Mechanising Turing Machines and Computability Theory in Isabelle

Jian Xu Xingyuan Zhang PLA University of Science and Technology

Christian Urban King's College London

ITP, 24 July 2013 -- p. 1/21

Why Turing Machines?

At the beginning, it was just a student project about computability.

Computability and Logic (5th. ed) Boolos, Burgess and Jeffrey

• found an inconsistency in the definition of halting computations (Chap. 3 vs Chap. 8)

Some Previous Works

- Norrish formalised computability theory in HOL starting from the lambda-calculus
	- for technical reasons we could not follow him • some proofs use TMs (Wang tilings)

Asperti and Ricciotti formalised TMs in Matita

- no undecidability result *⇒* interest in complexity
- their UTM operates on a different alphabet than the TMs it simulates

"In particular, the fact that the universal machine operates with a different alphabet with respect to the machines it simulates is annoying." [Asperti and Ricciotti]

problem

. correct UTM by translation

Turing Machines

tapes are lists and contain *0*s or *1*s only

Turing Machines

tapes are lists and contain *0*s or *1*s only

steps function:

What does the TM calculate after it has executed *n* steps?

Turing Machines

tapes are lists and contain *0*s or *1*s only

steps function:

What does the TM calculate after it has executed *n* steps?

designate the *0*-state as "halting state" and remain there forever, i.e. have a *Nop*-action

Register Machines

- programs are lists of instructions
	- $I \ ::=$ *Goto L* jump to instruction *L | Inc R* increment register *R* by one *| Dec R L* if content of *R* is non-zero, then decrement it by one otherwise jump to instruction *L*

Register Machines

- programs are lists of instructions
	- $I \ ::=$ *Goto L* jump to instruction *L | Inc R* increment register *R* by one *| Dec R L* if content of *R* is non-zero, then decrement it by one otherwise jump to instruction *L*

Recursive Functions

- $rec := Z$ zero-function *| S* successor-function *| Idⁿ ^m* projection *| Cnⁿ f gs* composition $Prⁿ fg$ primitive recursion $Mn^n f$ minimisation
- *eval* \therefore *rec* \Rightarrow *nat list* \Rightarrow *nat* can be defined by simple recursion (HOL has *Least*)
- vou define
	- addition, multiplication, logical operations, quantifiers...
	- coding of numbers (Cantor encoding), UTM

Copy Turing Machine

• TM that copies a number on the input tape

copy def = *cbegin ; cloop ; cend*

cbegin def = *[(W0, 0), (R, 2), (R, 3), [(R, 0), (R, 2), (R, 3), [(L, 0), (R, 2), (W1, 3), (R, 2), (W1, 3), (L, 4), (W0, 2), (R, 3), (R, 4), (L, 4), (R, 2), (R, 2), (L, 4), (L, 0)] cloop def* = *(W1, 5), (R, 4), (L, 6), (L, 5), (W0, 4), (R, 0), (L, 5), (L, 6), (L, 1)] (L, 5)] cend def* =

Hoare Logic for TMs

• Hoare-triples

{P} p {Q} def = *∀ tp*. if *P tp* holds then *∃ n*. such that *is_final (steps (1, tp) p n) ∧ Q holds_for (steps (1, tp) p n)*

Hoare Logic for TMs

• Hoare-triples and Hoare-pairs:

{P} p {Q} def = *∀ tp*. if *P tp* holds then *∃ n*. such that *is_final (steps (1, tp) p n) ∧ Q holds_for (steps (1, tp) p n)* $\{P\} p \uparrow \stackrel{def}{=}$ *∀ tp*. if *P tp* holds then *∀ n*. *¬ is_final (steps (1, tp) p n)*

Some Derived Rules

$P' \mapsto P$ $\{P\} p \{Q\}$ $Q \mapsto Q'$ *{P'} p {Q'}*

*{P} p*¹ *{Q} {Q} p*² *{R} {P} p*¹ *{Q} {Q} p*² *↑* ${P}$ *p*₁ *; p*₂ ${R}$ ${P}$ *p*₁ *; p*₂ \uparrow

