
Mechanising Turing Machines and Computability
Theory in Isabelle/HOL

Jian Xu1, Xingyuan Zhang1, and Christian Urban2

1 PLA University of Science and Technology, China
2 King’s College London, UK

Abstract. We present a formalised theory of computability in the theorem prover
Isabelle/HOL. This theorem prover is based on classical logic which precludes di-
rect reasoning about computability: every boolean predicate is either true or false
because of the law of excluded middle. The only way to reason about computabil-
ity in a classical theorem prover is to formalise a concrete model of computation.
We formalise Turing machines and relate them to abacus machines and recursive
functions. We also formalise a universal Turing machine and Hoare-style rea-
soning techniques that allow us to reason about Turing machine programs. Our
theory can be used to formalise other computability results.

1 Introduction

Suppose you want to mechanise a proof for whether a predicate P, say, is decidable
or not. Decidability of P usually amounts to showing whether P ∨ ¬ P holds. But this
does not work in Isabelle/HOL and other HOL theorem provers, since they are based on
classical logic where the law of excluded middle ensures that P ∨ ¬ P is always prov-
able no matter whether P is constructed by computable means. We hit on this limitation
previously when we mechanised the correctness proofs of two algorithms [11,12], but
were unable to formalise arguments about decidability or undecidability.

The only satisfying way out of this problem in a theorem prover based on classical
logic is to formalise a theory of computability. Norrish provided such a formalisation
for HOL4. He choose the λ-calculus as the starting point for his formalisation because
of its “simplicity” [8, Page 297]. Part of his formalisation is a clever infrastructure for
reducing λ-terms. He also established the computational equivalence between the λ-
calculus and recursive functions. Nevertheless he concluded that it would be appealing
to have formalisations for more operational models of computations, such as Turing
machines or register machines. One reason is that many proofs in the literature use
them. He noted however that [8, Page 310]:

“If register machines are unappealing because of their general fiddliness,
Turing machines are an even more daunting prospect.”

In this paper we take on this daunting prospect and provide a formalisation of Turing
machines, as well as abacus machines (a kind of register machines) and recursive func-
tions. To see the difficulties involved with this work, one has to understand that Turing
machine programs can be completely unstructured, behaving similar to Basic programs

2 Jian Xu, Xingyuan Zhang, and Christian Urban

containing the infamous goto [4]. This precludes in the general case a compositional
Hoare-style reasoning about Turing programs. We provide such Hoare-rules for when
it is possible to reason in a compositional manner (which is fortunately quite often), but
also tackle the more complicated case when we translate abacus programs into Turing
programs. This reasoning about concrete Turing machine programs is usually left out
in the informal literature, e.g. [3].

We are not the first who formalised Turing machines: we are aware of the work by
Asperti and Ricciotti [1]. They describe a complete formalisation of Turing machines
in the Matita theorem prover, including a universal Turing machine. However, they
do not formalise the undecidability of the halting problem since their main focus is
complexity, rather than computability theory. They also report that the informal proofs
from which they started are not “sufficiently accurate to be directly usable as a guideline
for formalization” [1, Page 2]. For our formalisation we follow mainly the proofs from
the textbook by Boolos et al [3] and found that the description there is quite detailed.
Some details are left out however: for example, constructing the copy Turing machine
is left as an exercise to the reader—a corresponding correctness proof is not mentioned
at all; also [3] only shows how the universal Turing machine is constructed for Turing
machines computing unary functions. We had to figure out a way to generalise this result
to n-ary functions. Similarly, when compiling recursive functions to abacus machines,
the textbook again only shows how it can be done for 2- and 3-ary functions, but in the
formalisation we need arbitrary functions. But the general ideas for how to do this are
clear enough in [3].

The main difference between our formalisation and the one by Asperti and Ricciotti
is that their universal Turing machine uses a different alphabet than the machines it
simulates. They write [1, Page 23]:

“In particular, the fact that the universal machine operates with a different
alphabet with respect to the machines it simulates is annoying.”

In this paper we follow the approach by Boolos et al [3], which goes back to Post [9],
where all Turing machines operate on tapes that contain only blank or occupied cells.
Traditionally the content of a cell can be any character from a finite alphabet. Although
computationally equivalent, the more restrictive notion of Turing machines in [3] makes
the reasoning more uniform. In addition some proofs about Turing machines are sim-
pler. The reason is that one often needs to encode Turing machines—consequently if the
Turing machines are simpler, then the coding functions are simpler too. Unfortunately,
the restrictiveness also makes it harder to design programs for these Turing machines.
In order to construct a universal Turing machine we therefore do not follow [1], in-
stead follow the proof in [3] by translating abacus machines to Turing machines and in
turn recursive functions to abacus machines. The universal Turing machine can then be
constructed by translating from a recursive function.
Contributions: We formalised in Isabelle/HOL Turing machines following the descrip-
tion of Boolos et al [3] where tapes only have blank or occupied cells. We mechanise
the undecidability of the halting problem and prove the correctness of concrete Tur-
ing machines that are needed in this proof; such correctness proofs are left out in the
informal literature. For reasoning about Turing machine programs we derive Hoare-
rules. We also construct the universal Turing machine from [3] by translating recursive

Mechanising Turing Machines and Computability Theory in Isabelle/HOL 3

functions to abacus machines and abacus machines to Turing machines. This works
essentially like a small, verified compiler from recursive functions to Turing machine
programs. When formalising the universal Turing machine, we stumbled in [3] upon an
inconsistent use of the definition of what partial function a Turing machine calculates.

