
Separation Logic in the Presence of Garbage Collection

Chung-Kil Hur Derek Dreyer Viktor Vafeiadis

Max Planck Institute for Software Systems (MPI-SWS)
Kaiserslautern and Saarbrücken, Germany
E-mail: {gil, dreyer, viktor}@mpi-sws.org

Abstract—Separation logic has proven to be a highly effec-
tive tool for the verification of heap-manipulating programs.
However, it has been applied almost exclusively in language
settings where either memory is managed manually or the issue
of memory management is ignored altogether. In this paper,
we present a variant of separation logic, GCSL, for reasoning
about low-level programs that interface to a garbage collector.
In contrast to prior work by Calcagno et al., our model of
GCSL (1) permits reasoning about programs that use internal
pointers and address arithmetic, (2) supports logical variables
that range over pointers, and (3) validates the “frame” rule, as
well as a standard interpretation of separation-logic assertions,
without requiring any restrictions on existentially-quantified
formulae. Essential to our approach is the technique (due orig-
inally to McCreight et al.) of distinguishing between “logical”
and “physical” states, which enables us to insulate the logic
from the physical reality that pointer “values” may be moved
and/or deallocated by the garbage collector.

I. INTRODUCTION

Separation logic [13, 15] has proven to be a highly effec-
tive tool for the verification of heap-manipulating programs.
The key advance of separation logic over traditional Hoare
logic is its support for local reasoning about shared mutable
data structures, which is achieved via the notion of spatial
(or separating) conjunction P1 ∗ P2, together with the so-
called frame rule. Briefly, P1 ∗ P2 is satisfied by a heap h iff
h can be split into disjoint subheaps h1 and h2 satisfying P1

and P2, respectively. The frame rule says that if a command
C satisfies the Hoare triple {P} C {Q}, then C also satisfies
{P ∗ R} C {Q ∗ R}, for any framing assertion R whose
free variables are not modified by C. In other words, C
is guaranteed to preserve any invariant R concerning the
memory outside of C’s footprint (i.e., the piece of the heap
that it accesses). The frame rule thus allows one to reason
locally about C’s effect on its own footprint, and “frame in”
knowledge about the rest of the heap after the fact.

Thus far, separation logic has mainly been applied to
two general classes of programming languages: low-level
languages in which programs manage their memory man-
ually, and high-level languages in which programs assume
the presence of a garbage collector (but where the garbage
collector is ignored in the context of verification).

The goal of the present work is to explore the use of
separation logic for reasoning about a third class of lan-

guages: low-level languages in which programs interface to a
garbage collector. This third class arises naturally when one
considers the interoperation of C or assembly code fragments
from different sources (e.g., from different compilers or
coded by hand) in tandem with a single garbage collector.
The correctness of linking such program fragments depends
on their preserving the invariants of the garbage collector
(GC), such as that there are no dangling pointers reachable
from the “roots”. Internally, however, in between calls to the
memory allocator or to one another, the fragments should
be free to violate the GC’s invariants by employing internal
pointers, address arithmetic, etc.

Adapting separation logic to account for the presence of
a garbage collector is challenging because separation logic
is geared toward local reasoning, whilst garbage collection
requires a global view of the program state. (Note that this
is quite different from using separation logic to reason about
the correctness of the garbage collector itself [16, 11].) To
our knowledge, there have only been two significant attempts
to grapple with this topic. We discuss them both here, as
they are directly relevant in understanding the merits of the
present work.

A. Prior Work

Adapting Hoare Logic to the Presence of a Garbage
Collector: The work of Calcagno, O’Hearn and Bornat [3]
is primarily focused on addressing a “conundrum” of
Hoare logic, namely that it is seemingly incompatible with
garbage collection. The canonical example of this, due to
Reynolds [14], is the following triple, where cons(1, 2)
allocates a pair of heap cells containing 1 and 2 and returns
a pointer to the first:

{true}
x := cons(1, 2); x := 3
{x = 3 ∧ ∃y. y ↪→ 1, 2}

This triple is valid in Hoare logic, but in the presence of a
garbage collector the cell that x initially points to may be
reclaimed after x is set to 3, in which case ∃y. y ↪→ 1, 2
may cease to hold. This is a problem if we want to treat
garbage collection as being equivalent logically to skip.

Calcagno et al. present two alternative approaches to
resolving the conundrum. The first employs a model based

ibm
高亮

ibm
高亮

on “total states”—i.e., where the machine states under
which assertions are interpreted have no dangling pointers.
Under this model, they give a non-standard interpretation
of assertions (in particular, existential quantification), which
renders all assertions insensitive to the effects of garbage
collection.1 Specifically, they consider a heap h to satisfy
∃x.P if (roughly) there exists some potentially larger heap
h′ satisfying P for some instantiation of x. This interpre-
tation renders the assertion ∃y. y ↪→ 1, 2 from the above
example equivalent to true, since (assuming, as usual, an
infinite memory model) one may extend any heap with a
fresh pair of cells storing 1 and 2.

A key limitation of the total-states model is that it fails to
validate the frame rule. Calcagno et al. subsequently present
a second model based on “partial states”, which does vali-
date the frame rule.2 Unlike the total-states model, however,
the partial-states model employs a standard intuitionistic
interpretation of separation-logic assertions and, as a result,
runs afoul of the original conundrum in the sense that
existentially-quantified formulae like ∃y. y ↪→ 1, 2 are once
again garbage-sensitive. To rule out such problematic (and
arguably useless) formulae as this, Calcagno et al. propose a
syntactic “guarded” restriction on existentials. Guardedness
conservatively ensures the garbage-insensitivity of ∃y. P by
requiring P to include explicit evidence that y is reachable
(by pointer dereference) from some free program variable x.
Thus, it avoids Reynolds’s conundrum by—to use Lakatos’s
evocative term [8]—“monster-barring”.

In addition to the treatment of Reynolds’s conundrum,
there are two key aspects of Calcagno et al.’s account that
we seek to improve on in the present work.

First, the programming language they consider treats
pointers abstractly, assumes all allocated blocks are of size
two, and does not permit pointer arithmetic or internal
pointers. This effectively prevents one from writing code
that violates the invariants of the garbage collector, thus
simplifying verification effort at the cost of expressiveness.
We are interested in reasoning about “dirtier”, lower-level
programs than one can express in their language.

