Mechanising Turing Machines and Computability Theory in Isabelle

Jian Xu Xingyuan Zhang
PLA University of Science and Technology

Christian Urban King's College London

Why Turing Machines?

 At the beginning, it was just a student project about computability.

Computability and Logic (5th. ed) Boolos, Burgess and Jeffrey

• found an inconsistency in the definition of halting computations (Chap. 3 vs Chap. 8)

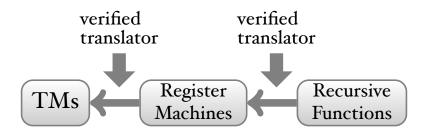
Some Previous Works

- Norrish formalised computability theory in HOL starting from the lambda-calculus
 - for technical reasons we could not follow him
 - some proofs use TMs (Wang tilings)
- Asperti and Ricciotti formalised TMs in Matita
 - no undecidability ⇒ interest in complexity
 - their UTM operates on a different alphabet than the TMs it simulates.

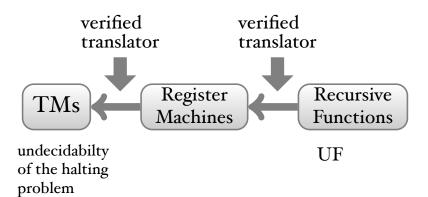
"In particular, the fact that the universal machine operates with a different alphabet with respect to the machines it simulates is annoying." [Asperti and Ricciotti]

The Big Picture

The Big Picture

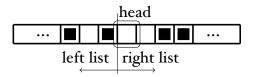


The Big Picture



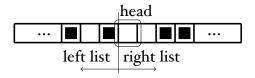
Turing Machines

• tapes are lists and contain 0s or 1s only



Turing Machines

tapes are lists and contain 0s or 1s only

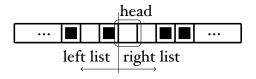


• *steps* function:

What does the TM claclulate after it has executed *n* steps?

Turing Machines

tapes are lists and contain 0s or 1s only



- *steps* function:
 - What does the TM claclulate after it has executed *n* steps?
- designate the *0*-state as "halting state" and remain there forever, i.e. have a *Nop*-action

Register Machines

• programs are lists of instructions

```
I ::= Goto L jump to instruction L
| Inc R increment register R by one
| Dec R L if content of R is non-zero, then decrement it by one otherwise jump to instruction L
```

Register Machines

Spaghetti Code!

instructions

I ::= Goto L $\mid Inc R$ $\mid Dec R L$

jump to instruction L increment register R by one if content of R is non-zero, then decrement it by one otherwise jump to instruction L

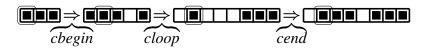
Recursive Functions

```
rec ::= Zzero-function| Ssuccessor-function| Id_m^nprojection| Cn^n fgscomposition| Pr^n fgprimitive recursion| Mn^n fminimisation
```

- eval :: rec ⇒ nat list ⇒ nat
 can be defined by simple recursion
 (HOL has Least)
- you define
 - addition, multiplication, logical operations, quantifiers...
 - coding of numbers (Cantor encoding), UTM

Copy Turing Machine

• TM that copies a number on the input tape



 $copy \stackrel{def}{=} cbegin ; cloop ; cend$

Hoare Logic for TMs

Hoare-triples

```
{P} p {Q} \stackrel{def}{=} \forall tp.

if P tp holds then
\exists n. such that

is_final (steps (1, tp) p n) ∧

O holds for (steps (1, tp) p n)
```

Hoare Logic for TMs

• Hoare-triples and Hoare-pairs:

```
 \begin{array}{cccc} \{P\} \ p \ \{Q\} \end{array} \stackrel{def}{=} & & & \\ \forall \ tp. & & \forall \ tp. \\ \text{if } P \ tp \ \text{holds then} & & \text{if } P \ tp \ \text{holds then} \\ \exists \ n. \ \text{such that} & & \forall \ n. \ \neg \ is \ \underline{final} \ (steps \ (1, \ tp) \ p \ n) \\ is \underline{final} \ (steps \ (1, \ tp) \ p \ n) & \wedge \\ O \ holds \ for \ (steps \ (1, \ tp) \ p \ n) \end{array}
```

Some Derived Rules

$$\frac{P' \mapsto P \quad \{P\} \ p \ \{Q\} \quad Q \mapsto Q'}{\{P'\} \ p \ \{Q'\}}$$

$$\frac{\{P\} p_1 \{Q\} \quad \{Q\} p_2 \{R\}}{\{P\} p_1 ; p_2 \{R\}} \quad \frac{\{P\} p_1 \{Q\} \quad \{Q\} p_2 \uparrow}{\{P\} p_1 ; p_2 \uparrow}$$

