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Abstract. We present a formalised theory of computability in the theorem prover
Isabelle/HOL. This theorem prover is based on classical logic which precludes di-
rect reasoning about computability: every boolean predicate is either true or false
because of the law of excluded middle. The only way to reason about computabil-
ity in a classical theorem prover is to formalise a concrete model for computation.
We formalise Turing machines and relate them to abacus machines and recursive
functions. We also formalise a universal Turing machine and Hoare-style rea-
soning techniques that allow us to reason about Turing machine programs. Our
theory can be used to formalise other computability results. We give one example
about the computational equivalence of single-sided Turing machines.

1 Introduction

Suppose you want to mechanise a proof for whether a predicate P, say, is decidable
or not. Decidability of P usually amounts to showing whether P ∨ ¬ P holds. But this
does not work in Isabelle/HOL and other HOL theorem provers, since they are based
on classical logic where the law of excluded middle ensures that P ∨ ¬ P is always
provable no matter whether P is constructed by computable means. We hit on this lim-
itation previously when we mechanised the correctness proofs of two algorithms [7,8],
but were unable to formalise arguments about decidability.

The only satisfying way out of this problem in a theorem prover based on classical
logic is to formalise a theory of computability. Norrish provided such a formalisation
for the HOL. He choose the λ-calculus as the starting point for his formalisation of com-
putability theory, because of its “simplicity” [4, Page 297]. Part of his formalisation is a
clever infrastructure for reducing λ-terms. He also established the computational equiv-
alence between the λ-calculus and recursive functions. Nevertheless he concluded that
it would be appealing to have formalisations for more operational models of computa-
tions, such as Turing machines or register machines. One reason is that many proofs in
the literature use them. He noted however that [4, Page 310]:

“If register machines are unappealing because of their general fiddliness,
Turing machines are an even more daunting prospect.”

In this paper we take on this daunting prospect and provide a formalisation of Turing
machines, as well as abacus machines (a kind of register machines) and recursive func-
tions. To see the difficulties involved with this work, one has to understand that Turing
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machine programs can be completely unstructured, behaving similar to Basic programs
involving the infamous goto [3]. This precludes in the general case a compositional
Hoare-style reasoning about Turing programs. We provide such Hoare-rules for when
it is possible to reason in a compositional manner (which is fortunately quite often), but
also tackle the more complicated case when we translate abacus programs into Turing
programs. This reasoning about concrete Turing machine programs is usually left out
in the informal literature, e.g. [2].

We are not the first who formalised Turing machines: we are aware of the prelimi-
nary work by Asperti and Ricciotti [1]. They describe a complete formalisation of Tur-
ing machines in the Matita theorem prover, including a universal Turing machine. They
report that the informal proofs from which they started are not “sufficiently accurate to
be directly usable as a guideline for formalization” [1, Page 2]. For our formalisation
we follow mainly the proofs from the textbook [2] and found that the description there
is quite detailed. Some details are left out however: for example, it is only shown how
the universal Turing machine is constructed for Turing machines computing unary func-
tions. We had to figure out a way to generalise this result to n-ary functions. Similarly,
when compiling recursive functions to abacus machines, the textbook again only shows
how it can be done for 2- and 3-ary functions, but in the formalisation we need arbitrary
functions. But the general ideas for how to do this are clear enough in [2].

The main difference between our formalisation and the one by Asperti and Ricciotti
is that their universal Turing machine uses a different alphabet than the machines it
simulates. They write [1, Page 23]:

“In particular, the fact that the universal machine operates with a different
alphabet with respect to the machines it simulates is annoying.”

In this paper we follow the approach by Boolos et al [2], which goes back to Post [5],
where all Turing machines operate on tapes that contain only blank or occupied cells.
Traditionally the content of a cell can be any character from a finite alphabet. Although
computationally equivalent, the more restrictive notion of Turing machines in [2] makes
the reasoning more uniform. In addition some proofs about Turing machines are sim-
pler. The reason is that one often needs to encode Turing machines—consequently if the
Turing machines are simpler, then the coding functions are simpler too. Unfortunately,
the restrictiveness also makes it harder to design programs for these Turing machines.
In order to construct a universal Turing machine we therefore do not follow [1], in-
stead follow the proof in [2] by translating abacus machines to Turing machines and in
turn recursive functions to abacus machines. The universal Turing machine can then be
constructed as a recursive function.
Contributions: We formalised in Isabelle/HOL Turing machines following the descrip-
tion of Boolos et al [2] where tapes only have blank or occupied cells. We mechanise
the undecidability of the halting problem and prove the correctness of concrete Turing
machines that are needed in this proof; such correctness proofs are left out in the in-
formal literature. For reasoning about Turing machine programs we derive Hoare-rules.
We also construct the universal Turing machine from [2] by translating recursive func-
tions to abacus machines and abacus machines to Turing machines. Since we have set
up in Isabelle/HOL a very general computability model and undecidability result, we
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are able to formalise other results: we describe a proof of the computational equivalence
of single-sided Turing machines, which is not given in [2], but needed for example for
formalising the undecidability proof of Wang’s tiling problem [6].

