
Mechanising Turing Machines and Computability
Theory in Isabelle/HOL

Jian Xu1, Xingyuan Zhang1, and Christian Urban2

1 PLA University of Science and Technology, China
2 King’s College London, UK

Abstract. We present a formalised theory of computability in the theorem prover
Isabelle/HOL. This theorem prover is based on classical logic which precludes di-
rect reasoning about computability: every boolean predicate is either true or false
because of the law of excluded middle. The only way to reason about computabil-
ity in a classical theorem prover is to formalise a concrete model of computation.
We formalise Turing machines and relate them to abacus machines and recursive
functions. We also formalise a universal Turing machine and Hoare-style rea-
soning techniques that allow us to reason about Turing machine programs. Our
theory can be used to formalise other computability results. We give one example
about the computational equivalence of single-sided Turing machines.

1 Introduction

Suppose you want to mechanise a proof for whether a predicate P, say, is decidable
or not. Decidability of P usually amounts to showing whether P ∨ ¬ P holds. But this
does not work in Isabelle/HOL and other HOL theorem provers, since they are based on
classical logic where the law of excluded middle ensures that P ∨ ¬ P is always prov-
able no matter whether P is constructed by computable means. We hit on this limitation
previously when we mechanised the correctness proofs of two algorithms [9,10], but
were unable to formalise arguments about decidability or undecidability.

The only satisfying way out of this problem in a theorem prover based on classical
logic is to formalise a theory of computability. Norrish provided such a formalisation
for HOL4. He choose the λ-calculus as the starting point for his formalisation because
of its “simplicity” [6, Page 297]. Part of his formalisation is a clever infrastructure for
reducing λ-terms. He also established the computational equivalence between the λ-
calculus and recursive functions. Nevertheless he concluded that it would be appealing
to have formalisations for more operational models of computations, such as Turing
machines or register machines. One reason is that many proofs in the literature use
them. He noted however that [6, Page 310]:

“If register machines are unappealing because of their general fiddliness,
Turing machines are an even more daunting prospect.”

In this paper we take on this daunting prospect and provide a formalisation of Turing
machines, as well as abacus machines (a kind of register machines) and recursive func-
tions. To see the difficulties involved with this work, one has to understand that Turing

2 Jian Xu, Xingyuan Zhang, and Christian Urban

machine programs can be completely unstructured, behaving similar to Basic programs
containing the infamous gotos [3]. This precludes in the general case a compositional
Hoare-style reasoning about Turing programs. We provide such Hoare-rules for when
it is possible to reason in a compositional manner (which is fortunately quite often), but
also tackle the more complicated case when we translate abacus programs into Turing
programs. This reasoning about concrete Turing machine programs is usually left out
in the informal literature, e.g. [2].

We are not the first who formalised Turing machines: we are aware of the work by
Asperti and Ricciotti [1]. They describe a complete formalisation of Turing machines
in the Matita theorem prover, including a universal Turing machine. However, they
do not formalise the undecidability of the halting problem since their main focus is
complexity, rather than computability theory. They also report that the informal proofs
from which they started are not “sufficiently accurate to be directly usable as a guideline
for formalization” [1, Page 2]. For our formalisation we follow mainly the proofs from
the textbook by Boolos et al [2] and found that the description there is quite detailed.
Some details are left out however: for example, constructing the copy Turing machine
is left as an exercise to the reader—a corresponding correctness proof is not mentioned
at all; also [2] only shows how the universal Turing machine is constructed for Turing
machines computing unary functions. We had to figure out a way to generalise this result
to n-ary functions. Similarly, when compiling recursive functions to abacus machines,
the textbook again only shows how it can be done for 2- and 3-ary functions, but in the
formalisation we need arbitrary functions. But the general ideas for how to do this are
clear enough in [2].

The main difference between our formalisation and the one by Asperti and Ricciotti
is that their universal Turing machine uses a different alphabet than the machines it
simulates. They write [1, Page 23]:

“In particular, the fact that the universal machine operates with a different
alphabet with respect to the machines it simulates is annoying.”

In this paper we follow the approach by Boolos et al [2], which goes back to Post [7],
where all Turing machines operate on tapes that contain only blank or occupied cells.
Traditionally the content of a cell can be any character from a finite alphabet. Although
computationally equivalent, the more restrictive notion of Turing machines in [2] makes
the reasoning more uniform. In addition some proofs about Turing machines are sim-
pler. The reason is that one often needs to encode Turing machines—consequently if the
Turing machines are simpler, then the coding functions are simpler too. Unfortunately,
the restrictiveness also makes it harder to design programs for these Turing machines.
In order to construct a universal Turing machine we therefore do not follow [1], in-
stead follow the proof in [2] by translating abacus machines to Turing machines and in
turn recursive functions to abacus machines. The universal Turing machine can then be
constructed as a recursive function.
Contributions: We formalised in Isabelle/HOL Turing machines following the descrip-
tion of Boolos et al [2] where tapes only have blank or occupied cells. We mechanise
the undecidability of the halting problem and prove the correctness of concrete Turing
machines that are needed in this proof; such correctness proofs are left out in the in-
formal literature. For reasoning about Turing machine programs we derive Hoare-rules.

