Mechanising Turing Machines and Computability Theory in Isabelle

Jian Xu Xingyuan Zhang
PLA University of Science and Technology

Christian Urban King's College London

Why Turing Machines?

 At the beginning, it was just a student project about computability.

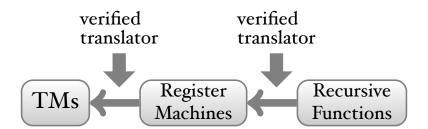
Computability and Logic (5th. ed) Boolos, Burgess and Jeffrey

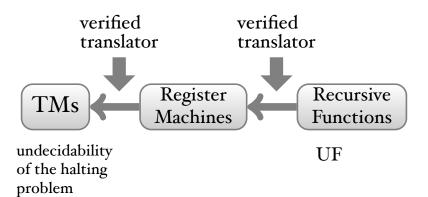
• found an inconsistency in the definition of halting computations (Chap. 3 vs Chap. 8)

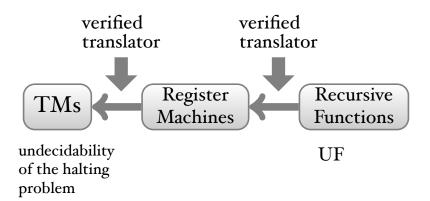
Some Previous Works

- Norrish formalised computability theory in HOL starting from the lambda-calculus
 - for technical reasons we could not follow him
 - some proofs use TMs (Wang tilings)
- Asperti and Ricciotti formalised TMs in Matita
 - no undecidability result ⇒ interest in complexity
 - their UTM operates on a different alphabet than the TMs it simulates

"In particular, the fact that the universal machine operates with a different alphabet with respect to the machines it simulates is annoying." [Asperti and Ricciotti]



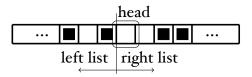




correct UTM by translation

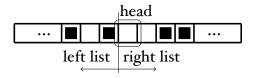
Turing Machines

• tapes are lists and contain 0s or 1s only



Turing Machines

tapes are lists and contain 0s or 1s only

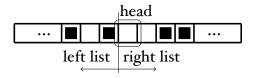


• *steps* function:

What does the TM calculate after it has executed *n* steps?

Turing Machines

tapes are lists and contain 0s or 1s only



- *steps* function:
 - What does the TM calculate after it has executed *n* steps?
- designate the *0*-state as "halting state" and remain there forever, i.e. have a *Nop*-action

Register Machines

• programs are lists of instructions

```
I ::= Goto L jump to instruction L
| Inc R increment register R by one
| Dec R L if content of R is non-zero, then decrement it by one otherwise jump to instruction L
```

Register Machines

Spaghetti Code!

instructions

I ::= Goto L $\mid Inc R$ $\mid Dec R L$

jump to instruction *L* increment register *R* by one if content of *R* is non-zero, then decrement it by one otherwise jump to instruction *L*

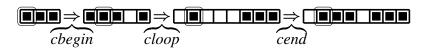
Recursive Functions

$$rec$$
 ::= Z zero-function $|$ S successor-function $|$ Id_m^n projection $|$ $Cn^n f gs$ composition $|$ $Pr^n f g$ primitive recursion $|$ $Mn^n f$ minimisation

- eval :: rec ⇒ nat list ⇒ nat
 can be defined by simple recursion
 (HOL has Least)
- you define
 - addition, multiplication, logical operations, quantifiers...
 - coding of numbers (Cantor encoding), UTM

Copy Turing Machine

• TM that copies a number on the input tape



 $copy \stackrel{def}{=} cbegin ; cloop ; cend$

Hoare Logic for TMs

Hoare-triples

```
{P} p {Q} \stackrel{def}{=} \forall tp.

if P tp holds then
\exists n. such that

is_final (steps (1, tp) p n) ∧

O holds for (steps (1, tp) p n)
```

