin ())\<^esup> @ Bk\<^bsup>rn\<^esup>))" + (\ rn. r = Oc\(Suc (code tp)) @ Bk # Oc\(Suc (bl_bin ())) @ Bk\(rn)))" let ?P2 = ?Q1 let ?P3 = "\ (l, r). False" - assume h: "turing_basic.t_correct tp" "0 < rs" - "args \ []" "steps (Suc 0, Bk\<^bsup>i\<^esup>, ) tp stp = (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup>@Bk\<^bsup>k\<^esup>)" - have "?P1 \-> \ tp. (\ stp tp'. steps (Suc 0, tp) - (t_wcode |+| t_utm) stp = (0, tp') \ ?Q2 tp')" - proof(rule_tac turing_merge.t_merge_halt [of "t_wcode" "t_utm" - ?P1 ?P2 ?P3 ?P3 ?Q1 ?Q2], auto simp: turing_merge_def) - show "\stp. case steps (Suc 0, [], ) t_wcode stp of (st, tp') \ - st = 0 \ (case tp' of (l, r) \ l = [Bk] \ - (\rn. r = Oc\<^bsup>Suc (code tp)\<^esup> @ Bk # Oc\<^bsup>Suc (bl_bin ())\<^esup> @ Bk\<^bsup>rn\<^esup>))" - using wcode_lemma_1[of args "code tp"] h - apply(simp, auto) - apply(rule_tac x = stpa in exI, auto) - done + have "{?P1} (t_wcode |+| t_utm) {?Q2}" + proof(rule_tac Hoare_plus_halt) + show "?Q1 \ ?P2" + by(simp add: assert_imp_def) next - fix rn - show "\stp. case steps (Suc 0, [Bk], Oc\<^bsup>Suc (code tp)\<^esup> @ - Bk # Oc\<^bsup>Suc (bl_bin ())\<^esup> @ Bk\<^bsup>rn\<^esup>) t_utm stp of - (st, tp') \ st = 0 \ (case tp' of (l, r) \ - (\ln. l = Bk\<^bsup>ln\<^esup>) \ (\rn. r = Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>rn\<^esup>))" - using t_utm_halt_eq[of tp rs i args stp m k rn] h + show "tm_wf (t_wcode, 0)" by auto + next + show "{?P1} t_wcode {?Q1}" + apply(rule_tac HoareI, auto) + using wcode_lemma_1[of args "code tp"] args apply(auto) - apply(rule_tac x = stpa in exI, simp add: bin_wc_eq - tape_of_nat_list.simps tape_of_nl_abv) - apply(auto) + apply(rule_tac x = stp in exI, simp) done next - show "?Q1 \-> ?P2" - apply(simp add: t_imply_def) + show "{?P2} t_utm {?Q2}" + proof(rule_tac HoareI, auto) + fix rn + show "\n. is_final (steps0 (Suc 0, [Bk], Oc # Oc \ code tp @ Bk # Oc # Oc \ bl_bin () @ Bk \ rn) t_utm n) \ + (\(l, r). (\ln. l = Bk \ ln) \ + (\rn. r = Oc \ rs @ Bk \ rn)) holds_for steps0 (Suc 0, [Bk], + Oc # Oc \ code tp @ Bk # Oc # Oc \ bl_bin () @ Bk \ rn) t_utm n" + using t_utm_halt_eq[of tp i "args" stp m rs k rn] assms + apply(auto simp: bin_wc_eq) + apply(rule_tac x = stpa in exI, simp add: tape_of_nl_abv) done + qed qed thus "?thesis" - apply(simp add: t_imply_def) - apply(auto simp: UTM_pre_def) + apply(auto simp: Hoare_def UTM_pre_def) + apply(case_tac "steps0 (Suc 0, [], ) (t_wcode |+| t_utm) n") + apply(rule_tac x = n in exI, simp) done qed @@ -4784,84 +4930,81 @@ The correctness of @{text "UTM"}, the halt case. *} lemma UTM_halt_lemma: - "\turing_basic.t_correct tp; - 0 < rs; - args \ []; - steps (Suc 0, Bk\<^bsup>i\<^esup>, ) tp stp = (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup>@Bk\<^bsup>k\<^esup>)\ - \ \stp m n. steps (Suc 0, [], ) UTM stp = - (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>)" -using UTM_halt_lemma_pre[of tp rs args i stp m k] + assumes tm_wf: "tm_wf (tp, 0)" + and result: "0 < rs" + and args: "args \ []" + and exec: "steps0 (Suc 0, Bk\(i), ) tp stp = (0, Bk\(m), Oc\(rs)@Bk\(k))" + shows "\stp m n. steps0 (Suc 0, [], ) UTM stp = + (0, Bk\(m), Oc\(rs) @ Bk\(n))" +using UTM_halt_lemma_pre[of tp rs args i stp m k] assms apply(simp add: UTM_pre_def t_utm_def UTM_def F_aprog_def F_tprog_def) apply(case_tac "rec_ci rec_F", simp) done -definition TSTD:: "t_conf \ bool" +definition TSTD:: "config \ bool" where "TSTD c = (let (st, l, r) = c in - st = 0 \ (\ m. l = Bk\<^bsup>m\<^esup>) \ (\ rs n. r = Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>))" - -thm abacus_turing_eq_uhalt + st = 0 \ (\ m. l = Bk\(m)) \ (\ rs n. r = Oc\(Suc rs) @ Bk\(n)))" lemma nstd_case1: "0 < a \ NSTD (trpl_code (a, b, c))" apply(simp add: NSTD.simps trpl_code.simps) done -lemma [simp]: "\m. b \ Bk\<^bsup>m\<^esup> \ 0 < bl2wc b" +lemma [simp]: "\m. b \ Bk\(m) \ 0 < bl2wc b" apply(rule classical, simp) apply(induct b, erule_tac x = 0 in allE, simp) apply(simp add: bl2wc.simps, case_tac a, simp_all add: bl2nat.simps bl2nat_double) -apply(case_tac "\ m. b = Bk\<^bsup>m\<^esup>", erule exE) -apply(erule_tac x = "Suc m" in allE, simp add: exp_ind_def, simp) -done -lemma nstd_case2: "\m. b \ Bk\<^bsup>m\<^esup> \ NSTD (trpl_code (a, b, c))" +apply(case_tac "\ m. b = Bk\(m)", erule exE) +apply(erule_tac x = "Suc m" in allE, simp add: , simp) +done + +lemma nstd_case2: "\m. b \ Bk\(m) \ NSTD (trpl_code (a, b, c))" apply(simp add: NSTD.simps trpl_code.simps) done -thm lg.simps -thm lgR.simps - lemma [elim]: "Suc (2 * x) = 2 * y \ RR" apply(induct x arbitrary: y, simp, simp) apply(case_tac y, simp, simp) done -lemma bl2nat_zero_eq[simp]: "(bl2nat c 0 = 0) = (\n. c = Bk\<^bsup>n\<^esup>)" +declare replicate_Suc[simp del] + +lemma bl2nat_zero_eq[simp]: "(bl2nat c 0 = 0) = (\n. c = Bk\(n))" apply(auto) -apply(induct c, simp add: bl2nat.simps) -apply(rule_tac x = 0 in exI, simp) +apply(induct c, simp_all add: bl2nat.simps) apply(case_tac a, auto simp: bl2nat.simps bl2nat_double) done lemma bl2wc_exp_ex: - "\Suc (bl2wc c) = 2 ^ m\ \ \ rs n. c = Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>" + "\Suc (bl2wc c) = 2 ^ m\ \ \ rs n. c = Oc\(rs) @ Bk\(n)" apply(induct c arbitrary: m, simp add: bl2wc.simps bl2nat.simps) apply(case_tac a, auto) apply(case_tac m, simp_all add: bl2wc.simps, auto) apply(rule_tac x = 0 in exI, rule_tac x = "Suc n" in exI, - simp add: exp_ind_def) + simp add: replicate_Suc) apply(simp add: bl2wc.simps bl2nat.simps bl2nat_double) apply(case_tac