Mechanising Turing Machines and Computability Theory in Isabelle/HOL 3

We also construct the universal Turing machine from [2] by translating recursive func-
tions to abacus machines and abacus machines to Turing machines. Since we have set
up in Isabelle/HOL a very general computability model and undecidability result, we
are able to formalise other results: we describe a proof of the computational equivalence
of single-sided Turing machines, which is not given in [2], but needed for example for
formalising the undecidability proof of Wang’s tiling problem [8].

2 Turing Machines

Turing machines can be thought of as having a head, “gliding” over a potentially infinite
tape. Boolos et al [2] only consider tapes with cells being either blank or occupied,
which we represent by a datatype having two constructors, namely Bk and Oc. One
way to represent such tapes is to use a pair of lists, written (l, r), where l stands for the
tape on the left-hand side of the head and r for the tape on the right-hand side. We use
the notation Bkn (similarly Ocn) for lists composed of n elements of Bks. We also have
the convention that the head, abbreviated hd, of the right list is the cell on which the
head of the Turing machine currently scans. This can be pictured as follows:

left list right list

head
.

Note that by using lists each side of the tape is only finite. The potential infinity is
achieved by adding an appropriate blank or occupied cell whenever the head goes over
the “edge” of the tape. To make this formal we define five possible actions the Turing
machine can perform:

a ::= WBk (write blank, Bk)
| WOc (write occupied, Oc)

| L (move left)
| R (move right)

| Nop (do-nothing operation)

We slightly deviate from the presentation in [2] (and also [1]) by using the Nop oper-
ation; however its use will become important when we formalise halting computations
and also universal Turing machines. Given a tape and an action, we can define the fol-
lowing tape updating function:

update (l, r) WBk
def
= (l, Bk::tl r)

update (l, r) WOc
def
= (l, Oc::tl r)

update (l, r) L
def
= if l = [] then ([], Bk::r) else (tl l, hd l::r)

update (l, r) R
def
= if r = [] then (Bk::l, []) else (hd r::l, tl r)

update (l, r) Nop
def
= (l, r)

The first two clauses replace the head of the right list with a new Bk or Oc, respectively.
To see that these two clauses make sense in case where r is the empty list, one has to

4 Jian Xu, Xingyuan Zhang, and Christian Urban

know that the tail function, tl, is defined such that tl []
def
= [] holds. The third clause

implements the move of the head one step to the left: we need to test if the left-list l is
empty; if yes, then we just prepend a blank cell to the right list; otherwise we have to
remove the head from the left-list and prepend it to the right list. Similarly in the fourth
clause for a right move action. The Nop operation leaves the the tape unchanged.

Next we need to define the states of a Turing machine. We follow the choice made
in [1] by representing a state with a natural number and the states in a Turing machine
program by the initial segment of natural numbers starting from 0. In doing so we can
compose two Turing machine programs by shifting the states of one by an appropriate
amount to a higher segment and adjusting some “next states” in the other.

An instruction of a Turing machine is a pair consisting of an action and a natural
number (the next state). A program p of a Turing machine is then a list of such pairs.
Using as an example the following Turing machine program, which consists of four
instructions

dither
def
= [(WBk, 1), (R, 2), (L, 1), (L, 0)]︸ ︷︷ ︸

1st state
= starting state

︸ ︷︷ ︸
2nd state

Bk-case︷ ︸︸ ︷ Oc-case︷︸︸︷

(1)

the reader can see we have organised our Turing machine programs so that segments
of two pairs belong to a state. The first component of such a segment determines what
action should be taken and which next state should be transitioned to in case the head
reads a Bk; similarly the second component determines what should be done in case of
reading Oc. We have the convention that the first state is always the starting state of
the Turing machine. The 0-state is special in that it will be used as the “halting state”.
There are no instructions for the 0-state, but it will always perform a Nop-operation and
remain in the 0-state. Unlike Asperti and Riccioti [1], we have chosen a very concrete
representation for programs, because when constructing a universal Turing machine,
we need to define a coding function for programs. This can be directly done for our
programs-as-lists, but is slightly more difficult for the functions used by Asperti and
Ricciotti.