Undecidability

 $contra \stackrel{def}{=} copy$; H; dither

Undecidability

$$contra \stackrel{def}{=} copy$$
; H ; $dither$

 Suppose H decides contra called with code of contra halts, then

```
P_1 \stackrel{def}{=} \lambda tp. \ tp = ([], \langle code \ contra \rangle)
P_2 \stackrel{def}{=} \lambda tp. \ tp = ([0], \langle (code \ contra, \ code \ contra) \rangle)
P_3 \stackrel{def}{=} \lambda tp. \ \exists \ k. \ tp = (0^k, \langle 0 \rangle)
```

$$\frac{\{P_1\} copy \{P_2\} \quad \{P_2\} H \{P_3\}}{\{P_1\} copy ; H \{P_3\}} \quad \{P_3\} dither \uparrow \\ \{P_1\} contra \uparrow$$

Undecidability

$$contra \stackrel{\textit{def}}{=} copy$$
; H ; $dither$

 Suppose H decides contra called with code of contra does not halt, then

```
Q_{1} \stackrel{def}{=} \lambda tp. \ tp = ([], \langle code \ contra \rangle)
Q_{2} \stackrel{def}{=} \lambda tp. \ tp = ([0], \langle (code \ contra, \ code \ contra) \rangle)
Q_{3} \stackrel{def}{=} \lambda tp. \ \exists \ k. \ tp = (0^{k}, \langle 1 \rangle)
```

$$\frac{\{Q_1\} \operatorname{copy} \{Q_2\} \quad \{Q_2\} H \{Q_3\}}{\{Q_1\} \operatorname{copy} ; H \{Q_3\}} \quad \{Q_3\} \operatorname{dither} \{Q_3\}}{\{Q_1\} \operatorname{contra} \{Q_3\}}$$

Hoare Reasoning

reasoning is still quite demanding;
 the invariants of the copy-machine:

The invariants of the copy machine.

$$I_{1} n (l, r) \stackrel{def}{=} (l, r) = ([], l^{n}) \qquad \text{(starting state)}$$

$$I_{2} n (l, r) \stackrel{def}{=} \exists i j. \ 0 < i \land i + j = n \land (l, r) = (l^{i}, l^{j})$$

$$I_{3} n (l, r) \stackrel{def}{=} 0 < n \land (l, tl \ r) = (0 :: l^{n}, [])$$

$$I_{4} n (l, r) \stackrel{def}{=} 0 < n \land (l, r) = (l^{n}, [0, 1]) \lor (l, r) = (l^{n-1}, [1, 0, 1])$$

$$I_{0} n (l, r) \stackrel{def}{=} 1 < n \land (l, r) = (l^{n-2}, [1, 1, 0, 1]) \lor \text{(halting state)}$$

$$n = l \land (l, r) = ([], [0, 1, 0, 1])$$

$$J_{1} n (l, r) \stackrel{def}{=} \exists i j. \ i + j + l = n \land (l, r) = (l^{i}, 1 :: 1 :: 0^{j} @ l^{j}) \land 0 < j \lor 0 < n \land (l, r) = ([], 0 :: 1 :: 0^{n} @ l^{n}) \text{(starting state)}$$

$$J_{0} n (l, r) \stackrel{def}{=} 0 < n \land (l, r) = ([0], 1 :: 0^{n} @ l^{n}) \text{(halting state)}$$

$$K_{1} n (l, r) \stackrel{def}{=} 0 < n \land (l, r) = ([0], 1 :: 0^{n} @ l^{n}) \text{(halting state)}$$

Midway Conclusion

- feels awfully like reasoning about machine code
- compositional constructions / reasoning
- size

Recursive Functions

- addition, multiplication, ...
- logical operations, quantifiers...
- coding of numbers (Cantor encoding)
- UF

Recursive Functions

- addition, multiplication, ...
- logical operations, quantifiers...
- coding of numbers (Cantor encoding)
- UF
- Recursive Functions ⇒ Register Machines
- Register Machines ⇒ Turing Machines

Sizes

• UF (size: 140843)

• Register Machine (size: 2 Mio instructions)

• UTM (size: 38 Mio states)

old version: RM (12 Mio) UTM (112 Mio)

Separation Algebra

- introduced a separation algebra framework for register machines and TMs
- we can semi-automate the reasoning for our small TMs
- we can assemble bigger programs out of smaller components
- looks awfully like ``real" assembly code

Separation Algebra

- introduced a separation algebra framework for register machines and TMs
- we can semi-automate the reasoning for our small TMs
- we can assemble bigger programs out of smaller components
- looks awfully like ``real" assembly code
- Conclusion: we have a playing ground for reasoning about low-level code; we work on automation