Second, their logic is limited in its support for logical
variables, i.e., non-assignable variables representing values
of the language. Logical variables are useful in giving clean
and easily composable specifications for low-level programs,
such as the following Hoare triple for a swap(x) routine,
which swaps the two values stored in the heap at the cons
cell pointed to by x:

{x ↪→ v1, v2} swap(x) {x ↪→ v2, v1}

Although Calcagno et al. do not explicitly consider logical

1Although this interpretation of existentials seems somewhat unusual,
Calcagno et al. show how it can be recast as a specialization of the well-
known “dense topology” semantics of classical logic [4].

2For details about the issues surrounding the frame rule, see Calcagno’s
thesis [2].

variables, their logic is incompatible with logical variables
that range over pointers. In particular, since they model
garbage collection as an operation that may α-rename
pointers in the heap at any time, they have no way of
talking about a permanent pointer “value”, such as the vi
above, that would have the same meaning before and after
garbage collection. The best specification they can give for a
routine like swap(x) is one that either restricts v1 and v2 to
range over integers, or else makes use of auxiliary program
variables y and z as follows:

{x ↪→ y, z} swap(x) {x ↪→ z, y}

This specification is inferior for three reasons: (1) to be
useful, it requires an additional “modifies” clause specifying
that swap(x) does not modify y and z; (2) it requires one to
(pointlessly) assign y and z the contents of x’s cons cell
before calling swap(x); and (3) the question of whether
such auxiliary variable assignments are safely erasable is
complicated by the fact that they may artificially extend the
lifetime of certain data. Clearly, allowing logical variables
to range over pointers would be vastly preferable.

Certifying Garbage-Collected Programs: McCreight,
Shao, Lin and Li [10] develop a general framework for
certifying garbage-collected programs, in which the interface
between mutator and collector is abstract enough that mul-
tiple collectors can be safely linked with the same mutator,
and the mutator can be verified without knowing the gory
implementation details of the collector. A major focus of
their work is on proving various collectors correct w.r.t.
such an interface, including mark-and-sweep, copying and
incremental collectors; this is orthogonal to the problem we
are concerned with.

For reasoning about the mutator, they propose a very
useful idea that we adopt in this paper. We have already
seen above—in the discussion of Calcagno et al.’s inability
to support logical variables ranging over pointers—that it
is problematic for the mutator to have too concrete a view
of pointers, since a moving collector may very well fail to
preserve it. To address this problem, McCreight et al. employ
a distinction between “abstract” and “concrete” states. The
mutator reasons solely about an abstract representation of
the program state; the concrete locations used to represent
abstract pointers are immaterial to the mutator’s reasoning
and may change during a GC. This approach allows the
mutator to view pointers as having a persistent (abstract)
identity, even if their concrete identity may change over time.
(We present this idea in more detail in Section I-B.)

What is missing from McCreight et al.’s work, and what
we aim to develop in this paper, is a clear account of how
the GC affects local, separation-logic-style reasoning about
the mutator. While McCreight et al. provide two worked
examples of mutator verification in Coq using a variant of
Feng et al.’s SCAP system [5], their specifications for both

ibm
高亮

ibm
高亮

ibm
高亮

ibm
高亮

examples are so permissive that they are not composable: in
particular, they are defined over the global (abstract) state
and say nothing to prevent the mutators from overwriting
the whole state. While we believe that their framework is
also capable of expressing local, composable specifications
by explicitly parameterizing over frame heaps, they do
not develop any general proof principles to explain what
additional reasoning is required to verify such specifications
in the presence of a garbage collector.

In more recent work, McCreight, Chevalier and Tol-
mach [9] and Hur and Dreyer [6] fruitfully apply the idea of
abstract states to the verification of compiler correctness for
garbage-collected languages. Like the aforementioned work,
however, neither of these papers studies how the principles
of separation logic are affected by GC.

B. Contributions and Main Ideas

In this paper, we present a novel variant of intuitionistic
separation logic, GCSL, which supports local reasoning
about low-level programs in the presence of a garbage
collector.3 GCSL addresses the two main limitations of
Calcagno et al.’s work discussed above: (1) the language
we consider supports the use of internal pointers and address
arithmetic; and (2) GCSL supports logical variables ranging
over arbitrary values (including pointers). Furthermore, our
model of GCSL validates the frame rule, as well as a
standard interpretation of separation-logic assertions (includ-
ing existentials), without requiring—as Calcagno et al.’s
partial-states model does—any monster-barring restrictions
on existentials in order to avoid Reynolds’s conundrum.

GCSL has two main limitations of its own. First, it only
accounts for the presence of a stop-the-world collector, not
an incremental or concurrent one. We believe it should be
possible to adapt the basic framework of GCSL to these
other kinds of collectors, but we leave that to future work.
Second, while we support reasoning about programs that
store internal pointers in program variables, we require that
the user heap only contain GC-safe values—i.e., values that
the GC considers valid (non-pointer values or pointers to the
heads of allocated blocks). Since in practice internal pointers
are typically employed as a way of optimizing register usage,
we believe that confining them to program variables is a
reasonable simplifying assumption for a large class of real-
world code.

The main contribution of our paper is to clarify the extent
to which garbage collection affects the standard principles of
local reasoning that are codified by separation logic. At least
for programs that satisfy the aforementioned restrictions
of our logic, we demonstrate that the additional reasoning
required to account for GC is relatively minimal.

The success of GCSL relies on two key technical novel-
ties. We consider each in turn.

3We work with intuitionistic rather than classical separation logic because
we are not reasoning about manual deallocation.

Two-Level Logic: In order to support internal pointers
and address arithmetic, while ensuring that programs obey
the invariants of the garbage collector whenever it is invoked,
we split the logic into two levels.

At the outer level of the logic, where Hoare triples are
written {{P}} C {{Q}}, we follow Calcagno et al. in only
permitting reasoning with GC-insensitive assertions, i.e.,
assertions that the GC is guaranteed to preserve. In other
words, the specification of garbage collection in this logic is
equivalent to that of skip—namely, {{P}} gc() {{P}} for any
P—and so the GC may be invoked before or after executing
any well-specified command C. In order to guarantee the
soundness of this specification for the GC, we assume and
maintain the invariant that both the heap and all program
variables only store GC-safe values.