2 Turing Machines

Turing machines can be thought of as having a head, “gliding” over a potentially infinite
tape. Boolos et al [3] only consider tapes with cells being either blank or occupied,
which we represent by a datatype having two constructors, namely Bk and Oc. One
way to represent such tapes is to use a pair of lists, written (l, r), where l stands for the
tape on the left-hand side of the head and r for the tape on the right-hand side. We use
the notation Bkn (similarly Ocn) for lists composed of n elements of Bks. We also have
the convention that the head, abbreviated hd, of the right list is the cell on which the
head of the Turing machine currently scans. This can be pictured as follows:

left list right list

head
.

Note that by using lists each side of the tape is only finite. The potential infinity is
achieved by adding an appropriate blank or occupied cell whenever the head goes over
the “edge” of the tape. To make this formal we define five possible actions the Turing
machine can perform:

a ::= WBk (write blank, Bk)
| WOc (write occupied, Oc)

| L (move left)
| R (move right)

| Nop (do-nothing operation)

We slightly deviate from the presentation in [3] (and also [1]) by using the Nop oper-
ation; however its use will become important when we formalise halting computations
and also universal Turing machines. Given a tape and an action, we can define the fol-
lowing tape updating function:

update (l, r) WBk
def
= (l, Bk::tl r)

update (l, r) WOc
def
= (l, Oc::tl r)

update (l, r) L
def
= if l = [] then ([], Bk::r) else (tl l, hd l::r)

update (l, r) R
def
= if r = [] then (Bk::l, []) else (hd r::l, tl r)

update (l, r) Nop
def
= (l, r)

The first two clauses replace the head of the right list with a new Bk or Oc, respectively.
To see that these two clauses make sense in case where r is the empty list, one has to

know that the tail function, tl, is defined such that tl []
def
= [] holds. The third clause

implements the move of the head one step to the left: we need to test if the left-list l is

4 Jian Xu, Xingyuan Zhang, and Christian Urban

empty; if yes, then we just prepend a blank cell to the right list; otherwise we have to
remove the head from the left-list and prepend it to the right list. Similarly in the fourth
clause for a right move action. The Nop operation leaves the the tape unchanged.

Next we need to define the states of a Turing machine. We follow the choice made
in [1] by representing a state with a natural number and the states in a Turing machine
program by the initial segment of natural numbers starting from 0. In doing so we can
compose two Turing machine programs by shifting the states of one by an appropriate
amount to a higher segment and adjusting some “next states” in the other.

An instruction of a Turing machine is a pair consisting of an action and a natural
number (the next state). A program p of a Turing machine is then a list of such pairs.
Using as an example the following Turing machine program, which consists of four
instructions

dither
def
= [(WBk, 1), (R, 2), (L, 1), (L, 0)]︸ ︷︷ ︸

1st state
= starting state

︸ ︷︷ ︸
2nd state

Bk-case︷ ︸︸ ︷ Oc-case︷︸︸︷

(1)

the reader can see we have organised our Turing machine programs so that segments
of two pairs belong to a state. The first component of such a segment determines what
action should be taken and which next state should be transitioned to in case the head
reads a Bk; similarly the second component determines what should be done in case of
reading Oc. We have the convention that the first state is always the starting state of
the Turing machine. The 0-state is special in that it will be used as the “halting state”.
There are no instructions for the 0-state, but it will always perform a Nop-operation and
remain in the 0-state. Unlike Asperti and Riccioti [1], we have chosen a very concrete
representation for Turing machine programs, because when constructing a universal
Turing machine, we need to define a coding function for programs. This can be directly
done for our programs-as-lists, but is slightly more difficult for the functions used by
Asperti and Ricciotti.

Given a program p, a state and the cell being scanned by the head, we need to fetch
the corresponding instruction from the program. For this we define the function fetch

fetch p 0 = (Nop, 0)

fetch p (Suc s) Bk
def
= case nth of p (2 ∗ s) of

None⇒ (Nop, 0) | Some i⇒ i

fetch p (Suc s) Oc
def
= case nth of p (2 ∗ s + 1) of

None⇒ (Nop, 0) | Some i⇒ i

(2)

In this definition the function nth of returns the nth element from a list, provided it
exists (Some-case), or if it does not, it returns the default action Nop and the default state
0 (None-case). We often have to restrict Turing machine programs to be well-formed: a
program p is well-formed if it satisfies the following three properties:

wf p
def
= 2 ≤ length p ∧ is even (length p) ∧ (∀ (a, s)∈ p. s ≤ length p div 2)

Mechanising Turing Machines and Computability Theory in Isabelle/HOL 5

The first states that p must have at least an instruction for the starting state; the second
that p has a Bk and Oc instruction for every state, and the third that every next-state is
one of the states mentioned in the program or being the 0-state.