Hoare Logic for TMs

• Hoare-triples and Hoare-pairs:

Some Derived Rules

$$\frac{P' \mapsto P \quad \{P\} \ p \ \{Q\} \quad Q \mapsto Q'}{\{P'\} \ p \ \{Q'\}}$$

$$\frac{\{P\} p_1 \{Q\} \quad \{Q\} p_2 \{R\}}{\{P\} p_1 ; p_2 \{R\}} \quad \frac{\{P\} p_1 \{Q\} \quad \{Q\} p_2 \uparrow}{\{P\} p_1 ; p_2 \uparrow}$$

Undecidability

 $contra \stackrel{def}{=} copy$; H; dither

Undecidability

 $contra \stackrel{def}{=} copy ; H ; dither$

 Suppose H decides contra called with code of contra halts, then

```
P_1 \stackrel{def}{=} \lambda tp. \ tp = ([], \langle code \ contra \rangle)
P_2 \stackrel{def}{=} \lambda tp. \ tp = ([0], \langle (code \ contra, \ code \ contra) \rangle)
P_3 \stackrel{def}{=} \lambda tp. \ \exists \ k. \ tp = (0^k, \langle 0 \rangle)
```

$$\frac{\{P_1\} copy \{P_2\} \quad \{P_2\} H \{P_3\}}{\{P_1\} copy ; H \{P_3\}} \quad \{P_3\} dither \uparrow \\ \{P_1\} contra \uparrow$$

Undecidability

 $contra \stackrel{def}{=} copy ; H ; dither$

 Suppose H decides contra called with code of contra does not halt, then

```
Q_1 \stackrel{def}{=} \lambda tp. \ tp = ([], \langle code \ contra \rangle)
Q_2 \stackrel{def}{=} \lambda tp. \ tp = ([0], \langle (code \ contra, \ code \ contra) \rangle)
Q_3 \stackrel{def}{=} \lambda tp. \ \exists \ k. \ tp = (0^k, \langle 1 \rangle)
```

$$\frac{\{Q_1\} \operatorname{copy} \{Q_2\} \quad \{Q_2\} H \{Q_3\}}{\{Q_1\} \operatorname{copy} ; H \{Q_3\}} \quad \{Q_3\} \operatorname{dither} \{Q_3\}}{\{Q_1\} \operatorname{contra} \{Q_3\}}$$

Hoare Reasoning

reasoning is still quite demanding;
 the invariants of the copy-machine:

$$I_{1} n (l, r) \stackrel{def}{=} (l, r) = ([], I^{n}) \qquad \text{(starting state)}$$

$$I_{2} n (l, r) \stackrel{def}{=} \exists i j. \ 0 < i \land i + j = n \land (l, r) = (I^{i}, I^{j})$$

$$I_{3} n (l, r) \stackrel{def}{=} 0 < n \land (l, tl \ r) = (0::I^{n}, [])$$

$$I_{4} n (l, r) \stackrel{def}{=} 0 < n \land (l, r) = (I^{n}, [0, 1]) \lor (l, r) = (I^{n-1}, [1, 0, 1])$$

$$I_{0} n (l, r) \stackrel{def}{=} 1 < n \land (l, r) = (I^{n-2}, [1, 1, 0, 1]) \lor \text{(halting state)}$$

$$n = 1 \land (l, r) = ([], [0, 1, 0, 1])$$

$$J_{1} n (l, r) \stackrel{def}{=} \exists i j. \ i + j + 1 = n \land (l, r) = (I^{i}, 1::1::0^{j} @ I^{j}) \land 0 < j \lor$$

$$0 < n \land (l, r) = ([], 0::1::0^{n} @ I^{n}) \text{(starting state)}$$

$$J_{0} n (l, r) \stackrel{def}{=} 0 < n \land (l, r) = ([0], 1::0^{n} @ I^{n}) \text{(halting state)}$$

$$K_{1} n (l, r) \stackrel{def}{=} 0 < n \land (l, r) = ([0], 1::0^{n} @ I^{n}) \text{(halting state)}$$

$$K_{0} n (l, r) \stackrel{def}{=} 0 < n \land (l, r) = ([0], 1^{n} @ 0::1^{n}) \text{(halting state)}$$