At the inner level of the logic, where Hoare triples
are written {P} C {Q}, memory allocation and garbage
collection are not permitted, but GC-unsafe operations are.
In particular, the inner level enables one to reason about
commands C that store unsafe values (such as internal
pointers) in program variables, although the heap is still
restricted to only contain GC-safe values. This inner level
is useful for reasoning about small program fragments that
are executed in between calls to the memory manager and
that may therefore break the GC’s invariants during their
execution (so long as they restore them in the end).

In essence, the key formal difference between the two
levels of the logic is that at the outer level we assume and
maintain the invariant that all program variables contain GC-
safe values—critical for ensuring that the GC can be safely
invoked—whereas at the inner level this safety invariant is
neither assumed nor maintained. Thus, in order to connect
the two levels, we must make the preservation of the
invariant into an explicit proof burden at the inner level.
This is achieved by the following “inclusion” rule:

{P ∧ safe(V)} C {Q ∧ safe(Mod(C))}
{{P}} C {{Q}}

The rule says that we may prove an outer-level triple using
an inner-level one, so long as the inner-level one preserves
the GC-safety of any variables it modifies. As a precondition,
it may assume that any finite set of program variables V are
GC-safe, since that is a valid outer-level assumption.

Ironically, while the GC-safety predicate safe must implic-
itly hold of all program variables in the outer-level logic,
it is only safe to mention safe itself in the assertions of
the inner-level logic! This is because GC-safety is a GC-
sensitive property: the GC may take a pointer to the head
of an allocated block—a safe pointer—and reclaim it if it
is inaccessible, after which it will be a pointer to the head
of a deallocated block—an unsafe pointer. Thus, outer-level
assertions P and Q may not mention safe since the outer-
level logic requires them to be GC-insensitive. (We write

ibm
高亮

P and Q to denote inner-level assertions, which extend the
language of outer-level assertions with the safe predicate.)

Logical vs. Physical States: Our second technical nov-
elty is to use McCreight et al.’s idea of abstract vs. concrete
states—which, following Hur and Dreyer [6], we prefer
to call logical vs. physical states, respectively—in order
to give a model of GC-aware separation logic in which
logical variables can range over pointers. En passant, it also
enables us to avoid the need for Calcagno et al.’s “guarded”
restriction on existentials.

The essential components of our model are the following:
First, we interpret assertions as predicates on logical, not
physical, states. Second, we say that a logical state LS
represents a physical state PS if the piece of LS that
is reachable from the roots (which for us means program
variables) is isomorphic to the piece of PS that is reachable
from the roots. (It is perfectly fine for both LS and PS to
have extra junk in them so long as it is unreachable from
the roots.) Last but not least, we interpret outer-level triples
{{P}} C {{Q}} roughly as follows. Assume we are given
some initial physical state PS, represented by some initial
GC-safe logical state LS that satisfies the precondition P .
Then: (1) the execution of C in PS will not get stuck,
and (2) if it terminates in a final physical state PS′, then
there must exist some final GC-safe logical state LS′ that
represents PS′ and that satisfies the postcondition Q. (The
interpretation of inner-level triples is similar, minus the
assumption and preservation of GC-safety.)

Our model of Hoare triples addresses Calcagno et al.’s
problem concerning logical variables because it allows such
variables to range over logical pointers, abstract entities that
comprise the domain of logical heaps. Even if the physical
concretization of a logical pointer is moved or deallocated by
the GC, the logical identity of the pointer may safely persist
across calls to the GC because our model of Hoare triples
gives us the freedom to choose whatever logical state we
please to represent the post-GC physical state. In particular,
we can always choose the post-GC logical state to be the
same as the pre-GC logical state because the logical/physical
representation relation is invariant under garbage collection.
As a result, it is easy to see that {{P}} gc() {{P}} holds for
any outer-level P , as desired.

A corollary of this observation is that our model eas-
ily resolves Reynolds’s conundrum without requiring any
non-standard interpretation of (or syntactic restriction on)
existential quantification. Specifically, just like every other
outer-level assertion, ∃y. y ↪→ 1, 2 is guaranteed to be
preserved under garbage collection: even if the witness of
the existential is physically reclaimed, we can ensure that it
persists logically. Note that our solution to the conundrum
is subtly different from the one given by Calcagno et al.’s
total-states model, because while we do validate the triple
{{true}} skip {{∃y. y ↪→ 1, 2}}, we do not consider the
assertion ∃y. y ↪→ 1, 2 to be equivalent to true (as they do).

ProgVars def= { x, y, . . . }
Words def= {w ∈ Z }
Ptrs def= { p ∈Words | p > 0 ∧ p is a multiple of 4 }
NonPtrs def= { a ∈Words \ Ptrs }
Stores def= { s ∈ ProgVars→Words }
Heaps def= {h ∈ Ptrs ⇀fin Words }

? ::= + | − | × | ÷ | < | = | and
E ::= x | w | not E | E ? E
C ::= skip | x := E | x := [E] | [E] := E | alloc x

| C;C | if E then C else C fi | while E do C od

Figure 1. Programming language.

Finally, in order to validate the frame rule, our ac-
tual model of {{P}} C {{Q}} is slightly more compli-
cated than the rough description given above. Following
Birkedal et al. [1], we bake the frame property into our
model by explicitly quantifying over a logical heap frame
hF (i.e., a logical heap that is disjoint from the logical state
satisfying P) and requiring that C leave hF alone. (See
Section VI for details.) This approach is necessitated by the
fact that “heap locality”, a property that is key to proving
the frame rule for simpler separation-logic models, does not
hold in the presence of GC. Note that it is crucial to express
the immutable frame as a logical heap, since the GC may
very well modify the entire physical heap.

Overview: The rest of the paper is structured as follows.
In Section II, we describe the programming language under
consideration. In Section III, we present our language of
assertions and some basic laws of entailment. In Section IV,
we give the key inference rules for our Hoare triples. In
Section V, we work through some illustrative examples. In
Section VI, we present our model of GCSL, and formalize
our assumptions about the operational semantics of the GC.
Finally, in Section VII, we conclude with further discussion
of several technical issues.

II. PROGRAMMING LANGUAGE

We consider a simple programming language with a built-
in garbage collector. In order to support non-conservative
collectors, we use the least significant bit of each word
to distinguish between pointer and non-pointer values. We
assume all pointers are 32-bit aligned (i.e., positive multiples
of 4), and encode the integer n as 2n+ 1.

Program expressions, E, consist of program variables,
constant words, unary and binary operators. Commands, C,
consist of the empty command, assignments, memory reads
and writes, memory allocation, sequential composition, con-
ditionals and loops.