m, simp, simp) proof - fix c m nat assume ind: - "\m. Suc (bl2nat c 0) = 2 ^ m \ \rs n. c = Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>" + "\m. Suc (bl2nat c 0) = 2 ^ m \ \rs n. c = Oc\(rs) @ Bk\(n)" and h: "Suc (Suc (2 * bl2nat c 0)) = 2 * 2 ^ nat" - have "\rs n. c = Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>" + have "\rs n. c = Oc\(rs) @ Bk\(n)" apply(rule_tac m = nat in ind) using h apply(simp) done - from this obtain rs n where " c = Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>" by blast - thus "\rs n. Oc # c = Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>" - apply(rule_tac x = "Suc rs" in exI, simp add: exp_ind_def) - apply(rule_tac x = n in exI, simp) + from this obtain rs n where " c = Oc\(rs) @ Bk\(n)" by blast + thus "\rs n. Oc # c = Oc\(rs) @ Bk\(n)" + apply(rule_tac x = "Suc rs" in exI, simp add: ) + apply(rule_tac x = n in exI, simp add: replicate_Suc) done qed -lemma [elim]: - "\\rs n. c \ Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>; +lemma lg_bin: + "\\rs n. c \ Oc\(Suc rs) @ Bk\(n); bl2wc c = 2 ^ lg (Suc (bl2wc c)) 2 - Suc 0\ \ bl2wc c = 0" apply(subgoal_tac "\ m. Suc (bl2wc c) = 2^m", erule_tac exE) apply(drule_tac bl2wc_exp_ex, simp, erule_tac exE, erule_tac exE) @@ -4876,10 +5019,10 @@ done lemma nstd_case3: - "\rs n. c \ Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup> \ NSTD (trpl_code (a, b, c))" + "\rs n. c \ Oc\(Suc rs) @ Bk\(n) \ NSTD (trpl_code (a, b, c))" apply(simp add: NSTD.simps trpl_code.simps) -apply(rule_tac impI) -apply(rule_tac disjI2, rule_tac disjI2, auto) +apply(auto) +apply(drule_tac lg_bin, simp_all) done lemma NSTD_1: "\ TSTD (a, b, c) @@ -4893,10 +5036,10 @@ done lemma nonstop_t_uhalt_eq: - "\turing_basic.t_correct tp; - steps (Suc 0, Bk\<^bsup>l\<^esup>, ) tp stp = (a, b, c); - \ TSTD (a, b, c)\ - \ rec_exec rec_nonstop [code tp, bl2wc (), stp] = Suc 0" + "\tm_wf (tp, 0); + steps0 (Suc 0, Bk\(l), ) tp stp = (a, b, c); + \ TSTD (a, b, c)\ + \ rec_exec rec_nonstop [code tp, bl2wc (), stp] = Suc 0" apply(simp add: rec_nonstop_def rec_exec.simps) apply(subgoal_tac "rec_exec rec_conf [code tp, bl2wc (), stp] = @@ -4907,12 +5050,12 @@ done lemma nonstop_true: - "\turing_basic.t_correct tp; - \ stp. (\ TSTD (steps (Suc 0, Bk\<^bsup>l\<^esup>, ) tp stp))\ - \ \y. rec_calc_rel rec_nonstop - ([code tp, bl2wc (), y]) (Suc 0)" + "\tm_wf (tp, 0); + \ stp. (\ TSTD (steps0 (Suc 0, Bk\(l), ) tp stp))\ + \ \y. rec_calc_rel rec_nonstop + ([code tp, bl2wc (), y]) (Suc 0)" apply(rule_tac allI, erule_tac x = y in allE) -apply(case_tac "steps (Suc 0, Bk\<^bsup>l\<^esup>, ) tp y", simp) +apply(case_tac "steps0 (Suc 0, Bk\(l), ) tp y", simp) apply(rule_tac nonstop_t_uhalt_eq, simp_all) done @@ -4928,10 +5071,10 @@ declare ci_cn_para_eq[simp] lemma