
Mechanising Turing Machines and
Computability Theory in Isabelle

Jian Xu Xingyuan Zhang
PLA University of Science and Technology

Christian Urban
King's College London

ITP, 24 July 2013 -- p. 1/21

Why Turing Machines?
At the beginning, it was just a student project
about computability.

Computability and Logic (5th. ed)
Boolos, Burgess and Jeffrey

found an inconsistency in the definition of
halting computations (Chap. 3 vs Chap. 8)

ITP, 24 July 2013 -- p. 2/21

Some Previous Works
Norrish formalised computability theory in HOL
starting from the lambda-calculus

for technical reasons we could not follow him
some proofs use TMs (Wang tilings)

Asperti and Ricciotti formalised TMs in Matita
no undecidability result ⇒ interest in complexity
their UTM operates on a different alphabet than the
TMs it simulates

"In particular, the fact that the universal
machine operates with a different alphabet
with respect to the machines it simulates is
annoying." [Asperti and Ricciotti]

ITP, 24 July 2013 -- p. 3/21

The Big Picture

.....TMs ...Register
Machines

...Recursive
Functions

ITP, 24 July 2013 -- p. 4/21

The Big Picture

.....TMs ...Register
Machines

...Recursive
Functions

ITP, 24 July 2013 -- p. 4/21

...

verified
translator

...

verified
translator

The Big Picture

.....TMs ...Register
Machines

...Recursive
Functions

ITP, 24 July 2013 -- p. 4/21

...

verified
translator

...

verified
translator

..UF..
undecidability
of the halting
problem

The Big Picture

.....TMs ...Register
Machines

...Recursive
Functions

ITP, 24 July 2013 -- p. 4/21

...

verified
translator

...

verified
translator

..UF..
undecidability
of the halting
problem

..correct UTM by translation

Turing Machines
tapes are lists and contain 0s or 1s only

..
left list

.
right list
.

head
.… . …

steps function:
What does the TM calculate after it has
executed n steps?

designate the 0-state as "halting state" and remain
there forever, i.e. have a Nop-action

ITP, 24 July 2013 -- p. 5/21

Turing Machines
tapes are lists and contain 0s or 1s only

..
left list

.
right list
.

head
.… . …

steps function:
What does the TM calculate after it has
executed n steps?

designate the 0-state as "halting state" and remain
there forever, i.e. have a Nop-action

ITP, 24 July 2013 -- p. 5/21

Turing Machines
tapes are lists and contain 0s or 1s only

..
left list

.
right list
.

head
.… . …

steps function:
What does the TM calculate after it has
executed n steps?

designate the 0-state as "halting state" and remain
there forever, i.e. have a Nop-action

ITP, 24 July 2013 -- p. 5/21

Register Machines

programs are lists of instructions

I ::= Goto L jump to instruction L
| Inc R increment register R by one
| Dec R L if content of R is non-zero,

then decrement it by one
otherwise jump to instruction L

ITP, 24 July 2013 -- p. 6/21

Register Machines

programs are lists of instructions

I ::= Goto L jump to instruction L
| Inc R increment register R by one
| Dec R L if content of R is non-zero,

then decrement it by one
otherwise jump to instruction L

ITP, 24 July 2013 -- p. 6/21

..Spaghetti Code!

Recursive Functions
rec ::= Z zero-function

| S successor-function
| Idn

m projection
| Cnn f gs composition
| Prn f g primitive recursion
| Mnn f minimisation

eval :: rec ⇒ nat list ⇒ nat
can be defined by simple recursion
(HOL has Least)
you define

addition, multiplication, logical operations, quantifiers…
coding of numbers (Cantor encoding), UTM

ITP, 24 July 2013 -- p. 7/21

Copy Turing Machine

TM that copies a number on the input tape

.. ⇒. ⇒. ⇒. ︷ ︸︸ ︷
cbegin

. ︷ ︸︸ ︷
cloop

. ︷︸︸︷
cend

copy def
= cbegin ; cloop ; cend

cbegin def
=

[(W0, 0), (R, 2), (R, 3),
(R, 2), (W1, 3), (L, 4),
(L, 4), (L, 0)]

cloop def
=

[(R, 0), (R, 2), (R, 3),
(W0, 2), (R, 3), (R, 4),
(W1, 5), (R, 4), (L, 6),
(L, 5), (L, 6), (L, 1)]

cend def
=

[(L, 0), (R, 2), (W1, 3),
(L, 4), (R, 2), (R, 2),
(L, 5), (W0, 4), (R, 0),
(L, 5)]

