
Formalising Computability Theory in Isabelle/HOL

Jian Xu, Xingyuan Zhang
PLA University of Science and Technology Nanjing, China

Christian Urban
King’s College London, UK

Abstract—We present a formalised theory of computability
in the theorem prover Isabelle/HOL. This theorem prover
is based on classical logic which precludes direct reasoning
about computability: every boolean predicate is either true
or false because of the law of excluded middle. The only
way to reason about computability in a classical theorem
prover is to formalise a concrete model for computation. We
formalise Turing machines and relate them to abacus machines
and recursive functions. Our theory can be used to formalise
other computability results: we give one example about the
undecidability of Wang’s tiling problem, whose proof uses the
notion of a universal Turing machine.

Keywords-Turing Machines, Computability, Isabelle/HOL,
Wang tilings

I. INTRODUCTION

We formalised in earlier work the correctness proofs for
two algorithms in Isabelle/HOL—one about type-checking
in LF [5] and another about deciding requests in access
control [7]. The formalisations uncovered a gap in the
informal correctness proof of the former and made us realise
that important details were left out in the informal model
for the latter. However, in both cases we were unable to
formalise in Isabelle/HOL computability arguments about
the algorithms. The reason is that both algorithms are
formulated in terms of inductive predicates. Suppose P
stands for one such predicate. Decidability of P usually
amounts to showing whether P ∨ ¬ P holds. But this does
not work in Isabelle/HOL, since it is a theorem prover
based on classical logic where the law of excluded middle
ensures that P ∨ ¬ P is always provable no matter whether
P is constructed by computable means. The same problem
would arise if we had formulated the algorithms as recursive
functions, because internally in Isabelle/HOL, like in all
HOL-based theorem provers, functions are represented as
inductively defined predicates too.

The only satisfying way out of this problem in a theorem
prover based on classical logic is to formalise a theory of
computability. Norrish provided such a formalisation for the
HOL4 theorem prover. He choose the λ-calculus as the
starting point for his formalisation of computability theory,
because of its “simplicity” [3, Page 297]. Part of his formali-
sation is a clever infrastructure for reducing λ-terms. He also
established the computational equivalence between the λ-
calculus and recursive functions. Nevertheless he concluded
that it would be “appealing” to have formalisations for

more operational models of computations, such as Turing
machines or register machines. One reason is that many
proofs in the literature use them. He noted however that
in the context of theorem provers [3, Page 310]:

“If register machines are unappealing because of
their general fiddliness, Turing machines are an
even more daunting prospect.”

In this paper we take on this daunting prospect and pro-
vide a formalisation of Turing machines, as well as aba-
cus machines (a kind of register machines) and recursive
functions. To see the difficulties involved with this work,
one has to understand that interactive theorem provers, like
Isabelle/HOL, are at their best when the data-structures at
hand are “structurally” defined, like lists, natural numbers,
regular expressions, etc. Such data-structures come with
convenient reasoning infrastructures (for example induction
principles, recursion combinators and so on). But this is not
the case with Turing machines (and also not with register
machines): underlying their definitions are sets of states
together with transition functions, all of which are not struc-
turally defined. This means we have to implement our own
reasoning infrastructure in order to prove properties about
them. This leads to annoyingly fiddly formalisations. We
noticed first the difference between both, structural and non-
structural, “worlds” when formalising the Myhill-Nerode
theorem, where regular expressions fared much better than
automata [6]. However, with Turing machines there seems to
be no alternative if one wants to formalise the great many
proofs from the literature that use them. We will analyse
one example—undecidability of Wang’s tiling problem—
in Section V. The standard proof of this property uses the
notion of universal Turing machines.

We are not the first who formalised Turing machines in
a theorem prover: we are aware of the preliminary work
by Asperti and Ricciotti [1]. They describe a complete
formalisation of Turing machines in the Matita theorem
prover, including a universal Turing machine. They report
that the informal proofs from which they started are not
“sufficiently accurate to be directly useable as a guideline
for formalization” [1, Page 2]. For our formalisation we
followed mainly the proofs from the textbook [2] and found
that the description there is quite detailed. Some details
are left out however: for example, it is only shown how
the universal Turing machine is constructed for Turing

machines computing unary functions. We had to figure out
a way to generalize this result to n-ary functions. Similarly,
when compiling recursive functions to abacus machines, the
textbook again only shows how it can be done for 2- and
3-ary functions, but in the formalisation we need arbitrary
functions. But the general ideas for how to do this are clear
enough in [2]. However, one aspect that is completely left
out from the informal description in [2], and similar ones
we are aware of, is arguments why certain Turing machines
are correct. We will introduce Hoare-style proof rules which
help us with such correctness arguments of Turing machines.