We need to be able to sequentially compose Turing machine programs. Given our
concrete representation, this is relatively straightforward, if slightly fiddly. We use the
following two auxiliary functions:

shift p n
def
= map (λ(a, s). (a, if s = 0 then 0 else s + n)) p

adjust p
def
= map (λ(a, s). (a, if s = 0 then Suc (length p div 2) else s)) p

The first adds n to all states, except the 0-state, thus moving all “regular” states to the
segment starting at n; the second adds Suc (length p div 2) to the 0-state, thus redirecting
all references to the “halting state” to the first state after the program p. With these two
functions in place, we can define the sequential composition of two Turing machine
programs p1 and p2 as

p1 ⊕ p2
def
= adjust p1 @ shift p2 (length p1 div 2)

A configuration c of a Turing machine is a state together with a tape. This is written
as (s, (l, r)). We say a configuration is final if s = 0 and we say a predicate P holds for
a configuration if P holds for the tape (l, r). If we have a configuration and a program,
we can calculate what the next configuration is by fetching the appropriate action and
next state from the program, and by updating the state and tape accordingly. This single
step of execution is defined as the function step

step (s, (l, r)) p
def
= let (a, s ′) = fetch p s (read r)

in (s ′, update (l, r) a)

where read r returns the head of the list r, or if r is empty it returns Bk. It is impossible
in Isabelle/HOL to lift the step-function in order to realise a general evaluation function
for Turing machines programs. The reason is that functions in HOL-based provers need
to be terminating, and clearly there are programs that are not. We can however define a
recursive evaluation function that performs exactly n steps:

steps c p 0
def
= c

steps c p (Suc n)
def
= steps (step c p) p n

Recall our definition of fetch (shown in (2)) with the default value for the 0-state. In
case a Turing program takes according to the usual textbook definition, say [3], less
than n steps before it halts, then in our setting the steps-evaluation does not actually
halt, but rather transitions to the 0-state (the final state) and remains there performing
Nop-actions until n is reached.

We often need to restrict tapes to be in standard form, which means the left list of the
tape is either empty or only contains Bks, and the right list contains some “clusters” of
Ocs separated by single blanks. To make this formal we define the following overloaded

6 Jian Xu, Xingyuan Zhang, and Christian Urban

cbegin
def
=

[(WBk, 0), (R, 2), (R, 3),
(R, 2), (W1, 3), (L, 4),
(L, 4), (L, 0)]

cloop
def
=

[(R, 0), (R, 2), (R, 3),
(WBk, 2), (R, 3), (R, 4),
(WOc, 5), (R, 4), (L, 6),
(L, 5), (L, 6), (L, 1)]

cend
def
=

[(L, 0), (R, 2), (WOc, 3),
(L, 4), (R, 2), (R, 2),
(L, 5), (WBk, 4), (R, 0),
(L, 5)]

⇒ ⇒ ⇒︷ ︸︸ ︷
cbegin

︷ ︸︸ ︷
cloop

︷︸︸︷
cend

Fig. 1. The three components of the copy Turing machine (above). If started (below)
with the tape ([], 〈2〉) the first machine appends [Bk, Oc] at the end of the right tape; the
second then “moves” all Ocs except the first from the beginning of the tape to the end;
the third “refills” the original block of Ocs. The resulting tape is ([Bk], 〈(2, 2)〉).

function encoding natural numbers into lists of Ocs and Bks.

〈n〉 def
= Ocn + 1

〈(n, m)〉 def
= 〈n〉 @ [Bk] @ 〈m〉

〈[]〉 def
= []

〈[n]〉 def
= 〈n〉

〈n::ns〉 def
= 〈(n, ns)〉

(3)

A standard tape is then of the form (Bkk,〈[n1,...,nm]〉 @ Bkl) for some k, l and n1...m.
Note that the head in a standard tape “points” to the leftmost Oc on the tape. Note also
that the natural number 0 is represented by a single filled cell on a standard tape, 1 by
two filled cells and so on.

Before we can prove the undecidability of the halting problem for our Turing ma-
chines working on standard tapes, we have to analyse two concrete Turing machine
programs and establish that they are correct—that means they are “doing what they are
supposed to be doing”. Such correctness proofs are usually left out in the informal liter-
ature, for example [3]. The first program we need to prove correct is the dither program
shown in (1) and the second program is copy defined as

copy
def
= cbegin ⊕ cloop ⊕ cend (4)

whose three components are given in Figure 1. For our correctness proofs, we introduce
the notion of total correctness defined in terms of Hoare-triples, written {P} p {Q}.
They implement the idea that a program p started in state 1 with a tape satisfying P will
after some n steps halt (have transitioned into the halting state) with a tape satisfying
Q. This idea is very similar to the notion of realisability in [1]. We also have Hoare-
pairs of the form {P} p ↑ implementing the case that a program p started with a tape
satisfying P will loop (never transition into the halting state). Both notion are formally
defined as

Mechanising Turing Machines and Computability Theory in Isabelle/HOL 7

{P} p {Q} def
=

∀ (l, r).
if P (l, r) holds then
∃ n. such that
is final (steps (1, (l, r)) p n) ∧
Q holds for (steps (1, (l, r)) p n)

{P} p ↑ def
=

∀ (l, r).
if P (l, r) holds then
∀ n. ¬ is final (steps (1, (l, r)) p n)

For our Hoare-triples we can easily prove the following Hoare-consequence rule

P ′ 7→ P {P} p {Q} Q 7→ Q ′

{P ′} p {Q ′}
(5)

where P ′ 7→ P stands for the fact that for all tapes tp, P ′ tp implies P tp (similarly for Q
and Q ′).