ITP, 24 July 2013 -- p. 8/21

Hoare Logic for TMs

Hoare-triples

and Hoare-pairs:

{P} p {Q} def
=

∀ tp.
if P tp holds then
∃ n. such that
is_final (steps (1, tp) p n) ∧
Q holds_for (steps (1, tp) p n)

{P} p ↑ def
=

∀ tp.
if P tp holds then
∀ n. ¬ is_final (steps (1, tp) p n)

ITP, 24 July 2013 -- p. 9/21

Hoare Logic for TMs

Hoare-triples and Hoare-pairs:

{P} p {Q} def
=

∀ tp.
if P tp holds then
∃ n. such that
is_final (steps (1, tp) p n) ∧
Q holds_for (steps (1, tp) p n)

{P} p ↑ def
=

∀ tp.
if P tp holds then
∀ n. ¬ is_final (steps (1, tp) p n)

ITP, 24 July 2013 -- p. 9/21

Some Derived Rules

P' 7→ P {P} p {Q} Q 7→ Q'
{P'} p {Q'}

{P} p1 {Q} {Q} p2 {R}
{P} p1 ; p2 {R}

{P} p1 {Q} {Q} p2 ↑
{P} p1 ; p2 ↑

ITP, 24 July 2013 -- p. 10/21

Undecidability

ITP, 24 July 2013 -- p. 11/21

contra def
= copy ; H ; dither

Undecidability

Suppose H decides contra called with code of
contra halts, then

P1
def
= λtp. tp = ([], ⟨code contra⟩)

P2
def
= λtp. tp = ([0], ⟨(code contra, code contra)⟩)

P3
def
= λtp. ∃ k. tp = (0k, ⟨0⟩)

{P1} copy {P2} {P2} H {P3}
{P1} copy ; H {P3} {P3} dither ↑

{P1} contra ↑
ITP, 24 July 2013 -- p. 11/21

contra def
= copy ; H ; dither

Undecidability

Suppose H decides contra called with code of
contra does not halt, then

Q1
def
= λtp. tp = ([], ⟨code contra⟩)

Q2
def
= λtp. tp = ([0], ⟨(code contra, code contra)⟩)

Q3
def
= λtp. ∃ k. tp = (0k, ⟨1⟩)

{Q1} copy {Q2} {Q2} H {Q3}
{Q1} copy ; H {Q3} {Q3} dither {Q3}

{Q1} contra {Q3}

ITP, 24 July 2013 -- p. 11/21

contra def
= copy ; H ; dither

Hoare Reasoning
reasoning is still quite demanding;
the invariants of the copy-machine:

I1 n (l, r) def
= (l, r) = ([], 1n) (starting state)

I2 n (l, r) def
= ∃ i j. 0 < i ∧ i + j = n ∧ (l, r) = (1i, 1j)

I3 n (l, r) def
= 0 < n ∧ (l, tl r) = (0::1n, [])

I4 n (l, r) def
= 0 < n ∧ (l, r) = (1n, [0, 1]) ∨ (l, r) = (1n - 1, [1, 0, 1])

I0 n (l, r) def
= 1 < n ∧ (l, r) = (1n - 2, [1, 1, 0, 1]) ∨ (halting state)

n = 1 ∧ (l, r) = ([], [0, 1, 0, 1])

J1 n (l, r) def
= ∃ i j. i + j + 1 = n ∧ (l, r) = (1i, 1::1::0j@1j) ∧ 0 < j ∨

0 < n ∧ (l, r) = ([], 0::1::0n@1n) (starting state)
J0 n (l, r) def

= 0 < n ∧ (l, r) = ([0], 1::0n@1n) (halting state)

K1 n (l, r) def
= 0 < n ∧ (l, r) = ([0], 1::0n@1n) (starting state)

K0 n (l, r) def
= 0 < n ∧ (l, r) = ([0], 1n@0::1n) (halting state)

ITP, 24 July 2013 -- p. 12/21

Midway Conclusion
feels awfully like reasoning about machine code
compositional constructions / reasoning not at all
frictionless
sizes

sizes:
UF 140843 constructors
URM 2 Mio instructions
UTM 38 Mio states

an observation: our treatment of recursive
functions is a mini-version of the work by
Myreen & Owens about deeply embedding HOL

ITP, 24 July 2013 -- p. 13/21

..⋆old version: URM (12 Mio) UTM (112 Mio)

