
Formalising Computability Theory in Isabelle/HOL

Jian Xu1, Xingyuan Zhang1, and Christian Urban2

1 PLA University of Science and Technology, China
2 King’s College London, UK

Abstract. We present a formalised theory of computability in the theorem prover
Isabelle/HOL. This theorem prover is based on classical logic which precludes di-
rect reasoning about computability: every boolean predicate is either true or false
because of the law of excluded middle. The only way to reason about computabil-
ity in a classical theorem prover is to formalise a concrete model for computation.
We formalise Turing machines and relate them to abacus machines and recursive
functions. Our theory can be used to formalise other computability results: we
give one example about the undecidability of Wang’s tiling problem, whose proof
uses the notion of a universal Turing machine.

1 Introduction

We formalised in earlier work the correctness proofs for two algorithms in Isabelle/HOL—
one about type-checking in LF [5] and another about deciding requests in access con-
trol [7]. The formalisations uncovered a gap in the informal correctness proof of the
former and made us realise that important details were left out in the informal model
for the latter. However, in both cases we were unable to formalise in Isabelle/HOL
computability arguments about the algorithms. The reason is that both algorithms are
formulated in terms of inductive predicates. Suppose P stands for one such predicate.
Decidability of P usually amounts to showing whether P ∨ ¬ P holds. But this does not
work in Isabelle/HOL, since it is a theorem prover based on classical logic where the
law of excluded middle ensures that P ∨ ¬ P is always provable no matter whether P
is constructed by computable means. The same problem would arise if we had formu-
lated the algorithms as recursive functions, because internally in Isabelle/HOL, like in
all HOL-based theorem provers, functions are represented as inductively defined pred-
icates too.

The only satisfying way out of this problem in a theorem prover based on classical
logic is to formalise a theory of computability. Norrish provided such a formalisation
for the HOL4 theorem prover. He choose the λ-calculus as the starting point for his
formalisation of computability theory, because of its “simplicity” [3, Page 297]. Part
of his formalisation is a clever infrastructure for reducing λ-terms. He also established
the computational equivalence between the λ-calculus and recursive functions. Nev-
ertheless he concluded that it would be “appealing” to have formalisations for more
operational models of computations, such as Turing machines or register machines.
One reason is that many proofs in the literature use them. He noted however that in the
context of theorem provers [3, Page 310]:

2 Jian Xu, Xingyuan Zhang, and Christian Urban

“If register machines are unappealing because of their general fiddliness, Tur-
ing machines are an even more daunting prospect.”

In this paper we take on this daunting prospect and provide a formalisation of Tur-
ing machines, as well as abacus machines (a kind of register machines) and recursive
functions. To see the difficulties involved with this work, one has to understand that in-
teractive theorem provers, like Isabelle/HOL, are at their best when the data-structures
at hand are “structurally” defined, like lists, natural numbers, regular expressions, etc.
Such data-structures come with convenient reasoning infrastructures (for example in-
duction principles, recursion combinators and so on). But this is not the case with Turing
machines (and also not with register machines): underlying their definitions are sets of
states together with transition functions, all of which are not structurally defined. This
means we have to implement our own reasoning infrastructure in order to prove prop-
erties about them. This leads to annoyingly fiddly formalisations. We noticed first the
difference between both, structural and non-structural, “worlds” when formalising the
Myhill-Nerode theorem, where regular expressions fared much better than automata
[6]. However, with Turing machines there seems to be no alternative if one wants to
formalise the great many proofs from the literature that use them. We will analyse one
example—undecidability of Wang’s tiling problem—in Section 5. The standard proof
of this property uses the notion of universal Turing machines.

