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Turing-Machines and the Entscheidungsproblem* 
By 

J. RICHARD Bt~CHI in Ann Arbor and Mainz 

Let Q be the set of all sentences of elementary quantification theory 
(without equality). In  its semantic version Hilbert's Entscheidungsproblem for 
a class X C Q of sentences is, 

[X]:  To find a method which for every S E X yields a decision as to 
whether or not S is satisfiable. 

CHURCH [3] showed that  [Q] is recursively unsolvable. Shortly thereafter 
TURIN(~ [6] obtained this result more directly by reducing to [Q] an unsolvable 
problem on Turing-machines. This reduction however is rather involved, and 
requires much detailed attention of the kind which does not add to one's 
overall understanding of the situation. We will show in this paper that  the 
connection between Turing-machines and quantification theory is really a 
rather simple one. The key to it is lemma 3, which is closely related to the 
Skolem-G6del-Herbrand work on quantification theory. As a result we obtain 
the first really elegant proof of unsolvability of [Q]. I t  can be outlined thus: 

Lemma 1: The set Hlt, consisting o/al l  Turing-machines which eventually 
halt, i/started on the empty tape, is not recursive. 

Lemma 2: To any Turing.maehine M one can construct a matrix M_ (x,u,y), 
with individual variables x, u, y, monadic predicate letters, and 3 binary predicate 
letters, such that M ~ Hlt i /and only i/ Zo  ^ (Vxy) M (x, x', y) is satisfiable in the 
natural number system (N,  o, ,)1). 

Lemma 3: For any matrices Z(x)  and M(x, u, y), the sentence (3x) Z_ (x) ^ 
^ (Vx) (3u) (Vy) M(x ,  u, y) is satisfiable i] and only i/Z_(o) ^ (Vxy) M_(x,x',y) 
is satisfiable in (N,  o, '). 

By lemmas 2 and 3, to any Turing-maehine M one can construct a sentence 
S of form 3 ^ V3¥ ,  such that  M ¢ H l t  if and only if S is satisfiable. Therefore, 
by lemma 1, 

Theorem 1: The problem [3 A V3V] is not recursively solvable, even i/ 
restricted to sentences in which, besides monadic letters, only three binary predicate 
letters occur. 

* The results of this paper were announced in the Notices, Am. Math. Soc. 8, 354 
(1961), and appeared as University of Michigan Technical Report, December, 1961. The 
work was supported by grants from the National Science Foundation and the U. S. Army 
Signal Corps, and by a contract with the Office of Naval Research. 

1) The expression "satisfiable in (2/, o, ' )" is not to be confused with "satisfiable 
in iV". Here as in other places we prefer a somewhat abbreviated terminology, so as not to 
drown the main ideas in a formalistic flood. With a bit of good will the reader will find it 
possible to supply the details. 
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To stress the simplicity of this argument we wish to claim that  the following 
hints suffice to prove the three lemmas: Lemma 1 is well known and immedi- 
ately follows from the basic unsolvability result on Turing-machines (machine 
halting on the tape carrying its description). Proving lemma 2 is just an 
exercise on Turing-machines. One first describes the operation of a machine M 
on the empty tape in the form of a matrix C(Q, S, K, o, ', x, y), whereby 
Qx = state at time x, K y x ~  position y is scanned at  time x, S y x  = tape- 
symbol at position y and time x. I t  is important  to note tha t  the functions Q 
and S are finite-valued, and therefore can be considered to be vectors of 
monadic and binary predicates on natural numbers. M C t i l t  now means that  
no Q, K and S exist such that  for all places y and all times x, C(Q,S,K,o ,  ',x,y). 
I t  remains to invent some tricks to put  the matrix _C(o, ', x, y) into the form 
Z(o) ^ M(x,  x', y), by adding auxiliary predicates. Lemma 3 is trivial in the 
"if-direction". In the other direction one might use the axiom of choice to 
introduce a monadic Skolem-funetion Ix  for (3u) and a constant c for (3x). 
I t  remains to note tha t  Z (c) ^ (Vxy) .51 (x , /x ,  y) is satisfiable if and only if it is 
satisfiable by predicates in 57 and c = o, Ix = x'. 

This proof has the further advantage of directly yielding unsolvabihty for 
the very simple type 3 ^ V3V. The unsolvability of [3 ^ V3 ^ VVV] follows, 
by replacing the part  ¥ 3 V by its Skolem-form V 3 ^ ¥ ¥ ¥. (Compare these 
results with Bernays' (1958) analysis of Turing's proof.) More important, is, 
tha t  our method of using lemma 3, for the first time provides real hope of 
settling the decision problem for the only remaining prefix-types V3 V and 
V3 ^ ¥ ¥ ¥ .  Furthermore, with slight modifications we obtain an improved 
version of TRACHT~BROT'S {1950) result about satisfiability in finite domains: 

Theorem 2: There is no recursive set which separates the not.satisfiable 
sentences ]rom those satisfiable in a finite domain; even i /only  sentences o/ /orm 
3 ^ V 3 V are considered. 