The main difference between our formalisation and the
one by Asperti and Ricciotti is that their universal Turing
machine uses a different alphabet than the machines it
simulates. They write [1, Page 23]:

“In particular, the fact that the universal machine
operates with a different alphabet with respect to
the machines it simulates is annoying.”

In this paper we follow the approach by Boolos et al [2],
which goes back to Post [4], where all Turing machines
operate on tapes that contain only blank or occupied cells
(represented by Bk and Oc, respectively, in our formal-
isation). Traditionally the content of a cell can be any
character from a finite alphabet. Although computationally
equivalent, the more restrictive notion of Turing machines
in [2] makes the reasoning more uniform. In addition some
proofs about Turing machines are simpler. The reason is that
one often needs to encode Turing machines—consequently
if the Turing machines are simpler, then the coding functions
are simpler too. Unfortunately, the restrictiveness also makes
it harder to design programs for these Turing machines. In
order to construct a universal Turing machine we therefore
do not follow [1], instead follow the proof in [2] by relating
abacus machines to Turing machines and in turn recursive
functions to abacus machines. The universal Turing machine
can then be constructed as a recursive function.

Contributions:

II. TURING MACHINES

Turing machines can be thought of as having a read-write-
unit, also referred to as head, “gliding” over a potentially
infinite tape. Boolos et al [2] only consider tapes with cells
being either blank or occupied, which we represent by a
datatype having two constructors, namely Bk and Oc. One
way to represent such tapes is to use a pair of lists, written
(l, r), where l stands for the tape on the left-hand side of the
head and r for the tape on the right-hand side. We have the
convention that the head, abbreviated hd, of the right-list is
the cell on which the head of the Turing machine currently
operates. This can be pictured as follows:

left list right list

head

.

Note that by using lists each side of the tape is only finite.
The potential infinity is achieved by adding an appropriate
blank or occupied cell whenever the head goes over the
“edge” of the tape. To make this formal we define five
possible actions the Turing machine can perform:

a ::= WBk write blank (Bk)
| WOc write occupied (Oc)
| L move left
| R move right
| Nop do-nothing operation

We slightly deviate from the presentation in [2] by using
the Nop operation; however its use will become important
when we formalise halting computations and also universal
Turing machines. Given a tape and an action, we can define
the following tape updating function:

update (l, r) WBk
def
= (l, Bk::tl r)

update (l, r) WOc
def
= (l, Oc::tl r)

update (l, r) L
def
=

if l = [] then ([], Bk::r) else (tl l, hd l::r)

update (l, r) R
def
=

if r = [] then (Bk::l, []) else (hd r::l, tl r)

update (l, r) Nop
def
= (l, r)

The first two clauses replace the head of the right-list with
a new Bk or Oc, repsectively. To see that these two clauses
make sense in case where r is the empty list, one has to
know that the tail function, tl, is defined in Isabelle/HOL
such that tl []

def
= [] holds. The third clause implements the

move of the head one step to the left: we need to test if the
left-list l is empty; if yes, then we just prepend a blank cell
to the right-list; otherwise we have to remove the head from
the left-list and prepend it to the right-list. Similarly in the
fourth clause for a right move action. The Nop operation
leaves the the tape unchanged (last clause).

Note that our treatment of the tape is rather
“unsymmetric”—we have the convention that the head of the
right-list is where the head is currently positioned. Asperti
and Ricciotti [1] also considered such a representation, but
dismiss it as it complicates their definition for tape equality.
The reason is that moving the head one step to the left
and then back to the right might change the tape (in case
of going over the “edge”). Therefore they distinguish four
types of tapes: one where the tape is empty; another where
the head is on the left edge, respectively right edge, and in
the middle of the tape. The reading, writing and moving of
the tape is then defined in terms of these four cases. In this
way they can keep the tape in a “normalised” form, and

thus making a left-move followed by a right-move being
the identity on tapes. Since we are not using the notion
of tape equality, we can get away with the unsymmetric
definition above, and by using the update function cover
uniformely all cases including corner cases.

