
Mechanising Turing Machines and
Computability Theory in Isabelle

Jian Xu Xingyuan Zhang
PLA University of Science and Technology

Christian Urban
King's College London

ITP, 24 July 2013 -- p. 1/14

Why Turing Machines?
At the beginning, it was just a student project
about computability.

Computability and Logic (5th. ed)
Boolos, Burgess and Jeffrey

found an inconsistency in the definition of
halting computations (Chap. 3 vs Chap. 8)

ITP, 24 July 2013 -- p. 2/14

Some Previous Works
Norrish formalised computability theory in HOL
starting from the lambda-calculus

for technical reasons we could not follow him
some proofs use TMs (Wang tilings)

Asperti and Ricciotti formalised TMs in Matita
no undecidability ⇒ interest in complexity
their UTM operates on a different alphabet than the
TMs it simulates.

"In particular, the fact that the universal
machine operates with a different alphabet
with respect to the machines it simulates is
annoying." [Asperti and Ricciotti]

ITP, 24 July 2013 -- p. 3/14

The Big Picture

.....TMs ...Register
Machines

...Recursive
Functions

ITP, 24 July 2013 -- p. 4/14

The Big Picture

.....TMs ...Register
Machines

...Recursive
Functions

ITP, 24 July 2013 -- p. 4/14

...

verified
translator

...

verified
translator

The Big Picture

.....TMs ...Register
Machines

...Recursive
Functions

ITP, 24 July 2013 -- p. 4/14

...

verified
translator

...

verified
translator

..UF..
undecidabilty
of the halting
problem

The Big Picture

.....TMs ...Register
Machines

...Recursive
Functions

ITP, 24 July 2013 -- p. 4/14

...

verified
translator

...

verified
translator

..UF..
undecidabilty
of the halting
problem

..correct UTM by translation

Turing Machines
tapes are lists and contain 0s or 1s only

..
left list

.
right list
.

head
.… . …

steps function:
What does the TM claclulate after it has
executed n steps?

designate the 0-state as "halting state" and remain
there forever, i.e. have a Nop-action

ITP, 24 July 2013 -- p. 5/14

Turing Machines
tapes are lists and contain 0s or 1s only

..
left list

.
right list
.

head
.… . …

steps function:
What does the TM claclulate after it has
executed n steps?

designate the 0-state as "halting state" and remain
there forever, i.e. have a Nop-action

ITP, 24 July 2013 -- p. 5/14

Turing Machines
tapes are lists and contain 0s or 1s only

..
left list

.
right list
.

head
.… . …

steps function:
What does the TM claclulate after it has
executed n steps?

designate the 0-state as "halting state" and remain
there forever, i.e. have a Nop-action

ITP, 24 July 2013 -- p. 5/14

Register Machines

programs are lists of instructions

I ::= Goto L jump to instruction L
| Inc R increment register R by one
| Dec R L if content of R is non-zero,

then decrement it by one
otherwise jump to instruction L

ITP, 24 July 2013 -- p. 6/14

Register Machines

programs are lists of instructions

I ::= Goto L jump to instruction L
| Inc R increment register R by one
| Dec R L if content of R is non-zero,

then decrement it by one
otherwise jump to instruction L

ITP, 24 July 2013 -- p. 6/14

..Spaghetti Code!

Recursive Functions
rec ::= Z zero-function

| S successor-function
| Idn

m projection
| Cnn f gs composition
| Prn f g primitive recursion
| Mnn f minimisation

eval :: rec ⇒ nat list ⇒ nat
can be defined by simple recursion
(HOL has Least)
you define

addition, multiplication, logical operations, quantifiers…
coding of numbers (Cantor encoding), UTM

ITP, 24 July 2013 -- p. 7/14

Copy Turing Machine

TM that copies a number on the input tape

.. ⇒. ⇒. ⇒. ︷ ︸︸ ︷
cbegin

. ︷ ︸︸ ︷
cloop

. ︷︸︸︷
cend

copy def
= cbegin ; cloop ; cend

cbegin def
=

[(W0, 0), (R, 2), (R, 3),
(R, 2), (W1, 3), (L, 4),
(L, 4), (L, 0)]

cloop def
=

[(R, 0), (R, 2), (R, 3),
(W0, 2), (R, 3), (R, 4),
(W1, 5), (R, 4), (L, 6),
(L, 5), (L, 6), (L, 1)]

cend def
=

[(L, 0), (R, 2), (W1, 3),
(L, 4), (R, 2), (R, 2),
(L, 5), (W0, 4), (R, 0),
(L, 5)]

ITP, 24 July 2013 -- p. 8/14

Hoare Logic for TMs

Hoare-triples

and Hoare-pairs:

{P} p {Q} def
=

∀ tp.
if P tp holds then
∃ n. such that
is_final (steps (1, tp) p n) ∧
Q holds_for (steps (1, tp) p n)

{P} p ↑ def
=

∀ tp.
if P tp holds then
∀ n. ¬ is_final (steps (1, tp) p n)