2 Turing Machines

Turing machines can be thought of as having a head, “gliding” over a potentially infinite
tape. Boolos et al [2] only consider tapes with cells being either blank or occupied,
which we represent by a datatype having two constructors, namely Bk and Oc. One
way to represent such tapes is to use a pair of lists, written (l, r), where l stands for the
tape on the left-hand side of the head and r for the tape on the right-hand side. We use
the notation Bkn (similarly Ocn) for lists composed of n elements of Bk. We also have
the convention that the head, abbreviated hd, of the right-list is the cell on which the
head of the Turing machine currently scannes. This can be pictured as follows:

left list right list

head
. . . . . .

Note that by using lists each side of the tape is only finite. The potential infinity is
achieved by adding an appropriate blank or occupied cell whenever the head goes over
the “edge” of the tape. To make this formal we define five possible actions the Turing
machine can perform:

a ::= WBk (write blank, Bk)
| WOc (write occupied, Oc)

| L (move left)
| R (move right)

| Nop (do-nothing operation)

We slightly deviate from the presentation in [2] by using the Nop operation; however its
use will become important when we formalise halting computations and also universal
Turing machines. Given a tape and an action, we can define the following tape updating
function:

update (l, r) WBk
def
= (l, Bk::tl r)

update (l, r) WOc
def
= (l, Oc::tl r)

update (l, r) L
def
= if l = [] then ([], Bk::r) else (tl l, hd l::r)

update (l, r) R
def
= if r = [] then (Bk::l, []) else (hd r::l, tl r)

update (l, r) Nop
def
= (l, r)

The first two clauses replace the head of the right-list with a new Bk or Oc, respectively.
To see that these two clauses make sense in case where r is the empty list, one has to

know that the tail function, tl, is defined such that tl []
def
= [] holds. The third clause

implements the move of the head one step to the left: we need to test if the left-list l is
empty; if yes, then we just prepend a blank cell to the right-list; otherwise we have to
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remove the head from the left-list and prepend it to the right-list. Similarly in the fourth
clause for a right move action. The Nop operation leaves the the tape unchanged.

Next we need to define the states of a Turing machine. We follow the choice made
in [1] by representing a state with a natural number and the states in a Turing machine
program by the initial segment of natural numbers starting from 0. In doing so we can
compose two Turing machine programs by shifting the states of one by an appropriate
amount to a higher segment and adjusting some “next states” in the other.

An instruction of a Turing machine is a pair consisting of an action and a natural
number (the next state). A program p of a Turing machine is then a list of such pairs.
Using as an example the following Turing machine program, which consists of four
instructions

dither
def
= [(WBk, 1), (R, 2), (L, 1), (L, 0)]︸ ︷︷ ︸

1st state
= starting state

︸ ︷︷ ︸
2nd state

Bk-case︷ ︸︸ ︷ Oc-case︷︸︸︷

(1)

the reader can see we have organised our Turing machine programs so that segments of
two belong to a state. The first component of such a segment determines what action
should be taken and which next state should be transitioned to in case the head reads a
Bk; similarly the second component determines what should be done in case of reading
Oc. We have the convention that the first state is always the starting state of the Turing
machine. The 0-state is special in that it will be used as the “halting state”. There are no
instructions for the 0-state, but it will always perform a Nop-operation and remain in the
0-state. Unlike Asperti and Riccioti [1], we have chosen a very concrete representation
for programs, because when constructing a universal Turing machine, we need to define
a coding function for programs. This can be directly done for our programs-as-lists, but
is slightly more difficult for the functions used by Asperti and Ricciotti.

