Mechanising Turing Machines and
Computability Theory in Isabelle

Jian Xu Xingyuan Zhang
PLA University of Science and Technology

Christian Urban
King's College London

Why Turing Machines?

o At the beginning, it was just a student project
about computability.

COMPUTABILITY
and LOGIC
FIFT

Computability and Logic (5th. ed)
Boolos, Burgess and Jeffrey

e found an inconsistency in the definition of
halting computations (Chap. 3 vs Chap. 8)

Some Previous Work

o Norrish formalised computability theory in HOL
starting from the lambda-calculus

e for technical reasons we could not follow him
e some proofs use TMs (Wang tilings)

e Asperti and Ricciotti formalised TMs in Matita

Turing Machines

e tapes are lists and contain Os or /s only

head
T] m[-
left list | right list

—

e steps function:

What does the TM claclulate after it has
executed n steps?

Turing Machines

e tapes are lists and contain Os or /s only

head
T] m[-
left list | right list

—

e steps function:

What does the TM claclulate after it has
executed n steps?

o designate the O-state as [lalting stateind remain
there forever, i.e. have a Nop-action

Register Machines

@ instructions

1

Inc R
Dec R L

Goto L

increment register R by one

if content of R is non-zero,
then decrement it by one
otherwise jump to instruction L
jump to instruction L

Copy Turing Machines

e TM that copies a number on the input tape

= = (T T T => (S ww)
() => (S Tw) = (o] T T T) = (] s

cbegin cloop cend
cbegin =4 cloop = cend =

[(Wo,0), (R, 2), (R, 3), [(RO0),(R2)(R3), [LO0)(R2),(W3),
(R, 2),(Wp,3), (L4), (Wp,2),(R3),(R4), (L4, (R2),(R2),
(L, 4). (L, 0)] (W1, 5), (R, 4), (L, 6), (L 5),(Wo, 4), (R 0),

(L, 5), (L, 6), (L, 1)] (L, 5)]

Hoare Logic for TMs

e Hoare-triples and Hoare-pairs:

(PIp10) “ (Pjpt <
Y 1p. Y tp.
if P tp holds then if P tp holds then
dn. such that YV n. —is_final (steps (1, tp) p n)

is_final (steps (1, tp) pn) N
0 holds_for (steps (1, tp) p n)

Hoare Reasoning

e reasoning is still quite demanding;
the invariants of the copy-machine:

Iin(lr) dzef(l, r)=([]1") (starting state)

nr) Y3ijo<initj=nndr=(I 1)

Isnbr) Do<nnir=(0:1[])

Lnthr) Do<canir=n 10,1V (L r=(1""1[1,0 1])
Ion(lr) d:ef] <nA(Lr)=(1"21[1101])V (halting state)
n=1A(Lr=(][010 1]

d ; ; ;
Jinhr) ¥ 3ijivjvl=nA@r)=(1 1:1:0@E) A0 <jV

O<nAN((Lr)=([] 0::1::0"@1") (starting state)
Jonr) Yo<nnr= (o] 1::00@Im) (halting state)
Kin(r) d:efO <nA(lr)=([0], 1::0"@I") (starting state)

Kon(h) o<nnq =0}, 1"@0::1%) (halting state)

Recursive Functions

e addition, multiplication, ...

o logical operations, quantifiers...

e coding of numbers (Cantor encoding)
e UF

Recursive Functions

e addition, multiplication, ...

o logical operations, quantifiers...

e coding of numbers (Cantor encoding)
e UF

e Recursive Functions = Register Machines
o Register Machines = Turing Machines

Sizes

o UF (size: 140843)
e Register Machine (size: 2 Mio instructions)
o UTM (size: 38 Mio states)

old version: RM (/2 Mio) UTM (/12 Mio)

Separation Algebra

e introduced a separation algebra framework for
register machines and TMs

e we can semi-automate the reasoning for our small
TMs

e we can assemble bigger programs out of smaller
components

o looks awfully like ““real" assembly code

Separation Algebra

introduced a separation algebra framework for
register machines and TMs

we can semi-automate the reasoning for our small
TMs

we can assemble bigger programs out of smaller
components

looks awtully like ““real" assembly code

Conclusion: we have a playing ground for
reasoning about low-level code; we work on
automation

