
Formalising Computability Theory in Isabelle/HOL

Jian Xu, Xingyuan Zhang
PLA University of Science and Technology Nanjing, China

Christian Urban
King’s College London, UK

Abstract—We present a formalised theory of computability
in the theorem prover Isabelle/HOL. This theorem prover
is based on classical logic which precludes direct reasoning
about computability: every boolean predicate is either true
or false because of the law of excluded middle. The only
way to reason about computability in a classical theorem
prover is to formalise a concrete model for computation. We
formalise Turing machines and relate them to abacus machines
and recursive functions. Our theory can be used to formalise
other computability results: we give one example about the
undecidability of Wang’s tiling problem, whose proof uses the
notion of a universal Turing machine.

Keywords-Turing Machines, Computability, Isabelle/HOL,
Wang tilings

I. INTRODUCTION

We formalised in earlier work the correctness proofs for
two algorithms in Isabelle/HOL—one about type-checking
in LF [5] and another about deciding requests in access
control [7]. The formalisations uncovered a gap in the
informal correctness proof of the former and made us realise
that important details were left out in the informal model
for the latter. However, in both cases we were unable to
formalise in Isabelle/HOL computability arguments about
the algorithms. The reason is that both algorithms are
formulated in terms of inductive predicates. Suppose P
stands for one such predicate. Decidability of P usually
amounts to showing whether P ∨ ¬ P holds. But this does
not work in Isabelle/HOL, since it is a theorem prover
based on classical logic where the law of excluded middle
ensures that P ∨ ¬ P is always provable no matter whether
P is constructed by computable means. The same problem
would arise if we had formulated the algorithms as recursive
functions, because internally in Isabelle/HOL, like in all
HOL-based theorem provers, functions are represented as
inductively defined predicates too.

The only satisfying way out of this problem in a theorem
prover based on classical logic is to formalise a theory of
computability. Norrish provided such a formalisation for the
HOL4 theorem prover. He choose the λ-calculus as the
starting point for his formalisation of computability theory,
because of its “simplicity” [3, Page 297]. Part of his formali-
sation is a clever infrastructure for reducing λ-terms. He also
established the computational equivalence between the λ-
calculus and recursive functions. Nevertheless he concluded
that it would be “appealing” to have formalisations for

more operational models of computations, such as Turing
machines or register machines. One reason is that many
proofs in the literature use them. He noted however that
in the context of theorem provers [3, Page 310]:

“If register machines are unappealing because of
their general fiddliness, Turing machines are an
even more daunting prospect.”

In this paper we took on this daunting prospect and pro-
vide a formalisation of Turing machines, as well as aba-
cus machines (a kind of register machines) and recursive
functions. To see the difficulties involved with this work,
one has to understand that interactive theorem provers, like
Isabelle/HOL, are at their best when the data-structures at
hand are “structurally” defined, like lists, natural numbers,
regular expressions, etc. Such data-structures come with
convenient reasoning infrastructures (for example induction
principles, recursion combinators and so on). But this is not
the case with Turing machines (and also not with register
machines): underlying their definition is a set of states
together with a transition function, both of which are not
structurally defined. This means we have to implement our
own reasoning infrastructure in order to prove properties
about them. This leads to annoyingly fiddly formalisations.
We noticed first the difference between both, structural
and non-structural, “worlds” when formalising the Myhill-
Nerode theorem, where regular expressions fared much
better than automata [6]. However, with Turing machines
there seems to be no alternative if one wants to formalise
the great many proofs from the literature that use them. We
will analyse one example—undecidability of Wang’s tiling
problem—in Section V. The standard proof of this property
uses the notion of universal Turing machines.

We are not the first who formalised Turing machines in
a theorem prover: we are aware of the preliminary work
by Asperti and Ricciotti [1]. They describe a complete
formalisation of Turing machines in the Matita theorem
prover, including a universal Turing machine. They report
that the informal proofs from which they started are not
“sufficiently accurate to be directly useable as a guideline
for formalization” [1, Page 2]. For our formalisation we
followed mainly the proofs from the textbook [2] and found
that the description there is quite detailed. Some details
are left out however: for example, it is only shown how
the universal Turing machine is constructed for Turing

machines computing unary functions. We had to figure out
a way to generalize this result to n-ary functions. Similarly,
when compiling recursive functions to abacus machines, the
textbook again only shows how it can be done for 2- and
3-ary functions, but in the formalisation we need arbitrary
functions. But the general ideas for how to do this are clear
enough in [2]. However, one aspect that is completely left
out from the informal description in [2], and similar ones
we are aware of, are arguments why certain Turing machines
are correct. We will introduce Hoare-style proof rules which
help us with such correctness arguments of Turing machines.

