
Mechanising Turing Machines and
Computability Theory in Isabelle

Jian Xu Xingyuan Zhang
PLA University of Science and Technology

Christian Urban
King's College London

ITP, 24 July 2013 -- p. 1/11



Why Turing Machines?
At the beginning, it was just a student project
about computability.

Computability and Logic (5th. ed)
Boolos, Burgess and Jeffrey

found an inconsistency in the definition of
halting computations (Chap. 3 vs Chap. 8)

ITP, 24 July 2013 -- p. 2/11



Some Previous Work

Norrish formalised computability theory in HOL
starting from the lambda-calculus

for technical reasons we could not follow him
some proofs use TMs (Wang tilings)

Asperti and Ricciotti formalised TMs in Matita

ITP, 24 July 2013 -- p. 3/11



Turing Machines
tapes are lists and contain 0s or 1s only

..
left list

.
right list
.

head
.… . …

steps function:
What does the TM claclulate after it has
executed n steps?

designate the 0-state as �alting stateänd remain
there forever, i.e. have a Nop-action

ITP, 24 July 2013 -- p. 4/11



Turing Machines
tapes are lists and contain 0s or 1s only

..
left list

.
right list
.

head
.… . …

steps function:
What does the TM claclulate after it has
executed n steps?

designate the 0-state as �alting stateänd remain
there forever, i.e. have a Nop-action

ITP, 24 July 2013 -- p. 4/11



Register Machines

instructions

I ::= Inc R increment register R by one
| Dec R L if content of R is non-zero,

then decrement it by one
otherwise jump to instruction L

| Goto L jump to instruction L

ITP, 24 July 2013 -- p. 5/11



Copy Turing Machines

TM that copies a number on the input tape
.. ⇒. ⇒. ⇒. ︷ ︸︸ ︷

cbegin
. ︷ ︸︸ ︷

cloop
. ︷︸︸︷

cend

cbegin def
=

[(W0, 0), (R, 2), (R, 3),
(R, 2), (W1, 3), (L, 4),
(L, 4), (L, 0)]

cloop def
=

[(R, 0), (R, 2), (R, 3),
(W0, 2), (R, 3), (R, 4),
(W1, 5), (R, 4), (L, 6),
(L, 5), (L, 6), (L, 1)]

cend def
=

[(L, 0), (R, 2), (W1, 3),
(L, 4), (R, 2), (R, 2),
(L, 5), (W0, 4), (R, 0),
(L, 5)]

ITP, 24 July 2013 -- p. 6/11



Hoare Logic for TMs

Hoare-triples and Hoare-pairs:

{P} p {Q} def
=

∀ tp.
if P tp holds then
∃ n. such that
is_final (steps (1, tp) p n) ∧
Q holds_for (steps (1, tp) p n)

{P} p ↑ def
=

∀ tp.
if P tp holds then
∀ n. ¬ is_final (steps (1, tp) p n)

ITP, 24 July 2013 -- p. 7/11



Hoare Reasoning
reasoning is still quite demanding;
the invariants of the copy-machine:

I1 n (l, r) def
= (l, r) = ([], 1n) (starting state)

I2 n (l, r) def
= ∃ i j. 0 < i ∧ i + j = n ∧ (l, r) = (1i, 1j)

I3 n (l, r) def
= 0 < n ∧ (l, tl r) = (0::1n, [])

I4 n (l, r) def
= 0 < n ∧ (l, r) = (1n, [0, 1]) ∨ (l, r) = (1n - 1, [1, 0, 1])

I0 n (l, r) def
= 1 < n ∧ (l, r) = (1n - 2, [1, 1, 0, 1]) ∨ (halting state)

n = 1 ∧ (l, r) = ([], [0, 1, 0, 1])

J1 n (l, r) def
= ∃ i j. i + j + 1 = n ∧ (l, r) = (1i, 1::1::0j@1j) ∧ 0 < j ∨

0 < n ∧ (l, r) = ([], 0::1::0n@1n) (starting state)
J0 n (l, r) def

= 0 < n ∧ (l, r) = ([0], 1::0n@1n) (halting state)

K1 n (l, r) def
= 0 < n ∧ (l, r) = ([0], 1::0n@1n) (starting state)

K0 n (l, r) def
= 0 < n ∧ (l, r) = ([0], 1n@0::1n) (halting state)

ITP, 24 July 2013 -- p. 8/11



Recursive Functions

addition, multiplication, …
logical operations, quantifiers…
coding of numbers (Cantor encoding)
UF

Recursive Functions ⇒ Register Machines
Register Machines ⇒ Turing Machines

ITP, 24 July 2013 -- p. 9/11



Recursive Functions

addition, multiplication, …
logical operations, quantifiers…
coding of numbers (Cantor encoding)
UF

Recursive Functions ⇒ Register Machines
Register Machines ⇒ Turing Machines

ITP, 24 July 2013 -- p. 9/11



Sizes

UF (size: 140843)
Register Machine (size: 2 Mio instructions)
UTM (size: 38 Mio states)

old version: RM (12 Mio) UTM (112 Mio)

ITP, 24 July 2013 -- p. 10/11



Separation Algebra
introduced a separation algebra framework for
register machines and TMs
we can semi-automate the reasoning for our small
TMs
we can assemble bigger programs out of smaller
components

looks awfully like ``real'' assembly code

Conclusion: we have a playing ground for
reasoning about low-level code; we work on
automation

ITP, 24 July 2013 -- p. 11/11



Separation Algebra
introduced a separation algebra framework for
register machines and TMs
we can semi-automate the reasoning for our small
TMs
we can assemble bigger programs out of smaller
components

looks awfully like ``real'' assembly code
Conclusion: we have a playing ground for
reasoning about low-level code; we work on
automation

ITP, 24 July 2013 -- p. 11/11