Corollary: The set ol 3 ^ V 3 V  sentences, which are finitely satisfiable, 
is not recursive. 

Clearly theorem 2 follows from the following stronger versions of lemmas 1, 
2, and 3: 

Lemma I: Let Cyl be the set o] all Turing.maehines which eventually cycle, 
i/started on the empty tape. The sets Hlt  and Cyl are not recursively separable. 

Lemma II: The construction M---> M_ o/ lemma 2 has the/urther property: 
M ~ Cyl i/ and only q Zo ^ (Vxy) M_(x, x', y) is satisfiable in <57, o, '> by 
periodic predicates. 

Lemma III: Add to lemma 3: The sentence (3x) Z_(x) ^ (Vx) (3u) (Vy) 
M(x ,  u, y) is satisfiable in a finite domain, i] and only i/, Z(o) ^ (Vxy) 
M (x, x', y) is satisfiable in <57, o, '> by periodic predicates. 

We will now indicate the proofs of the lemmas, and add some additional 
discussion at  the end of the paper. 

Proof of lemmas 2 and II :  A (Turing-) machine we define to be a system 
M = <_D, A, _L, _R, _P, Q, S> consisting of a finite set _D of elements called states; 
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an A ~_D called the initial state; three binary predicates _L[X, Y], R [  Y, X],  
P [X, Y], called commands of le/t-move, right-move, and print; a binary function 
Q [X, Y] with values in _D, called the new-state-/unction; and a function S [X,  Y] 
with values in ( T , F } ,  called the print-/unction. All these predicates and 
functions have arguments X ~ D and Y ~ {T, F}, furthermore _L, R, P are to 
be exclusive and complementary.  The tape.symbols are T and F,  a tape is a 
one-way infinite sequence of tape-symbols, i.e. a predicate I x  on N. The tape 
I x  - -  _~ is called the empty tape. 

The operation o f a machine M, set to work on a tape I ,  is as follows. M is 
started in its initial state A, scanning the zero-position of the tape I .  I f  a t  
any time x it is in state X and scans position y of the tape, which now carries 
the symbol Y, then, 

if _L [X, Y] it moves to scan position y - 1 

if _R [ X, Y] it moves to scan position y ÷ 1 

if _P[X, Y] it prints A'[X, Y] in place of Y at  position y. 

In  all cases it goes into the new state ~ IX, Y]. Note tha t  if y = o and the 
command is _L [X, Y], then M will next  scan position - 1, i.e., it runs o~ the 
tape. In  this case we say tha t  the machine halts at  t ime x + 1~ and tha~ the 
tape I is accepted by M;  in symbols HI(M, I) .  The set Hl t  consists of all 
machines M which eventually halt  if put  to work on the empty  tape. 

Now let M : (D, A, _L, R, P ,  Q, S~ be any machine. From it we construct 
the formula C(Q, S, K, L, R, P, x, y) as conjunction of the following parts, 

Qo=A ^ ~ S y o  Koo ^ ~ K y '  o 

K y x  ) .  Qx' = Q... [Qx, Syx]  L x  ) .  K y x '  ~ Ky '  x 

K y x ^  L_ [Qx, Syx]  . ) .  L x ^  ~ P x ^  ~ R x  P x  ) .  K y x '  ~ K y x  

(i) K y x  ^_P[Qx, Syx]  . ) .  P x  ^ ~ L x  ^ ~ R x  R x  ) .  Ky '  x'~-- K y x  

K y x  ^ R_ [Qx, Syx]  • ) .  R x  ^ ,.-Lx ^ ~ P x  R x  ) .  ~ K o x '  

~ K y x  v L x  v R x  • ) .  S y x '  ~ S y x  ~ [Kox ^ Lx]  

K y x  h P x  . ) .  S y x ' ~  S[Qx, Syx]  

and we claim that1), 

(I) M ¢ H l t  . ~ .  ( ¥xy )C  is satisfiable in (N,  o, ' ) .  

Suppose first t ha t  M ~ Hlt,  i.e., M put  to work on the empty  tape does 
never halt. Then clearly the functions and predicates 

(J) 

Q x ~  

S y x ~  

K y x ~  

L x =  

R x - ~  

P x - ~  

state of M at  t ime x 

tape-symbol at  t ime x and position y is T 

at  t ime x position y is scanned by  M 

at  t ime x the command is left-move 

at  t ime x the command is right-move 

at  t ime x the command is print  
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are  defined for all x and y. Furthermore, because M is started on the empty 
tape and never runs off the tape, these Q, S, K, L, R, P will satisfy Qo = A, 
Koo ^ ~Ky'o,  ~ S y o  and N [Kox ^ Lx], for any x and y. Referring to our 
description of the operation of a machine, one easily verifies tha t  also the 
remaining formulas of (i) are satisfied for all x and y. In other words, (Vxy)C 
becomes true in (N, o, ') ,  if its variables are given the values (j). Thus, (1) is 
established in the left.right direction. 