ITP, 24 July 2013 -- p. 9/14

Hoare Logic for TMs

Hoare-triples and Hoare-pairs:

{P} p {Q} def
=

∀ tp.
if P tp holds then
∃ n. such that
is_final (steps (1, tp) p n) ∧
Q holds_for (steps (1, tp) p n)

{P} p ↑ def
=

∀ tp.
if P tp holds then
∀ n. ¬ is_final (steps (1, tp) p n)

ITP, 24 July 2013 -- p. 9/14

Some Derived Rules

P' 7→ P {P} p {Q} Q 7→ Q'
{P'} p {Q'}

{P} p1 {Q} {Q} p2 {R}
{P} p1 ; p2 {R}

{P} p1 {Q} {Q} p2 ↑
{P} p1 ; p2 ↑

ITP, 24 July 2013 -- p. 10/14

Undecidability

ITP, 24 July 2013 -- p. 11/14

contra def
= copy ; H ; dither

Undecidability

Suppose H decides contra called with code of
contra halts, then

P1
def
= λtp. tp = ([], ⟨code contra⟩)

P2
def
= λtp. tp = ([0], ⟨(code contra, code contra)⟩)

P3
def
= λtp. ∃ k. tp = (0k, ⟨0⟩)

{P1} copy {P2} {P2} H {P3}
{P1} copy ; H {P3} {P3} dither ↑

{P1} contra ↑
ITP, 24 July 2013 -- p. 11/14

contra def
= copy ; H ; dither

Undecidability

Suppose H decides contra called with code of
contra does not halt, then

Q1
def
= λtp. tp = ([], ⟨code contra⟩)

Q2
def
= λtp. tp = ([0], ⟨(code contra, code contra)⟩)

Q3
def
= λtp. ∃ k. tp = (0k, ⟨1⟩)

{Q1} copy {Q2} {Q2} H {Q3}
{Q1} copy ; H {Q3} {Q3} dither {Q3}

{Q1} contra {Q3}

ITP, 24 July 2013 -- p. 11/14

contra def
= copy ; H ; dither

Hoare Reasoning
reasoning is still quite demanding;
the invariants of the copy-machine:

I1 n (l, r) def
= (l, r) = ([], 1n) (starting state)

I2 n (l, r) def
= ∃ i j. 0 < i ∧ i + j = n ∧ (l, r) = (1i, 1j)

I3 n (l, r) def
= 0 < n ∧ (l, tl r) = (0::1n, [])

I4 n (l, r) def
= 0 < n ∧ (l, r) = (1n, [0, 1]) ∨ (l, r) = (1n - 1, [1, 0, 1])

I0 n (l, r) def
= 1 < n ∧ (l, r) = (1n - 2, [1, 1, 0, 1]) ∨ (halting state)

n = 1 ∧ (l, r) = ([], [0, 1, 0, 1])

J1 n (l, r) def
= ∃ i j. i + j + 1 = n ∧ (l, r) = (1i, 1::1::0j@1j) ∧ 0 < j ∨

0 < n ∧ (l, r) = ([], 0::1::0n@1n) (starting state)
J0 n (l, r) def

= 0 < n ∧ (l, r) = ([0], 1::0n@1n) (halting state)

K1 n (l, r) def
= 0 < n ∧ (l, r) = ([0], 1::0n@1n) (starting state)

K0 n (l, r) def
= 0 < n ∧ (l, r) = ([0], 1n@0::1n) (halting state)

ITP, 24 July 2013 -- p. 12/14

Midway Conclusion
feels awfully like reasoning about machine code
compositional constructions / reasoning not
frictionless
sizes

sizes:
UF 140843 constructors
Reg. Mach. 2 Mio instructions
UTM 38 Mio states

an observation: our treatment of recursive
functions is a mini-version of the work by
Myreen & Owens about deeply embedding HOL

ITP, 24 July 2013 -- p. 13/14

..⋆old version: RM (12 Mio) UTM (112 Mio)

Midway Conclusion
feels awfully like reasoning about machine code
compositional constructions / reasoning not
frictionless
sizes

sizes:
UF 140843 constructors
Reg. Mach. 2 Mio instructions
UTM 38 Mio states

an observation: our treatment of recursive
functions is a mini-version of the work by
Myreen & Owens about deeply embedding HOL

ITP, 24 July 2013 -- p. 13/14

Separation Algebra
introduced a separation algebra framework for
register machines and TMs
we can semi-automate the reasoning for our small
TMs
we can assemble bigger programs out of smaller
components

looks awfully like ``real'' assembly code

Conclusion: we have a playing ground for
reasoning about low-level code; we work on
automation

ITP, 24 July 2013 -- p. 14/14

Separation Algebra
introduced a separation algebra framework for
register machines and TMs
we can semi-automate the reasoning for our small
TMs
we can assemble bigger programs out of smaller
components

looks awfully like ``real'' assembly code
Conclusion: we have a playing ground for
reasoning about low-level code; we work on
automation

ITP, 24 July 2013 -- p. 14/14