The memory allocation command, alloc x, expects x to
contain the size n of the memory block (in terms of number
of words) to be allocated, tag-encoded as 2n + 1 (as de-

scribed above). After possibly collecting some unreachable
memory blocks, it allocates a new block of the right size,
fills it with zeros, and makes x point to the newly allocated
block. We use x both as the input and the output of our
basic allocation command for semantic convenience; a more
standard allocation command can be encoded as follows:

x := ALLOC(E) def= x := E; alloc x

The formal semantics of the memory allocation command
is quite involved because alloc x can invoke the garbage
collector, so we defer its presentation to Section VI.

Besides the memory allocation command, the semantics
of our programming language is standard. The semantics
of expressions is given denotationally as a partial function
from stores to words: undefinedness arises from errors such
as division by zero. Commands are given a standard small-
step semantics with a six-place reduction relation of the
form: C, s, h C ′, s′, h′. Terminal configurations are of the
form skip, s, h. Any other configurations that cannot reduce
further are considered erroneous, for example reading from
unallocated memory.

III. ASSERTIONS

As explained in Section I-B, the assertions of GCSL
describe logical machine states. We take logical values, v,
to be either physical words, w, or logical pointers, `+̂i. The
latter signifies offset i from an abstract location `, which
is assumed to represent the head of some memory block.
(Note that a physical word and a logical pointer may in fact
represent the same physical location, but within the logic
they are considered distinct entities.) Logical stores, s, map
program variables to logical values, while logical heaps, h,
map abstract locations and offsets to logical values.

Logical expressions, E, extend the grammar of program
expressions with logical values, v, and logical variables,
v; the latter may be instantiated with arbitrary logical
expressions. The meaning of logical expressions with no
free logical variables is defined by a mostly standard partial
function from logical stores to logical values. In addition
to being undefined in case of division by zero, evaluation
of E is also undefined if E involves operations such as
multiplication of pointers (which have no logical meaning)
or comparisons of logical pointers with different heads
(whose result is GC-sensitive). Safe pointer arithmetic, such
as adding a pointer and a word, is allowed and has a defined
semantics. See Section VI-B for details.

As explained in Section I-B, GCSL is divided into two
levels. The syntaxes of outer-level assertions, P , and of
inner-level assertions, P, are almost the same, except that
the latter additionally includes the safety predicate, safe(E),
which asserts that E denotes a safe logical value. A logical
value is safe if it is either a physical non-pointer word
or a logical head pointer, `+̂0, representing the beginning
of a physically allocated memory block. The model of P

Locs def= { `1, `2, . . . }
LogPtrs def= { `+̂i | ` ∈ Locs ∧ i ∈ Z }
LogVals def= {v ∈Words] LogPtrs }
LStores def= { s ∈ ProgVars→ LogVals }
Span(h) def= { (`, i) ∈ Locs× N | i ∈ dom(h(`)) }
LHeaps def= {h ∈ Locs→ N ⇀fin LogVals

| Span(h) is finite }
LogVars def= {u, v, . . . }

E ∈ LExps ::= v | x | v | not E | E ?E

P := E | logptr(E) | word(E)
| E ↪→ E | P ∗ P | P −∗ P
| P ⇒ P | P ∧ P | P ∨ P | ∀v. P | ∃v. P

P := safe(E)
| E | logptr(E) | word(E)
| E ↪→ E | P ∗ P | P −∗ P
| P⇒ P | P ∧P | P ∨P | ∀v.P | ∃v.P

false
def= 0; true

def= 1; ¬P def= P⇒ false

defined(E) def= E = E

nonptr(E) def= E = 0 ∨ ∃v.E = 2× v + 1
offsafe(E) def= word(E) ∨ ∃i. safe(E + i)
p({E1, . . . ,En })

def= p(E1) ∧ . . . ∧ p(En)
for p ∈ {safe, logptr,word, defined, nonptr, offsafe}

E ↪→ − def= ∃v.E ↪→ v

E ↪→n E0, . . . ,En−1
def= E + 4 · 0 ↪→ E0 ∗ . . . ∗

E + 4(n− 1) ↪→ En−1

Figure 2. Assertions.

(see Section VI-B below) is thus indexed by a set of such
safe locations, L. The remaining assertions include: logical
expressions E themselves (viewed as true iff E denotes
a nonzero physical word), predicates describing whether
E is a logical pointer or a physical word, the points-to
predicate, separating conjunction and implication, as well as
normal conjunction, disjunction, implication and first-order
quantification.

Among the derived assertion forms, of particular note
is the assertion offsafe(E), which stipulates that E either
denotes a physical word or a logical pointer that is equal
to some offset from a safe pointer. Whereas our outer-level
logic only permits program variables to store safe values,
our inner-level logic also permits them to store “offsafe”
values.

Entailment of assertions, P |= Q, states that every valid
logical state satisfying P also satisfies Q, where a valid
logical state is one that properly represents some physical
one (see Section VI-B for a formal specification of this).

Besides all the standard entailments from intuitionistic BI,

nonptr(E) |= safe(E)
defined(E) |= offsafe(E)

E ↪→ E′ ∧ offsafe(E) |= safe(E′)
E ↪→ E′ |= safe(E′)

safe(E,E′) |= defined(E = E′)
Figure 3. Assertion entailments.

{x = v ∧ defined(E)} x := E {x = E[v/x]} (Assign)

{x = u ∧ E ↪→ v} x := [E] {x = v ∧ E[u/x] ↪→ v} (Read)

{E ↪→ −∧ safe(E′)} [E] := E′ {E ↪→ E′} (Write)

{P ∧ E} C {P ∧ word(E)}
{P ∧ word(E)} while E do C od {P ∧ not E}

(While)

{P} C {Q} FPV(R) ∩Mod(C) = ∅
{P ∗ R} C {Q ∗ R}

(Frame)

P |= P′ {P′} C {Q′} Q′ |= Q

{P} C {Q}
(Conseq)

n ≥ 0

{{x = 2n + 1}} alloc x {{x ↪→n 0, . . . , 0}}
(Alloc)

V ⊆fin ProgVars
{P ∧ safe(V)} C {Q ∧ safe(Mod(C))}

{{P}} C {{Q}}
(Incl)

Figure 4. Selected proof rules.

the five rules in Figure 3 are particularly useful. The first
rule says that any physical non-pointer word is safe. The
second rule says that any well-defined program expression
E is guaranteed to be offsafe. This somewhat subtle property
relies intuitively on the fact that E either denotes a physical
word, in which case it is trivially offsafe, or else it must be
equivalent to x+ i for some program variable x and offset i.
In that latter case, the outer-level logic dictates that x must
store a safe pointer, and the inner-level logic dictates that
x must store an offsafe pointer, but either way, x + i will
be offsafe. The third rule captures the invariant of our logic
that the portion of the logical heap that is actually physically
allocated can store only safe values.