Given a program p, a state and the cell being read by the head, we need to fetch the
corresponding instruction from the program. For this we define the function fetch

fetch p 0 = (Nop, 0)

fetch p (Suc s) Bk
def
= case nth of p (2 ∗ s) of

None⇒ (Nop, 0) | Some i⇒ i

fetch p (Suc s) Oc
def
= case nth of p (2 ∗ s + 1) of

None⇒ (Nop, 0) | Some i⇒ i

(2)

In this definition the function nth of returns the nth element from a list, provided it
exists (Some-case), or if it does not, it returns the default action Nop and the default
state 0 (None-case). We often need to restrict Turing machine programs to be well-
formed: a program p is well-formed if it satisfies the following three properties:

wf p
def
= 2 ≤ length p ∧ is even (length p) ∧ (∀ (a, s)∈ p. s ≤ length p div 2)

The first states that p must have at least an instruction for the starting state; the second
that p has a Bk and Oc instruction for every state, and the third that every next-state is
one of the states mentioned in the program or being the 0-state.
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We need to be able to sequentially compose Turing machine programs. Given our
concrete representation, this is relatively straightforward, if slightly fiddly. We use the
following two auxiliary functions:

shift p n
def
= map (λ(a, s). (a, if s = 0 then 0 else s + n)) p

adjust p
def
= map (λ(a, s). (a, if s = 0 then Suc (length p div 2) else s)) p

The first adds n to all states, exept the 0-state, thus moving all “regular” states to the
segment starting at n; the second adds Suc (length p div 2) to the 0-state, thus redirecting
all references to the “halting state” to the first state after the program p. With these two
functions in place, we can define the sequential composition of two Turing machine
programs p1 and p2 as

p1 ⊕ p2
def
= adjust p1 @ shift p2 (length p1 div 2)

A configuration c of a Turing machine is a state together with a tape. This is written
as (s, (l, r)). We say a configuration is final if s = 0 and we say a predicate P holds for
a configuration if P holds for the tape (l, r). If we have a configuration and a program,
we can calculate what the next configuration is by fetching the appropriate action and
next state from the program, and by updating the state and tape accordingly. This single
step of execution is defined as the function step

step (s, (l, r)) p
def
= let (a, s ′) = fetch p s (read r)

in (s ′, update (l, r) a)

where read r returns the head of the list r, or if r is empty it returns Bk. It is impossible in
Isabelle/HOL to lift the step-function to realise a general evaluation function for Turing
machines. The reason is that functions in HOL-based provers need to be terminating,
and clearly there are Turing machine programs that are not. We can however define an
evaluation function that performs exactly n steps:

steps c p 0
def
= c

steps c p (Suc n)
def
= steps (step c p) p n

Recall our definition of fetch (shown in (2)) with the default value for the 0-state. In case
a Turing program takes according to the usual textbook definition [2] less than n steps
before it halts, then in our setting the steps-evaluation does not actually halt, but rather
transitions to the 0-state (the final state) and remains there performing Nop-actions until
n is reached.

We often need to restrict tapes to be in standard form, which means the left list of
the tape is either empty or only contains Bks, and the right list contains some “clusters”
of Ocs separted by single blanks. To make this formal we define the following function

〈[]〉 def
= []

〈[n]〉 def
= Ocn + 1

〈n::ns〉 def
= Ocn + 1 @ [Bk] @ 〈ns〉
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copybegin
def
=

[(WBk, 0), (R, 2), (R, 3),
(R, 2), (W1, 3), (L, 4),
(L, 4), (L, 0)]

copyloop
def
=

[(R, 0), (R, 2), (R, 3),
(WBk, 2), (R, 3), (R, 4),
(WOc, 5), (R, 4), (L, 6),
(L, 5), (L, 6), (L, 1)]

copyend
def
=

[(L, 0), (R, 2), (WOc, 3),
(L, 4), (R, 2), (R, 2),
(L, 5), (WBk, 4), (R, 0),
(L, 5)]

⇒ ⇒ ⇒
copybegin copyloop copyend

Fig. 1. The components of the copy Turing machine (above). If started with the tape
([], 〈[3]〉) the first machine adds [Bk, Oc] at the end of the right tape; the second then
“moves” all Ocs except the first from the beginning of the tape to the end; the third
“refills” the original block of Ocs. The result is the tape ([Bk], 〈[(3, 3)]〉).

A standard tape is then of the form (Bkl,〈[n1,...,nm]〉) for some l and ni. Note that the
head in a standard tape “points” to the leftmost Oc on the tape. Note also that 0 is
represented by a single filled cell, 1 by two filled cells and so on.