Like Asperti and Ricciotti with their notion of realisability, we have set up our
Hoare-rules so that we can deal explicitly with total correctness and non-termination,
rather than have notions for partial correctness and termination. Although the latter
would allow us to reason more uniformly (only using Hoare-triples), we prefer our def-
initions because we can derive below some simple Hoare-rules for sequentially com-
posed Turing programs. In this way we can reason about the correctness of cbegin, for
example, completely separately from cloop and cend.

It is relatively straightforward to prove that the Turing program dither shown in
(1) is correct. This program should be the “identity” when started with a standard tape
representing 1 but loops when started with the 0-representation instead, as pictured
below.

start tape

halting case: . . . ⇒ . . .

non-halting case: . . . ⇒ loops

We can prove the following Hoare-statements:

{λtp. ∃ k. tp = (Bkk, 〈1〉)} dither {λtp. ∃ k. tp = (Bkk, 〈1〉)}
{λtp. ∃ k. tp = (Bkk, 〈0〉)} dither ↑

The first is by a simple calculation. The second is by an induction on the number of
steps we can perform starting from the input tape.

The program copy defined in (4) has 15 states; its purpose is to produce the standard
tape (Bks, 〈(n, n)〉) when started with (Bks, 〈n〉), that is making a copy of a value n on
the tape. Reasoning about this program is substantially harder than about dither. To
ease the burden, we derive the following two Hoare-rules for sequentially composed
programs.

{P} p1 {Q} {Q} p2 {R}
{P} p1 ⊕ p2 {R}

wf p1

{P} p1 {Q} {Q} p2 ↑
{P} p1 ⊕ p2 ↑

wf p1

8 Jian Xu, Xingyuan Zhang, and Christian Urban

I1 n (l, r)
def
= (l, r) = ([], Ocn) (starting state)

I2 n (l, r)
def
= ∃ i j. 0 < i ∧ i + j = n ∧ (l, r) = (Oci, Ocj)

I3 n (l, r)
def
= 0 < n ∧ (l, tl r) = (Bk::Ocn, [])

I4 n (l, r)
def
= 0 < n ∧ (l, r) = (Ocn, [Bk, Oc]) ∨ (l, r) = (Ocn − 1, [Oc, Bk, Oc])

I0 n (l, r)
def
= 1 < n ∧ (l, r) = (Ocn − 2, [Oc, Oc, Bk, Oc]) ∨ (halting state)

n = 1 ∧ (l, r) = ([], [Bk, Oc, Bk, Oc])

J1 n (l, r)
def
= ∃ i j. i + j + 1 = n ∧ (l, r) = (Oci, Oc::Oc::Bkj @ Ocj) ∧ 0 < j ∨

0 < n ∧ (l, r) = ([], Bk::Oc::Bkn @ Ocn) (starting state)

J0 n (l, r)
def
= 0 < n ∧ (l, r) = ([Bk], Oc::Bkn @ Ocn) (halting state)

K1 n (l, r)
def
= 0 < n ∧ (l, r) = ([Bk], Oc::Bkn @ Ocn) (starting state)

K0 n (l, r)
def
= 0 < n ∧ (l, r) = ([Bk], Ocn @ (Bk::Ocn)) (halting state)

Fig. 2. The invariants I0,. . . ,I4 are for the states of cbegin. Below, the invariants only
for the starting and halting states of cloop and cend are shown. In each invariant the
parameter n stands for the number of Ocs with which the Turing machine is started.

The first corresponds to the usual Hoare-rule for composition of two terminating pro-
grams. The second rule gives the conditions for when the first program terminates gen-
erating a tape for which the second program loops. The side-conditions about wf p1 are
needed in order to ensure that the redirection of the halting and initial state in p1 and
p2, respectively, match up correctly. These Hoare-rules allow us to prove the correct-
ness of copy by considering the correctness of the components cbegin, cloop and cend
in isolation. This simplifies the reasoning considerably, for example when designing
decreasing measures for proving the termination of the programs. We will show the
details for the program cbegin. For the two other programs we refer the reader to our
formalisation.

Given the invariants I0,. . . , I4 shown in Figure 2, which correspond to each state of
cbegin, we define the following invariant for the whole cbegin program:

Icbegin n (s, tp)
def
= if s = 0 then I0 n tp

else if s = 1 then I1 n tp
else if s = 2 then I2 n tp
else if s = 3 then I3 n tp
else if s = 4 then I4 n tp
else False

This invariant depends on n representing the number of Ocs on the tape. It is not hard
(26 lines of automated proof script) to show that for 0 < n this invariant is preserved
under the computation rules step and steps. This gives us partial correctness for cbegin.