The fourth rule, which is a corollary of the previous two,
says that any value pointed to by a program expression
is safe. The last rule says that equality between two safe
expressions is always defined. This follows from the fact
that safe logical expressions are logically equivalent if and
only if they represent the same physical word, thanks to the
semantics of expressions that we will give in Section VI-B.

IV. KEY PROOF RULES FOR PARTIAL CORRECTNESS

GCSL has two levels of Hoare triples: the outer-level
{{P}} C {{Q}}, and the inner-level {P} C {Q}. Garbage

{{E ↪→ −}} [E] := x {{E ↪→ x}}

{{E ↪→ −∧ nonptr(E′)}} [E] := E′ {{E ↪→ E′}}

x /∈ FPV(E) ∪ FPV(E′)

{{E ↪→ E′}} x := [E] {{x = E′ ∧ E ↪→ E′}}

n ≥ 0

{{E = 2n + 1}} x := ALLOC(E) {{x ↪→n 0, . . . , 0}}

Figure 5. Selected derived outer-level rules.

collection is well-specified at the outer level, while the inner
level allows GC-unsafe values (specifically, “offsafe” values)
to be stored in program variables. For the most part, the
proof rules for both kinds of triples are the usual ones from
separation logic, as one would hope. Figure 4 displays some
of the more interesting rules. A number of other rules appear
in the online appendix [7], including analogous rules for
reasoning about total correctness.

The inner-level axiom for memory writes (Write) requires
in its precondition that the value being written to the heap
is safe. This ensures that the heap contains only safe values.
In contrast, the assignment axiom (Assign) does not require
such a check because the store can contain offsafe values,
and by the second entailment axiom from Figure 3, E must
be offsafe if it is well-defined.

In the frame rule, FPV(R) is the set of program variables
appearing free in R, while Mod(C) is the set of program
variables appearing on the l.h.s. of assignments in C. The
(While) rule requires the expression, E, to denote some
physical word (and not be undefined or a logical pointer);
this condition has to hold in the precondition and be re-
established after each loop iteration. We also have the stan-
dard rules for skip, sequential composition, and conditionals,
and the standard structural rules: consequence, disjunction,
existential (a.k.a., auxiliary variable elimination), substitu-
tion. Notably, we do not support the conjunction rule, for
reasons we will discuss in Section VII. There are analogous
outer-level versions of these rules as well.

The two most interesting rules for outer-level triples are
(Incl) and (Alloc). We have already discussed the “inclusion”
rule (Incl) in Section I-B: it enables one to prove an
outer-level triple using an inner-level one. The (Alloc) rule
specifies the behavior of the memory allocator, which is
only well-specified at the outer level since it may invoke the
garbage collector. The precondition x = 2n+1 accounts for
the fact that the alloc routine expects its integer argument to
be encoded with a bit tag. Our language does not have an
explicit gc() call, but it can be mimicked by x := ALLOC(1)
for an arbitrary x. This command can be given pre and post
P for any P whose free variables do not include x.

Figure 5 contains some derived rules for reasoning di-
rectly in the outer-level logic without having to use (Incl)

{{x ↪→2 u, v}}
y := ALLOC(ENC(2))
{{x ↪→2 u, v ∗ y ↪→2 0, 0}}
t := [x]; [y + 4] := t;
{{x ↪→2 u, v ∗ y ↪→2 0, u}}
t := [x + 4]; [y] := t;
{{x ↪→2 u, v ∗ y ↪→2 v, u}}

{{r ↪→n −, . . . ,−}}
{r ↪→n −, . . . ,− ∧ safe(r, s)}
([r] := s; r := r + 4); . . . ;
([r] := s; r := r + 4)
{r− 4n ↪→n s, . . . , s ∧ safe(r− 4n, s)}
r := r− 4n;
{r ↪→n s, . . . , s ∧ safe(r)}
{{r ↪→n s, . . . , s}}

{{i = 2n+ 1 ∧ j = 2m+ 1}}
{i = 2n+ 1 ∧ j = 2m+ 1 ∧ word(n,m)}
i := (i + j− 2)÷ 2;
{i = n+m ∧ j = 2m+ 1 ∧ word(n,m)}
i := i× i; i := 2× i + 1
{i = 2(n+m)2 + 1 ∧ j = 2m+ 1}
{i = 2(n+m)2 + 1 ∧ j = 2m+ 1 ∧ safe(i)}
{{i = 2(n+m)2 + 1 ∧ j = 2m+ 1}}

(a) Copy & swap (b) Array initialization (c) Add & square
Figure 6. Simple GCSL examples.

around each basic command. Since the outer-level logic
cannot mention the safe predicate, we have two outer-level
axioms for memory writes. One requires E′ to be a non-
pointer word, while the other requires it to be a program
variable; both are guaranteed to be safe values.

V. EXAMPLES

Figure 6 contains GCSL proof outlines for three small
example programs: copy&swap, array initialization, and
add&square. The first example demonstrates reasoning in the
outer-level logic using derived rules for the basic commands.
The second and third examples demonstrate the inner-level
logic and how internal pointers and GC-unsafe intermediate
values can be used to optimize a simple pointer program
and an arithmetic program, respectively. See the online
appendix [7] for more examples presented in more detail.

In all cases, accounting for the GC requires relatively
little reasoning (if any) beyond what would be required in
a traditional separation-logic proof. What little additional
reasoning is required primarily concerns the safe predicate,
which the proof rules from Sections III and IV make it very
easy to manipulate.

Copy & Swap: The first program assumes that the
program variable x stores a pointer to a block of size 2
containing values u, v; it then allocates a new block of the
same size, fills it with v, u (i.e., the input in reverse order),
and stores a pointer to it in y. As the program does not store
any GC-unsafe values, it is possible for us to prove it correct
using only the outer-level logic, and the proof looks exactly
as it would in standard separation logic.

