
A Formalised Theory of Turing Machines in Isabelle/HOL

Xu Jian, Xingyuan Zhang
PLA University of Science and Technology Nanjing, China

Christian Urban
King’s College London, UK

Abstract—Isabelle/HOL is an interactive theorem prover
based on classical logic. While classical reasoning allow users
to take convenient shortcuts in some proofs, it precludes direct
reasoning about decidability: every boolean predicate is either
true or false because of the law of excluded middle. The
only way to reason about decidability in a classical theorem
prover, like Isabelle/HOL, is to formalise a concrete model for
computation. In this paper we formalise Turing machines and
relate them to register machines.

Keywords-Turing Machines, Decidability, Isabelle/HOL;

I. INTRODUCTION

We formalised in earlier work the correctness proofs for
two algorithms in Isabelle/HOL—one about type-checking
in LF [3] and another about deciding requests in access
control [4]. The formalisations uncovered a gap in the
informal correctness proof of the former and made us realise
that important details were left out in the informal model
for the latter. However, in both cases we were unable to
formalise in Isabelle/HOL computability arguments about
the algorithms. The reason is that both algorithms are
formulated in terms of inductive predicates. Suppose P
stands for one such predicate. Decidability of P usually
amounts to showing whether P ∨ ¬ P holds. But this does
not work in Isabelle/HOL, since it is a theorem prover
based on classical logic where the law of excluded middle
ensures that P ∨ ¬ P is always provable no matter whether
P is constructed by computable means. The same problem
would arise if we had formulated the algorithms as recursive
functions, because internally in Isabelle/HOL, like in all
HOL-based theorem provers, functions are represented as
inductively defined predicates.

The only satisfying way out is to formalise a theory of
computability. Norrish provided such a formalisation for the
HOL4 theorem prover. He choose the λ-calculus as the
starting point for his formalisation, because of its “sim-
plicity” [2, Page 297]. Part of his formalisation is a clever
infrastructure for reducing λ-terms. He also established the
computational equivalence between the lambda-calculus and
recursive functions. Nevertheless he concluded that it would
be appealing to have formalisations of more operational
models of computations such as Turing machines or register
machines. One reason is that many proofs in the literature
refer to them. He noted however that in the context of
theorem provers [2, Page 310]:

“If register machines are unappealing because of

their general fiddliness, Turing machines are an
even more daunting prospect.”

In this paper
[1]
Our formalisation follows XXX

Contributions:

II. WANG TILES

Used in texture mapings - graphics

III. RELATED WORK

The most closely related work is by Norrish. He bases
his approach on lambda-terms. For this he introduced a
clever rewriting technology based on combinators and de-
Bruijn indices for rewriting modulo β-equivalence (to keep
it manageable)

REFERENCES

[1] A. Asperti and W. Ricciotti. Formalizing Turing Machines. In
Proc. of the 19th International Workshop on Logic, Language,
Information and Computation (WoLLIC), volume 7456 of
LNCS, pages 1–25, 2012.

[2] M. Norrish. Mechanised Computability Theory. In Proc. of the
2nd Conference on Interactive Theorem Proving (ITP), volume
6898 of LNCS, pages 297–311, 2011.

[3] C. Urban, J. Cheney, and S. Berghofer. Mechanizing the
Metatheory of LF. ACM Transactions on Computational Logic,
12:15:1–15:42, 2011.

[4] C. Wu, X. Zhang, and C. Urban. ??? Submitted, 2012.


	Introduction
	Wang Tiles
	Related Work
	References