The main difference between our formalisation and the
one by Asperti and Ricciotti is that their universal Turing
machine uses a different alphabet than the machines it
simulates. They write [1, Page 23]:

“In particular, the fact that the universal machine
operates with a different alphabet with respect to
the machines it simulates is annoying.”

In this paper we follow the approach by Boolos et al [2],
which goes back to Post [4], where all Turing machines
operate on tapes that contain only blank or occupied cells
(represented by Bk and Oc, respectively, in our formalisa-
tion). Traditionally the content of a cell can be any character
from a finite alphabet. Although computationally equivalent,
the more restrictive notion of Turing machines in [2] makes
the reasoning more uniform. In addition some proofs about
Turing machines will be simpler. The reason is that one
often needs to encode Turing machines—consequently if the
Turing machines are simpler, then the coding functions are
simpler too. Unfortunately, the restrictiveness also makes it
harder to design programs for these Turing machines. There-
fore in order to construct a universal Turing machine we
follow the proof in [2] by relating abacus machines to Turing
machines and in turn recursive functions to abacus machines.
The universal Turing machine can then be constructed as a
recursive function.

Contributions:

II. TURING MACHINES

Turing machines can be thought of as having a read-write-
unit “gliding” over a potentially infinite tape. Boolos et al [2]
only consider tapes with cells being either blank or occupied,
which we represent by a datatype having two constructors,
namely Bk and Oc. One way to represent such tapes is to
use a pair of lists, written (l, r), where l stands for the tape
on the left-hand side of the read-write-unit and r for the
tape on the right-hand side. We have the convention that the
head, written hd, of the right-list is the cell on which the
read-write-unit currently operates. This can be pictured as
follows:

left list right list

head

.

Note that by using lists each side of the tape is only finite.
The potential infinity is achieved by adding an appropriate
blank cell whenever the read-write unit goes over the “edge”
of the tape. To make this formal we define five possible
actions the Turing machine can perform:

a ::= WBk write blank (Bk)
| WOc write occupied (Oc)
| L move left
| R move right
| Nop do-nothing operation

We slightly deviate from the presentation in [2] by using
the Nop operation; however its use will become important
when we formalise universal Turing machines later. Given
a tape and an action, we can define the following updating
function:

update (l, r) WBk
def
= (l, Bk::tl r)

update (l, r) WOc
def
= (l, Oc::tl r)

update (l, r) L
def
=

if l = [] then ([], Bk::r) else (tl l, hd l::r)

update (l, r) R
def
=

if r = [] then (Bk::l, []) else (hd r::l, tl r)

update (l, r) Nop
def
= (l, r)

The first two clauses replace the head of the right-list with
new a Bk or Oc, repsectively. To see that these tow clauses
make sense in case where r is the empty list, one has to
know that the tail function, tl, is defined such that tl []

def
=

[] holds. The third clause implements the move of the read-
write unit one step to the left: we need to test if the left-list
l is empty; if yes, then we just prepend a blank cell to the
right-list; otherwise we have to remove the head from the
left-list and prepend it to the right-list. Similarly in the clause
for a right move action. The Nop operation leaves the the
tape unchanged.

Note that our treatment of the tape is rather
“unsymmetric”—we have the convention that the head
of the right-list is where the read-write unit is currently
positioned. Asperti and Ricciotti [1] also consider such
a representation, but dismiss it as it complicates their
definition for tape equality. The reason is that moving the
read-write unit one step to the left and then back to the
right might change the tape (in case of going over the
“edge”). Therefore they distinguish four types of tapes:
one where the tape is empty; another where the read-write
unit is on the left edge, respectively right edge, and in the
middle of the tape. The reading, writing and moving of the
tape is then defined in terms of these four cases. In this

way they can keep the tape in a “normalised” form, and
thus making a left-move followed by a right-move being
the identity on tapes. Since we are not using the notion
of tape equality, we can get away with the unsymmetric
definition above and by using the update function cover
uniformely all cases including the corner cases.

Next we need to define the states of a Turing machine.
Given how little is usually said about how to represent them
in informal presentaions, it might be surprising that in a
theorem prover we have to select carfully a representation.
If we use the naive representation where a Turing machine
consists of a finite set of states, then we will have difficulties
composing two Turing machines. In this case we would
need to combine two finite sets of states, possibly requiring
renaming states apart whenever both machines share states.
This renaming can be quite cumbersome to reason about.
Therefore we made the choice of representing a state by
a natural number and the states of a Turing machine will
always consist of the initial segment of natural numbers
starting from 0 up to number of states of the machine minus
1. In doing so we can compose two Turing machine by
“shifting” the states of one by an appropriate amount to a
higher segment.