Next we need to define the states of a Turing machine.
Given how little is usually said about how to represent them
in informal presentations, it might be surprising that in a
theorem prover we have to select carfully a representation.
If we use the naive representation where a Turing machine
consists of a finite set of states, then we will have difficulties
composing two Turing machines: we would need to combine
two finite sets of states, possibly renaming states apart
whenever both machines share states.1 This renaming can
be quite cumbersome to reason about. Therefore we made
the choice of representing a state by a natural number and
the states of a Turing machine will always consist of the
initial segment of natural numbers starting from 0 up to
the number of states of the machine. In doing so we can
compose two Turing machine by shifting the states of one
by an appropriate amount to a higher segment and adjusting
some “next states” in the other.

An instruction i of a Turing machine is a pair consisting of
an action and a natural number (the next state). A program
p of a Turing machine is then a list of such pairs. Using as
an example the following Turing machine program, which
consists of four instructions

dither
def
= [(WBk, 1), (R, 2), (L, 1), (L, 0)]︸ ︷︷ ︸

1st state
︸ ︷︷ ︸

2nd state

Bk-case︷ ︸︸ ︷ Oc-case︷︸︸︷
(1)

the reader can see we have organised our Turing machine
programs so that segments of two belong to a state. The first
component of the segment determines what action should
be taken and which next state should be transitioned to in
case the head reads a Bk; similarly the second component
determines what should be done in case of reading Oc. We
have the convention that the first state is always the starting
state of the Turing machine. The zeroth state is special in
that it will be used as the “halting state”. There are no
instructions for the 0-state, but it will always perform a
Nop-operation and remain in the 0-state. Unlike Asperti and
Riccioti [1], we have chosen a very concrete representation
for programs, because when constructing a universal Turing
machine, we need to define a coding function for programs.
This can be easily done for our programs-as-lists, but is more
difficult for the functions used by Asperti and Ricciotti.

Given a program p, a state and the cell being read by the
head, we need to fetch the corresponding instruction from

1The usual disjoint union operation in Isabelle/HOL cannot be used as
it does not preserve types.

the program. For this we define the function fetch

fetch p 0
def
= (Nop, 0)

fetch p (Suc s) Bk
def
=

case nth of p (2 ∗ s) of
None ⇒ (Nop, 0) |
Some i ⇒ i

fetch p (Suc s) Oc
def
=

case nth of p (2 ∗ s + 1) of
None ⇒ (Nop, 0) |
Some i ⇒ i

In this definition the function nth of returns the nth element
from a list, provided it exists (Some-case), or if it does not, it
returns the default action Nop and the default state 0 (None-
case). In doing so we slightly deviate from the description
in [2]: if their Turing machines transition to a non-existing
state, then the computation is halted. We will transition in
such cases to the 0-state. However, with introducing the
notion of well-formed Turing machine programs we will
later exclude such cases and make the 0-state the only
“halting state”. A program p is said to be well-formed if
it satisfies the following three properties:

twf p
def
= 2 ≤ length p
∧ iseven (length p)
∧ ∀ (a, s)∈ p. s ≤ length p div 2

The first says that p must have at least an instruction for the
starting state; the second that p has a Bk and Oc instruction
for every state, and the third that every next-state is one of
the states mentioned in the program or being the 0-state.

A configuration c of a Turing machine is a state together
with a tape. This is written as (s, (l, r)). If we have a
configuration and a program, we can calculate what the next
configuration is by fetching the appropriate action and next
state from the program, and by updating the state and tape
accordingly. This single step of execution is defined as the
function step

step (s, (l, r)) p
def
=

let (a, s) = fetch p s (read r)
in (s ′, update (l, r) a)

where read r returns the head of the list r, or if r is empty it
returns Bk. It is impossible in Isabelle/HOL to lift the step-
function realising a general evaluation function for Turing
machines. The reason is that functions in HOL-based provers
need to be terminating, and clearly there are Turing machine
programs that are not. We can however define an evaluation
function so that it performs exactly n steps:

nsteps c p 0
def
= c

nsteps c p (Suc n)
def
= nsteps (step c p) p n

Recall our definition of fetch with the default value for the 0-
state. In case a Turing program takes in [2] less then n steps
before it halts, then in our setting the nsteps-evaluation does
not actually halt, but rather transitions to the 0-state and
remains there performing Nop-actions until n is reached.