Given a program p, a state and the cell being read by the head, we need to fetch the
corresponding instruction from the program. For this we define the function fetch

fetch p 0 = (Nop, 0)

fetch p (Suc s) Bk
def
= case nth of p (2 ∗ s) of

None⇒ (Nop, 0) | Some i⇒ i

fetch p (Suc s) Oc
def
= case nth of p (2 ∗ s + 1) of

None⇒ (Nop, 0) | Some i⇒ i

(2)

In this definition the function nth of returns the nth element from a list, provided it
exists (Some-case), or if it does not, it returns the default action Nop and the default state
0 (None-case). We often have to restrict Turing machine programs to be well-formed: a
program p is well-formed if it satisfies the following three properties:

Mechanising Turing Machines and Computability Theory in Isabelle/HOL 5

wf p
def
= 2 ≤ length p ∧ is even (length p) ∧ (∀ (a, s)∈ p. s ≤ length p div 2)

The first states that p must have at least an instruction for the starting state; the second
that p has a Bk and Oc instruction for every state, and the third that every next-state is
one of the states mentioned in the program or being the 0-state.

We need to be able to sequentially compose Turing machine programs. Given our
concrete representation, this is relatively straightforward, if slightly fiddly. We use the
following two auxiliary functions:

shift p n
def
= map (λ(a, s). (a, if s = 0 then 0 else s + n)) p

adjust p
def
= map (λ(a, s). (a, if s = 0 then Suc (length p div 2) else s)) p

The first adds n to all states, except the 0-state, thus moving all “regular” states to the
segment starting at n; the second adds Suc (length p div 2) to the 0-state, thus redirecting
all references to the “halting state” to the first state after the program p. With these two
functions in place, we can define the sequential composition of two Turing machine
programs p1 and p2 as

p1 ⊕ p2
def
= adjust p1 @ shift p2 (length p1 div 2)

A configuration c of a Turing machine is a state together with a tape. This is written
as (s, (l, r)). We say a configuration is final if s = 0 and we say a predicate P holds for
a configuration if P holds for the tape (l, r). If we have a configuration and a program,
we can calculate what the next configuration is by fetching the appropriate action and
next state from the program, and by updating the state and tape accordingly. This single
step of execution is defined as the function step

step (s, (l, r)) p
def
= let (a, s ′) = fetch p s (read r)

in (s ′, update (l, r) a)

where read r returns the head of the list r, or if r is empty it returns Bk. It is impossible
in Isabelle/HOL to lift the step-function in order to realise a general evaluation function
for Turing machines programs. The reason is that functions in HOL-based provers need
to be terminating, and clearly there are programs that are not. We can however define a
recursive evaluation function that performs exactly n steps:

steps c p 0
def
= c

steps c p (Suc n)
def
= steps (step c p) p n

Recall our definition of fetch (shown in (2)) with the default value for the 0-state. In
case a Turing program takes according to the usual textbook definition, say [2], less
than n steps before it halts, then in our setting the steps-evaluation does not actually
halt, but rather transitions to the 0-state (the final state) and remains there performing
Nop-actions until n is reached.

We often need to restrict tapes to be in standard form, which means the left list of the
tape is either empty or only contains Bks, and the right list contains some “clusters” of

6 Jian Xu, Xingyuan Zhang, and Christian Urban

cbegin
def
=

[(WBk, 0), (R, 2), (R, 3),
(R, 2), (W1, 3), (L, 4),
(L, 4), (L, 0)]

cloop
def
=

[(R, 0), (R, 2), (R, 3),
(WBk, 2), (R, 3), (R, 4),
(WOc, 5), (R, 4), (L, 6),
(L, 5), (L, 6), (L, 1)]

cend
def
=

[(L, 0), (R, 2), (WOc, 3),
(L, 4), (R, 2), (R, 2),
(L, 5), (WBk, 4), (R, 0),
(L, 5)]

⇒ ⇒ ⇒︷ ︸︸ ︷
cbegin

︷ ︸︸ ︷
cloop

︷︸︸︷
cend

Fig. 1. The three components of the copy Turing machine (above). If started (below)
with the tape ([], 〈2〉) the first machine appends [Bk, Oc] at the end of the right tape; the
second then “moves” all Ocs except the first from the beginning of the tape to the end;
the third “refills” the original block of Ocs. The resulting tape is ([Bk], 〈(2, 2)〉).

Ocs separated by single blanks. To make this formal we define the following overloaded
function encoding natural numbers into lists of Ocs and Bks.