We are not the first who formalised Turing machines in a theorem prover: we are
aware of the preliminary work by Asperti and Ricciotti [1]. They describe a complete
formalisation of Turing machines in the Matita theorem prover, including a universal
Turing machine. They report that the informal proofs from which they started are not
“sufficiently accurate to be directly usable as a guideline for formalization” [1, Page
2]. For our formalisation we followed mainly the proofs from the textbook [2] and
found that the description there is quite detailed. Some details are left out however: for
example, it is only shown how the universal Turing machine is constructed for Turing
machines computing unary functions. We had to figure out a way to generalise this result
to n-ary functions. Similarly, when compiling recursive functions to abacus machines,
the textbook again only shows how it can be done for 2- and 3-ary functions, but in the
formalisation we need arbitrary functions. But the general ideas for how to do this are
clear enough in [2]. However, one aspect that is completely left out from the informal
description in [2], and similar ones we are aware of, is arguments why certain Turing
machines are correct. We will introduce Hoare-style proof rules which help us with
such correctness arguments of Turing machines.

The main difference between our formalisation and the one by Asperti and Ricciotti
is that their universal Turing machine uses a different alphabet than the machines it
simulates. They write [1, Page 23]:

“In particular, the fact that the universal machine operates with a different
alphabet with respect to the machines it simulates is annoying.”

In this paper we follow the approach by Boolos et al [2], which goes back to Post [4],
where all Turing machines operate on tapes that contain only blank or occupied cells
(represented by Bk and Oc, respectively, in our formalisation). Traditionally the content

Formalising Computability Theory in Isabelle/HOL 3

of a cell can be any character from a finite alphabet. Although computationally equiv-
alent, the more restrictive notion of Turing machines in [2] makes the reasoning more
uniform. In addition some proofs about Turing machines are simpler. The reason is
that one often needs to encode Turing machines—consequently if the Turing machines
are simpler, then the coding functions are simpler too. Unfortunately, the restrictiveness
also makes it harder to design programs for these Turing machines. In order to construct
a universal Turing machine we therefore do not follow [1], instead follow the proof in
[2] by relating abacus machines to Turing machines and in turn recursive functions to
abacus machines. The universal Turing machine can then be constructed as a recursive
function.
Contributions: We formalised in Isabelle/HOL Turing machines following the descrip-
tion of Boolos et al [2] where tapes only have blank or occupied cells. We mechanise
the undecidability of the halting problem and prove the correctness of concrete Turing
machines that are needed in this proof; such correctness proofs are left out in the infor-
mal literature. We construct the universal Turing machine from [2] by relating recursive
functions to abacus machines and abacus machines to Turing machines. Since we have
set up in Isabelle/HOL a very general computability model and undecidability result,
we are able to formalise the undecidability of Wang’s tiling problem. We are not aware
of any other formalisation of a substantial undecidability problem.

2 Turing Machines

Turing machines can be thought of as having a read-write-unit, also referred to as head,
“gliding” over a potentially infinite tape. Boolos et al [2] only consider tapes with cells
being either blank or occupied, which we represent by a datatype having two construc-
tors, namely Bk and Oc. One way to represent such tapes is to use a pair of lists, written
(l, r), where l stands for the tape on the left-hand side of the head and r for the tape
on the right-hand side. We have the convention that the head, abbreviated hd, of the
right-list is the cell on which the head of the Turing machine currently operates. This
can be pictured as follows:

left list right list

head

.

Note that by using lists each side of the tape is only finite. The potential infinity is
achieved by adding an appropriate blank or occupied cell whenever the head goes over
the “edge” of the tape. To make this formal we define five possible actions the Turing
machine can perform:

a ::= WBk write blank (Bk)
| WOc write occupied (Oc)
| L move left
| R move right
| Nop do-nothing operation

4 Jian Xu, Xingyuan Zhang, and Christian Urban

We slightly deviate from the presentation in [2] by using the Nop operation; however its
use will become important when we formalise halting computations and also universal
Turing machines. Given a tape and an action, we can define the following tape updating
function:

update (l, r) WBk
def
= (l, Bk::tl r)

update (l, r) WOc
def
= (l, Oc::tl r)

update (l, r) L
def
=

if l = [] then ([], Bk::r) else (tl l, hd l::r)

update (l, r) R
def
=

if r = [] then (Bk::l, []) else (hd r::l, tl r)

update (l, r) Nop
def
= (l, r)

The first two clauses replace the head of the right-list with a new Bk or Oc, respectively.
To see that these two clauses make sense in case where r is the empty list, one has to

know that the tail function, tl, is defined in Isabelle/HOL such that tl []
def
= [] holds. The

third clause implements the move of the head one step to the left: we need to test if the
left-list l is empty; if yes, then we just prepend a blank cell to the right-list; otherwise we
have to remove the head from the left-list and prepend it to the right-list. Similarly in the
fourth clause for a right move action. The Nop operation leaves the the tape unchanged
(last clause).