Given some input tape (li,ri), we can define when a
program p generates a specific output tape (lo,ro)

runs p (li, ri) (lo, ro)
def
=

∃ n. nsteps (1, (li,ri)) p n = (0, (lo,ro))

where 1 stands for the starting state and 0 for our final state.
A program p with input tape (li, ri) halts iff

halts p (li, ri)
def
= ∃ lo ro. runs p (li, ri) (lo, ro)

Later on we need to consider specific Turing machines that
start with a tape in standard form and halt the computation
in standard form. To define a tape in standard form, it is
useful to have an operation p q that translates lists of natural
numbers into tapes.

p[]q
def
= []

p[n]q
def
= Ocn + 1

pn::nsq
def
= Ocn + 1 @ [Bk] @ pnsq

By this we mean

stdhalt p n
def
= ∃ k l m. run p ([], Ocn) (Bkk, Ocl @ Bkm)

This means the Turing machine starts with a tape containg
n Ocs and the head pointing to the first one; the Turing
machine halts with a tape consisting of some Bks, followed
by a “cluster” of Ocs and after that by some Bks. The head
in the output is pointing again at the first Oc. The intuitive
meaning of this definition is to start the Turing machine with
a tape corresponding to a value n and producing a new tape
corresponding to the value l (the number of Ocs clustered
on the output tape).

Before we can prove the undecidability of the halting
problem for Turing machines, we have to define how to
compose Turing machines. Given our setup, this is relatively
straightforward, if slightly fiddly.

abacus.tshift p n
def
= map (λ(a, s). (a, if s = 0 then 0 else

s + n)) p

(* HERE *)
shift and change of a p
composition of two ps
assertion holds for all tapes
Hoare rule for composition
For showing the undecidability of the halting problem, we

need to consider two specific Turing machines. copying TM
and dithering TM

correctness of the copying TM
measure for the copying TM, which we however omit.

halting problem

III. ABACUS MACHINES

Boolos et al [2] use abacus machines as a stepping stone for
making it less laborious to write programs for Turing ma-
chines. Abacus machines operate over an unlimited number
of registers R0, R1, . . . each being able to hold an arbitrary
large natural number. We use natural numbers to refer to
registers, but also to refer to opcodes of abacus machines.
Obcodes are given by the datatype

o ::= Inc R increment register R by one
| Dec R o if content of R is non-zero,

then decrement it by one
otherwise jump to opcode o

| Goto o jump to opcode o

A program of an abacus machine is a list of such obcodes.
For example the program clearing the register R (setting it
to 0) can be defined as follows:

clear R o
def
= [Dec R o, Goto 0]

The second opcode Goto 0 in this programm means we jump
back to the first opcode, namely Dec R o. The memory m
of an abacus machine holding the values of the registers is
represented as a list of natural numbers. We have a lookup
function for this memory, written lookup m R, which looks
up the content of register R; if R is not in this list, then we
return 0. Similarly we have a setting function, written set m
R n, which sets the value of R to n, and if R was not yet
in m it pads it approriately with 0s.

Abacus machine halts when it jumps out of range.

IV. RECURSIVE FUNCTIONS

V. WANG TILES

Used in texture mapings - graphics

VI. RELATED WORK

The most closely related work is by Norrish [3], and
Asperti and Ricciotti [1]. Norrish bases his approach on
lambda-terms. For this he introduced a clever rewriting
technology based on combinators and de-Bruijn indices for
rewriting modulo β-equivalence (to keep it manageable)

REFERENCES

[1] A. Asperti and W. Ricciotti. Formalizing Turing Machines. In
Proc. of the 19th International Workshop on Logic, Language,
Information and Computation (WoLLIC), volume 7456 of
LNCS, pages 1–25, 2012.

[2] G. Boolos, J. P. Burgess, and R. C. Jeffrey. Computability and
Logic (5th ed.). Cambridge University Press, 2007.

[3] M. Norrish. Mechanised Computability Theory. In Proc. of the
2nd Conference on Interactive Theorem Proving (ITP), volume
6898 of LNCS, pages 297–311, 2011.

[4] E. Post. Finite Combinatory Processes-Formulation 1. Journal
of Symbolic Logic, 1(3):103–105, 1936.

[5] C. Urban, J. Cheney, and S. Berghofer. Mechanizing the
Metatheory of LF. ACM Transactions on Computational Logic,
12:15:1–15:42, 2011.

[6] C. Wu, X. Zhang, and C. Urban. A Formalisation of the
Myhill-Nerode Theorem based on Regular Expressions (Proof
Pearl). In Proc. of the 2nd Conference on Interactive Theorem
Proving, volume 6898 of LNCS, pages 341–356, 2011.

[7] C. Wu, X. Zhang, and C. Urban. ??? Submitted, 2012.

	Introduction
	Turing Machines
	Abacus Machines
	Recursive Functions
	Wang Tiles
	Related Work
	References