We next need to show that cbegin terminates. For this we introduce lexicographi-
cally ordered pairs (n, m) derived from configurations (s, (l, r)) whereby n is the state
s, but ordered according to how cbegin executes them, that is 1 > 2 > 3 > 4 > 0; in

Mechanising Turing Machines and Computability Theory in Isabelle/HOL 9

order to have a strictly decreasing measure, m takes the data on the tape into account
and is calculated according to the following measure function:

Mcbegin(s, (l, r))
def
= if s = 2 then length r

else if s = 3 then (if r = [] ∨ r = [Bk] then 1 else 0)
else if s = 4 then length l
else 0

With this in place, we can show that for every starting tape of the form ([], Ocn) with
0 < n, the Turing machine cbegin will eventually halt (the measure decreases in each
step). Taking this and the partial correctness proof together, we obtain the Hoare-triple
shown on the left for cbegin:

{I1 n} cbegin {I0 n} {J1 n} cloop {J0 n} {K1 n} cend {K0 n}

where we assume 0 < n (similar reasoning is needed for the Hoare-triples for cloop
and cend). Since the invariant of the halting state of cbegin implies the invariant of the
starting state of cloop, that is I0 n 7→ J1 n holds, and also J0 n = K1 n, we can derive
the following Hoare-triple for the correctness of copy:

{λtp. tp = ([], 〈n〉)} copy {λtp. tp = ([Bk], 〈(n, n)〉)}

That means if we start with a tape of the form ([], 〈n〉) then copy will halt with the tape
([Bk], 〈(n, n)〉), as desired.

Finally, we are in the position to prove the undecidability of the halting problem. A
program p started with a standard tape containing the (encoded) numbers ns will halt
with a standard tape containing a single (encoded) number is defined as

halts p ns
def
= {λtp. tp = ([], 〈ns〉)} p {λtp. ∃ k n l. tp = (Bkk, 〈n〉 @ Bkl)}

This roughly means we considering only Turing machine programs representing func-
tions that take some numbers as input and produce a single number as output. For un-
decidability, the property we are proving is that there is no Turing machine that can
decide in general whether a Turing machine program halts (answer either 0 for halting
or 1 for looping). Given our correctness proofs for dither and copy shown above, this
non-existence is now relatively straightforward to establish. We first assume there is
a coding function, written code M, which represents a Turing machine M as a natural
number. No further assumptions are made about this coding function. Suppose a Tur-
ing machine H exists such that if started with the standard tape ([Bk], 〈(code M, ns)〉)
returns 0, respectively 1, depending on whether M halts or not when started with the
input tape containing 〈ns〉. This assumption is formalised as follows—for all M and all
lists of natural numbers ns:

halts M ns implies {λtp. tp = ([Bk], 〈(code M, ns)〉)} H {λtp. ∃ k. tp = (Bkk, 〈0〉)}
¬ halts M ns implies {λtp. tp = ([Bk], 〈(code M, ns)〉)} H {λtp. ∃ k. tp = (Bkk, 〈1〉)}

The contradiction can be derived using the following Turing machine

10 Jian Xu, Xingyuan Zhang, and Christian Urban

contra
def
= copy ⊕ H ⊕ dither

Suppose halts contra [code contra] holds. Given the invariants P1. . . P3 shown on the
left, we can derive the following Hoare-pair for contra on the right.

P1
def
= λtp. tp = ([], 〈code contra〉)

P2
def
= λtp. tp = ([Bk], 〈(code contra, code contra)〉)

P3
def
= λtp. ∃ k. tp = (Bkk, 〈0〉) {P1} copy {P2} {P2} H {P3}

{P1} copy ⊕ H {P3} {P3} dither ↑
{P1} contra ↑

This Hoare-pair contradicts our assumption that contra started with 〈code contra〉 halts.
Suppose ¬ halts contra [code contra] holds. Again, given the invariants Q1. . . Q3

shown on the left, we can derive the Hoare-triple for contra on the right.

Q1
def
= λtp. tp = ([], 〈code contra〉)

Q2
def
= λtp. tp = ([Bk], 〈(code contra, code contra)〉)

Q3
def
= λtp. ∃ k. tp = (Bkk, 〈1〉) {Q1} copy {Q2} {Q2} H {Q3}

{Q1} copy ⊕ H {Q3} {Q3} dither {Q3}
{Q1} contra {Q3}

This time the Hoare-triple states that contra terminates with the “output” 〈1〉. In both
case we come to a contradiction, which means we have to abandon our assumption that
there exists a Turing machine H which can in general decide whether Turing machines
terminate.

3 Abacus Machines

Boolos et al [3] use abacus machines as a stepping stone for making it less laborious
to write Turing machine programs. Abacus machines operate over a set of registers R0,
R1, . . . , Rn each being able to hold an arbitrary large natural number. We use natural
numbers to refer to registers; we also use a natural number to represent a program
counter and to represent jumping “addresses”, for which we use the letter l. An abacus
program is a list of instructions defined by the datatype:

i ::= Inc R increment register R by one
| Dec R l if content of R is non-zero, then decrement it by one

otherwise jump to instruction l
| Goto l jump to instruction l

For example the program clearing the register R (that is setting it to 0) can be defined
as follows:

clear R l
def
= [Dec R l, Goto 0]

Mechanising Turing Machines and Computability Theory in Isabelle/HOL 11

Running such a program means we start with the first instruction then execute one
instructions after the other, unless there is a jump. For example the second instruction
Goto 0 above means we jump back to the first instruction thereby closing the loop. Like
with our Turing machines, we fetch instructions from an abacus program such that a
jump out of “range” behaves like a Nop-action. In this way it is again easy to define a
function steps that executes n instructions of an abacus program. A configuration of an
abacus machine is the current program counter together with a snapshot of all registers.
By convention the value calculated by an abacus program is stored in the last register
(the one with the highest index in the program).