An instruction i of a Turing machine is a pair consisting of
a natural number (the next state) and an action. A program
p of a Turing machine is then a list of such pairs. Given a
program p, a state and the cell being read by the read-write
unit, we need to fetch the corresponding instruction from
the program. For this we define the function fetch

fetch p 0
def
= (Nop, 0)

fetch p (Suc s) Bk
def
=

case nth of p (2 ∗ s) of
None ⇒ (Nop, 0) |
Some i ⇒ i

fetch p (Suc s) Oc
def
=

case nth of p (2 ∗ s + 1) of
None ⇒ (Nop, 0) |
Some i ⇒ i

start state 1 final state 0

dither
def
= [(WBk, 1), (R, 2), (L, 1), (L, 0)]

A configuration c of a Turing machine is a state together
with a tape. This is written as the triple (s, l, r). If we have
a configuration and a program, we can calculate what the
next configuration is by fetching the appropriate next state
and action from the program. Such a single step of execution
can be defined as

step (s, l, r) p
def
= let (a, s ′) = fetch p s (read r) in (s ′,

update (l, r) a)

No evaluator in HOL, because of totality.

nsteps c p 0 = c
nsteps c p (Suc n) = nsteps (step c p) p n

well-formedness of a Turing program
programs halts
shift and change of a p
composition of two ps
assertion holds for all tapes
Hoare rule for composition
For showing the undecidability of the halting problem, we

need to consider two specific Turing machines. copying TM
and dithering TM

correctness of the copying TM
measure for the copying TM, which we however omit.
standard configuration
halting problem

III. ABACUS MACHINES

Boolos et al [2] use abacus machines as a stepping stone for
making it less laborious to write programs for Turing ma-
chines. Abacus machines operate over an unlimited number
of registers R0, R1, . . . each being able to hold an arbitrary
large natural number. We use natural numbers to refer to
registers, but also to refer to opcodes of abacus machines.
Obcodes are given by the datatype

o ::= Inc R increment register R by one
| Dec R o if content of R is non-zero,

then decrement it by one
otherwise jump to opcode o

| Goto o jump to opcode o

A program of an abacus machine is a list of such obcodes.
For example the program clearing the register R (setting it
to 0) can be defined as follows:

clear R o
def
= [Dec R o, Goto 0]

The second opcode Goto 0 in this programm means we jump
back to the first opcode, namely Dec R o. The memory m
of an abacus machine holding the values of the registers is
represented as a list of natural numbers. We have a lookup
function for this memory, written lookup m R, which looks
up the content of register R; if R is not in this list, then we
return 0. Similarly we have a setting function, written set m
R n, which sets the value of R to n, and if R was not yet
in m it pads it approriately with 0s.

IV. RECURSIVE FUNCTIONS

V. WANG TILES

Used in texture mapings - graphics

VI. RELATED WORK

The most closely related work is by Norrish [3], and
Asperti and Ricciotti [1]. Norrish bases his approach on

lambda-terms. For this he introduced a clever rewriting
technology based on combinators and de-Bruijn indices for
rewriting modulo β-equivalence (to keep it manageable)

REFERENCES

[1] A. Asperti and W. Ricciotti. Formalizing Turing Machines. In
Proc. of the 19th International Workshop on Logic, Language,
Information and Computation (WoLLIC), volume 7456 of
LNCS, pages 1–25, 2012.

[2] G. Boolos, J. P. Burgess, and R. C. Jeffrey. Computability and
Logic (5th ed.). Cambridge University Press, 2007.

[3] M. Norrish. Mechanised Computability Theory. In Proc. of the
2nd Conference on Interactive Theorem Proving (ITP), volume
6898 of LNCS, pages 297–311, 2011.

[4] E. Post. Finite Combinatory Processes-Formulation 1. Journal
of Symbolic Logic, 1(3):103–105, 1936.

[5] C. Urban, J. Cheney, and S. Berghofer. Mechanizing the
Metatheory of LF. ACM Transactions on Computational Logic,
12:15:1–15:42, 2011.

[6] C. Wu, X. Zhang, and C. Urban. A Formalisation of the
Myhill-Nerode Theorem based on Regular Expressions (Proof
Pearl). In Proc. of the 2nd Conference on Interactive Theorem
Proving, volume 6898 of LNCS, pages 341–356, 2011.

[7] C. Wu, X. Zhang, and C. Urban. ??? Submitted, 2012.

	Introduction
	Turing Machines
	Abacus Machines
	Recursive Functions
	Wang Tiles
	Related Work
	References