ITP, 24 July 2013 - p. $10/21$

contra def = *copy ; H ; dither*

$$
contra \stackrel{\textit{def}}{=} copy ; H ; dither
$$

Suppose *H* decides *contra* called with code of *contra* halts, then

$$
P_1 \stackrel{\text{def}}{=} \lambda tp. \text{ } tp = ([], \langle code \text{ } contra \rangle)
$$
\n
$$
P_2 \stackrel{\text{def}}{=} \lambda tp. \text{ } tp = ([0], \langle (code \text{ } contra, \text{ } code \text{ } contra \rangle) \rangle
$$
\n
$$
P_3 \stackrel{\text{def}}{=} \lambda tp. \exists k. \text{ } tp = (0^k, \langle 0 \rangle)
$$

$$
\frac{\{P_1\} \text{ copy } \{P_2\} \quad \{P_2\} \quad \{P_3\}}{\{P_1\} \text{ copy } ; \ H \{P_3\}} \quad \{P_3\} \ \text{dither } \uparrow
$$
\n
$$
\frac{\{P_1\} \text{ contra } \uparrow}{\{P_1\} \text{ contra } \uparrow}
$$

$$
contra \stackrel{\textit{def}}{=} copy ; H ; dither
$$

Suppose *H* decides *contra* called with code of *contra* does *not* halt, then

$$
Q_1 \stackrel{\text{def}}{=} \lambda tp. \text{ tp } = ([], \langle code \text{ contra} \rangle)
$$

\n
$$
Q_2 \stackrel{\text{def}}{=} \lambda tp. \text{ tp } = ([0], \langle (\text{code contra}, \text{code contra}) \rangle)
$$

\n
$$
Q_3 \stackrel{\text{def}}{=} \lambda tp. \exists k. \text{ tp } = (0^k, \langle 1 \rangle)
$$

$$
\frac{\{Q_1\} \text{ copy } \{Q_2\} \quad \{Q_2\} \quad H \{Q_3\}}{\{Q_1\} \text{ copy }; \quad H \{Q_3\}} \quad \{Q_3\} \text{ dither } \{Q_3\}}{\{Q_1\} \text{ contra } \{Q_3\}}
$$

Hoare Reasoning

• reasoning is still quite demanding; the invariants of the copy-machine:

 $I_1 n (l, r) \stackrel{def}{=} (l, r) = (l], l^n$ *)* (starting state) $I_2 n(l, r) \stackrel{def}{=} \exists i j. 0 < i \wedge i + j = n \wedge (l, r) = (1^i, 1^j)$ $I_3 n(l, r) \stackrel{def}{=} 0 < n \wedge (l, tl) = (0::l^n, [l])$ I_4 *n* (*l, r*) $\stackrel{def}{=} 0 < n \wedge (l, r) = (1^n, [0, 1]) \vee (l, r) = (1^{n-1}, [1, 0, 1])$ I_0 *n* (*l, r*) $\stackrel{def}{=} I < n \wedge (l, r) = (I^{n-2}, [1, 1, 0, 1]) \vee$ (halting state) *n = 1 ∧ (l, r) = ([], [0, 1, 0, 1])* $J_1 n(l, r) \stackrel{def}{=} \exists i j. i + j + 1 = n \land (l, r) = (1^i, 1::1::0^j \mathbb{Q} 1^j) \land 0 < j \lor (l, r) = (1^i, 1::1::0^j \mathbb{Q} 1^j)$ $0 < n \wedge (l, r) = (l, 0::l::0ⁿ ⊕ lⁿ)$ *)* (starting state) J_0 *n* (*l, r*) $\stackrel{def}{=} 0 < n \wedge (l, r) = ([0], 1::0^n \mathbb{Q}1^n)$ *)* (halting state) K_1 *n* (*l, r*) $\stackrel{def}{=} 0 < n \wedge (l, r) = ([0], 1::0^n \mathbb{Q} 1^n)$ *)* (starting state) K_0 *n* (*l, r*) $\stackrel{def}{=} 0 < n \wedge (l, r) = ([0], l^n \mathbb{Q} 0::l^n$ *)* (halting state)