Suppose next  tha t  (Vxy)C is satisfiable in (N, o, ') .  Then there are a 
function Q : N -~/9 and predicates S, K, L, R, P,  such that  for all x and y in N 
the formulas (i) hold. Now suppose M is put  to work on the empty tape, and 
refer back to our description of the operation of a machine. By induction on x 
and the use of (i) one then shows that  Q, S, K, L, R, P must satisfy (j), for 
all x and y~). I t  follows that  at no time x, the machine M halts, if started on 
the empty tape, i.e., M ~ Hlt. This completes the proof of (1). 

Note that  the states of a machine M = (_D, A, _L, R, _Q, _S) may be coded as 
vectors of truth-values, so that  A stands for a vector (A 1 . . . . .  Am) of truth- 
values, and Q for a vector (_Q1 . . . . .  _Qn) of formulas of propositional calculus 
(n depending on the number of states of M). Furthermore, the expressions 
Qo -~ A and Qx' -- Q [Qx, Syx] stand for conjunctions of terms of the form 
Q~o-~ A~ and Q~x'-Q_.~[Qlx . . . . .  Qnx, Syx]. C_ therefore is a matrix of 
quantification-theory. With the construction M-> _C, and the established (1), 
we thus are pre t ty  close to a proof of lemma 2. All that  remains to be done 
is to note that  the following modifications of C do not affect the validity of (1). 

1. Introduce an additional binary predicate-letter H. On the right side of C 
replace Ky' o by Hyo, Ky'  x by Hyx, Ky' x' by Hyx',  and conjoin H x y ~  Kx'  y. 
The resulting matrix is of form C* (o, x, x', y). 

2. Introduce an additional monadie predicate-letter Z. To C* conjoin 
Zo ^ ~Zx '  and replace [Qo=A] ^ ~Syo  by Zx ~. [Qx=A] ^ ~Syx ,  Koo ^ 
^ ~Hyo  b y Z x  ~. K x x  ^ ~Hyx ,  NKox'  b y Z y  ~ ~Kyx ' ,  and ~ [Kox ^ Lx] 
by Zy ~ N [Kyx ^ Lx]. The resulting formula is of form Zo ^ ~l(x, x', y). 
M -~ M is the construction required in lemma 2. That  the same construction 
also satisfies lemma II,  will now be shown. 

The machine M, if started on the tape I, goes into a p.cycle at  time l, if at  
the later time (l -i- p) it  is faced with an identical situation, i.e., at  times I and 
(l ÷ p) M is in the same state and scans identical tapes in the same position. 
We will say that  M (eventually) p-cycles on I, in symbols Cy~(M, I), if at  some 
time it  goes into a p-cycle. (It  may be shown tha t  for some p, Cy~(M, I) holds 
if and only if M never runs off the tape and scans only in a bounded part  of the 
tape.) The set Cyl is defined to consist of all those machines M which even- 
tually cycle, if put  to work on the empty tape. 

A predicate Ux on h r is called periodic with phase l and period p :> o, if 
U(x ÷ p ) -  Ux for all x ~ l. A relation Vxy on zV is called periodic with 
phase I and period p >  o, if V(x ÷ p)y ~ Vxy for all x _~ 1 and all y, and 

2) The details are best left to the reader. It  should be noted that, by our definition of 
maehinos, L, R, P are mutually exclusive. 
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Vx(y + p) ~ Vxy  for all x and all y ~ l. (Note tha t  the entire line Vxl  has 
to repeat a t  Vx(l ÷ p), and not just from x = 1 on!) 

Suppose now tha t  M 6 Cyl, tha t  is, M goes into a p-cycle a t  t ime l, if 
started on the empty  tape. Then clearly the functions Q, L, R, P are periodic 
and S y x  and K y x  are periodic in the t ime-argument x, all of them with phase 1 
and period p. Furthermore,  if d is the maximum of all positions scanned by  M 
before t ime (l ÷ p), then at  no time t a position y >  d will be scanned. I t  
follows tha t  K y x  ~--F, for all x and all y > d, and because Syo ~ F and M 
never scans beyond d, also Syx  ~ F for all x and all y > d. Thus, also K and S 
are periodic (with phase ~ l, d and period p). In  other words, the implication 
from left to right of (2) is valid. 

(2) M ~ Cyl . ~ .  (Vyx)C_ is satisfiable by  periodic predicates in (N,  o, ' ) .  

In  the other direction (2) is trivially valid because the only solution of (Vyx) C_ 
are the predicates Q, S, K, L, R, P describing the operation of M;  and to say 
tha t  Q, S, K, are periodic (in the time argument) just means tha t  M eventually 
cycles. Because the modifications 1. and 2. of _C to C* to Zo ^ M_ clearly do not 
affect the validity of (2), this ends the proof of lemma II .  

