diff -r 5974111de158 -r f1ecb4a68a54 thys/Recursive.thy --- a/thys/Recursive.thy Thu Feb 21 05:33:57 2013 +0000 +++ b/thys/Recursive.thy Thu Feb 21 05:34:39 2013 +0000 @@ -4909,7 +4909,7 @@ lemma tms_any_less: "\k < length ap; (a, b) \ set (tms_of ap ! k)\ \ b \ start_of (layout_of ap) (length ap)" -apply(case_tac "ap!k", auto simp: tms_of.simps tpairs_of.simps ci.simps shift_append sete.simps) +apply(case_tac "ap!k", auto simp: tms_of.simps tpairs_of.simps ci.simps shift_append adjust.simps) apply(erule_tac findnth_state_all_le1, simp_all) apply(erule_tac inc_state_all_le, simp_all) apply(erule_tac findnth_state_all_le2, simp_all) @@ -4951,12 +4951,12 @@ \ layout_of ap ! k = qa" apply(case_tac "ap ! k") apply(auto simp: layout_of.simps ci.simps - length_of.simps tinc_b_def tdec_b_def length_findnth sete.simps) + length_of.simps tinc_b_def tdec_b_def length_findnth adjust.simps) done lemma [intro]: "length (ci ly y i) mod 2 = 0" apply(case_tac i, auto simp: ci.simps length_findnth - tinc_b_def sete.simps tdec_b_def) + tinc_b_def adjust.simps tdec_b_def) done lemma [intro]: "listsum (map (length \ (\(x, y). ci ly x y)) zs) mod 2 = 0"