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A Trend in Verification

in the past:
model a problem mathematically and proof
properties about the model

needs elegance, is still very hard

does not help with ensuring the correctness of
running programs
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A Trend in Verification

make the specification executable (e.g. Compcert)

you would expect the trend would be to for
example model C, implement your programs in C
and verify the programs written in C (e.g. seL4)
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A Trend in Verification

but actually people start to verify machine code
directly (e.g. bignum arithmetic implemented in
x86-64 – 700 instructions)
CPU models exists, but the strategy is to use a
small subset which you use in your programs
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Why Turing Machines
at the beginning it was just a nice student project
about computability

found an inconsistency in the definition of halting
computations (Chap. 3 vs Chap. 8)

Norrish formalised computability via lambda-calculus (and
nominal); Asperti and Riccioti formalised TMs but didn’t get
proper UTM
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Turing Machines

tapes contain 0 or 1 only

left list right list

head
. . . . . .

steps function
What does the tape look like after the TM
has executed n steps?

designate the 0-state as halting state and remain
there forever
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Copy Turing Machines

TM that copies a number on the input tape
⇒ ⇒ ⇒︷ ︸︸ ︷

cbegin
︷ ︸︸ ︷
cloop

︷︸︸︷
cend

cbegin def
=

[(W0, 0), (R, 2), (R, 3),
(R, 2), (W1, 3), (L, 4),
(L, 4), (L, 0)]

cloop def
=

[(R, 0), (R, 2), (R, 3),
(W0, 2), (R, 3), (R, 4),
(W1, 5), (R, 4), (L, 6),
(L, 5), (L, 6), (L, 1)]

cend def
=

[(L, 0), (R, 2), (W1, 3),
(L, 4), (R, 2), (R, 2),
(L, 5), (W0, 4), (R, 0),
(L, 5)]
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Hoare Logic for TMs

Hoare-triples and Hoare-pairs:

{P} p {Q} def
=

∀ tp.
if P tp holds then
∃ n. such that
is_final (steps (1, tp) p n) ∧
Q holds_for (steps (1, tp) p n)

{P} p ↑ def
=

∀ tp.
if P tp holds then
∀ n. ¬ is_final (steps (1, tp) p n)
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Hoare Reasoning
reasoning is still quite difficult—invariants

I1 n (l, r) def
= (l, r) = ([], 1n) (starting state)

I2 n (l, r) def
= ∃ i j. 0 〈 i ∧ i + j = n ∧ (l, r) = (1i, 1j)

I3 n (l, r) def
= 0 〈 n ∧ (l, tl r) = (0::1n, [])

I4 n (l, r) def
= 0 〈 n ∧ (l, r) = (1n, [0, 1]) ∨ (l, r) = (1n - 1, [1, 0, 1])

I0 n (l, r) def
= 1 〈 n ∧ (l, r) = (1n - 2, [1, 1, 0, 1]) ∨ (halting state)

n = 1 ∧ (l, r) = ([], [0, 1, 0, 1])

J1 n (l, r) def
= ∃ i j. i + j + 1 = n ∧ (l, r) = (1i, 1::1::0j @ 1j) ∧ 0 〈 j ∨

0 〈 n ∧ (l, r) = ([], 0::1::0n @ 1n) (starting state)

J0 n (l, r) def
= 0 〈 n ∧ (l, r) = ([0], 1::0n @ 1n) (halting state)

K1 n (l, r) def
= 0 〈 n ∧ (l, r) = ([0], 1::0n @ 1n) (starting state)

K0 n (l, r) def
= 0 〈 n ∧ (l, r) = ([0], 1n @ (0::1n)) (halting state)
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Register Machines

instructions

I ::= Inc R increment register R by one
| Dec R L if content of R is non-zero,

then decrement it by one
otherwise jump to instruction L

| Goto L jump to instruction L
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Recursive Functions

addition, multiplication, . . .
logical operations, quantifiers. . .
coding of numbers (Cantor encoding)
UF

Recursive Functions ⇒ Register Machines
Register Machines ⇒ Turing Machines
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Sizes

UF (size: 140843)
Register Machine (size: 2 Mio instructions)
UTM (size: 38 Mio states)

old version: RM (12 Mio) UTM (112 Mio)
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Separation Algebra

introduced a separation algebra framework for
register machines and TMs
we can semi-automate the reasoning for our small
TMs
we can assemble bigger programs out of smaller
components

looks awfully like “real” assembly code

Conclusion: we have a playing ground for reasoning
about low-level code; we work on automation
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