P r o o f  of lemma I:  We omit giving a direct proof of lemma 1, as it is well 
known from the literature. Of the proof of 1emma I we present an intuitive 
sketch : 

The block of length 1 is the  tape given by  Iy ~ (y < 1). I t  is clear tha t  one 
can effectively set up a coding /unction cd(M) which maps one-to-one all 
machines onto all blocks. A set X of blocks is called recursive if there are 
machines M 1 and M S such that  for all blocks I ,  

I ~ X .--=. H1 ( i  1, I)  
(a) 

I ~ X .--~. H1 ( M  S, I )  . 

A set Y of machines is called recursive if the set cd (Y) of blocks is recursive. 
As to the equivalence of this to other definitions of "recursive sets" we remark:  

1. I t  is well known tha t  the restriction to two tape-symbols (one of them 
the blank) and one-way infinite tapes is not a serious one, 2. Machines which 
print and move a t  the same time can, by  adding new states, easily be modified 
so as to either only print  or only move in each atomic act, 3. We might have 
added another  command predicate H / X ,  Y], to obtain halt-situations in 
addition to "running off the tape" .  But  these can be eliminated by  adding 
an additional state B, such tha t  H [X, YJ implies tha t  the next  state is B, 
and B requires M to s tay in B and move left. 

Note tha t  for a machine M to 1-cycle simply means tha t  i t  keeps scanning 
at  the same position. Thus, one can find a predicate CI[X, Y] such tha t  M 
at  t ime t goes into a 1-cycle just in case ~1 IX, Y] holds for the state X and 
scanned symbol Y. Let  now M '  be obtained by  adding a new state B with 
~[B,  Y] -~ B, and conjoining _C 1 to the right-move condition _R. Then clearly 

l~Iath. Ann. 148 1 5  
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HI(M, I ) ~  HI(M' ,  I) ,  but  M '  never 1-cycles. Similarly one can modify a 
machine M to M '  such tha t  HI(M,  I )  ~ Cyl(M' , I )  and M '  does not halt  on 
any  block I .  Thus in the definition of reeursive sets of blocks one m a y  replace 
(a) by  

I E. X .~-- Cyl(M1, I)  and M 1 does not  halt  on blocks 
(b) 

I (E X "~"  HI(M~, I )  and M z never 1-cycles. 

I t  now is possible to combine M 1 and M s into one machine M which 
1-cycles on I E X and halts on I ~ X. Thus, to every recursive set X of blocks 
there is a machine M 0 such tha t  for all blocks I ,  

I E X .-~. Cy l ( /0 ,  I )  

(c) I ¢ X . ~ .  H I ( M  0, I ) .  

By  the usual diagonal-argument we now can prove lemma I :  
Suppose tha t  Y is a recursive set of machines and separates the sets of 

machines for which H1 (M, cdM) respectively Cy I (M, cdM), i.e., 

HI(M, cdM) D M E Y 

Cy~(M, cdM) D M ~ Y.  

By (c) there is a machine Mo, such tha t  

M E Y ~ Cyl(M0, cdM) 

M ~ Y D Hl(M0, cdM) . 

Now M o E Y implies Cyl(Mo, cdM0) implies M o ~ Y, and M 0 ~ Y implies 
HI(M o, edM) implies M o E Y. This is contradictory, and therefore, 

(d) The sets A = {M; HI(M,  edM)} and B = {M; Cy~(M, cdM)} 

are not  separable by  a recursive set. 
Because there is a recursive mapping ] from machines to machines such tha t  

HI(M,  cdM)  ~ / M  E Hl t  

Cy~(M, cdM) ~ / M  E Cyt~ 

it  follows from (d) tha t  also t i l t  and Cyl 1 are not separable. ~inally, because 
Cyl 1 =c Cyl, we conclude tha t  Hl t  and Cyl are inseparable. 

Proof of l emma 3 and III: We will assume tha t  the matrices _Z and M 
contain only one predicate-letter R, which is binary. The general case does not 
present any  new problems. Let  S (R)  stand for the sentence (3x)Z_(x)^ 
^ (Vx) {]u) (Vy) M(x,  u, y), and 27*(a, ], R) for its Skolem-transform _Z(a) ̂  
^ (Vxy) M(x, Ix, y). 