ITP, 24 July 2013 - p. $12/21$

Midway Conclusion

- feels awfully like reasoning about machine code
- compositional constructions / reasoning not at all frictionless
- sizes

sizes:

UF 140843 constructors URM *2* Mio instructions UTM *38* Mio states

[⋆] . old version: URM (*¹²* Mio) UTM (*¹¹²* Mio)

Midway Conclusion

- feels awfully like reasoning about machine code
- compositional constructions / reasoning not at all frictionless
- sizes

sizes:

UF 140843 constructors URM *2* Mio instructions UTM *38* Mio states

• an observation: our treatment of recursive functions is a mini-version of the work by Myreen & Owens about deeply embedding HOL

Inspiration from other Works

ITP, 24 July 2013 -- p. $14/21$

Istentitive of From other Works

ITP, 24 July 2013 -- p. $14/21$

Istentitive of From other Works

- Jensen, Benton, Kennedy (**2013**), *High-Level Separation Logic for Low-Level Code*
- Myreen (**2008**), *Formal Verification of Machine-Code Programs*, PhD thesis
- Klein, Kolanski, Boyton (**2012**), *Mechanised Separation Algebra*

Better Composability

- an idea from Jensen, Benton, Kennedy who looked at X86 assembly programs and macros
- assembly for TMs:

$$
move_one_left \neq
$$

\n
$$
\triangle xit.
$$

\n
$$
Inst (L, exit) (L, exit);
$$

\n
$$
Label exit
$$

⇒ represent "state" labels as functions (with bound variables *⇒* locality)

Better Composability

move_left_until_zero def = Λ *start exit. Label start ; if_zero exit ; move_left ; jmp start ; Label exit*

if_zero
$$
e \stackrel{\text{def}}{=} \Lambda
$$
 exit. Inst (W_0, e) , $(W_1, exit)$; Label exit
 $imp e \stackrel{\text{def}}{=} Inst (W_0, e)$, (W_1, e)

The Trouble With Hoare-Triples

• Whenever we wanted to prove

{P} p {Q}

- *(1)* we had to find a termination order proving that *p* terminates (not easy)
- *(2)* we had to find invariants for each state (not easy either)

The Trouble With Hoare-Triples

• Whenever we wanted to prove

{P} p {Q}

- *(1)* we had to find a termination order proving that *p* terminates (not easy)
- *(2)* we had to find invariants for each state (not easy either)

very little opportunity for automation

Separation Algebra

- use some infrastructure introduced by Klein et al in Isabelle/HOL
- and an idea by Myreen

{|p|} c {|q|}

p, c, q will be assertions in a separation logic

Separation Algebra

- use some infrastructure introduced by Klein et al in Isabelle/HOL
- and an idea by Myreen

{|p|} c {|q|}

p, c, q will be assertions in a separation logic e.g. $\{ s \mid s \in \mathbb{R} \mid n \neq \text{ones } u \vee \neq \text{zero } (v + 1) \}$

$\{p\}$ *c* $\{q\}$ $\stackrel{\text{def}}{=}$ *∀ cf r.* $(p \star c \star r)$ *cf* implies *∃ k. (q ⋆ c ⋆ r) (run k cf)*

c can be *i:[move_left_until_zero]:j*

Automation

• we introduced some tactics for handling sequential programs

*{|p|} i:[c*¹ *; ... ; cn]:j {|q|}*

• for loops we often only have to do inductions on the length of the input (e.g. how many *1*s are on the tape)

Automation

• we introduced some tactics for handling sequential programs

*{|p|} i:[c*¹ *; ... ; cn]:j {|q|}*

- for loops we often only have to do inductions on the length of the input (e.g. how many *1*s are on the tape)
- these macros allow us to completely get rid of register machines

Conclusion

- What started out as a student project, turned out to be much more fun than first thought.
- Where can you claim that you proved the correctness of a *38* Mio instruction program. $(ca. 7000 \text{ is the soa } \mathcal{C})$
- We learned a lot about current verification technology for low-level code (we had no infrastructure: CPU model).