〈n〉 def
= Ocn + 1

〈(n, m)〉 def
= 〈n〉 @ [Bk] @ 〈m〉

〈[]〉 def
= []

〈[n]〉 def
= 〈n〉

〈n::ns〉 def
= 〈(n, ns)〉

(3)

A standard tape is then of the form (Bkl,〈[n1,...,nm]〉) for some l and n1...m. Note that
the head in a standard tape “points” to the leftmost Oc on the tape. Note also that the
natural number 0 is represented by a single filled cell on a standard tape, 1 by two filled
cells and so on.

Before we can prove the undecidability of the halting problem for our Turing ma-
chines working on standard tapes, we have to analyse two concrete Turing machine
programs and establish that they are correct—that means they are “doing what they are
supposed to be doing”. Such correctness proofs are usually left out in the informal liter-
ature, for example [2]. The first program we need to prove correct is the dither program
shown in (1) and the second program is copy defined as

copy
def
= cbegin ⊕ cloop ⊕ cend (4)

whose three components are given in Figure 1. For our correctness proofs, we introduce
the notion of total correctness defined in terms of Hoare-triples, written {P} p {Q}.
They implement the idea that a program p started in state 1 with a tape satisfying P will
after some n steps halt (have transitioned into the halting state) with a tape satisfying
Q. This idea is very similar to the notion of realisability in [1]. We also have Hoare-
pairs of the form {P} p ↑ implementing the case that a program p started with a tape
satisfying P will loop (never transition into the halting state). Both notion are formally
defined as

Mechanising Turing Machines and Computability Theory in Isabelle/HOL 7

{P} p {Q} def
=

∀ (l, r).
if P (l, r) holds then
∃ n. such that
is final (steps (1, (l, r)) p n) ∧
Q holds for (steps (1, (l, r)) p n)

{P} p ↑ def
=

∀ (l, r).
if P (l, r) holds then
∀ n. ¬ is final (steps (1, (l, r)) p n)

For our Hoare-triples we can easily prove the following Hoare-consequence rule

P ′ 7→ P {P} p {Q} Q 7→ Q ′

{P ′} p {Q ′}
(5)

where P ′ 7→ P stands for the fact that for all tapes tp, P ′ tp implies P tp (similarly for Q
and Q ′).

Like Asperti and Ricciotti with their notion of realisability, we have set up our
Hoare-rules so that we can deal explicitly with total correctness and non-termination,
rather than have notions for partial correctness and termination. Although the latter
would allow us to reason more uniformly (only using Hoare-triples), we prefer our def-
initions because we can derive below some simple Hoare-rules for sequentially com-
posed Turing programs. In this way we can reason about the correctness of cbegin, for
example, completely separately from cloop and cend.

It is relatively straightforward to prove that the Turing program dither shown in
(1) is correct. This program should be the “identity” when started with a standard tape
representing 1 but loops when started with the 0-representation instead, as pictured
below.

start tape

halting case: . . . ⇒ . . .

non-halting case: . . . ⇒ loops

We can prove the following Hoare-statements:

{λtp. ∃ k. tp = (Bkk, 〈1〉)} dither {λtp. ∃ k. tp = (Bkk, 〈1〉)}
{λtp. ∃ k. tp = (Bkk, 〈0〉)} dither ↑

The first is by a simple calculation. The second is by an induction on the number of
steps we can perform starting from the input tape.

The program copy defined in (4) has 15 states; its purpose is to produce the standard
tape (Bks, 〈(n, n)〉) when started with (Bks, 〈n〉), that is making a copy of a value n on
the tape. Reasoning about this program is substantially harder than about dither. To
ease the burden, we derive the following two Hoare-rules for sequentially composed
programs.

{P} p1 {Q} {Q} p2 {R}
{P} p1 ⊕ p2 {R}

wf p1

{P} p1 {Q} {Q} p2 ↑
{P} p1 ⊕ p2 ↑

wf p1

8 Jian Xu, Xingyuan Zhang, and Christian Urban

I1 n (l, r)
def
= (l, r) = ([], Ocn) (starting state)

I2 n (l, r)
def
= ∃ i j. 0 < i ∧ i + j = n ∧ (l, r) = (Oci, Ocj)

I3 n (l, r)
def
= 0 < n ∧ (l, tl r) = (Bk::Ocn, [])

I4 n (l, r)
def
= 0 < n ∧ (l, r) = (Ocn, [Bk, Oc]) ∨ (l, r) = (Ocn − 1, [Oc, Bk, Oc])

I0 n (l, r)
def
= 1 < n ∧ (l, r) = (Ocn − 2, [Oc, Oc, Bk, Oc]) ∨ (halting state)

n = 1 ∧ (l, r) = ([], [Bk, Oc, Bk, Oc])