The main point of abacus programs is to be able to translate them to Turing machine
programs. Registers and their content are represented by standard tapes (see definition
shown in (3)). Because of the jumps in abacus programs, it is impossible to build Turing
machine programs out of components using our ⊕-operation shown in the previous
section. To overcome this difficulty, we calculate a layout of an abacus program as
follows

layout []
def
= []

layout (Inc R::is)
def
= 2 ∗ R + 9::layout is

layout (Dec R l::is)
def
= 2 ∗ R + 16::layout is

layout (Goto l::is)
def
= 1::layout is

This gives us a list of natural numbers specifying how many states are needed to trans-
late each abacus instruction. This information is needed in order to calculate the state
where the Turing machine program of one abacus instruction starts.

add something here about address
The Goto instruction is easiest to translate requiring only one state, namely the

Turing machine program:

translate Goto l
def
= [(Nop, l), (Nop, l)]

where l is the state in the Turing machine program to jump to. For translating the in-
struction Inc R, one has to remember that the content of the registers are encoded in the
Turing machine as a standard tape. Therefore the translated Turing machine needs to
first find the number corresponding to the content of register R. This needs a machine
with 2 ∗ R states and can be constructed as follows:

find nth 0
def
= []

find nth (Suc n)
def
=

find nth n @ [(WOc, 2 ∗ n + 1), (R, 2 ∗ n + 2), (R, 2 ∗ n + 3), (R, 2 ∗ n + 2)]

Then we need to increase the “number” on the tape by one, and adjust the following
“registers”. For adjusting we only need to change the first Oc of each number to Bk and
the last one from Bk to Oc. Finally, we need to transition the head of the Turing machine
back into the standard position. This requires a Turing machine with 9 states (we omit
the details). Similarly for the translation of Dec R l, where the translated Turing machine

12 Jian Xu, Xingyuan Zhang, and Christian Urban

needs to first check whether the content of the corresponding register is 0. For this we
have a Turing machine program with 16 states (again the details are omitted).

Finally, having a Turing machine for each abacus instruction we need to “stitch” the
Turing machines together into one so that each Turing machine component transitions
to next one, just like in the abacus programs. One last problem to overcome is that an
abacus program is assumed to calculate a value stored in the last register (the one with
the highest register). That means we have to append a Turing machine that “mops up”
the tape (cleaning all Ocs) except for the Ocs of the last register represented on the tape.
This needs a Turing machine program with 2 ∗ R + 6 states, assuming R is the number
of registers to be “cleaned”.

While generating the Turing machine program for an abacus program is not too
difficult to formalise, the problem is that it contains Gotos all over the place. The un-
fortunate result is that we cannot use our Hoare-rules for reasoning about sequentially
composed programs (for this each component needs to be completely independent). In-
stead we have to treat the translated Turing machine as one “big block” and prove as
invariant that it performs the same operations as the abacus program. For this we have
to show that for each configuration of an abacus machine the step-function is simulated
by zero or more steps in our translated Turing machine. This leads to a rather large
“monolithic” correctness proof (4600 loc and 380 sublemmas) that on the conceptual
level is difficult to break down into smaller components.

4 Recursive Functions and a Universal Turing Machine

The main point of recursive functions is that we can relatively easily construct a uni-
versal Turing machine via a universal function. This is different from Norrish [8] who
gives a universal function for Church numbers, and also from Asperti and Ricciotti [1]
who construct a universal Turing machine directly, but for simulating Turing machines
with a more restricted alphabet. Recursive functions are defined as the datatype

r ::= z (zero-function)
| s (successor-function)
| idn

m (projection)

| Cnn r rs (composition)
| Prn r1 r2 (primitive recursion)
| Mnn r (minimisation)

where n indicates the function expects n arguments (in [3] both z and s expect one
argument), and rs stands for a list of recursive functions. Since we know in each case
the arity, say l, we can define an inductive evaluation relation that relates a recursive
function r and a list ns of natural numbers of length l, to what the result of the recursive
function is, say n. We omit the definition of eval r ns n. Because of space reasons, we
also omit the definition of translating recursive functions into abacus programs. We can
prove, however, the following theorem about the translation: If eval r ns n holds for the
recursive function r, then the following Hoare-triple holds

{λtp. tp = ([Bk, Bk], 〈ns〉)} translate r {λtp. ∃ k l. tp = (Bkk, 〈n〉 @ Bkl)}

for the translated Turing machine translate r. This means that if the recursive function r
with arguments ns evaluates to n, then the translated Turing machine if started with the

Mechanising Turing Machines and Computability Theory in Isabelle/HOL 13

standard tape ([Bk, Bk], 〈ns〉) will terminate with the standard tape (Bkk, 〈n〉@ Bkl) for
some k and l.