Now suppose tha t  2:(R) is satisfiable, i.e., has a model (D1, R1). By  the 
axiom of choice it follows tha t  there is an a I E D1 and a function 11:D1 -~ D1, 
such tha t  _D 1 = (D1, al, ]l, R1) is a model of X* (a, [, R). Let  D 2 be the smallest 
subset of D x which contains a 1 and is closed under/1,  let a s == a l , / s  -- restric- 
tion of 11 to D s, R~ --- restriction of R 1 to D~. Because 2:* is a universal sentence 
it  follows tha t  _D 2 = (D2, as, [2, R~) still is a model of 2:*. Next  we note tha t  
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<N, o, '> is the free algebra with one generator and one monadic function. 
Because <D~, a s, )~> is generated by a s and/2,  it follows tha t  there is a homo- 
morphism h from <N, o, '> onto <D~, as,/2). I f  we now define R a x y ~  
-~- R~(hx) (hy), then it is clear tha t  _D~ is strong homomorphic image of 
<N, o, ', R3>. Again because 27" is universal i t  therefore follows tha t  
<N, o, ', R3> is still a model of 27"(a,/, R)s). Thus, 

(1) 2: is satisfiable • ) .  27" is satisfiable in <N, o, '>. 

Suppose now further, tha t  the model <D x, RI> of 27 is finite. Then clearly 
the algebra <D2, a2,/2> is finite. I t  follows tha t  the congruence relation h x  = h y  
on <N, o, '> is of finite index, and therefore must  be of form 

h x  = h y  . ~ .  x = y v [x ~ l ^ y > l ^ x ~  y (modp) ] ,  

for some I and p > o. I t  follows tha t  the relation R a x y  is periodic with phase 1 
and period p. Thus we have shown, 

(2) 2: finitely satisfiable • ) .27* periodically satisfiable in <N, o, '> .  

The converse to (1) is trivial, so tha t  l emma 3 is established. To establish 
lemma I I I  it remains only to prove the converse to (2). This goes as follows: 

Suppose _D = <N, o, ', RI> is a model of 27* (a, / ,  R), whereby R 1 is periodic, 
say of phase 1 and period p > o. The relation 

x ~ y . ~ .  x = y v Ix ~ l ^  y > l ^  x ~  y(modp)]  

is clearly a congruence relation of <N, o, '>, and because R 1 has phase l and 
period p, it is also a congruence relation of R1. Consequently one can form the 
factor _D/~ of the relational system _D. Because 27* is universal and _D/~ is 
homomorphic image of D, it follows tha t  _D/~ is still a model of 2:*. Further- 
more, _D/~ is finite, because ~ is of finite index. But  from any model of 
I * ( a , / ,  R) one obtains a model of 27(R), if one just omits the interpretations 
of a a n d / .  Thus 2: has a finite model. 

This concludes the proof of the lemmas. We add some furbher discussion 
of the results. 

G e n e r a l  form of lemma I I I :  Without  any  essential change in the presented 
proof, one can establish the result for general sentences of Q. I n  place of 
<N, o, '> appear  the totally/ree algebras _Fn m ...... mk = < N ,  01 . . . . .  On, h . . . . .  ]k> 
~ t h  n generators and k operations, f~ having mi arguments.  A periodic relation 
on F is one which admits  a congruence of_F of finite index. A Skolem-trans/orm 
I *  (0 t . . . . .  o~, ]1, • • . , / k ,  R) of an arbi t rary sentence 27(R) in Q is obtained by  
first writing 2: as a conjunction of prenex sentences, and next  replacing 
existential quantifiers by  individual-letters and function letters, in the well 

a) A strong homomorphism It of D ~- (D,/, R> onto D* = (D*,/*, R*> is charac- 
terized by h(/xy) =/*(hx)  (hy) and Rxy  ~ R*(hx) (by). There s e e m s  to be a widespread 
prejudice that h -1 does not preserve the validity of universal sentences S. Of course, this 
is justified in case S contains the equality-sign, and one demands that it must be interpreted 
as equality. In the other case, a bit of reflection will show the prejudice to be faulty. 

15" 
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known manner (suggested by the axiom of choice). The general form of 
lemma I I I  now is, 

Lemma III: Let X ( R  I . . . . .  Rs) be any sentence o/ Q, let 2:*(o 1 . . . . .  o~, 
fl . . . . .  ]k, R1 . . . . .  Rs) be a Skolem-transform o/27. 

(a) 27 is satisfiable, if and only i[, 27* is satisfiable in the totally free ahyebra 

(b) 27 is satisfiable in a finite domain, i / a n d  only if, 27* is satisfiable in 
F_~ ...... m~ by periodic relations. 

The proof we gave (using the axiom of choice) simply carries one step 
farther Skolem's first proof of LSwenheim's theorem. A more elementary proof 
of part (a) actually is contained in Skolem's second proof. I t  may be outlined 
thus. 

The free algebra _F can be built up by levels: L 0 -- {o 1 . . . . .  %), Lk +1 is 
obtained by adding to L~ the e l e m e n t s / x . . ,  y whereby x , . . . ,  y C Lk and [ 
is one of/1 . . . . .  [~. Let 2: be a sentence. Its Skolem-transform Z* is a universal 
sentence, say ( V x . . .  y) A (x . . . . .  y). For any ]c we define Xk to be the conjunc- 
tion of all A (u . . . . .  v) whereby u , . . . ,  v range over L~. By a quite elementary 
argument one shows, 

(c) If 27 is satisfiable, then for every/c, 27~ is satisfiable in L k. 
Furthermore, by KSnig's infinity lemma, 
(d) If for every k, 27k is satisfiable in Lk, then 27* is satisfiable in _F. 
Because the "if-part" is trivial, this yields another proof of (a). I t  makes 

use of the infinity lemma, while the first proof uses the axiom of choice! We 
have not analyzed whether (b) also can be obtained in this second way. 