J1 n (l, r)
def
= ∃ i j. i + j + 1 = n ∧ (l, r) = (Oci, Oc::Oc::Bkj @ Ocj) ∧ 0 < j ∨

0 < n ∧ (l, r) = ([], Bk::Oc::Bkn @ Ocn) (starting state)

J0 n (l, r)
def
= 0 < n ∧ (l, r) = ([Bk], Oc::Bkn @ Ocn) (halting state)

K1 n (l, r)
def
= 0 < n ∧ (l, r) = ([Bk], Oc::Bkn @ Ocn) (starting state)

K0 n (l, r)
def
= 0 < n ∧ (l, r) = ([Bk], Ocn @ (Bk::Ocn)) (halting state)

Fig. 2. The invariants I0,. . . ,I4 are for the states of cbegin. Below, the invariants only
for the starting and halting states of cloop and cend are shown. In each invariant the
parameter n stands for the number of Ocs with which the Turing machine is started.

The first corresponds to the usual Hoare-rule for composition of two terminating pro-
grams. The second rule gives the conditions for when the first program terminates gen-
erating a tape for which the second program loops. The side-conditions about wf p1 are
needed in order to ensure that the redirection of the halting and initial state in p1 and
p2, respectively, match up correctly. These Hoare-rules allow us to prove the correct-
ness of copy by considering the correctness of the components cbegin, cloop and cend
in isolation. This simplifies the reasoning considerably, for example when designing
decreasing measures for proving the termination of the programs. We will show the
details for the program cbegin. For the two other programs we refer the reader to our
formalisation.

Given the invariants I0,. . . , I4 shown in Figure 2, which correspond to each state of
cbegin, we define the following invariant for the whole cbegin program:

Icbegin n (s, tp)
def
= if s = 0 then I0 n tp

else if s = 1 then I1 n tp
else if s = 2 then I2 n tp
else if s = 3 then I3 n tp
else if s = 4 then I4 n tp
else False

This invariant depends on n representing the number of Ocs+1 (or encoded number) on
the tape. It is not hard (26 lines of automated proof script) to show that for 0 < n this
invariant is preserved under the computation rules step and steps. This gives us partial
correctness for cbegin.

We next need to show that cbegin terminates. For this we introduce lexicographi-
cally ordered pairs (n, m) derived from configurations (s, (l, r)) whereby n is the state

Mechanising Turing Machines and Computability Theory in Isabelle/HOL 9

s, but ordered according to how cbegin executes them, that is 1 > 2 > 3 > 4 > 0; in
order to have a strictly decreasing measure, m takes the data on the tape into account
and is calculated according to the following measure function:

Mcbegin(s, (l, r))
def
= if s = 2 then length r

else if s = 3 then (if r = [] ∨ r = [Bk] then 1 else 0)
else if s = 4 then length l
else 0

With this in place, we can show that for every starting tape of the form ([], Ocn) with
0 < n, the Turing machine cbegin will eventually halt (the measure decreases in each
step). Taking this and the partial correctness proof together, we obtain the Hoare-triple
shown on the left for cbegin:

{I1 n} cbegin {I0 n} {J1 n} cloop {J0 n} {K1 n} cend {K0 n}

where we assume 0 < n (similar reasoning is needed for the Hoare-triples for cloop
and cend). Since the invariant of the halting state of cbegin implies the invariant of the
starting state of cloop, that is I0 n 7→ J1 n holds, and also J0 n = K1 n, we can derive
the following Hoare-triple for the correctness of copy:

{λtp. tp = ([], 〈n〉)} copy {λtp. tp = ([Bk], 〈(n, n)〉)}

That means if we start with a tape of the form ([], 〈n〉) then copy will halt with the tape
([Bk], 〈(n, n)〉), as desired.

Finally, we are in the position to prove the undecidability of the halting problem. A
program p started with a standard tape containing the (encoded) numbers ns will halt
with a standard tape containing a single (encoded) number is defined as

halts p ns
def
= {λtp. tp = ([], 〈ns〉)} p {λtp. ∃ k n. tp = (Bkk, 〈n〉)}

This roughly means we considering only Turing machine programs representing func-
tions that take some numbers as input and produce a single number as output. For un-
decidability, the property we are proving is that there is no Turing machine that can
decide in general whether a Turing machine program halts (answer either 0 for halting
or 1 for looping). Given our correctness proofs for dither and copy shown above, this
non-existence is now relatively straightforward to establish. We first assume there is
a coding function, written code M, which represents a Turing machine M as a natural
number. No further assumptions are made about this coding function. Suppose a Tur-
ing machine H exists such that if started with the standard tape ([Bk], 〈(code M, ns)〉)
returns 0, respectively 1, depending on whether M halts or not when started with the
input tape containing 〈ns〉. This assumption is formalised as follows—for all M and all
lists of natural numbers ns:

halts M ns implies {λtp. tp = ([Bk], 〈(code M, ns)〉)} H {λtp. ∃ k. tp = (Bkk, 〈0〉)}
¬ halts M ns implies {λtp. tp = ([Bk], 〈(code M, ns)〉)} H {λtp. ∃ k. tp = (Bkk, 〈1〉)}