What is going on under the hood is, however, quite
different. In the case where u and v themselves represent
pointer values, the ALLOC command might perform some
garbage collection and relocate the physical pointers that
they abstractly represent. What we have proven in this case
is that, whatever new physical pointers are stored in this
block, they logically correspond to the old pointers stored
there, and the new block pointed to by y contains the same
new values in reverse order. Furthermore, our reasoning
guarantees that the values stored in the memory outside the
program’s footprint are logically unchanged, even though
they might have been physically changed by ALLOC.

Array Initialization: This is a simple program that
initializes the array of size n pointed to by r with the value
stored in s. The reasoning is completely standard except for
the use of the (Incl) rule and safe predicate. In more detail:

1) As r is used to store an internal pointer, and there
may be no other reachable pointer to the head of the
memory block being initialized, we have to make sure
that there is no GC call during the computation. This
is guaranteed by (Incl).

2) When we write the value s into the heap, we have
to make sure that we store a GC-safe value. This is
guaranteed by the safe(s) assumption, which again
comes from (Incl).

3) At the end, we have to make sure that the program
variables we have modified are GC-safe, which in this
case means verifying safe(r).

Add & Square: After the first assignment, the value of
i is temporarily unsafe (in fact, offsafe) because at that point
it represents an unencoded integer. Therefore, we use (Incl)
and then the inner-level rules to verify this example. In this
case, it is straightforward to re-establish safe(i) using the
first assertion entailment rule from Figure 3.

VI. SEMANTICS & SOUNDNESS

In this section, we give a formal specification of the
behavior we expect from the GC, and develop a sound model
of GCSL connecting logical and physical machine states.

A. Garbage Collector Specification

To specify the garbage collector, we assume that it has an
internal invariant, Igc, which is a partial function that, given
a set of roots, R, and a heap, h, returns the shape, σ, of the
heap if the heap is valid; otherwise, Igc(R, h) is undefined.
Shapes (see Figure 7) are finite partial maps saying which
pointers point to the heads of allocated blocks and, if so,
how large are the blocks they point to. We call a state (s, h)
GC-safe whenever Igc(roots(s), h) is defined.

We say that a shape, σ, is valid with respect to a heap,
h, and a root set, R, if (1) all pointers deemed allocated
by σ are actually allocated in h and (2) all the pointers
reachable from R and h according to shape σ are actually

Shapes def= {σ ∈ Ptrs ⇀fin N+ }
dom(σ) def=

⊎
p∈dom(σ),0≤i<σ(p){ p+ 4i }

roots(s) def= { p ∈ Ptrs | ∃x. p = s(x) }
reach0(R, h, σ) def= R
reachn+1(R, h, σ) def= {h(p′ + 4i) ∈ Ptrs |

p′ ∈ reachn(R, h, σ) ∧ 0 ≤ i < σ(p′) }
reach(R, h, σ) def=

⋃
n∈N reachn(R, h, σ)

(s, h, σ) ∼= (s′, h′, σ′) def=
∃r ∈ Bij(reach(roots(s), h, σ), reach(roots(s′), h′, σ′)).(
∀x. (s(x), s′(x)) ∈ r

)
∧(

∀(p, p′) ∈ r. ∃n. σ(p) = σ′(p′) = n ∧
∀i. 0 ≤ i < n =⇒ (h(p+ 4i), h′(p′ + 4i)) ∈ r

)
where r def= r ∪ { (a, a) | a ∈ NonPtrs }

[p 7→n w0, . . . , wn−1]
def= (∅ | p+ 4× 0 7→ w0 | . . .

| p+ 4(n− 1) 7→ wn−1)

[p 7→ n] def=

 (∅ | p 7→ n) if n > 0 ∧ p ∈ Ptrs
∅ if n = 0 ∧ p = 0
undef otherwise

Figure 7. Auxiliary definitions for GC semantics.

∀s, h, σ, x, n ≥ 0.
σ = Igc(roots(s), h) ∧ s(x) = 2n+ 1 =⇒
(∃C ′, s′, h′. alloc x, s, h C ′, s′, h′) ∧
(∀C ′, s′, h′. alloc x, s, h C ′, s′, h′ =⇒
∃p, h′′, σ′′. C ′ = skip ∧

σ′′] [p 7→ n] = Igc(roots(s′), h′) ∧
s′(x) = p ∧ h′ = h′′] [p 7→n 0, . . . , 0] ∧
(s, h, σ) ∼= ((s′ | x 7→ 2n+ 1), h′′, σ′′))

Figure 8. Specification of alloc x.

in the domain of σ—i.e., they are head pointers to allocated
blocks.

Definition 1. ValidShape(R, h, σ) iff dom(σ) ⊆ dom(h)
and reach(R, h, σ) ⊆ dom(σ).

Our expectation of the GC is that if Igc(R, h) = σ, then
σ is valid with respect to R and h and, further, if the user-
portion of the heap and the root set are mutated in a safe way
(in a way for which σ remains valid), then Igc is still defined
on the updated root set and heap, and returns a possibly
smaller, but compatible, shape. Formally,

(∀R, h, σ = Igc(R, h). ValidShape(R, h, σ))
∧ (∀R, h,R′, h′. ValidShape(R′, h′, Igc(R, h))

∧ (∀p /∈ dom(Igc(R, h)). h′(p) = h(p))
=⇒ Igc(R′, h′) ⊆ Igc(R, h))

These conditions are formulated only in terms of physical
states (not logical states) and can be implemented both by
mark&sweep and by Cheney-style copying collectors.

