Reasoning about Turing Machines
and Low-Level Code

Christian Urban

in cooperation with Jian Xu and Xingyuan Zhang

A Trend in Verification

@ in the past:

model a problem mathematically and proof
properties about the model

@ needs elegance, is still very hard

A Trend in Verification

@ in the past:

model a problem mathematically and proof
properties about the model

@ needs elegance, is still very hard

@ does not help with ensuring the correctness of
running programs

A Trend in Verification

@ make the specification executable (e.g. Compcert)

A Trend in Verification

@ make the specification executable (e.g. Compcert)

you would expect the trend would be to for
example model C, implement your programs in C
and verify the programs written in C (e.g. seL4)

A Trend in Verification

@ but actually people start to verify machine code
directly (e.g. bignum arithmetic implemented in
x86-64 - 700 instructions)

@ CPU models exists, but the strategy is to use a
small subset which you use in your programs

Why Turing Machines

@ at the beginning it was just a nice student project
about computability

COMPUTABILITY
and LOGIC
FIFTH EDI

@ found an inconsistency in the definition of halting
computations (Chap. 3 vs Chap. 8)

Why Turing Machines

at the beginning it was just a nice student project
about computability

COMPUTABILITY
and LOGIC

found an inconsistency in the definition of halting
computations (Chap. 3 vs Chap. 8)

Norrish formalised computability via lambda-calculus (and
nominal). Asperti and Riccioti formalised TMs but didn't get
proper UTM

Turing Machines

@ tapes contain O or 1 only

head
TR TH] [Jmm[
left list |right list

@ steps function

What does the tape look like after the TM
has executed n steps?

Turing Machines

@ tapes contain O or 1 only

head
TR]]]
left list |right list

—

@ steps function

What does the tape look like after the TM
has executed n steps?

designate the O-state as halting state and remain
there forever

Copy Turing Machines

@ TM that copies a number on the input tape

= = = ([RaE] e
() = (W) = (] T T) = (e s

cbegin cloop cend

. d d d
cbegin fef cloop lef cend &

[(Wp.0), R, 2),(R,3), [(RO),(R,2),R,3), I[LO)R,2)(Wq3),
(R, 2),(W1,3). (L. 4, (Wp.2),R,3),R 4, (L4 R2),R,2),
L. 4, (L 0] (W1.3). (R, 4).(L,6), (L 5)(Wg, 4).(RO0),

(L. 5). (L. 6) (L 1] (L. 5)]

Hoare Logic for TMs

@ Hoare-triples and Hoare-pairs:

Prp{Q = Prpt =
V tp. V tp.
if P tp holds then if P tp holds then
dn. such that V n. = is_final (steps (1, tp) p n)

is_final (steps (1, tp) pn) A
Q holds_for (steps (1, tp) p n)

Hoare Reasoning

@ reasoning is still quite difficult—invariants

Ln(r) & arn=@ 0 (starting state)

Lnl,r) 2 3ij0(iAitj=nA(r=©0)

Lnlr) % o(naqtr=a:o" 0

Lin,r) 2 o(na@rm=0"11,0)Vv{r)=0""1 0,1 0]

on(br) % 1(nan@,r=0""20010])V (halting state)
n=1A(,r)=(11,0,1,0]

Iinr) % Fijivjet=nA(,r)=(0,0:0:8 @00)A0(jV
0(nA(,r)=(] 1:0:1" @ O") (starting state)

Ton(r) % 0(naqr=q],0:1" @0 (halting state)

kin(r) E o(na@r=0:"@0M (starting state)

Kon(,r) = 0{nA(,r)=(1]0"@ (1::0M) (halting state)

Register Machines

@ instructions

I == IncR increment register R by one
| DecRL if content of R is non-zero,
then decrement it by one
otherwise jump to instruction L
| Gotol jump to instruction L

Recursive Functions

@ addition, multiplication, ...

@ logical operations, quantifiers. ..

@ coding of numbers (Cantor encoding)
e UF

Recursive Functions

addition, multiplication, ...

logical operations, quantifiers. ..
coding of numbers (Cantor encoding)
UF

Recursive Functions = Register Machines
Register Machines = Turing Machines

Sizes

@ UF (size: 140843)
@ Register Machine (size: 2 Mio instructions)
@ UTM (size: 38 Mio states)

old version: RM (12 Mio) UTM (112 Mio)

Separation Algebra

introduced a separation algebra framework for
register machines and TMs

we can semi-automate the reasoning for our small
TMs

we can assemble bigger programs out of smaller
components

looks awfully like "real” assembly code

Separation Algebra

introduced a separation algebra framework for
register machines and TMs

we can semi-automate the reasoning for our small
TMs

we can assemble bigger programs out of smaller
components

looks awfully like "real” assembly code

Conclusion: we have a playing ground for reasoning
about low-level code; we work on automation