The contradiction can be derived using the following Turing machine

10 Jian Xu, Xingyuan Zhang, and Christian Urban

contra
def
= copy ⊕ H ⊕ dither

Suppose halts contra [code contra] holds. Given the invariants P1. . . P3 shown on the
left, we can derive the following Hoare-pair for contra on the right.

P1
def
= λtp. tp = ([], 〈code contra〉)

P2
def
= λtp. tp = ([Bk], 〈(code contra, code contra)〉)

P3
def
= λtp. ∃ k. tp = (Bkk, 〈0〉) {P1} copy {P2} {P2} H {P3}

{P1} copy ⊕ H {P3} {P3} dither ↑
{P1} contra ↑

This Hoare-pair contradicts our assumption that contra started with 〈code contra〉 halts.
Suppose ¬ halts contra [code contra] holds. Again, given the invariants Q1. . . Q3

shown on the left, we can derive the Hoare-triple for contra on the right.

Q1
def
= λtp. tp = ([], 〈code contra〉)

Q2
def
= λtp. tp = ([Bk], 〈(code contra, code contra)〉)

Q3
def
= λtp. ∃ k. tp = (Bkk, 〈1〉) {Q1} copy {Q2} {Q2} H {Q3}

{Q1} copy ⊕ H {Q3} {Q3} dither {Q3}
{Q1} contra {Q3}

This time the Hoare-triple states that contra terminates with the “output” 〈1〉. In both
case we come to a contradiction, which means we have to abandon our assumption that
there exists a Turing machine H which can in general decide whether Turing machines
terminate.

3 Abacus Machines

Boolos et al [2] use abacus machines as a stepping stone for making it less laborious
to write Turing machine programs. Abacus machines operate over a set of registers R0,
R1, . . . , Rn each being able to hold an arbitrary large natural number. We use natural
numbers to refer to registers; we also use a natural number to represent a program
counter and to represent jumping “addresses”, for which we use the letter l. An abacus
program is a list of instructions defined by the datatype:

i ::= Inc R increment register R by one
| Dec R l if content of R is non-zero, then decrement it by one

otherwise jump to instruction l
| Goto l jump to instruction l

For example the program clearing the register R (that is setting it to 0) can be defined
as follows:

clear R l
def
= [Dec R l, Goto 0]

Mechanising Turing Machines and Computability Theory in Isabelle/HOL 11

Running such a program means we start with the first instruction then execute one
instructions after the other, unless there is a jump. For example the second instruction
Goto 0 means we jump back to the first instruction thereby closing the loop. Like with
our Turing machines, we fetch instructions from an abacus program such that a jump
out of “range” behaves like a Nop-action. In this way it is again easy to define a function
steps that executes n instructions of an abacus program. A configuration of an abacus
machine is the current program counter together with a snapshot of all registers. By
convention the value calculated by an abacus program is stored in the last register (the
one with the highest index in the program).

The main point of abacus programs is to be able to translate them to Turing machine
programs. Registers and their content are represented by standard tapes (see definition
shown in (3)). Because of the jumps in abacus programs, it is impossible to build a
Turing machine programs out of components using our ⊕-operation shown in the pre-
vious section. To overcome this difficulty, we calculate a layout of an abacus program
as follows

layout []
def
= []

layout (Inc R::is)
def
= 2 ∗ R + 9::layout is

layout (Dec R l::is)
def
= 2 ∗ R + 16::layout is

layout (Goto l::is)
def
= 1::layout is

This gives us a list of natural numbers specifying how many states are needed to trans-
late each abacus instruction. This information is needed in order to calculate the state
where the Turing program code of one abacus instruction ends. The Goto instruction is
easiest to translate requiring only one state, namely the Turing machine program:

tm of Goto l
def
= [(Nop, l), (Nop, l)]

where l is the state in the Turing machine program to jump to. For translating the in-
struction Inc R, one has to remember that the content of the registers are encoded in the
Turing machine as a standard tape. Therefore the translated Turing machine needs to
first find the number corresponding to the content of register R. This needs a machine
with 2 ∗ R states and can be constructed as follows:

find nth 0
def
= []

find nth (Suc n)
def
=

find nth n @ [(WOc, 2 ∗ n + 1), (R, 2 ∗ n + 2), (R, 2 ∗ n + 3), (R, 2 ∗ n + 2)]

Then we need to increase the “number” on the tape by one, and adjust the following
“registers”. By adjusting we only need to change the first Oc of each number to Bk and
the last one from Bk to Oc. Finally, we need to transition the head of the Turing machine
back into the standard position. This requires a Turing machine with 9 states (we omit
the details). Similarly for the translation of Dec R l, where the translated Turing machine
needs to first check whether the content of the corresponding register is 0. For this we
have a Turing machine program with 16 states (again details are omitted).