Midway Conclusion
feels awfully like reasoning about machine code
compositional constructions / reasoning not at all
frictionless
sizes

sizes:
UF 140843 constructors
URM 2 Mio instructions
UTM 38 Mio states

an observation: our treatment of recursive
functions is a mini-version of the work by
Myreen & Owens about deeply embedding HOL

ITP, 24 July 2013 -- p. 13/21

Inspiration from other Works

Jensen, Benton, Kennedy (2013), High-Level
Separation Logic for Low-Level Code

Myreen (2008), Formal Verification of Machine-Code
Programs, PhD thesis

Klein, Kolanski, Boyton (2012), Mechanised
Separation Algebra

ITP, 24 July 2013 -- p. 14/21

Inspiration from other Works

Jensen, Benton, Kennedy (2013), High-Level
Separation Logic for Low-Level Code

Myreen (2008), Formal Verification of Machine-Code
Programs, PhD thesis

Klein, Kolanski, Boyton (2012), Mechanised
Separation Algebra

ITP, 24 July 2013 -- p. 14/21

..Stealing

Inspiration from other Works

Jensen, Benton, Kennedy (2013), High-Level
Separation Logic for Low-Level Code

Myreen (2008), Formal Verification of Machine-Code
Programs, PhD thesis

Klein, Kolanski, Boyton (2012), Mechanised
Separation Algebra

ITP, 24 July 2013 -- p. 14/21

..Stealing

Better Composability
an idea from Jensen, Benton, Kennedy who
looked at X86 assembly programs and macros

assembly for TMs:

move_one_left def
=

Λ exit.
Inst (L, exit) (L, exit) ;
Label exit

⇒ represent "state" labels as functions
(with bound variables ⇒ locality)

ITP, 24 July 2013 -- p. 15/21

Better Composability

move_left_until_zero def
=

Λ start exit.
Label start ;
if_zero exit ;
move_left ;
jmp start ;
Label exit

if_zero e def
= Λ exit. Inst (W0, e), (W1, exit); Label exit

jmp e def
= Inst (W0, e), (W1, e)

ITP, 24 July 2013 -- p. 16/21

The Trouble With Hoare-Triples

Whenever we wanted to prove

{P} p {Q}

(1) we had to find a termination order proving that p
terminates (not easy)

(2) we had to find invariants for each state
(not easy either)

very little opportunity for automation

ITP, 24 July 2013 -- p. 17/21

The Trouble With Hoare-Triples

Whenever we wanted to prove

{P} p {Q}

(1) we had to find a termination order proving that p
terminates (not easy)

(2) we had to find invariants for each state
(not easy either)

very little opportunity for automation

ITP, 24 July 2013 -- p. 17/21

Separation Algebra

use some infrastructure introduced by Klein et al
in Isabelle/HOL
and an idea by Myreen

{|p|} c {|q|}

p, c, q will be assertions in a separation logic

e.g. {|st i ⋆ hd n ⋆ ones u v ⋆ zero (v + 1)|}

ITP, 24 July 2013 -- p. 18/21

Separation Algebra

use some infrastructure introduced by Klein et al
in Isabelle/HOL
and an idea by Myreen

{|p|} c {|q|}

p, c, q will be assertions in a separation logic
e.g. {|st i ⋆ hd n ⋆ ones u v ⋆ zero (v + 1)|}

ITP, 24 July 2013 -- p. 18/21

Separation Triples

{|p|} c {|q|} def
=

∀ cf r.
(p ⋆ c ⋆ r) cf implies
∃ k. (q ⋆ c ⋆ r) (run k cf)

c can be i:[move_left_until_zero]:j

ITP, 24 July 2013 -- p. 19/21

Automation
we introduced some tactics for handling
sequential programs

{|p|} i:[c1 ; ... ; cn]:j {|q|}

for loops we often only have to do inductions on
the length of the input (e.g. how many 1s are on
the tape)

these macros allow us to completely get rid of
register machines

ITP, 24 July 2013 -- p. 20/21

Automation
we introduced some tactics for handling
sequential programs

{|p|} i:[c1 ; ... ; cn]:j {|q|}

for loops we often only have to do inductions on
the length of the input (e.g. how many 1s are on
the tape)
these macros allow us to completely get rid of
register machines

ITP, 24 July 2013 -- p. 20/21

Conclusion

What started out as a student project, turned out
to be much more fun than first thought.

Where can you claim that you proved the
correctness of a 38 Mio instruction program.
(ca. 7000 is the soa)

We learned a lot about current verification
technology for low-level code (we had no
infrastructure: CPU model).

ITP, 24 July 2013 -- p. 21/21