Figure 8 contains our specification of the alloc x com-
mand. Given an initial GC-safe state and x containing

Table def= {T ∈ Locs ⇀fin Ptrs× N+ }

phyvT(v) def=

w if v = w ∈Words
p+ i if v = `+̂i ∧T(`) = (p, n)
undef otherwise

phyhT(h) def=
⊎

(p,n)=T(`) [p 7→n phyvT(h(`)(0)), . . . ,
phyvT(h(`)(n− 1))]

shape(T) def=
⊎

(p,n)=T(`) [p 7→ n]

Safe(L) def= { `+̂0 | ` ∈ L } ∪NonPtrs for L ⊆ Locs
s ∼T s iff ∀x. s(x) = phyvT(s(x))
s ≈T s iff s ∼T s ∧ ∀x. s(x) ∈ Safe(dom(T))
h ≈T h iff

(
∀`. ∀(p, n) = T(`).
dom(h(`)) = { 0, . . . , n− 1 } ∧
∀i < n. h(`)(i) ∈ Safe(dom(T))

)
∧

phyhT(h) ⊆ h ∧
shape(T) ⊆ Igc(dom(shape(T)), h)

h1 # h2
def= Span(h1) ∩ Span(h2) = ∅

h1] h2
def=
{
λ`. h1(`)] h2(`) if h1 # h2

undef otherwise
Figure 9. Relating logical and physical states.

the (encoded) size of the block to be allocated, then the
configuration alloc x, s, h is not stuck and can reduce only
to terminal configurations. The state that it reduces to is GC-
safe; the value of x in the new store contains p, a pointer to
the newly allocated block; and the new heap consists of the
newly allocated block, [p 7→n 0, . . . , 0], and the remainder,
h′′, that is isomorphic to the initial heap. In the special case
that n = 0, the specification of alloc simplifies to selecting a
new triple (s′, h′, σ′) that is isomorphic to the original one.

B. Semantics of Assertions and Triples

In order to define the meaning of program logic judg-
ments, we need several auxiliary definitions shown in Fig-
ure 9. A translation table, T, is a finite partial function
mapping safe logical pointers to their corresponding physical
pointers and block sizes. The function phyvT(v) translates
logical values to physical words by looking up locations in
the table, T. It is defined if and only if v is offsafe. The next
definition, phyhT(h), lifts this function to translate logical
heaps to physical heaps. Note that this translation covers
only locations and offsets in T; all other locations are not
translated and, hence, the logical heap may contain extra
junk in it that is not governed by T.

A logical store represents a physical store with respect to
a translation table (s ∼T s) if the physical store contents
are the translation of the logical store contents. Implicitly,
this means that the logical store contains only offsafe values.
A logical store safely represents a physical store (s ≈T s)
if, in addition, it contains only safe values—i.e., either non-
pointer words or logical pointers in the domain of T.

A logical heap, h, safely represents a physical heap, h,
with respect to a table, T, written h ≈T h, if the following

[[[v]]]s
def= undef

[[[x]]]s
def= s(x)

[[[v]]]s
def= v

[[[not E]]]s
def=

 1 if [[[E]]]s = 0
0 if [[[E]]]s ∈ NonPtrs\{0}
undef otherwise

[[[E1 ?E2]]]s
def=

w1 ? w2 if [[[E1]]]s = w1 ∈Words ∧ [[[E2]]]s = w2 ∈Words
`+̂(i+ w) if ? = + ∧ [[[Ek]]]s = `+̂i ∧ [[[E3−k]]]s = w for k = 1, 2
`+̂(i− w) if ? = − ∧ [[[E1]]]s = `+̂i ∧ [[[E2]]]s = w
i− j if ? = − ∧ [[[E1]]]s = `+̂i ∧ [[[E2]]]s = `+̂j
i < j if ? = < ∧ [[[E1]]]s = `+̂i ∧ [[[E2]]]s = `+̂j
i = j if ? = = ∧ [[[E1]]]s = `+̂i ∧ [[[E2]]]s = `+̂j
` = `′ if ? = = ∧ [[[E1]]]s = `+̂0 ∧ [[[E2]]]s = `′+̂0
0 if ? = = ∧ [[[Ek]]]s = `+̂4i ∧ i ≥ 0 ∧ [[[E3−k]]]s ∈ NonPtrs for k = 1, 2
undef otherwise

Figure 10. Semantics of assertion expressions, [[[E]]] ∈ LStores ⇀ LogVals.

{P} C {Q} iff ∀s,h,hF,T, s, h, C ′, s′, h′.
s,h |=dom(T) P ∧ s ∼T s ∧ h] hF ≈T h ∧ C, s, h ∗ C ′, s′, h′ =⇒

(∃C ′′, s′′, h′′. C ′, s′, h′ C ′′, s′′, h′′) ∨
(∃s′,h′. C ′ = skip ∧ s′,h′ |=dom(T) Q ∧ (∀x /∈ Mod(C). s′(x) = s(x)) ∧ s′ ∼T s′ ∧ h′] hF ≈T h′)

{{P}} C {{Q}} iff ∀s,h,hF,T, s, h, C ′, s′, h′.
s,h |= P ∧ s ≈T s ∧ h] hF ≈T h ∧ C, s, h ∗ C ′, s′, h′ =⇒

(∃C ′′, s′′, h′′. C ′, s′, h′ C ′′, s′′, h′′) ∨
(∃s′,h′,T′. C ′ = skip ∧ s′,h′ |= Q ∧ (∀x /∈ Mod(C). s′(x) = s(x)) ∧ s′ ≈T′ s′ ∧ h′] hF ≈T′ h′)

Figure 11. Semantics of the partial correctness judgments.

three conditions hold: (1) the logical heap’s blocks are of
the same size as the table says they are supposed to be
and contain only safe values; (2) part of the physical heap
is the translation of the logical heap (this corresponds to
the “user” part of the heap—the physical heap may have
additional cells for internal use by the GC, e.g., for storing
the sizes of the allocated blocks); and (3) the physical heap
is GC-safe.

Logical Expressions: Figure 10 presents the semantics
of logical expressions. Particularly notable is our semantics
for equality comparison involving logical pointers: (1) two
logical pointers that are offsets from the same abstract
location are equal iff their offsets are equal, (2) head pointers
are equal iff they point to identical abstract locations, and
(3) “possibly allocated” pointers (i.e., those that are offset
4i from some abstract location, where i ≥ 0) are not
equal to any non-pointer. These cases ensure that equality
between two safe expressions is always defined (cf. the fifth
entailment in Figure 3).

Assertions: The semantics of assertions is given by a
judgment of the form s,h |=L P, where L is the set of safe
locations. The definition of this judgment is straightforward:
s,h |=L safe(E) holds iff [[[E]]]s ∈ Safe(L), and we give the
intuitionistic BI semantics to the logical connectives; see
the online appendix [7] for the full details. The meaning
of outer-level assertions, P , is independent of L, since they
do not contain safety predicates. Therefore, for convenience
we often drop the L subscript when referring to outer-level

assertions. Assertion entailment is defined as follows:

Definition 2 (Entailment). P |= Q iff for all s, h, hF, T,
s, h, if s ∼T s and h]hF ≈T h and s,h |=dom(T) P, then
s,h |=dom(T) Q.

