
Formalising Computability Theory in Isabelle/HOL

Jian Xu, Xingyuan Zhang
PLA University of Science and Technology Nanjing, China

Christian Urban
King’s College London, UK

Abstract—We present a formalised theory of computability
in the theorem prover Isabelle/HOL. This theorem prover
is based on classical logic which precludes direct reasoning
about computability: every boolean predicate is either true
or false because of the law of excluded middle. The only
way to reason about computability in a classical theorem
prover is to formalise a concrete model for computation. We
formalise Turing machines and relate them to abacus machines
and recursive functions. Our theory can be used to formalise
other computability results: we give one example about the
undecidability of Wang tilings, whose proof uses the notion of
a universal Turing machine.

Keywords-Turing Machines, Computability, Isabelle/HOL,
Wang tilings

I. INTRODUCTION

We formalised in earlier work the correctness proofs for
two algorithms in Isabelle/HOL—one about type-checking
in LF [4] and another about deciding requests in access
control [6]. The formalisations uncovered a gap in the
informal correctness proof of the former and made us realise
that important details were left out in the informal model
for the latter. However, in both cases we were unable to
formalise in Isabelle/HOL computability arguments about
the algorithms. The reason is that both algorithms are
formulated in terms of inductive predicates. Suppose P
stands for one such predicate. Decidability of P usually
amounts to showing whether P ∨ ¬ P holds. But this does
not work in Isabelle/HOL, since it is a theorem prover
based on classical logic where the law of excluded middle
ensures that P ∨ ¬ P is always provable no matter whether
P is constructed by computable means. The same problem
would arise if we had formulated the algorithms as recursive
functions, because internally in Isabelle/HOL, like in all
HOL-based theorem provers, functions are represented as
inductively defined predicates too.

The only satisfying way out of this problem in a theorem
prover based on classical logic is to formalise a theory of
computability. Norrish provided such a formalisation for the
HOL4 theorem prover. He choose the λ-calculus as the
starting point for his formalisation of computability theory,
because of its “simplicity” [3, Page 297]. Part of his formali-
sation is a clever infrastructure for reducing λ-terms. He also
established the computational equivalence between the λ-
calculus and recursive functions. Nevertheless he concluded
that it would be “appealing” to have formalisations for

more operational models of computations, such as Turing
machines or register machines. One reason is that many
proofs in the literature use them. He noted however that
in the context of theorem provers [3, Page 310]:

“If register machines are unappealing because of
their general fiddliness, Turing machines are an
even more daunting prospect.”

In this paper we took on this daunting prospect and pro-
vide a formalisation of Turing machines, as well as aba-
cus machines (a kind of register machines) and recursive
functions. To see the difficulties involved with this work,
one has to understand that interactive theorem provers, like
Isabelle/HOL, are at their best when the data-structures at
hand are “structurally” defined, like lists, natural numbers,
regular expressions, etc. Such data-structures come with
convenient reasoning infrastructures (for example induction
principles, recursion combinators and so on). But this is not
the case with Turing machines (and also not with register
machines): underlying their definition is a set of states
together with a transition function, both of which are not
structurally defined. This means we have to implement our
own reasoning infrastructure in order to prove properties
about them. This leads to annoyingly fiddly formalisations.
We noticed first the difference between both, structural
and non-structural, “worlds” when formalising the Myhill-
Nerode theorem, where regular expressions fared much
better than automata [5]. However, with Turing machines
there seems to be no alternative if one wants to formalise
the great many proofs from the literature that use them. We
will analyse one example—undecidability of Wang tilings—
in Section III. The standard proof of this property uses the
notion of universal Turing machines.

We are not the first who formalised Turing machines in
a theorem prover: we are aware of the preliminary work
by Asperti and Ricciotti [1]. They describe a complete
formalisation of Turing machines in the Matita theorem
prover, including a universal Turing machine. They report
that the informal proofs from which they started are not
“sufficiently accurate to be directly used as a guideline
for formalization” [1, Page 2]. For our formalisation we
followed the proofs from the textbook [2] and found that
the description there is quite detailed. Some details are left
out however: for example, it is only shown how the universal
Turing machine is constructed for Turing machines comput-



ing unary functions. We had to figure out a way to generalize
this result to n-ary functions. Similarly, when compiling
recursive functions to abacus machines, the textbook again
only shows how it can be done for 2- and 3-ary functions,
but in the formalisation we need arbitrary functions. But the
general ideas for how to do this are clear enough in [2].

The main difference between our formalisation and the
one by Asperti and Ricciotti is that their universal Turing
machine uses a different alphabet than the machines it
simulates. They write [1, Page 23]:

“In particular, the fact that the universal machine
operates with a different alphabet with respect to
the machines it simulates is annoying.”

In this paper we follow the approach by Boolos et al [2]
where Turing machines (and our universal Turing machine)
operates on tapes that contain only blank or filled cells
(respectively represented by 0 and 1—or in our formalisation
by Bk and Oc).
Contributions:

II. FORMALISATION

III. WANG TILES

Used in texture mapings - graphics

IV. RELATED WORK

The most closely related work is by Norrish. He bases
his approach on lambda-terms. For this he introduced a
clever rewriting technology based on combinators and de-
Bruijn indices for rewriting modulo β-equivalence (to keep
it manageable)

REFERENCES

[1] A. Asperti and W. Ricciotti. Formalizing Turing Machines. In
Proc. of the 19th International Workshop on Logic, Language,
Information and Computation (WoLLIC), volume 7456 of
LNCS, pages 1–25, 2012.

[2] G. Boolos, J. P. Burgess, and R. C. Jeffrey. Computability and
Logic (5th ed.). Cambridge University Press, 2007.

[3] M. Norrish. Mechanised Computability Theory. In Proc. of the
2nd Conference on Interactive Theorem Proving (ITP), volume
6898 of LNCS, pages 297–311, 2011.

[4] C. Urban, J. Cheney, and S. Berghofer. Mechanizing the
Metatheory of LF. ACM Transactions on Computational Logic,
12:15:1–15:42, 2011.

[5] C. Wu, X. Zhang, and C. Urban. A Formalisation of the
Myhill-Nerode Theorem based on Regular Expressions (Proof
Pearl). In Proc. of the 2nd Conference on Interactive Theorem
Proving, volume 6898 of LNCS, pages 341–356, 2011.

[6] C. Wu, X. Zhang, and C. Urban. ??? Submitted, 2012.


	Introduction
	Formalisation
	Wang Tiles
	Related Work
	References