Note that our treatment of the tape is rather “unsymmetric”—we have the conven-
tion that the head of the right-list is where the head is currently positioned. Asperti and
Ricciotti [1] also considered such a representation, but dismiss it as it complicates their
definition for tape equality. The reason is that moving the head one step to the left and
then back to the right might change the tape (in case of going over the “edge”). There-
fore they distinguish four types of tapes: one where the tape is empty; another where
the head is on the left edge, respectively right edge, and in the middle of the tape. The
reading, writing and moving of the tape is then defined in terms of these four cases. In
this way they can keep the tape in a “normalised” form, and thus making a left-move
followed by a right-move being the identity on tapes. Since we are not using the notion
of tape equality, we can get away with the unsymmetric definition above, and by using
the update function cover uniformly all cases including corner cases.

Next we need to define the states of a Turing machine. Given how little is usually
said about how to represent them in informal presentations, it might be surprising that
in a theorem prover we have to select carefully a representation. If we use the naive
representation where a Turing machine consists of a finite set of states, then we will
have difficulties composing two Turing machines: we would need to combine two finite
sets of states, possibly renaming states apart whenever both machines share states.3 This
renaming can be quite cumbersome to reason about. Therefore we made the choice of
representing a state by a natural number and the states of a Turing machine will always
consist of the initial segment of natural numbers starting from 0 up to the number of

3 The usual disjoint union operation in Isabelle/HOL cannot be used as it does not preserve
types.

Formalising Computability Theory in Isabelle/HOL 5

states of the machine. In doing so we can compose two Turing machine by shifting the
states of one by an appropriate amount to a higher segment and adjusting some “next
states” in the other.

An instruction i of a Turing machine is a pair consisting of an action and a natural
number (the next state). A program p of a Turing machine is then a list of such pairs.
Using as an example the following Turing machine program, which consists of four
instructions

dither
def
= [(WBk, 1), (R, 2), (L, 1), (L, 0)]︸ ︷︷ ︸

1st state
︸ ︷︷ ︸

2nd state

Bk-case︷ ︸︸ ︷ Oc-case︷︸︸︷
(1)

the reader can see we have organised our Turing machine programs so that segments of
two belong to a state. The first component of the segment determines what action should
be taken and which next state should be transitioned to in case the head reads a Bk; sim-
ilarly the second component determines what should be done in case of reading Oc. We
have the convention that the first state is always the starting state of the Turing machine.
The zeroth state is special in that it will be used as the “halting state”. There are no in-
structions for the 0-state, but it will always perform a Nop-operation and remain in the
0-state. Unlike Asperti and Riccioti [1], we have chosen a very concrete representation
for programs, because when constructing a universal Turing machine, we need to define
a coding function for programs. This can be easily done for our programs-as-lists, but
is more difficult for the functions used by Asperti and Ricciotti.

Given a program p, a state and the cell being read by the head, we need to fetch the
corresponding instruction from the program. For this we define the function fetch

fetch p 0
def
= (Nop, 0)

fetch p (Suc s) Bk
def
=

case nth of p (2 ∗ s) of
None⇒ (Nop, 0) |
Some i⇒ i

fetch p (Suc s) Oc
def
=

case nth of p (2 ∗ s + 1) of
None⇒ (Nop, 0) |
Some i⇒ i

In this definition the function nth of returns the nth element from a list, provided it
exists (Some-case), or if it does not, it returns the default action Nop and the default
state 0 (None-case). In doing so we slightly deviate from the description in [2]: if their
Turing machines transition to a non-existing state, then the computation is halted. We
will transition in such cases to the 0-state. However, with introducing the notion of
well-formed Turing machine programs we will later exclude such cases and make the
0-state the only “halting state”. A program p is said to be well-formed if it satisfies the
following three properties:

6 Jian Xu, Xingyuan Zhang, and Christian Urban

twf p
def
= 2 ≤ length p
∧ iseven (length p)
∧ ∀ (a, s)∈ p. s ≤ length p div 2

The first says that p must have at least an instruction for the starting state; the second
that p has a Bk and Oc instruction for every state, and the third that every next-state is
one of the states mentioned in the program or being the 0-state.

A configuration c of a Turing machine is a state together with a tape. This is written
as (s, (l, r)). If we have a configuration and a program, we can calculate what the next
configuration is by fetching the appropriate action and next state from the program, and
by updating the state and tape accordingly. This single step of execution is defined as
the function step

step (s, (l, r)) p
def
=

let (a, s) = fetch p s (read r)
in (s ′, update (l, r) a)

where read r returns the head of the list r, or if r is empty it returns Bk. It is impossible in
Isabelle/HOL to lift the step-function realising a general evaluation function for Turing
machines. The reason is that functions in HOL-based provers need to be terminating,
and clearly there are Turing machine programs that are not. We can however define an
evaluation function so that it performs exactly n steps:

nsteps c p 0
def
= c

nsteps c p (Suc n)
def
= nsteps (step c p) p n

Recall our definition of fetch with the default value for the 0-state. In case a Turing
program takes in [2] less then n steps before it halts, then in our setting the nsteps-
evaluation does not actually halt, but rather transitions to the 0-state and remains there
performing Nop-actions until n is reached.

Given some input tape (li,ri), we can define when a program p generates a specific
output tape (lo,ro)

runs p (li, ri) (lo, ro)
def
=

∃ n. nsteps (1, (li,ri)) p n = (0, (lo,ro))

where 1 stands for the starting state and 0 for our final state. A program p with input
tape (li, ri) halts iff

halts p (li, ri)
def
= ∃ lo ro. runs p (li, ri) (lo, ro)

Later on we need to consider specific Turing machines that start with a tape in standard
form and halt the computation in standard form. To define a tape in standard form, it is
useful to have an operation p q that translates lists of natural numbers into tapes.

p[]q
def
= []

p[n]q
def
= Ocn + 1

pn::nsq
def
= Ocn + 1 @ [Bk] @ pnsq

Formalising Computability Theory in Isabelle/HOL 7

By this we mean

stdhalt p n
def
= ∃ k l m. run p ([], Ocn) (Bkk, Ocl @ Bkm)

This means the Turing machine starts with a tape containg n Ocs and the head pointing
to the first one; the Turing machine halts with a tape consisting of some Bks, followed by
a “cluster” of Ocs and after that by some Bks. The head in the output is pointing again
at the first Oc. The intuitive meaning of this definition is to start the Turing machine
with a tape corresponding to a value n and producing a new tape corresponding to the
value l (the number of Ocs clustered on the output tape).

Before we can prove the undecidability of the halting problem for Turing machines,
we have to define how to compose two Turing machines. Given our setup, this is rela-
tively straightforward, if slightly fiddly. We use the following two auxiliary functions:

shift p n
def
=

map (λ(a, s). (a, if s = 0 then 0 else s + n)) p

adjust p
def
=

map (λ (a, s).
(a, if s = 0 then length p div 2 + 1 else s)) p

The first adds n to all states, exept the 0-state, thus moving all “regular” states to the
segment starting at n; the second adds length p div 2 + 1 to the 0-state, thus ridirecting
all references to the “halting state” to the first state after the program p. With these two
functions in place, we can define the sequential composition of two Turing machine
programs p1 and p2

p1 ⊕ p2
def
= adjust p1 @ shift p2 (length p1 div 2)