Having recursive functions under our belt, we can construct a universal function,
written UF. This universal function acts like an interpreter for Turing machines. It takes
two arguments: one is the code of the Turing machine to be interpreted and the other
is the “packed version” of the arguments of the Turing machine. We can then consider
how this universal function is translated to a Turing machine and from this construct
the universal Turing machine, written UTM. UTM is defined as the composition of the
Turing machine that packages the arguments and the translated recursive function UF:

UTM
def
= arg coding ⊕ (translate UF)

Suppose a Turing program p is well-formed and when started with the standard tape
containing the arguments args, will produce a standard tape with “output” n. This as-
sumption can be written as the Hoare-triple

{λtp. tp = ([], 〈args〉)} p {λtp. tp = (Bkm, 〈n〉 @ Bkk)}

where we require that the args stand for a non-empty list. Then the universal Turing
machine UTM started with the code of p and the arguments args, calculates the same
result, namely

{λtp. tp = ([], 〈code p::args〉)} UTM {λtp. ∃m k. tp = (Bkm, 〈n〉 @ Bkk)}

Similarly, if a Turing program p started with the standard tape containing args loops,
which is represented by the Hoare-pair

{λtp. tp = ([], 〈args〉)} p ↑

then the universal Turing machine started with the code of p and the arguments args
will also loop

{λtp. tp = ([], 〈code p::args〉)} UTM ↑

While formalising the chapter in [3] about universal Turing machines, an unex-
pected outcome of our work is that we identified an inconsistency in their use of a
definition. This is unexpected since [3] is a classic textbook which has undergone sev-
eral editions (we used the fifth edition; the material containing the inconsistency was
introduced in the fourth edition [2]). The central idea about Turing machines is that
when started with standard tapes they compute a partial arithmetic function. The incon-
sitency arises when they define the case when this function should not return a result.
Boolos at al write in Chapter 3, Page 32:

“If the function that is to be computed assigns no value to the arguments that
are represented initially on the tape, then the machine either will never halt,
or will halt in some nonstandard configuration. . . ”

14 Jian Xu, Xingyuan Zhang, and Christian Urban

Interestingly, they do not implement this definition when constructing their universal
Turing machine. In Chapter 8, on page 93, a recursive function stdh is defined as:

stdh(m, x, t)
def
= stat(conf (m, x, t)) + nstd(conf (m, x, t)) (6)

where stat(conf (m, x, t)) computes the current state of the simulated Turing machine,
and nstd(conf (m, x, t)) returns 1 if the tape content is non-standard. If either one eval-
uates to something that is not zero, then stdh(m, x, t) will be not zero, because of the
+-operation. One the same page, a function halt(m, x) is defined in terms of stdh for
computing the steps the Turing machine needs to execute before it halts (in case it halts
at all). According to this definition, the simulated Turing machine will continue to run
after entering the 0-state with a non-standard tape. The consequence of this inconsis-
tency is that there exist Turing machines that given some arguments do not compute a
value according to Chapter 3, but return a proper result according to the definition in
Chapter 8. One such Turing machine is:

counter example
def
= [(L, 0), (L, 2), (R, 2), (R, 0)]

If started with standard tape ([], [Oc]), it halts with the non-standard tape ([Oc], [])
according to the definition in Chapter 3—so no result is calculated; but with the standard
tape ([], [Oc]) according to the definition in Chapter 8. We solve this inconsitency in our
formalisation by setting up our definitions so that the counter example Turing machine
does not produce any result by looping forever fetching Nops in state 0. This solution is
different from the definition in Chapter 3, but also different from the one in Chapter 8,
where the instruction from state 1 is fetched.

5 Conclusion

In previous works we were unable to formalise results about computability because in
Isabelle/HOL we cannot represent the decidability of a predicate P, say, as the formula
P ∨ ¬ P. For reasoning about computability we need to formalise a concrete model of
computations. We could have followed Norrish [8] using the λ-calculus as the starting
point for computability theory, but then we would have to reimplement his infrastructure
for reducing λ-terms on the ML-level. We would still need to connect his work to Turing
machines for proofs that make essential use of them (for example the undecidability
proof for Wang’s tiling problem [10]).

We therefore have formalised Turing machines in the first place and the main com-
putability results from Chapters 3 to 8 in the textbook by Boolos et al [3]. For this we
did not need to implement anything on the ML-level of Isabelle/HOL. While formalis-
ing the six chapters of [3] we have found an inconsistency in Boolos et al’s definitions
of what function a Turing machine calculates. In Chapter 3 they use a definition that
states a function is undefined if the Turing machine loops or halts with a non-standard
tape. Whereas in Chapter 8 about the universal Turing machine, the Turing machines
will not halt unless the tape is in standard form. If the title had not already been taken
in [7], we could have titled our paper “Boolos et al are (almost) Right”. We have not

Mechanising Turing Machines and Computability Theory in Isabelle/HOL 15

attempted to formalise everything precisely as Boolos et al present it, but use definitions
that make our mechanised proofs manageable. For example our definition of the halting
state performing Nop-operations seems to be non-standard, but very much suited to a
formalisation in a theorem prover where the steps-function needs to be total.