Before we can prove the undecidability of the halting problem for our Turing ma-
chines, we need to analyse two concrete Turing machine programs and establish that
they are correct—that means they are “doing what they are supposed to be doing”.
Such correctness proofs are usually left out in the informal literature, for example [2].
One program we need to prove correct is the dither program shown in (1) and the other
program is copy defined as

copy
def
= copybegin ⊕ copyloop ⊕ copyend

whose three components are given in Figure 1. To the prove correctness of these Turing
machine programs, we introduce the notion of total correctness defined in terms of
Hoare-triples, written {P} p {Q}. They realise the idea that a program p started in state
1 with a tape satisfying P will after some n steps halt (have transitioned into the halting
state) with a tape satisfying Q. We also have Hoare-pairs of the form {P} p ↑ realising
the case that a program p started with a tape satisfying P will loop (never transition into
the halting state). Both notion are formally defined as

{P} p {Q} def
=

∀ (l, r).
if P (l, r) holds then
∃ n. such that
is final (steps (1, (l, r)) p n) ∧
Q holds for (steps (1, (l, r)) p n)

{P} p ↑ def
=

∀ (l, r).
if P (l, r) holds then
∀ n. ¬ is final (steps (1, (l, r)) p n)

We have set up our Hoare-style reasoning so that we can deal explicitly with total cor-
rectness and non-terminantion, rather than have notions for partial correctness and ter-
mination. Although the latter would allow us to reason more uniformly (only using
Hoare-triples), we prefer our definitions because we can derive simple Hoare-rules for
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sequentially composed Turing programs. In this way we can reason about the correct-
ness of copybegin, for example, completely separately from copyloop and copyend.

start tape

halting case: . . . ⇒ . . .

non-halting case: . . . ⇒ loops

It is straightforward to prove that the Turing program dither satisfies the following
correctness properties

{dither halt inv} dither {dither halt inv}
{dither unhalt inv} dither ↑

unfold The first states that on a tape (Bkn, [Oc, Oc]) halts in tree steps leaving the tape
unchanged. In the other states that dither started with tape (Bkn, [Oc]) loops.

In the following we will consider the following Turing machine program that makes
a copies a value on the tape.

assertion holds for all tapes
Hoare rule for composition
For showing the undecidability of the halting problem, we need to consider two

specific Turing machines. copying TM and dithering TM
correctness of the copying TM
measure for the copying TM, which we however omit.
halting problem

{P1} p1 {Q1}
{P2} p2 {Q2}
Q1 7→ P2 wf p1

{P1} p1 ⊕ p2 {Q2}

{P1} p1 {Q1}
{P2} p2 ↑
Q1 7→ P2 wf p1
{P1} p1 ⊕ p2 ↑

3 Abacus Machines

Boolos et al [2] use abacus machines as a stepping stone for making it less laborious
to write programs for Turing machines. Abacus machines operate over an unlimited
number of registersR0,R1, . . . each being able to hold an arbitrary large natural number.
We use natural numbers to refer to registers, but also to refer to opcodes of abacus
machines. Obcodes are given by the datatype

o ::= Inc R increment register R by one
| Dec R o if content of R is non-zero,

then decrement it by one
otherwise jump to opcode o

| Goto o jump to opcode o
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A program of an abacus machine is a list of such obcodes. For example the program
clearing the register R (setting it to 0) can be defined as follows:

The second opcode Goto (0:: ′a) in this program means we jump back to the first op-
code, namely Dec R o. The memory m of an abacus machine holding the values of the
registers is represented as a list of natural numbers. We have a lookup function for this
memory, written abc lm v m R, which looks up the content of register R; if R is not in
this list, then we return 0. Similarly we have a setting function, written abc lm s m R n,
which sets the value of R to n, and if R was not yet in m it pads it approriately with 0s.

Abacus machine halts when it jumps out of range.

4 Recursive Functions

5 Wang Tiles

Used in texture mapings - graphics

6 Related Work

The most closely related work is by Norrish [4], and Asperti and Ricciotti [1]. Norrish
bases his approach on lambda-terms. For this he introduced a clever rewriting technol-
ogy based on combinators and de-Bruijn indices for rewriting modulo β-equivalence
(to keep it manageable)

Given some input tape (li,ri), we can define when a program p generates a specific
output tape (lo,ro)

runs p (li, ri) (lo, ro)
def
=

∃ n. nsteps (1, (li,ri)) p n = (0, (lo,ro))

where 1 stands for the starting state and 0 for our final state. A program p with input
tape (li, ri) halts iff

halts p (li, ri)
def
= ∃ lo ro. runs p (li, ri) (lo, ro)

Later on we need to consider specific Turing machines that start with a tape in standard
form and halt the computation in standard form. To define a tape in standard form, it is
useful to have an operation that translates lists of natural numbers into tapes.

By this we mean
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This means the Turing machine starts with a tape containg n Ocs and the head pointing
to the first one; the Turing machine halts with a tape consisting of some Bks, followed by
a “cluster” of Ocs and after that by some Bks. The head in the output is pointing again
at the first Oc. The intuitive meaning of this definition is to start the Turing machine
with a tape corresponding to a value n and producing a new tape corresponding to the
value l (the number of Ocs clustered on the output tape).
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