This means p1 is executed first. Whenever it originally transitioned to the 0-state, it will
in the composed program transition to the starting state of p2 instead. All the states of
p2 have been shifted in order to make sure that the states of the composed program p1
⊕ p2 still only “occupy” an initial segment of the natural numbers.

copy
def
= [(WBk, 0), (R, 2), (R, 3), (R, 2), (WOc, 3), (L, 4),

(L, 4), (L, 5), (R, 11), (R, 6), (R, 7), (WBk, 6),
(R, 7), (R, 8), (WOc, 9), (R, 8), (L, 10), (L, 9),
(L, 10), (L, 5), (R, 12), (R, 12), (WOc, 13), (L,
14), (R, 12), (R, 12), (L, 15), (WBk, 14), (R, 0),
(L, 15)]

assertion holds for all tapes
Hoare rule for composition
For showing the undecidability of the halting problem, we need to consider two

specific Turing machines. copying TM and dithering TM
correctness of the copying TM
measure for the copying TM, which we however omit.
halting problem

8 Jian Xu, Xingyuan Zhang, and Christian Urban

3 Abacus Machines

Boolos et al [2] use abacus machines as a stepping stone for making it less laborious
to write programs for Turing machines. Abacus machines operate over an unlimited
number of registersR0,R1, . . . each being able to hold an arbitrary large natural number.
We use natural numbers to refer to registers, but also to refer to opcodes of abacus
machines. Obcodes are given by the datatype

o ::= Inc R increment register R by one
| Dec R o if content of R is non-zero,

then decrement it by one
otherwise jump to opcode o

| Goto o jump to opcode o

A program of an abacus machine is a list of such obcodes. For example the program
clearing the register R (setting it to 0) can be defined as follows:

clear R o
def
= [Dec R o, Goto 0]

The second opcode Goto 0 in this programm means we jump back to the first opcode,
namely Dec R o. The memory m of an abacus machine holding the values of the reg-
isters is represented as a list of natural numbers. We have a lookup function for this
memory, written lookup m R, which looks up the content of register R; if R is not in
this list, then we return 0. Similarly we have a setting function, written set m R n, which
sets the value of R to n, and if R was not yet in m it pads it approriately with 0s.

Abacus machine halts when it jumps out of range.

4 Recursive Functions

5 Wang Tiles

Used in texture mapings - graphics

6 Related Work

The most closely related work is by Norrish [3], and Asperti and Ricciotti [1]. Norrish
bases his approach on lambda-terms. For this he introduced a clever rewriting technol-
ogy based on combinators and de-Bruijn indices for rewriting modulo β-equivalence
(to keep it manageable)

Formalising Computability Theory in Isabelle/HOL 9

References

1. A. Asperti and W. Ricciotti. Formalizing Turing Machines. In Proc. of the 19th International
Workshop on Logic, Language, Information and Computation (WoLLIC), volume 7456 of
LNCS, pages 1–25, 2012.

2. G. Boolos, J. P. Burgess, and R. C. Jeffrey. Computability and Logic (5th ed.). Cambridge
University Press, 2007.

3. M. Norrish. Mechanised Computability Theory. In Proc. of the 2nd Conference on Interactive
Theorem Proving (ITP), volume 6898 of LNCS, pages 297–311, 2011.

4. E. Post. Finite Combinatory Processes-Formulation 1. Journal of Symbolic Logic, 1(3):103–
105, 1936.

5. C. Urban, J. Cheney, and S. Berghofer. Mechanizing the Metatheory of LF. ACM Transactions
on Computational Logic, 12:15:1–15:42, 2011.

6. C. Wu, X. Zhang, and C. Urban. A Formalisation of the Myhill-Nerode Theorem based on
Regular Expressions (Proof Pearl). In Proc. of the 2nd Conference on Interactive Theorem
Proving, volume 6898 of LNCS, pages 341–356, 2011.

7. C. Wu, X. Zhang, and C. Urban. ??? Submitted, 2012.

	Introduction
	Turing Machines
	Abacus Machines
	Recursive Functions
	Wang Tiles
	Related Work