Syntactic version of the Entscheidungsproblem: If  in the statement of pro- 
blem [X] one replaces "satisfiable" by "formally consistent" one obtains the 
syntactic version [X]o. By GSDEL'S completeness theorem it follows that  IX] 
and [X]o are equivalent, so tha t  also [3 ^ V3 V]0 is not recarsivety solvable. 
However, one can prove this more directly by using H~.RBRAND'S theorem. 
I t  can be stated thus, 

(c') 2:is formally consistent, if and only if, for any k, 27~ is satisfiable in L k. 
Now (c') and the infinity-lemma (d) yield, 
(a') 27 is formally consistent, if and only if, 27* is satisfiable in _F. 
From lemmas 1, 2, and (a') the unsolvability of [3 ^ V3V]0 follows. 

Reduction: To the one who does not accept CHURCH'S thesis, theorem 1 is 
of less interest. But  our method also yields that  3 ^ V 3 V is a reduction-type, 
i.e., the problem [Q] is effectively reducible (in fact 1 -  1-reducible) to the 
problem [3 ^ V3 ¥]. This can be seen by using a theorem of MYHrLL'S, because 
our proof clearly shows that  [3 ^ V3V] is of unsolvabflity degree 1. More 
directly one can obtain a reduction from [Q] to [3 h V3V] as follows. 

To the sentence 2: in Q construct a Taring.machine M which, if started 
on the empty tape, begins by checking 27 0 for satisfiability in 15 0. M halts if it 
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finds 27k not to be satisfiable in L~, and it proceeds to 2Yk+ 1 in ease it has found 
a model of Xk- Thus by (e), 

27 satisfiable . ~ .  M ¢ H l t .  

The construction of lemma 2 now yields a matrix M (x, u, y), which by temma 2 
and 3 is such that ,  

M ~ H l t . ~ .  A satisfiable, 

whereby LJ is the sentence (3x)Zx A (Vx) (3u) (Vy)_M. Thus, the effective 
construction X-~ ~J, reduces [Q] to [3 A V3 V]. 

Prefix of length four: The unsolvability of [V3VV] does not follow from 
theorem 1, but  it  can be proved by  the same method. (However, to obtain the 
necessary modified version of lemma 2, the author had to make use of ternary 
predicate letters.) We note tha t  all prenex-types with prefix of length 4 are 
now settled; all except V 3 V V and those falling under 3 A V 3 V and SURA~YI'S 
(1959) VV3 A VVV, have a solvable decision problem. There remains the 
question whether [3 A V3V] is unsolvable if one admits, besides monadic 
letters, only two (only one) binary predicate letters. 

The prefix V 3 V: The really important outstanding question is to prove 
[V 3 V] unsolvable. For the first time there now is hope of obtaining this result. 
All tha t  is missing is the following stronger form of lemma 2, 

Problem: To any Turing-machine M to construct a matrix _M(x, u, y), 
with individual variables x, u, y, monadic predicate letters, and binary 
predicate letters, such that  M ~ Hlt  if and only if (Vxy) M(x, x', y) is satisfiable 
in the natural number system <N, '>. 

In our proof of lemma 2 we fell short of obtaining this stronger result, 
because, in describing the action of M on the empty tape we used special 
constraints on two axes, namely the tape-axis and the time-axis. I t  is important  
to realize that  also in conditions of form (Vxy) M(x, x', y) one still has use of 
one axis, namely one can formulate special restraints on the diagonal! In  
September 61 the author explained this situation to ttAO WAHOO. He now 
claims, in collaboration with A. S. KAHR and E. F. MOORE, to have found a 
construction M-+  M as required in the above problem. Thus, even [V3V] 
seems to be unsolvable, and the unsolvability of [V] A V V V] follows by  
passing to Skolem-form. These results settle (up to  detailed questions, like 
number of binary predicate-letters) the Entscheidungsproblem for all gener- 
alized prenex types (conjunctions of prenex sentences). I t  is easy to see tha t  
for every generalized prenex type X either one of the following four alternatives 
holds: 

AI: Every  conjunct of X is of form 3"V ~ 

A~: Every conjunct of X is of form 3~W3 ~ 
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BI: There i s a c o n j u n c t o f f o r m . . . V . . . 3 . . . V . . . i n X .  

B~: There a r e e o n j u n c t s . . . V . . . 3 . . . a n d . . . V . . . V . . . V . . . i n X .  

Thus, there are just two cases, 

A: [X] trivially reduces to [3nV ~] or [3nV23 m] 

B: Either [V3V] or [V3 ^ VVV] trivially reduces to [X]. 