12 Jian Xu, Xingyuan Zhang, and Christian Urban

Finally, having a Turing machine for each abacus instruction we need to “stitch” the
Turing machines together into one so that each Turing machine component transitions
to next one, just like in the abacus programs. One last problem to overcome is that an
abacus program is assumed to calculate a value stored in the last register (the one with
the highest register). That means we have to append a Turing machine that “mops up”
the tape (cleaning all Ocs) except for the Ocs of the last number represented on the tape.
This needs a Turing machine program with 2 ∗ R + 12 states, assuming R is the number
of registers to be “cleaned”.

While generating the Turing machine program for an abacus program is not too
difficult to formalise, the problem is that it contains Gotos all over the place. The un-
fortunate result is that we cannot use our Hoare-rules for reasoning about sequentially
composed programs (for this each component needs to be completely independent). In-
stead we have to treat the translated Turing machine as one “big block” and prove as
invariant that it performs the same operations as the abacus program. For this we have
to show that for each configuration of an abacus machine the step-function is simulated
by zero or more steps in our translated Turing machine. This leads to a rather large
“monolithic” correctness proof (4600 loc and 380 sublemmas) that on the conceptual
level is difficult to break down into smaller components.

4 Recursive Functions and a Universal Turing Machine

The main point of recursive functions is that we can relatively easily construct a uni-
versal Turing machine via a universal function. This is different from Norrish [6] who
gives a universal function for Church numbers, and also from Asperti and Ricciotti [1]
who construct a universal Turing machine directly, but for simulating Turing machines
with a more restricted alphabet. Recursive functions r are defined as the datatype

r ::= z (zero-functions)
| s (successor-function)
| idn

m (projection)

| Cnn r rs (composition)
| Prn r1 r2 (primitive recursion)
| Mnn r (minimisation)

where n indicates the function expects n arguments (z and s expect one argument), and
rs stands for a list of recursive functions. Since we know in each case the arity, say l, we
can define an inductive evaluation relation that relates a recursive function r and a list
ns of natural numbers of length l, to what the result of the recursive function is, say n—
we omit the straightforward definition of rec cal rel r ns n. Because of space reasons,
we also omit the definition of translating recursive functions into abacus programs. We
can prove the following theorem about the translation: Assuming eval r ns n then the
following Hoare-triple holds

{λtp. tp = ([Bk, Bk], 〈ns〉)} translate r {λtp. ∃ k l. tp = (Bkk, 〈n〉 @ Bkl)}

which means that if the recursive function r with arguments ns evaluates to n, then the
corresponding Turing machine translate r if started with the standard tape ([Bk, Bk],
〈ns〉) will terminate with the standard tape (Bkk, 〈n〉 @ Bkl) for some k and l.

and the also the definition of the universal function (we refer the reader to our for-
malisation).

Mechanising Turing Machines and Computability Theory in Isabelle/HOL 13

5 Conclusion

We have formalised the main computability results from Chapters 3 to 8 in the textbook
by Boolos et al [2]. Following in the footsteps of another paper [5] formalising the
results from a semantics textbook, we could have titled our paper “Boolos et al are
(almost) Right”. We have not attempted to formalise everything precisely as Boolos et
al present it, but use definitions that make mechanised proofs manageable. For example
our definition of the halting state performing Nop-operations seems to be non-standard,
but very much suited to a formalisation in a theorem prover where the steps-function
need to be total. We have found an inconsistency in Bolos et al’s usage of definitions
of . . . Our interest in Turing machines arose from correctness proofs about algorithms
where we were unable to formalise arguments about decidability but also undecidability
proofs in general (for example Wang’s tiling problem [8]).

