
A Formalised Theory of Turing Machines in Isabelle/HOL

Jian Xu, Xingyuan Zhang
PLA University of Science and Technology Nanjing, China

Christian Urban
King’s College London, UK

Abstract—Isabelle/HOL is an interactive theorem prover
based on classical logic. While classical reasoning allow users
to take convenient shortcuts in some proofs, it precludes direct
reasoning about decidability: every boolean predicate is either
true or false because of the law of excluded middle. The
only way to reason about decidability in a classical theorem
prover, like Isabelle/HOL, is to formalise a concrete model for
computation. In this paper we formalise Turing machines and
relate them to register machines.

Keywords-Turing Machines, Decidability, Isabelle/HOL;

I. INTRODUCTION

We formalised in earlier work the correctness proofs for
two algorithms in Isabelle/HOL—one about type-checking
in LF [4] and another about deciding requests in access
control [6]. The formalisations uncovered a gap in the
informal correctness proof of the former and made us realise
that important details were left out in the informal model
for the latter. However, in both cases we were unable to
formalise in Isabelle/HOL computability arguments about
the algorithms. The reason is that both algorithms are
formulated in terms of inductive predicates. Suppose P
stands for one such predicate. Decidability of P usually
amounts to showing whether P ∨ ¬ P holds. But this does
not work in Isabelle/HOL, since it is a theorem prover
based on classical logic where the law of excluded middle
ensures that P ∨ ¬ P is always provable no matter whether
P is constructed by computable means. The same problem
would arise if we had formulated the algorithms as recursive
functions, because internally in Isabelle/HOL, like in all
HOL-based theorem provers, functions are represented as
inductively defined predicates too.

The only satisfying way out of this problem in a theorem
prover based on classical logic is to formalise a theory of
computability. Norrish provided such a formalisation for the
HOL4 theorem prover. He choose the λ-calculus as the
starting point for his formalisation of computability theory,
because of its “simplicity” [3, Page 297]. Part of his formali-
sation is a clever infrastructure for reducing λ-terms. He also
established the computational equivalence between the λ-
calculus and recursive functions. Nevertheless he concluded
that it would be “appealing” to have formalisations for
more operational models of computations, such as Turing
machines or register machines. One reason is that many
proofs in the literature use them. He noted however that
in the context of theorem provers [3, Page 310]:

“If register machines are unappealing because of
their general fiddliness, Turing machines are an
even more daunting prospect.”

In this paper we took on this daunting prospect and provide
a formalisation of Turing machines, as well as abacus
machines (a kind of register machines) and recursive func-
tions. To see the difficulties involved with this work, one
has to understand that interactive theorem provers, like Is-
abelle/HOL, are at their best when the data-structures at hand
are “structurally” defined, like lists, natural numbers, regu-
lar expressions, etc. Such data-structures come convenient
reasoning infrastructures (for example induction principles,
recursion combinators and so on). But this is not the case
with Turing machines (and also not with register machines):
underlying their definition is a set of states together with
a transition function, both of which are not structurally
defined. This means we have to implement our own reason-
ing infrastructure in order to prove properties about them.
This leads to annoyingly lengthy and fiddly formalisations.
We noticed first the difference between both structural and
non-structural “worlds” when formalising the Myhill-Nerode
theorem, where regular expressions fared much better than
automata [5]. However, with Turing machines there seems to
be no alternative if one wants to formalise the great many
proofs from the literature that use them. We will analyse
one example—undecidability of Wang tilings—in detail in
Section III. The standard proof of this property uses the
notion of universal Turing machines.

We are not the first who formalised Turing machines in
a theorem prover: we are aware of the preliminary work by
Asperti and Ricciotti [1]. They describe a complete formal-
isation of Turing machines in the Matita theorem prover,
including an universal Turing machine. They report that the
informal proofs from which they started are not “sufficiently
accurate to be directly used as a guideline for formalization”
[1, Page 2]. For our formalisation we followed the proofs
from the textbook [2] and found that the description is quite
detailed. Some details are left out however: for example, it is
only shown how the universal Turing machine is constructed
for Turing machines computing unary functions. We had to
figure out a way to generalize this result to n-ary functions.
Similarly, when compiling recursive functions to abacus
machines, the textbook again only shows how it can be done
for 2- and 3-ary functions, but in the formalisation we need



arbitrary functions. But the general ideas for how to do this
are clear enough in [2].

The main difference between our formalisation and the
one by Asperti and Ricciotti is that their universal Turing
machine uses a different alphabet than the machines it
simulates. They write [1, Page XXX]:

“In particular, the fact that the universal machine
operates with a different alphabet with respect to
the machines it simulates is annoying.”

In this paper we follow the approach by Boolos et al [2]
where Turing machines (and our universal Turing machine)
operates on tapes that contain only blank or filled cells
(respectively represented by 0 and 1—or in our formalisation
by Bk or Oc).
Contributions:

II. FORMALISATION

III. WANG TILES

Used in texture mapings - graphics

IV. RELATED WORK

The most closely related work is by Norrish. He bases
his approach on lambda-terms. For this he introduced a
clever rewriting technology based on combinators and de-
Bruijn indices for rewriting modulo β-equivalence (to keep
it manageable)

REFERENCES

[1] A. Asperti and W. Ricciotti. Formalizing Turing Machines. In
Proc. of the 19th International Workshop on Logic, Language,
Information and Computation (WoLLIC), volume 7456 of
LNCS, pages 1–25, 2012.

[2] G. Boolos, J. P. Burgess, and R. C. Jeffrey. Computability and
Logic (5th ed.). Cambridge University Press, 2007.

[3] M. Norrish. Mechanised Computability Theory. In Proc. of the
2nd Conference on Interactive Theorem Proving (ITP), volume
6898 of LNCS, pages 297–311, 2011.

[4] C. Urban, J. Cheney, and S. Berghofer. Mechanizing the
Metatheory of LF. ACM Transactions on Computational Logic,
12:15:1–15:42, 2011.

[5] C. Wu, X. Zhang, and C. Urban. A Formalisation of the
Myhill-Nerode Theorem based on Regular Expressions (Proof
Pearl). In Proc. of the 2nd Conference on Interactive Theorem
Proving, volume 6898 of LNCS, pages 341–356, 2011.

[6] C. Wu, X. Zhang, and C. Urban. ??? Submitted, 2012.


	Introduction
	Formalisation
	Wang Tiles
	Related Work
	References