I t  is well known (see ACKERMAN~ [1]) tha t  [3nV m] and [3nV23 ~] are 
solvable. Thus, in case A, [X] is solvable, while in case B, depending on the 
result of KAHR, MOOl~]~, and WA~O, [X] is unsolvable. 

Let  us say tha t  a set X of sentences has property ~b, if every sentence of X 
which is satisfiable also is finitely satisfiable. In  other words ~ b  X means tha t  X 
contains an "infinity-axiom". I t  is well known (see ACKERMANN [1]) tha t  
3nV23~ and 3nV ~ both have property ~b, while V3V and V3 A VVV do not. 
The trivial reductions mentioned preserve property ¢ ,  so tha t  the cases A and B 
also divide those generalized prenex types X having property ~b from those 
which do not. 

Matrices of special form: We will show now tha t  if in theorem 1 one drops 
the remark concerning the number  of binary predicate-letters, one can in turn 
add very strong restrictions on the form of the matrices in the 3 ^ V3 V- 
sentences. We note tha t  monadie letters can be eliminated (replace Sv by Svv) 
without  changing satisfiability of a sentence. In  the following discussion 
R, S . . . .  will stand for vectors of binary predicate-letters. By  lemmas 1 and 2 
the following is an undecidable problem, 

(D) For any matrices Z_[Roo] and M_[Rxx, Rxx', Rxy; Rx'x, Rx'x', 
Rx'y; Ryx, Ryx', Ryy] to decide whether _Z(o) ̂  (Vxy) _M(x, y) is satisfiable 
in (IV, o, ' ) .  

The following modifications of _M do clearly not affect satisfiability of 
Z(o) ^ (Vxy) _M(x, y): 

1. To __M conjoin S x y -  Ryx  and make the proper substitutions in _M to 
obtain a new matr ix  of form A [Rxx, Rx' x, Rx' x', Rxy, Rx' y, Ryy] ^ 
A B[Rxy, Ryx]. 

2. To A ^ B conjoin Sxy- -  Rx'y and make the proper substitutions in A 
to obtain a new matr ix  of form A [Rxx, Rxx', Rxy, Ryy] ^ B[Rxy, Ryx] A 
A C[Rxy, Rx' y]. 

3. To A ^ B ^ C conjoin [Rxy-- Syx] A [Sx'y-- Rxy] and make the 
proper substitutions in A to obtain the new matr ix  of form A [Rxx, Rxy, Ryy] ^ 
^ B[Rxy, Ryx] AC[Rxy, Rx'y]. 

4. To A A B ^ C conjoin [Sxx-- Rxx] ^ [Sx'y-- Sxy] and in A substitute 
Syx  for Rxx, and Sxy for Ryy to obtain a new matr ix  of form _W [Rxx] A 
A _B[Rxy, Ryx] AC[Rxy, Rx'y]. 

I t  therefore follows tha t  the following is still an undecidable problem, 
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(D') For any matrices _Z [Roo], W_ [Rxx], B [Rxy, Ryx] and_C [Rxy, Rx'  y] 
to decide whether _Z(o) ̂  (Vx) _W(x) ̂  (Yxy) B(x, y) ^ (Vxy) C_(x, x', y) is 
satisfiable in (N, o, '}. 

By lemma 3 one now obtains, 
Theorem 1': There is no recursive method /or deciding satisfiability of 

sentences of /orm (3v) Z_ [Rvv] ^ (Vx) W_ [Rxx] ^ (Vxy) _B[Rxy, Ryx] ^ 
^ (Yx) (3u) (Vy) C[Rxy, Ruy], whereby R is a vector o/ binary predicate 
letters. 

Depending on the mentioned result of KAHR, MOORE, and WANG the initial 
condition _Z[Roo] may be dropped without making (D) decidable. Corre- 
spondingly theorem 1' remains true if "(3 v) Z_ [Rvv]" is dropped. The question, 
whether in addition the axial restraint W_[Rxx] can be avoided, remains 
unanswered. 

Domino problems: The reduction (D) to (D') discussed in the previous 
section can be carried one step further by the following observation. Suppose 
that  the predicates R x y  on N satisfy 

(1) (¥xy) D[Rxy,  Ryx,  Rx' y] . 

Then clearly the predicates P x y  ~-- R x y  and Qxy ~ Ryx  satisfy 

(¥x) [Qxx~- Pxx] ^ (¥xy)x~y D[Pxy,  Qxy, Px'  y] ^ 
(2) 

^ (Vxy)x> ~ _D [Qxy, Pxy,  Qxy'] 

Conversely, if Q and P satisfy (2) then the predicates R defined by R x y ~  Pxy,  
if x _>_ y and R x y - -  Qyx, if x _<- y satisfy (1). Thus, (1) is satisfiable if and 
only if (2) is satisfiable. Note furthermore that  the following formula uniquely 
defines the predicates x _~ y and x > y: 

(3) x>=x.^ .  ~ [ x >  x] .^. [ x '>  y ] ~  [x~=y] .^. [x>  y] D [x>__y]. 