The most closely related work is by Norrish [6], and Asperti and Ricciotti [1].
Norrish formalises computability theory using λ-terms. For this he introduced a clever
rewriting technology based on combinators and de-Bruijn indices for rewriting modulo
β-equivalence (in order to avoid explicit α-renamings). He mentions that formalising
Turing machines would be a “daunting prospect” [6, Page 310]. While λ-terms indeed
lead to some slick mechanised proofs, our experience is that Turing machines are not
too daunting if one is only concerned with formalising the undecidability of the halt-
ing problem for Turing machines. This took us around 1500 loc of Isar-proofs, which is
just one-and-a-half times longer than a mechanised proof pearl about the Myhill-Nerode
theorem. So our conclusion is it not as daunting as we imagined reading the paper by
Norrish [6]. The work involved with constructing a universal Turing machine via re-
cursive functions and abacus machines, on the other hand, is not a project one wants
to undertake too many times (our formalisation of abacus machines and their correct
translation is approximately 4300 loc; . . .)

Our work was also very much inspired by the formalisation of Turing machines
by Asperti and Ricciotti [1] in the Matita theorem prover. It turns out that their notion
of realisability and our Hoare-triples are very similar, however we differ in some ba-
sic definitions for Turing machines. Asperti and Ricciotti are interested in providing a
mechanised foundation for complexity theory. They formalised a universal Turing ma-
chine (which differs from ours by using a more general alphabet), but did not describe
an undecidability proof. Given their definitions and infrastructure, we expect this should
not be too difficult for them.

For us the most interesting aspect of our work are the correctness proofs for some
Turing machines. Informal presentation of computability theory often leave the con-
structions of particular Turing machines as exercise to the reader, as [2] for example,
deeming it too easy for wasting space. However, as far as we are aware all informal
presentation leave out any correctness proofs—do the Turing machines really perform
the task they are supposed to do. This means we have to find appropriate invariants
and measures that can be established for showing correctness and termination. When-
ever we can use Hoare-style reasoning, the invariants are relatively straightforward and
much smaller than for example the invariants by Myreen for a correctness proof of a
garbage collector [, Page 76]. The invariant needed for the abacus proof, where Hoare-

14 Jian Xu, Xingyuan Zhang, and Christian Urban

style reasoning does not work, is similar in size as the one by Myreen and finding a
sufficiently strong one took us, like Myreen, something on the magnitude of weeks.

Our reasoning about the invariants is also not very much supported by the automa-
tion in Isabelle. There is however a tantalising connection between our work and recent
work [4] on verifying X86 assembly code. They observed a similar phenomenon with
assembly programs that Hoare-style reasoning is sometimes possible, but sometimes
not. In order to ease their reasoning they introduced a more primitive specification logic,
on which for special cases Hoare-rules can be provided. It remains to be seen whether
their specification logic for assembly code can make it easier to reason about our Turing
programs. That would be an attractive result, because Turing machine programs are

The code of our formalisation is available from the Mercurial repository at http:
//www.dcs.kcl.ac.uk/staff/urbanc/cgi-bin/repos.cgi/tm/

References

1. A. Asperti and W. Ricciotti. Formalizing Turing Machines. In Proc. of the 19th International
Workshop on Logic, Language, Information and Computation (WoLLIC), volume 7456 of
LNCS, pages 1–25, 2012.

2. G. Boolos, J. P. Burgess, and R. C. Jeffrey. Computability and Logic (5th ed.). Cambridge
University Press, 2007.

3. E. W. Dijkstra. Go to Statement Considered Harmful. Communications of the ACM,
11(3):147–148, 1968.

4. J. B. Jensen, N. Benton, and A. Kennedy. High-Level Separation Logic for Low-Level Code.
In Proc. of the 40th Symposium on Principles of Programming Languages (POPL), pages
301–314, 2013.

5. T. Nipkow. Winskel is (almost) Right: Towards a Mechanized Semantics Textbook. Formal
Aspects of Computing, 10:171–186, 1998.

6. M. Norrish. Mechanised Computability Theory. In Proc. of the 2nd Conference on Interac-
tive Theorem Proving (ITP), volume 6898 of LNCS, pages 297–311, 2011.

7. E. Post. Finite Combinatory Processes-Formulation 1. Journal of Symbolic Logic, 1(3):103–
105, 1936.

8. R. M. Robinson. Undecidability and Nonperiodicity for Tilings of the Plane. Inventiones
Mathematicae, 12:177–209, 1971.

9. C. Urban, J. Cheney, and S. Berghofer. Mechanizing the Metatheory of LF. ACM Transac-
tions on Computational Logic, 12:15:1–15:42, 2011.

10. C. Wu, X. Zhang, and C. Urban. A Formal Model and Correctness Proof for an Access
Control Policy Framework. Submitted, 2013.

http://www.dcs.kcl.ac.uk/staff/urbanc/cgi-bin/repos.cgi/tm/
http://www.dcs.kcl.ac.uk/staff/urbanc/cgi-bin/repos.cgi/tm/

	Introduction
	Turing Machines
	Abacus Machines
	Recursive Functions and a Universal Turing Machine
	Conclusion