The definition quantifies only over valid logical states,
namely ones that represent some physical states: the logical
store, s, represents some physical store, s, and the logical
heap, h, can be extended to a bigger heap, h] hF, repre-
senting some physical heap, h. Restricting our attention to
valid logical states is key in proving the assertion entailments
shown in Figure 3.

Program Judgments: We proceed to the semantics of
the inner- and outer-level judgments. Figure 11 displays the
meaning of the triples for closed judgments, i.e., ones with
no free logical variables. (See the online appendix [7] for
the meaning of open judgments.) Both judgments require
that whenever the command C is executed in a physical
state (s, h) related to a logical state (s,h) satisfying the
precondition together with a remaining frame logical heap
hF, then the execution never gets erroneously stuck: after
any number of steps (C, s, h ∗ C ′, s′, h′), either C ′, s′, h′

can further reduce or it is a terminal configuration that
is related to a logical configuration (s′,h′) satisfying the
postcondition together with the same frame logical heap,
hF. As explained in Section I-B, this quantification over the
frame heap is crucial in order to support the frame rule.

Logical and physical states are related with respect to a

translation table, T. Note that the inner-level judgment uses
s ∼T s, whereas the outer-level judgment uses s ≈T s. This
is because the store at the inner level can contain offsafe
values, whereas the store at the outer level can contain only
safe values. Furthermore, at the inner level, the final states
are related with respect to the same translation table, T,
whereas the outer-level judgment permits a different table,
T′. This captures our intention that no garbage collection
occurs during execution of commands at the inner level,
while it can occur at the outer level.

Finally, both judgments require that the initial and final
logical stores agree on variables not modified by C. (Since
we get to choose whatever final logical store we want to
represent the physical one, this requirement is not trivially
satisfied.) One can view the requirement as the store ana-
logue of the frame heap hF, and indeed it is needed for the
soundness of the frame rule.

VII. DISCUSSION

Conjunction Rule: Our semantics does not validate the
conjunction rule. The reason is that physical words can be
represented as either one of two different logical words:
either as the physical word itself or as an offset from an
abstract location. For example, the program x := x with
precondition x = 0∧y ↪→ − can be given two incompatible
postconditions x = 0 and logptr(x) (the latter holds only
semantically and only because we know that x = y− n for
some n; it cannot be derived using the assignment axiom)
and so by the conjunction rule, we would get a contradiction.
We do not think that the conjunction rule is inherently
unsound, but our semantics does not support it. That said,
we do not believe this to be of great practical concern, since
the conjunction rule is often unsound in concurrent program
logics [12] and is not frequently used in practice.

Full Abstraction: Calcagno et al. [3, Theorem 8] prove
that the logic based on their total-states model is fully
abstract with respect to their operational semantics, namely
that two programs are observationally equivalent if and only
if they satisfy the same correctness assertions. Since we are
dealing with a much lower-level language, we cannot expect
such a result to hold.

Xor-Swap Example: We conclude with a short example
that illustrates a limitation of our program logic. Consider
the following implementation for a variable swap operation:

{x = v ∧ y = w}
x := x xor y; y := x xor y; x := x xor y
{x = w ∧ y = v}

While this triple holds semantically for every v, w ∈
LogVals, we can prove it only for v, w ∈Words. The issue
is that LogVals does not contain a useful value to represent
the xor of logical pointers. A possible solution would be to
change the semantics of inner-level expressions to take the
translation table as an argument and return a physical word.
We leave this direction to be explored in future work.

ACKNOWLEDGMENTS

We would like to thank Peter O’Hearn, Deepak Garg, and
Jacob Thamsborg for helpful feedback on an earlier draft.

REFERENCES

[1] L. Birkedal, N. Torp-Smith, and H. Yang, “Semantics of
separation-logic typing and higher-order frame rules,” LMCS,
vol. 2, no. 5:1, 2006.

[2] C. Calcagno, “Semantic and logical properties of stateful pro-
gramming,” Ph.D. dissertation, University of Genova, 2002.

[3] C. Calcagno, P. W. O’Hearn, and R. Bornat, “Program logic
and equivalence in the presence of garbage collection,” TCS,
vol. 298, no. 3, pp. 557–581, 2003.

[4] P. J. Cohen, Set Theory and the Continuum Hypothesis. W.
A. Benjamin, 1966.

[5] X. Feng, Z. Shao, A. Vaynberg, S. Xiang, and Z. Ni, “Mod-
ular verification of assembly code with stack-based control
abstractions,” in PLDI, 2006, pp. 401–414.

[6] C.-K. Hur and D. Dreyer, “A Kripke logical relation between
ML and assembly,” in POPL, 2011.

[7] C.-K. Hur, D. Dreyer, and V. Vafeiadis, “Separation
logic in the presence of garbage collection (Technical
appendix),” 2011, Available from the authors’ website:
http://www.mpi-sws.org/~dreyer/papers/gcsl/.

[8] I. Lakatos, Proofs and Refutations. Cambridge University
Press, 1976.

[9] A. McCreight, T. Chevalier, and A. P. Tolmach, “A certified
framework for compiling and executing garbage-collected
languages,” in ICFP, 2010, pp. 273–284.

[10] A. McCreight, Z. Shao, C. Lin, and L. Li, “A general frame-
work for certifying garbage collectors and their mutators,” in
PLDI, 2007, pp. 468–479.

[11] M. O. Myreen, “Reusable verification of a copying collector,”
in VSTTE, 2010, pp. 142–156.

[12] P. W. O’Hearn, “Resources, concurrency and local reasoning,”
TCS, vol. 375, no. 1–3, pp. 271–307, May 2007.

[13] P. W. O’Hearn, J. Reynolds, and H. Yang, “Local reasoning
about programs that alter data structures,” in CSL, 2001, pp.
1–19.

[14] J. C. Reynolds, “Intuitionistic reasoning about shared mu-
table data structure,” in Millennial Perspectives in Com-
puter Science, J. Davies, B. Roscoe, and J. Woodcock, Eds.
Houndsmill, Hampshire: Palgrave, 2000, pp. 303–321.

[15] J. C. Reynolds, “Separation logic: A logic for shared mutable
data structures,” in LICS, 2002, pp. 55–74.

[16] N. Torp-Smith, L. Birkedal, and J. C. Reynolds, “Local rea-
soning about a copying garbage collector,” TOPLAS, vol. 30,
no. 4, 2008.