Thus, in case D_ [Rxy, Ryx,  Rx'  y] is of form B[Rxy,  Ryx] ^ C[Rxy, Bx'  y] 
one obtains an (as to satisfiabflity) equivalent formula of form W_[Rxx] ^ 
^ U_[Rxy, Rx'y] ^ ~Z[Rxy, Rxy'], by conjoining (3) to (2). Consequently the 
problem (D') reduces to the following, 

(D") For any matrices Z_ [Roo], W_ [Rxx], U_ [Rxy, Rx'  y], V_ [Rxy, Rxy'] 
to decide whether _Z(o) ̂  (¥x) _W(x) ̂  (¥xy) .  _U(x, x', y) ^ V(x, y, y') is sat- 
isfiable in (N, o, '}. 

I t  therefore follows that  also this problem is unsolvable, and by lemma 3, 
Theorem 1": There is no recursive method /or deciding satisfiability o/ 

sentences o/]orm (3 v) _Z [Rvv] ^ (Yx) W_ [Rxx] ^ (Yx) (3 u)(¥y).  U_ [Ruy, Ruy] ^ 
^ V_ [Ryx, Ryu]. 

Depending on the result of KAHR, MOORE and WA~(~ the conjunct (3 v)_Z 
can be dropped. However, the question whether in this theorem both restraints 
(3v) _Z(v) and (Yx) _W(x) may be dropped, is a challenging unsolved problem. 
I t  can be stated thus, 
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Problem 1: Is  there an effective method which applies to any <S, U, V>, _U 
and V binary relations on the finite set _S, and decides whether or not there is 
a valuation R: N × N -~ _S which satisfies the condition ( V x y ) • _U [R x y, R x' y ] ̂  
^ V_[Rxy, Rxy']. 

In  a slightly different form this was first stated by WANG (1961), and called 
the domino problem. _U and _V may  be interpreted as sets of bars of length one, 
whose ends are marked with colors from a finite set S. The problem then takes 
the following rather  appealing form: To decide whether the lattice N × N 
can be filled with bars from _U along the x-direction and bars from V along 
the y-direction, such tha t  the ends of all bars meeting a t  any  lattice point 
carry the same color. 

The domino problem 1 is distinguished from other decision-problems by  the 
complete lack of "initial restraints".  This seems to make it  very hard to reduce 
to it  any  one of the s tandard unsolvable problems, which all contain initial 
conditions of one kind or another (empty or finite initial tapes, initial states, 
axioms = initial theorems). In  contrast, such a reduction was possible in the 
case (D"), which is the domino problem 1 with initial restraints _Z [Roo] and 
W [Rxx] added. In  fact, the claim of KAHR, MOOR~ and WAnG is tha t  the 
domino problem becomes unsolvable even in case only the axial-restraint 
W_ [Rxx] is added4). 

Related to the domino problem is the following, also unanswered, question: 
Problem 2: ls  there a finite set S and binary relations _U and _V on S such 

tha t  (Yxy). U_ [Rxy, Rx'y] ^ V_[Rxy, Rxy'] has a solution R, but  none which 
is periodic ? 

By lemma I I I  this is simply the question whether or not there still is an 
infinity-axiom of form (Vx) (3u) (Yy). U[Rxy, Ruy] ^ V_[Ryx, Ryu], i.e., 
whether the set V3V0, consisting of all these sentences, has proper ty  ~.  As 
noted by  WAnG (1961), a negative answer to problem 2 would mean solvability 
of the domino problem 1. (This corresponds to the well known fact tha t  q)X 
implies solvability of [X].) However, we rather  expect problem 1 to be 
unsolvable (possibly not of maximal  degree 1, which would explain the men- 
tioned difficulties in setting up reductions of standard unsolvable problems). 

An unsolved problem on Turing-maehines: We will now present a very 
natural  halting problem on Turing-machines. I t  came up in connection with 
[¥3V] ,  but  seems to be of interest in its own right. 

(T~) To find an effective method, which for every Turing-maehine M 
decides whether or not, for all tapes I (finite and infinite) and all states B, 
M will eventually hal t  if s tar ted in state B on the t a p e / .  

This problem also displays the feature of lack of initial restraints. STA~LV.Y 
TE~ .~BAUM has shown to the author tha t  (T~) becomes unsolvable if either 

4) While the present paper was in print the author was informed that the mentioned 
results of K ~ r ,  MOORE and WAnG are to be published in the February issue of the Proe. 
Nat. Ac. of So. U.S.A. 1962. 
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one of t he  following in i t ia l  r e s t r a in t s  is a d d e d  : 1. Dis t inguished  in i t ia l  s t a t e  A, 
2. I n i t i a l l y  the  t a p e  is emp ty .  
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