Norrish mentions that formalising Turing machines would be a “daunting prospect”
[8, Page 310]. While λ-terms indeed lead to some slick mechanised proofs, our experi-
ence is that Turing machines are not too daunting if one is only concerned with formal-
ising the undecidability of the halting problem for Turing machines. This took us around
1500 loc of Isar-proofs, which is just one-and-a-half times of a mechanised proof pearl
about the Myhill-Nerode theorem. So our conclusion is that this part is not as daunt-
ing as we estimated when reading the paper by Norrish [8]. The work involved with
constructing a universal Turing machine via recursive functions and abacus machines,
we agree, is not a project one wants to undertake too many times (our formalisation
of abacus machines and their correct translation is approximately 4600 loc; recursive
functions 5000 loc and the universal Turing machine 10000 loc).

Our work is also very much inspired by the formalisation of Turing machines of
Asperti and Ricciotti [1] in the Matita theorem prover. It turns out that their notion
of realisability and our Hoare-triples are very similar, however we differ in some ba-
sic definitions for Turing machines. Asperti and Ricciotti are interested in providing a
mechanised foundation for complexity theory. They formalised a universal Turing ma-
chine (which differs from ours by using a more general alphabet), but did not describe
an undecidability proof. Given their definitions and infrastructure, we expect however
this should not be too difficult for them.

For us the most interesting aspects of our work are the correctness proofs for Turing
machines. Informal presentations of computability theory often leave the constructions
of particular Turing machines as exercise to the reader, for example [3], deeming it to
be just a chore. However, as far as we are aware all informal presentations leave out any
arguments why these Turing machines should be correct. This means the reader is left
with the task of finding appropriate invariants and measures for showing the correctness
and termination of these Turing machines. Whenever we can use Hoare-style reason-
ing, the invariants are relatively straightforward and much smaller than for example
the invariants used by Myreen in a correctness proof of a garbage collector written in
machine code [6, Page 76]. However, the invariant needed for the abacus proof, where
Hoare-style reasoning does not work, is similar in size as the one by Myreen and finding
a sufficiently strong one took us, like Myreen, something on the magnitude of weeks.

Our reasoning about the invariants is not much supported by the automation beyond
the standard automation tools available in Isabelle/HOL. There is however a tantalis-
ing connection between our work and very recent work [5] on verifying X86 assembly
code that might change that. They observed a similar phenomenon with assembly pro-
grams where Hoare-style reasoning is sometimes possible, but sometimes it is not. In
order to ease their reasoning, they introduced a more primitive specification logic, on
which Hoare-rules can be provided for special cases. It remains to be seen whether their
specification logic for assembly code can make it easier to reason about our Turing pro-
grams. That would be an attractive result, because Turing machine programs are very
much like assembly programs and it would connect some very classic work on Turing

16 Jian Xu, Xingyuan Zhang, and Christian Urban

machines to very cutting-edge work on machine code verification. In order to try out
such ideas, our formalisation provides the “playground”. The code of our formalisa-
tion is available from the Mercurial repository at http://www.dcs.kcl.ac.uk/staff/urbanc/
cgi-bin/repos.cgi/tm/.

References

1. A. Asperti and W. Ricciotti. Formalizing Turing Machines. In Proc. of the 19th International
Workshop on Logic, Language, Information and Computation (WoLLIC), volume 7456 of
LNCS, pages 1–25, 2012.

2. G. Boolos, J. P. Burgess, and R. C. Jeffrey. Computability and Logic (4th ed.). Cambridge
University Press, 2002.

3. G. Boolos, J. P. Burgess, and R. C. Jeffrey. Computability and Logic (5th ed.). Cambridge
University Press, 2007.

4. E. W. Dijkstra. Go to Statement Considered Harmful. Communications of the ACM,
11(3):147–148, 1968.

5. J. B. Jensen, N. Benton, and A. Kennedy. High-Level Separation Logic for Low-Level Code.
In Proc. of the 40th Symposium on Principles of Programming Languages (POPL), pages
301–314, 2013.

6. M. O. Myreen. Formal Verification of Machine-Code Programs. PhD thesis, University of
Cambridge, 2009.

7. T. Nipkow. Winskel is (almost) Right: Towards a Mechanized Semantics Textbook. Formal
Aspects of Computing, 10:171–186, 1998.

8. M. Norrish. Mechanised Computability Theory. In Proc. of the 2nd Conference on Interac-
tive Theorem Proving (ITP), volume 6898 of LNCS, pages 297–311, 2011.

9. E. Post. Finite Combinatory Processes-Formulation 1. Journal of Symbolic Logic, 1(3):103–
105, 1936.

10. R. M. Robinson. Undecidability and Nonperiodicity for Tilings of the Plane. Inventiones
Mathematicae, 12:177–209, 1971.

11. C. Urban, J. Cheney, and S. Berghofer. Mechanizing the Metatheory of LF. ACM Transac-
tions on Computational Logic, 12:15:1–15:42, 2011.

12. C. Wu, X. Zhang, and C. Urban. A Formal Model and Correctness Proof for an Access
Control Policy Framework. Submitted, 2013.

http://www.dcs.kcl.ac.uk/staff/urbanc/cgi-bin/repos.cgi/tm/
http://www.dcs.kcl.ac.uk/staff/urbanc/cgi-bin/repos.cgi/tm/

	Introduction
	Turing Machines
	Abacus Machines
	Recursive Functions and a Universal Turing Machine
	Conclusion