F_aprog_uhalt: - "\turing_basic.t_correct tp; - \ stp. (\ TSTD (steps (Suc 0, Bk\<^bsup>l\<^esup>, ) tp stp)); + "\tm_wf (tp,0); + \ stp. (\ TSTD (steps0 (Suc 0, Bk\(l), ) tp stp)); rec_ci rec_F = (F_ap, rs_pos, a_md)\ - \ \ stp. case abc_steps_l (0, [code tp, bl2wc ()] @ 0\<^bsup>a_md - rs_pos \<^esup> + \ \ stp. case abc_steps_l (0, [code tp, bl2wc ()] @ 0\(a_md - rs_pos ) @ suflm) (F_ap) stp of (ss, e) \ ss < length (F_ap)" apply(case_tac "rec_ci (Cn (Suc (Suc 0)) rec_right [Cn (Suc (Suc 0)) rec_conf ([id (Suc (Suc 0)) 0, id (Suc (Suc 0)) (Suc 0), rec_halt])])") @@ -4974,11 +5117,9 @@ apply(simp) done -thm abc_list_crsp_steps - lemma uabc_uhalt': - "\turing_basic.t_correct tp; - \ stp. (\ TSTD (steps (Suc 0, Bk\<^bsup>l\<^esup>, ) tp stp)); + "\tm_wf (tp, 0); + \ stp. (\ TSTD (steps0 (Suc 0, Bk\(l), ) tp stp)); rec_ci rec_F = (ap, pos, md)\ \ \ stp. case abc_steps_l (0, [code tp, bl2wc ()]) ap stp of (ss, e) \ ss < length ap" @@ -4986,20 +5127,20 @@ and suflm = "[]" in F_aprog_uhalt, auto) fix stp a b assume h: - "\stp. case abc_steps_l (0, code tp # bl2wc () # 0\<^bsup>md - pos\<^esup>) ap stp of + "\stp. case abc_steps_l (0, code tp # bl2wc () # 0\(md - pos)) ap stp of (ss, e) \ ss < length ap" "abc_steps_l (0, [code tp, bl2wc ()]) ap stp = (a, b)" - "turing_basic.t_correct tp" + "tm_wf (tp, 0)" "rec_ci rec_F = (ap, pos, md)" moreover have "ap \ []" using h apply(rule_tac rec_ci_not_null, simp) done ultimately show "a < length ap" proof(erule_tac x = stp in allE, - case_tac "abc_steps_l (0, code tp # bl2wc () # 0\<^bsup>md - pos\<^esup>) ap stp", simp) + case_tac "abc_steps_l (0, code tp # bl2wc () # 0\(md - pos)) ap stp", simp) fix aa ba assume g: "aa < length ap" - "abc_steps_l (0, code tp # bl2wc () # 0\<^bsup>md - pos\<^esup>) ap stp = (aa, ba)" + "abc_steps_l (0, code tp # bl2wc () # 0\(md - pos)) ap stp = (aa, ba)" "ap \ []" thus "?thesis" using abc_list_crsp_steps[of "[code tp, bl2wc ()]" @@ -5010,8 +5151,8 @@ qed lemma uabc_uhalt: - "\turing_basic.t_correct tp; - \ stp. (\ TSTD (steps (Suc 0, Bk\<^bsup>l\<^esup>, ) tp stp))\ + "\tm_wf (tp, 0); + \ stp. (\ TSTD (steps0 (Suc 0, Bk\(l), ) tp stp))\ \ \ stp. case abc_steps_l (0, [code tp, bl2wc ()]) F_aprog stp of (ss, e) \ ss < length F_aprog" apply(case_tac "rec_ci rec_F", simp add: F_aprog_def) @@ -5034,41 +5175,46 @@ qed lemma tutm_uhalt': - "\turing_basic.t_correct tp; - \ stp. (\ TSTD (steps (Suc 0, Bk\<^bsup>l\<^esup>, ) tp stp))\ - \ \ stp. \ isS0 (steps (Suc 0, [Bk, Bk], <[code tp, bl2wc ()]>) t_utm stp)" - using abacus_turing_eq_uhalt[of "layout_of (F_aprog)" - "F_aprog" "F_tprog" "[code tp, bl2wc ()]" - "start_of (layout_of (F_aprog )) (length (F_aprog))" - "Suc (Suc 0)"] -apply(simp add: F_tprog_def) -apply(subgoal_tac "\stp. case abc_steps_l (0, [code tp, bl2wc ()]) - (F_aprog) stp of (as, am) \ as < length (F_aprog)", simp) -thm abacus_turing_eq_uhalt -apply(simp add: t_utm_def F_tprog_def) -apply(rule_tac uabc_uhalt, simp_all) -done - +assumes tm_wf: "tm_wf (tp,0)" + and unhalt: "\ stp. (\ TSTD (steps0 (Suc 0, Bk\(l), ) tp stp))" + shows "\ stp. \ is_final (steps0 (Suc 0, [Bk, Bk], <[code tp, bl2wc ()]>) t_utm stp)" +apply(simp add: t_utm_def) +proof(rule_tac compile_correct_unhalt) + show "layout_of F_aprog = layout_of F_aprog" by simp +next + show "F_tprog = tm_of F_aprog" + by(simp add: F_tprog_def) +next + show "crsp (layout_of F_aprog) (0, [code tp, bl2wc ()]) (Suc 0, [Bk, Bk], <[code tp, bl2wc ()]>) []" + by(auto simp: crsp.simps start_of.simps) +next + show "length F_tprog div 2 = length F_tprog div 2" by simp +next + show "\stp. case abc_steps_l (0, [code tp, bl2wc ()]) F_aprog stp of (as, am) \ as < length F_aprog" + using assms + apply(erule_tac uabc_uhalt, simp) + done +qed + + lemma tinres_commute: "tinres r r' \ tinres r' r" apply(auto simp: tinres_def) done lemma inres_tape: - "\steps (st, l, r) tp stp = (a, b, c); steps (st, l', r') tp stp = (a', b', c'); + "\steps0 (st, l, r) tp stp = (a, b, c); steps0 (st, l', r') tp stp = (a', b', c'); tinres l l'; tinres r r'\ \ a = a' \ tinres b b' \ tinres c c'" -proof(case_tac "steps (st, l', r) tp stp") +proof(case_tac "steps0 (st, l', r) tp stp") fix aa ba ca - assume h: "steps (st, l, r) tp stp = (a, b, c)" - "steps (st, l', r') tp stp = (a', b', c')" + assume h: "steps0 (st, l, r) tp stp = (a, b, c)" + "steps0 (st, l', r') tp stp = (a', b', c')" "tinres l l'" "tinres r r'" - "steps (st, l', r) tp stp = (aa, ba, ca)" + "steps0 (st, l', r) tp stp = (aa, ba, ca)" have "tinres b ba \ c = ca \ a = aa" using h - apply(rule_tac tinres_steps, auto) + apply(rule_tac tinres_steps1, auto) done - - thm tinres_steps2 moreover have "b' = ba \ tinres c' ca \ a' = aa" using h apply(rule_tac tinres_steps2, auto intro: tinres_commute) @@ -5078,73 +5224,70 @@ done qed -lemma tape_normalize: "\ stp. \ isS0 (steps (Suc 0, [Bk, Bk], <[code tp, bl2wc ()]>) t_utm stp) - \ \ stp. \ isS0 (steps (Suc 0, Bk\<^bsup>m\<^esup>, <[code tp, bl2wc ()]> @ Bk\<^bsup>n\<^esup>) t_utm stp)" -apply(rule_tac allI, case_tac "(steps (Suc 0, Bk\<^bsup>m\<^esup>, - <[code tp, bl2wc ()]> @ Bk\<^bsup>n\<^esup>) t_utm stp)", simp add: isS0_def) +lemma tape_normalize: "\ stp. \ is_final(steps0 (Suc 0, [Bk, Bk], <[code tp, bl2wc ()]>) t_utm stp) + \ \ stp. \ is_final (steps0 (Suc 0, Bk\(m), <[code tp, bl2wc ()]> @ Bk\(n)) t_utm stp)" +apply(rule_tac allI, case_tac "(steps0 (Suc 0, Bk\(m), + <[code tp, bl2wc ()]> @ Bk\(n)) t_utm stp)", simp) apply(erule_tac x = stp in allE) -apply(case_tac "steps (Suc 