Mechanising Turing Machines and
Computability Theory in Isabelle

Jian Xu Xingyuan Zhang
PLA University of Science and Technology

Christian Urban
King's College London

Why Turing Machines?

o At the beginning, it was just a student project
about computability.

COMPUTABILITY
and LOGIC
FIFT

Computability and Logic (5th. ed)
Boolos, Burgess and Jeffrey

e found an inconsistency in the definition of
halting computations (Chap. 3 vs Chap. 8)

Some Previous Works

o Norrish formalised computability theory in HOL
starting from the lambda-calculus

e for technical reasons we could not follow him
e some proofs use TMs (Wang tilings)

e Asperti and Ricciotti formalised TMs in Matita

e no undecidability = interest in complexity
e their UTM operates on a different alphabet than the
TMs it simulates.

"In particular, the fact that the universal
machine operates with a different alphabet
with respect to the machines it simulates is
annoying." { Asperti and Ricciotti]

The Big Picture

Register Recursive
B Fontom

The Big Picture

verified verified
translator translator

‘ Register ‘ Recursive
B Fontom

The Big Picture

verified verified
translator translator

‘ Register ‘ Recursive
i Fontom
undecidabilty UF

of the halting
problem

The Big Picture

verified verified
translator translator

‘ Register ‘ Recursive
s Fontom
undecidabilty UF

of the halting
problem

correct UTM by translation

Turing Machines

e tapes are lists and contain Os or /s only

head
L - m m | mm| -]

left list | right list

—

Turing Machines

e tapes are lists and contain Os or /s only

head
L - m m | mm| -]

left list | right list

—

e steps function:

What does the TM claclulate after it has
executed n steps?

Turing Machines

e tapes are lists and contain Os or /s only

head
L - m m | mm| -]

left list | right list

—

e steps function:

What does the TM claclulate after it has
executed n steps?

o designate the O-state as "halting state" and remain
there forever, i.e. have a Nop-action

Register Machines

e programs are lists of instructions

1

Goto L
Inc R
Dec R L

jump to instruction L
increment register R by one

if content of R is non-zero,
then decrement it by one
otherwise jump to instruction L

1

Register Machines

Goto L
Inc R
Dec R L

Spaghetti Code! instructions

jump to instruction L
increment register R by one

if content of R is non-zero,
then decrement it by one
otherwise jump to instruction L

Recursive Functions

rec = Z zero-function
| S successor-function
| Idy, projection
| Cn"™fgs composition
| Prfg primitive recursion
| Mn"f minimisation

@ eval :: rec = nat list = nat
can be defined by simple recursion
(HOL has Least)

@ you define

e addition, multiplication, logical operations, quantifiers...
o coding of numbers (Cantor encoding), UTM

Copy Turing Machine

e TM that copies a number on the input tape

(mm{m|=> [m|m[m| [m|=>] [m] | | [wmjw]=>] |=wnf (===
— —~= N
cbegin cloop cend

copy d:efcbegin ; cloop ; cend

di di di
cbegin def cloop & cend &

[(Wo,0), (R, 2), (R, 3), [(R0),(R 2),(R3), [(LO0)(R 2),(Wy3)
(R, 2), (W, 3),(L4), (Wp,2),(R3) (R4, (L4 (R2),(R2),
(L, 4), (L, 0)] (W1, 5), (R, 4), (L, 6), (L 5),(Wo, 4), (R 0),

(L, 5), (L, 6), (L, 1)] (L, 5)]

Hoare Logic for TMs

e Hoare-triples

(P}p (0} <
Y 1p.
if P tp holds then
dn. such that
is_final (steps (1, tp) pn) N
Q holds_for (steps (1, tp) p n)

Hoare Logic for TMs

e Hoare-triples and Hoare-pairs:

(PIp10) “ (Pjpt <
Y 1p. Y 1p.
if P tp holds then if P tp holds then
dn. such that ¥ n. = is_final (steps (1, tp) p n)

is_final (steps (1, tp) pn) N
Q holds_for (steps (1, tp) p n)

Some Derived Rules

P'—P (Plp{Q}] Q0
(P'}p(Q}

{PIp1{Q} (Q}p2(R} (P}p1{Q} {(O}p>?
{P} p1;p2 (R} {P}p1;p2?t

Undecidability

contra 2 copy ; H ; dither

Undecidability

contra 2 copy ; H ; dither

e Suppose H decides contra called with code of
contra halts, then

P, d:ef)\tp. tp = ([], {code contra))
P, d:ef)\tp. tp = ([0], {(code contra, code contra)))
Py Y \p. 3k 1p = (0%, (0))

{P1} copy (P2} (P>} H {Ps3}
{P1} copy ; H {P3} {Ps} dither 1
{P1} contra

Undecidability

contra 2 copy ; H ; dither

e Suppose H decides contra called with code of
contra does not halt, then

0O, d:ef)\tp. tp = ([], {code contra))
0, d:ef)\tp. tp = ([0], {(code contra, code contra)))
0: % \ip. Tk 1p = (0%, (1))

{O1} copy [Q2} {02} H{Q3)}
{01} copy ; H {Qs3} {Q3} dither {Q3}
{Q1} contra {Qs3}

Hoare Reasoning

e reasoning is still quite demanding;
the invariants of the copy-machine:

Iin(lr) dzef(l, r)=([]1") (starting state)

nr) Y3ijo<initj=nndr=(I 1)

Isnbr) Do<nnir=(0:1[])

Lnthr) Do<canir=n 10,1V (L r=(1""1[1,0 1])
Ion(lr) d:ef] <nA(Lr)=(1"21[1101])V (halting state)
n=1A(Lr=(][010 1]

d ; ; ;
Jinhr) ¥ 3ijivjvl=nA@r)=(1 1:1:0@E) A0 <jV

O<nAN((Lr)=([] 0::1::0"@1") (starting state)
Jonr) Yo<nnr= (o] 1::00@Im) (halting state)
Kin(r) d:efO <nA(lr)=([0], 1::0"@I") (starting state)

Kon(h) o<nnq =0}, 1"@0::1%) (halting state)

Midway Conclusion

o feels awfully like reasoning about machine code

e compositional constructions / reasoning not
frictionless

@ sizes
sizes:
UF 140843 constructors
Reg. Mach. 2 Mio instructions
UTM 38 Mio states

*old version: RM (/2 Mio) UTM (112 Mio)

Midway Conclusion

o feels awfully like reasoning about machine code

e compositional constructions / reasoning not
frictionless

@ sizes
sizes:
UF 140843 constructors
Reg. Mach. 2 Mio instructions
UTM 38 Mio states

@ an observation: our treatment of recursive
functions is a mini-version of the work by
Myreen & Owens about deeply embedding HOL

Separation Algebra

e introduced a separation algebra framework for
register machines and TMs

e we can semi-automate the reasoning for our small
TMs

e we can assemble bigger programs out of smaller
components

o looks awfully like ““real" assembly code

Separation Algebra

introduced a separation algebra framework for
register machines and TMs

we can semi-automate the reasoning for our small
TMs

we can assemble bigger programs out of smaller
components

looks awtully like ““real" assembly code

Conclusion: we have a playing ground for
reasoning about low-level code; we work on
automation