Midway Conclusion

- feels awfully like reasoning about machine code
- compositional constructions / reasoning not at all frictionless
- sizes

sizes:

UF 140843 constructors
URM 2 Mio instructions
UTM 38 Mio states

*old version: URM (12 Mio) UTM (112 Mio)

Midway Conclusion

- feels awfully like reasoning about machine code
- compositional constructions / reasoning not at all frictionless
- sizes

sizes:

UF 140843 constructors
URM 2 Mio instructions
UTM 38 Mio states

 an observation: our treatment of recursive functions is a mini-version of the work by Myreen & Owens about deeply embedding HOL

Stealing From Other Works

- Jensen, Benton, Kennedy (2013), High-Level Separation Logic for Low-Level Code
- Myreen (2008), Formal Verification of Machine-Code Programs, PhD thesis
- Klein, Kolanski, Boyton (2012), Mechanised Separation Algebra

Better Composability

- an idea from Jensen, Benton, Kennedy who looked at X86 assembly programs and macros
- assembly for TMs:

```
move\_one\_left \stackrel{def}{=} 
 \Lambda \ exit. 
Inst (L, exit) (L, exit) ;
Label \ exit
```

⇒ represent "state" labels as functions (with bound variables ⇒ locality)

Better Composability

```
move_left_until_zero =

\[
\Lambda \text{ start exit.} \\
Label \text{ start;} \\
if_zero \text{ exit;} \\
move_left; \\
jmp \text{ start;} \\
Label \text{ exit.} \\
Label \text{ exit.} \\
\]
```

```
if_zero e \stackrel{def}{=} \Lambda exit. Inst (W_0, e), (W_1, exit); Label exit imp e \stackrel{def}{=} Inst (W_0, e), (W_1, e)
```

The Trouble With Hoare-Triples

Whenever we wanted to prove

- (1) we had to find a termination order proving that *p* terminates (not easy)
- (2) we had to find invariants for each state (not easy either)

The Trouble With Hoare-Triples

Whenever we wanted to prove

- (1) we had to find a termination order proving that *p* terminates (not easy)
- (2) we had to find invariants for each state (not easy either)

very little opportunity for automation

Separation Algebra

- use some infrastructure introduced by Klein et al in Isabelle/HOL
- and an idea by Myreen

$$\{p\}\ c\ \{q\}$$

p, c, q will be assertions in a separation logic

Separation Algebra

- use some infrastructure introduced by Klein et al in Isabelle/HOL
- and an idea by Myreen

$$\{p\}\ c\ \{q\}$$

p, c, q will be assertions in a separation logic e.g. $\{st \ i \star hd \ n \star ones \ u \ v \star zero \ (v+1)\}$

Separation Triples

c can be i: [move_left_until_zero]: j

Automation

 we introduced some tactics for handling sequential programs

$$\{p\}\ i:[c_1;...;c_n]:j\{q\}$$

• for loops we often only have to do inductions on the length of the input (e.g. how many *I*s are on the tape)

Automation

 we introduced some tactics for handling sequential programs

$$\{p\}\ i:[c_1;...;c_n]:j\{q\}$$

- for loops we often only have to do inductions on the length of the input (e.g. how many *I*s are on the tape)
- these macros allow us to completely get rid of register machines

Conclusion

- What started out as a student project, turned out to be much more fun than first thought.
- Where can you claim that you proved the correctness of a 38 Mio instruction program. (ca. 7000 is the soa 2)
- We learned a lot about current verification technology for low-level code (we had no infrastructure: CPU model).