0, [Bk, Bk], <[code tp, bl2wc ()]>) t_utm stp", simp) +apply(case_tac "steps0 (Suc 0, [Bk, Bk], <[code tp, bl2wc ()]>) t_utm stp", simp) apply(drule_tac inres_tape, auto) apply(auto simp: tinres_def) apply(case_tac "m > Suc (Suc 0)") apply(rule_tac x = "m - Suc (Suc 0)" in exI) -apply(case_tac m, simp_all add: exp_ind_def, case_tac nat, simp_all add: exp_ind_def) -apply(rule_tac x = "2 - m" in exI, simp add: exp_ind_def[THEN sym] exp_add[THEN sym]) -apply(simp only: numeral_2_eq_2, simp add: exp_ind_def) +apply(case_tac m, simp_all add: , case_tac nat, simp_all add: replicate_Suc) +apply(rule_tac x = "2 - m" in exI, simp add: exp_add[THEN sym]) +apply(simp only: numeral_2_eq_2, simp add: replicate_Suc) done lemma tutm_uhalt: - "\turing_basic.t_correct tp; - \ stp. (\ TSTD (steps (Suc 0, Bk\<^bsup>l\<^esup>, ) tp stp))\ - \ \ stp. \ isS0 (steps (Suc 0, Bk\<^bsup>m\<^esup>, <[code tp, bl2wc ()]> @ Bk\<^bsup>n\<^esup>) t_utm stp)" + "\tm_wf (tp,0); + \ stp. (\ TSTD (steps0 (Suc 0, Bk\(l), ) tp stp))\ + \ \ stp. \ is_final (steps0 (Suc 0, Bk\(m), <[code tp, bl2wc ()]> @ Bk\(n)) t_utm stp)" apply(rule_tac tape_normalize) apply(rule_tac tutm_uhalt', simp_all) done lemma UTM_uhalt_lemma_pre: - "\turing_basic.t_correct tp; - \ stp. (\ TSTD (steps (Suc 0, Bk\<^bsup>l\<^esup>, ) tp stp)); - args \ []\ - \ \ stp. \ isS0 (steps (Suc 0, [], ) UTM_pre stp)" + assumes tm_wf: "tm_wf (tp, 0)" + and exec: "\ stp. (\ TSTD (steps0 (Suc 0, Bk\(l), ) tp stp))" + and args: "args \ []" + shows "\ stp. \ is_final (steps0 (Suc 0, [], ) UTM_pre stp)" proof - let ?P1 = "\ (l, r). l = [] \ r = " let ?Q1 = "\ (l, r). (l = [Bk] \ - (\ rn. r = Oc\<^bsup>Suc (code tp)\<^esup> @ Bk # Oc\<^bsup>Suc (bl_bin ())\<^esup> @ Bk\<^bsup>rn\<^esup>))" - let ?P4 = ?Q1 - let ?P3 = "\ (l, r). False" - assume h: "turing_basic.t_correct tp" "\stp. \ TSTD (steps (Suc 0, Bk\<^bsup>l\<^esup>, ) tp stp)" - "args \ []" - have "?P1 \-> \ tp. \ (\ stp. isS0 (steps (Suc 0, tp) (t_wcode |+| t_utm) stp))" - proof(rule_tac turing_merge.t_merge_uhalt [of "t_wcode" "t_utm" - ?P1 ?P3 ?P3 ?P4 ?Q1 ?P3], auto simp: turing_merge_def) - show "\stp. case steps (Suc 0, [], ) t_wcode stp of (st, tp') \ - st = 0 \ (case tp' of (l, r) \ l = [Bk] \ - (\rn. r = Oc\<^bsup>Suc (code tp)\<^esup> @ Bk # Oc\<^bsup>Suc (bl_bin ())\<^esup> @ Bk\<^bsup>rn\<^esup>))" - using wcode_lemma_1[of args "code tp"] h - apply(simp, auto) - apply(rule_tac x = stp in exI, auto) - done + (\ rn. r = Oc\(Suc (code tp)) @ Bk # Oc\(Suc (bl_bin ())) @ Bk\(rn)))" + let ?P2 = ?Q1 + have "{?P1} (t_wcode |+| t_utm) \" + proof(rule_tac Hoare_plus_unhalt) + show "?Q1 \ ?P2" + by(simp add: assert_imp_def) next - fix rn stp - show " isS0 (steps (Suc 0, [Bk], Oc\<^bsup>Suc (code tp)\<^esup> @ Bk # Oc\<^bsup>Suc (bl_bin ())\<^esup> @ Bk\<^bsup>rn\<^esup>) t_utm stp) - \ False" - using tutm_uhalt[of tp l args "Suc 0" rn] h - apply(simp) - apply(erule_tac x = stp in allE) - apply(simp add: tape_of_nl_abv tape_of_nat_list.simps bin_wc_eq) + show "tm_wf (t_wcode, 0)" by auto + next + show "{?P1} t_wcode {?Q1}" + apply(rule_tac HoareI, auto) + using wcode_lemma_1[of args "code tp"] args + apply(auto) + apply(rule_tac x = stp in exI, simp) done next - fix rn stp - show "isS0 (steps (Suc 0, [Bk], Oc\<^bsup>Suc (code tp)\<^esup> @ Bk # Oc\<^bsup>Suc (bl_bin ())\<^esup> @ Bk\<^bsup>rn\<^esup>) t_utm stp) \ - isS0 (steps (Suc 0, [Bk], Oc\<^bsup>Suc (code tp)\<^esup> @ Bk # Oc\<^bsup>Suc (bl_bin ())\<^esup> @ Bk\<^bsup>rn\<^esup>) t_utm stp)" - by simp - next - show "?Q1 \-> ?P4" - apply(simp add: t_imply_def) - done + show "{?P2} t_utm \" + proof(rule_tac Hoare_unhalt_I, auto) + fix n rn + assume h: "is_final (steps0 (Suc 0, [Bk], Oc \ Suc (code tp) @ Bk # Oc \ Suc (bl_bin ()) @ Bk \ rn) t_utm n)" + have "\ stp. \ is_final (steps0 (Suc 0, Bk\(Suc 0), <[code tp, bl2wc ()]> @ Bk\(rn)) t_utm stp)" + using assms + apply(rule_tac tutm_uhalt, simp_all) + done + thus "False" + using h + apply(erule_tac x = n in allE) + apply(simp add: tape_of_nl_abv bin_wc_eq) + done + qed qed thus "?thesis" - apply(simp add: t_imply_def UTM_pre_def) + apply(simp add: Hoare_unhalt_def UTM_pre_def) done qed @@ -5153,11 +5296,11 @@ *} lemma UTM_uhalt_lemma: - "\turing_basic.t_correct tp; - \ stp. (\ TSTD (steps (Suc 0, Bk\<^bsup>l\<^esup>, ) tp stp)); - args \ []\ - \ \ stp. \ isS0 (steps (Suc 0, [], ) UTM stp)" -using UTM_uhalt_lemma_pre[of tp l args] + assumes tm_wf: "tm_wf (tp, 0)" + and unhalt: "\ stp. (\ TSTD (steps0 (Suc 0, Bk\(l), ) tp stp))" + and args: "args \ []" + shows " \ stp. \ is_final (steps0 (Suc 0, [], ) UTM stp)" + using UTM_uhalt_lemma_pre[of tp l args] assms apply(simp add: UTM_pre_def t_utm_def UTM_def F_aprog_def F_tprog_def) apply(case_tac "rec_ci rec_F", simp) done diff -r 1e89c65f844b -r e995ae949731 thys/recursive.thy --- a/thys/recursive.thy Wed Feb 06 04:11:06 2013 +0000 +++ b/thys/recursive.thy Wed Feb 06 04:27:03 2013 +0000 @@ -4879,10 +4879,18 @@ apply(drule_tac x="length args" in meta_spec) apply(drule_tac x="tm_of (a [+] dummy_abc (length args))" in meta_spec) apply(auto) -apply(rule_tac x="m" in exI) -apply(rule_tac x="n" in exI) apply(simp add: tape_of_nat_abv) apply(subgoal_tac "b = length args") +apply(simp add: Hoare_halt_def) +apply(auto)[1] +apply(rule_tac x="na" in exI) +apply(auto)[1] +apply(case_tac "steps0 (Suc 0, [Bk, Bk], ) + (tm_of (a [+] dummy_abc (length args)) @ + shift (mopup (length args)) + (listsum + (layout_of (a [+] dummy_abc (length args))))) + na") apply(simp) by (metis assms para_pattern)